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Abstract: Quantile regression permits describing how quantiles of a scalar response variable depend on a set
of predictors. Because a unique definition of multivariate quantiles is lacking, extending quantile regression
to multivariate responses is somewhat complicated. In this paper, we describe a simple approach based on
a two-step procedure: in the first step, quantile regression is applied to each response separately; in the
second step, the joint distribution of the signs of the residuals is modeled through multinomial regression.
The described approach does not require a multidimensional definition of quantiles, and can be used to
capture important features of a multivariate response and assess the effects of covariates on the correlation
structure. We apply the proposed method to analyze two different datasets.

Keywords: conditional correlation; multinomial model; multiple quantiles; multivariate regression; sign-
concordance.

1 Introduction
The study of association between multiple outcomes is common in the medical literature. For instance,
clinical trials often have multiple primary endpoints, and limiting the analysis to one single endpoint may
be considered undesirable. This problem is particularly important when the trialed treatment is suspected
to have potentially different effects on different endpoints. For example, an anticoagulant treatment after a
primary stroke may reduce the risk of a second stroke and at the same time increase the risk of additional
bleeding [1].

When there is an interest in exploring the effect of covariates locally on specific quantiles of a univariate
response, quantile regression (e.g., [2]) can be used. However, if multivariate outcomes need to be considered
extending quantile regression is not straightforward, as no natural definition of multivariate quantile is
available.

The analysis ofmultivariate quantiles has been discussed in the existing literature. An excellent review is
provided in [3]. Most of the proposedmethods use geometrical definitions of multidimensional quantiles that
aremainly based on vector-valued ranks, and use the orientation information to identify directional quantiles
in a multidimensional data cloud [4–13]. Other scholars proposed joint modeling of quantiles in a likelihood
framework, avoiding amathematical definition of multivariate quantile [14–16]. Bayesianmethods have also
been described in the literature [17–19].

In this work, we propose a method that does not require a definition of multivariate quantile. The joint
distribution, FY (1)Y (2)

,…,Y (d) (y(1), y(2),… , y(d)), of a d-dimensional response, is not modeled parametrically and is
estimated locally at values that correspond to univariate conditional quantiles. Themethod is implemented in
two steps: first, quantile regression is applied to each response separately; then, a suitable regression model
is used to investigate the joint distribution of the signs of the residuals and their conditional association. The
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method aims to explore the local association between multiple outcomes by investigating the joint behavior
of their conditional quantiles. This approach bears some similarities with that described in [20], in which
copulas are used to model the bivariate quantile-specific conditional distribution.

Our proposal requires formulating a multivariate binary response model in which the binary outcomes
are defined by the sign of quantile regression residuals. In the literature, the problem of analyzing correlated
binary outcomes has been tackled in different ways, whichmay be broadly grouped into three categories. The
first category comprises methods based on generalized estimating equations that do not require specifying
the joint distribution of the multivariate response [21–24]. The second category consists of generalized linear
mixed models [25–28]. The third and most recent category includes methods that use copulas to model the
multivariate association [29–32].

In this paper, we suggest modeling the full joint distribution of the binary responses by fitting a multi-
nomial logistic regression model. This approach does not require strong simplifying assumptions, but may
become unfeasible if the response vector is high-dimensional. In many real-data settings, however, the
number of responses is two or three.

The proposed method is illustrated through two different applications. The first one considers a dataset
on lung function capacity with correlated spirometrics outcome measures. The second application refers to
the National Merit Twins Study, and allows for a comparison with the quantile association method proposed
by [20].

The paper is structured as follows. In Section 2 we describe the method and discuss how to measure the
correlation between the signs of quantile regression residuals. In Section 3wepresent twodifferent simulation
studies to illustrate the finite-sample performance of the proposed method. Sections 4 and 5 describe the
applications.

2 The proposed model

2.1 Sign-concordance of quantile regression residuals
Wedenote by x a q-dimensional vector of observed covariates, and by (Y (1)

,Y (2)) a pair of continuous response
variables. Following standard quantile regressionnotation [33],we assume the followingunivariate, quantile-
specific linear model to hold for each response:

Y ( j)
i = xTi 𝜷

( j)
𝜏

+ 𝜺
( j)
i j = {1, 2}, i = {1,… , n} (1)

with P
(
𝜀

( j)
i ≤ 0 ∣ xi

)
= 𝜏. In this model, Qy( j)

(
𝜏 ∣ xTi

)
= xTi 𝜷

( j)
𝜏

represents the 𝜏th conditional quantile of the

jth response, and 𝜷 ( j)
𝜏

is a vector of model coefficients, 𝜏 ∈ (0, 1).
An estimate of the unknown quantile regression coefficients, 𝜷 (1)

𝜏

and 𝜷 (2)
𝜏

, is obtained by minimizing

n∑
i=1

𝜌
𝜏

(y( j)i − xTj 𝜷
( j)
𝜏

), j = {1, 2}, (2)

where y( j)i is a realization from Y ( j)
i , and 𝜌

𝜏

(u) = (I(u ≤ 0)− 𝜏)u is a loss function. We denote by ̂𝜷
( j)
𝜏

the
estimated regression coefficients, and by �̂�

( j)
i = y( j)i − xTi ̂𝜷

( j)
𝜏

the corresponding quantile-specific regression
residuals.
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We define two binary indicators, namely 𝜔

(1)
i = I(Y (1)

i ≤ xTi 𝜷
(1)
𝜏

) and 𝜔

(2)
i = I(Y (2)

i ≤ xTi 𝜷
(2)
𝜏

), such that 0
and 1 indicate positive and negative residuals, respectively. We introduce the following random variable:

Zi =

⎧
⎪⎪⎨⎪⎪⎩

1 if 𝜔(1)
i = 0 and 𝜔

(2)
i = 0,

2 if 𝜔(1)
i = 1 and 𝜔

(2)
i = 1,

3 if 𝜔(1)
i = 0 and 𝜔

(2)
i = 1,

4 if 𝜔(1)
i = 1 and 𝜔

(2)
i = 0.

(3)

For amore intuitive notation, in the rest of themanuscript we will associate the labels {“00”, “11”, “01”, “10”}
to the values {1, 2, 3, 4} that form the support of Z. The variable Zi carries information on the concordance
of the signs of the residuals from the two regression equations defined in Eq. (1). Discordance between signs
indicates negative dependence between Y (1) and Y (2), given x. Similarly, concordance between signs suggests
a positive correlation.

Given the estimates ̂𝜷
( j)
𝜏

and �̂�

( j)
i we denote by �̂�

( j)
i = I(y( j)i ≤ xTi ̂𝜷

( j)
𝜏

) = I(�̂�( j)i ≤ 0) the estimated binary
indicators of negative residuals. The observed values of zi are defined by the four possible combinations of
�̂�

(1)
i , which reflects the sign of �̂�(1)i , and �̂�

(2)
i , which reflects the sign of �̂�(2)i . The sign concordance can be

summarized by a measure of correlation, i.e., the sample counterpart of the following population parameter:

𝜙 = cor
(
𝝎(1)

,𝝎(2)
)
= E

[
𝝎(1)𝝎(2)]− E

[
𝝎(1)]E [𝝎(2)]

√
E
[(
𝝎(1) − E

[
𝝎(1)

])2]E
[(
𝝎(2) − E

[
𝝎(2)

])2] . (4)

The equation in formula (Eq. (4)) can be rewritten as

𝜙 =
FY (1)Y (2) (Qy(1) (𝜏 ∣ x),Qy(2) (𝜏 ∣ x))− 𝜏

2

𝜏(1− 𝜏) , (5)

where FY (1)Y (2) (Qy(1) (𝜏 ∣ x),Qy(2) (𝜏 ∣ x)) is the joint, unconditional distribution function of the responses, eval-
uated at the conditional quantiles. Note that, by definition, E[𝝎(j)] = P(𝜺(j) ≤ 0 ∣ x) = 𝜏. This holds approx-
imately true when the sample counterparts of 𝝎(j) are used (33, Theorem 3.4). The joint distribution of
the quantile regression residuals signs is illustrated in Table 1, where we used the notation pz = P(Z = z),
z ∈ {“00”, “11”, “01”, “10”}.

Following Table 1, the value of the 𝜙 statistic in Eq. (4) can be also expressed as:

𝜙 = p11p00 − p01p10√
p0∗ × p1∗ × p∗0 × p∗1

(6)

with p0∗ = p∗0 = 1− 𝜏 and p1∗ = p∗1 = 𝜏.
There is no direct link between𝜙 and the global correlation structure: ourmethod is essentially nonpara-

metric and can be seen as an approach to assess correlation locally, showing how 𝜙 varies across quantiles
and how it depends on covariates. The bounds of the𝜙-coefficient can be obtained by calculating its value in

Table 1: Contingency table showing the joint distribution of the signs of quantile regressions residuals. By definition, the
margins are given by P(Y ( j)

> xT𝜷 ( j)
𝜏

) = 1− 𝜏 and P(Y ( j) ≤ xT𝜷 ( j)
𝜏

) = 𝜏, j = {1, 2}.

sign
(
Y (2) − xT𝜷 (2)

𝝉

)

+ −

sign
(
Y (1) − xT𝜷 (1)

𝜏

) + p00 p01 p0∗ = 1 − 𝜏

− p10 p11 p1∗ = 𝜏

p∗0 = 1 − 𝜏 p∗1 = 𝜏



4 | S. Columbu et al.: Modeling sign concordance of quantile regression residuals

Table 2: Joint distribution (relative frequencies) of the signs of quantile regression residuals in case of independence, perfect
positive dependence (Max) and perfect negative dependence (Min) between the two outcomes.

sign
(
Y (2) − xT𝜷 (2)

𝝉

)

+ −

sign
(
Y (1) − xT𝜷 (1)

𝜏

)
+

Independence (1− 𝜏)2 𝜏 − 𝜏

2

1 − 𝜏

Max 1 − 𝜏 0
Min (𝜏 ≤ 0.5) 1 − 2𝜏 𝜏

Min (𝜏 ≥ 0.5) 0 1 − 𝜏

−

Independence 𝜏 − 𝜏

2
𝜏

2

𝜏

Max 0 𝜏

Min (𝜏 ≤ 0.5) 𝜏 0
Min (𝜏 ≥ 0.5) 1 − 𝜏 2𝜏 − 1

1 − 𝜏 𝜏

the three limiting situations summarized in Table 2. In the case of independence, the joint distribution of the
residuals corresponds to the product of the two marginal probabilities. Under perfect positive dependence,
the joint distribution is derived assuming that there are no observations generating discordant residuals. The
perfect negative dependence requires some additional reasoning. Under this scenario, one may expect to
have no observations generating concordant residuals. However, as a consequence of the asymmetric struc-
ture of quantiles, the cells on the principal diagonal of Table 1 can never be simultaneously empty, unless
𝜏 = 0.5. We must therefore separate the cases above and below the median and allow for a small proportion
of observations in the cell corresponding to negative concordance for 𝜏 > 0.50, and in the cell of positive
concordance when 𝜏 < 0.50.

By applying Eq. (6) to Table 2 we have:
– 𝜙Indep = 0, independence;
– 𝜙Max = 1, largest possible positive dependence;

– 𝜙Min =
{
−𝜏∕(1− 𝜏) 𝜏 ≤ 0.50
−(1− 𝜏)∕𝜏 𝜏 ≥ 0.50

}
, largest possible negative dependence.

The above theoretical bounds for the 𝜙 statistic depend only on the quantile being estimated, and not on the
data. The largest possible value of 𝜙 is the same as that of the Pearson’s correlation coefficient. Instead, the
lower limit of the coefficient is greater than −1, unless 𝜏 = 0.5.

2.2 Modeling the conditional correlation
The correlation coefficient 𝜙, that describes the association between the signs of the residuals of univariate
quantile regression, isusually a functionof thepredictors. Inparticular,while themarginsofTable 1 arealways
equal to 𝜏 and 1− 𝜏, the joint distribution of 𝜔(1)

i = I(Y (1)
i ≤ xTi 𝜷

(1)
𝜏

) and 𝜔(2)
i = I(Y (2)

i ≤ xTi 𝜷
(2)
𝜏

) can depend on
covariates. For example, the correlation between outcomes could be larger in smokers than in non-smokers.
Note that the factors influencing this association may not coincide with those used in the univariate quantile
regressions.

In this paper we suggest using a multinomial logistic regression to model the distribution of Z:

log
(

P
(
Zi = z|xTi

)
P
(
Zi = “00”|xTi

)
)
= xTi 𝜸z:𝜏 , i = {1,… , n}, z = {“11”,“01”,“10”}. (7)

where 𝜸z:𝜏 is the vector of parameters of the regressive model, which will depend both on the quantile
considered in the quantile regression models at first step and on the z.
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The predicted probabilities, {p00(x), p11(x), p01(x), p10(x)}, are then combined (Eq. (6)) to compute an
estimate ̂

𝜙(x) of the conditional correlation coefficient. By plotting x versus ̂
𝜙(x), it is possible to show

how the correlation structure depends on covariates. The estimates can be compared with the three limit
values shown in Section 2.1. Note, however, that such limits may be surpassed at some values of x, due to a
combination of finite-sample variability and model misspecification.

The proposed estimator is implemented in two steps, where the first step requires estimating a quantile
regression model on each response separately, and the second step consists of a multinomial regression
model applied to the joint distribution of the signs of the residuals. Both estimators are supported by most
standard software. The variability associated with the first-step estimation of quantile regression coefficients,
̂𝜷 (1)
𝜏

and ̂𝜷 (2)
𝜏

, must be taken into account to evaluate correctly the variance of the second-step estimator
�̂�z:𝜏 . In principle, one could use well-known results on two-step estimators [34, 35]. However, bootstrap is
commonlyused for inference onquantile regression, and represents a very convenient approach in the current
framework.

3 Simulation study
We conducted a simulation study to illustrate the finite-sample performance of the proposed method. We
considered a simplified problem inwhich the second-step responsewas the binary indicator Zi = 𝜔

(1)
i ∧𝜔

(2)
i =

I(Y (1)
i ≤ xTi 𝜷

(1)
𝜏

∧ Y (2)
i ≤ xTi 𝜷

(2)
𝜏

), and we applied logistic regression to evaluate P(Z = 1|x):

log
(

P(Zi = 1|x)
1− P(Zi = 1|x)

)
= xTi 𝜸𝜏 , i = {1,… , n}. (8)

Two different scenarios were considered. In scenario 1, we directly controlled the dependence structure
of the responses, and generated Y (1) and Y (2) from a bivariate normal heteroskedastic model, N(𝝁,𝚺) in
which parameters were linear functions of a continuous covariate x ∼ U(0, 1) such that 𝝁 = {𝜇1, 𝜇2} =
{(3+ 2x), (2− 3x)} and

𝚺 =
(

1+ x 2(x − 0.5)
2(x − 0.5) 1− 0.5x

)
.

In this scenario, the second-step logisticmodel is not the truemodel, i.e., the log-odds ratio is not a linear
function of x. This generates a small bias that can be eliminated by using a sufficiently flexible parametric
model, i.e., by introducing x in the regression equation by means of polynomials or splines. In Table 3, we
consider threedifferentvaluesof thepredictor,x = {0.1,0.5,0.9}and, for threequantiles𝜏 = {0.25,0.5,0.75},
we report: the true probability of negative concordance, P(Z = 1|x); its average estimate from a logistic model
in which xwas included linearly; and the estimates obtained when xwas included in the regression equation
by means of natural cubic splines with 2 internal knots at the empirical tertiles. For each estimator, we also
report the empirical standard errors.

In scenario 2, we directly generated the binary indicator Z as follows:

P(Z = 1|x) = ebx
1+ ebx (9)

where x ∼ U(0.5, 1.5). We fixed the quantile regression equations, Qy(1)
(
𝜏 ∣ xTi

)
= 1+ 2x and Qy(2)

(
𝜏 ∣ xTi

)
=

3+ 4x. To simulate data, we first generated two random variables E(1)i ∼ Exp(2) and E(2)i ∼ Exp(1∕2),
i = 1,… , n. If Zi = 1, which implies 𝜔(1)

i = 𝜔

(2)
i = 1, we defined Y ( j)

i = Qy( j)
(
𝜏 ∣ xTi

)
− E( j). When Zi = 0, we

used the probabilities reported in Table 4 to assign the values of 𝜔(1)
i and 𝜔

(2)
i . In case of positive con-

cordance, that is 𝜔(1)
i = 𝜔

(2)
i = 0, we defined Y ( j)

i = Qy( j)
(
𝜏 ∣ xTi

)
+ E( j)i ; in case of discordance, if 𝜔(1)

i = 1 and
𝜔

(2)
i = 0 thenY (1) = Qy(1)

(
𝜏 ∣ xTi

)
− E(1)i andY (2)

i = Qy(2)
(
𝜏 ∣ xTi

)
+ E(2)i ; otherwise,Y (1)

i = Qy(1)
(
𝜏 ∣ xTi

)
+ E(1)i and

Y (2)
i = Qy(2)

(
𝜏 ∣ xTi

)
− E(2)i . To generate plausible data, a different value of b (Eq. (9)) was used for each value

of 𝜏.
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Table 3: Results of simulation 1. Data were generated from a bivariate normal heteroskedastic model. At different quantiles and
different values of x, we report the true probabilities of negative concordance, P(Z = 1|x), and their average estimates and
standard errors under two different specifications of the second-step logistic regression model: either a linear specification, in
which x was included linearly, or a spline-based model, in which x was included by means of natural cubic splines with 2
internal knots at the empirical tertiles.

Linear Splines

x = 0.1 x = 0.5 x = 0.9 x = 0.1 x = 0.5 x = 0.9

𝜏 = 0.25 True 0.0021 0.0625 0.1656 0.0021 0.0625 0.1656
n= 300 Estimated 0.0140 0.0509 0.1808 0.0044 0.0722 0.1653

se 0.0071 0.0120 0.0236 0.0055 0.0292 0.0281
n= 600 Estimated 0.0136 0.0508 0.1787 0.0040 0.0702 0.1653

se 0.0049 0.0087 0.0167 0.0040 0.0186 0.0195

𝜏 = 0.5 True 0.1069 0.2500 0.3930 0.1069 0.2500 0.3930
n= 300 Estimated 0.1217 0.2352 0.4076 0.1002 0.2557 0.3975

se 0.0179 0.0152 0.0223 0.0329 0.0345 0.0355
n= 600 Estimated 0.1209 0.2353 0.4088 0.1000 0.2555 0.3986

se 0.0121 0.0103 0.0160 0.0234 0.0253 0.0255

𝜏 = 0.75 True 0.5021 0.56254 0.6656 0.5021 0.5625 0.6656
n= 300 Estimated 0.4967 0.5767 0.6528 0.5128 0.5577 0.6722

se 0.013 0.0101 0.0184 0.0404 0.0364 0.0344
n= 600 Estimated 0.4936 0.5764 0.6551 0.5103 0.5573 0.6733

se 0.0097 0.0069 0.0129 0.0301 0.0271 0.0240

Table 4: Contingency table reporting the joint distribution of the signs of quantile regressions residuals for a fixed probability
of negative concordance P(Z = 1 ∣ x) with respect to the marginal distribution in each response.

sign
(
Y (2) − xT𝜷 (2)

𝝉

)

+ −

sign
(
Y (1) − xT𝜷 (1)

𝜏

)
+ 1 − 2𝜏 + P(Z = 1|x) 𝜏 − P(Z = 1|x) 1 − 𝜏

− 𝜏 − P(Z = 1|x) P(Z = 1∣x) 𝜏

1 − 𝜏 𝜏

In this scenario, both the step-1 and the step-2 model are correct. Results are summarized in Table 5,
which reports the same information as Table 3 for three different quantiles, 𝜏 = {0.25,0.5,0.75} and three
different values of the predictor, x = {0.5, 1, 1.5}.

The bias was always very small, even in simulation 1 where the logit-linear model was misspecified.
Moreover, in both simulations showed the estimator had a reliable finite-sample performance with relatively
small standard errors.

4 Dependence between lung function measures
Spirometric indexes are used to assess lung function impairment [36], and the diagnosis of many pulmonary
diseases is based on comparing observedmeasures with the tails of the distribution in the healthy population
[37]. Analyzingand interpretingpercentiles of spirometric indexes allows identifying risk factors of respiratory
impairment, diagnosing pulmonary diseases, and selecting appropriate treatments [38].
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Table 5: Results of simulation 2 (see text for details). At different quantiles and different values of x, we report the true
probabilities of negative concordance, P(Z = 1|x), and their average estimates and standard errors.

x = 0.75 x = 1 x = 1.25

b = −2.3 𝜏 = 0.25 True 0.0534 0.0308 0.0175
n = 300 Estimated 0.0570 0.0365 0.0236

se 0.0143 0.0135 0.0118
n = 600 Estimated 0.0556 0.0344 0.0213

se 0.0102 0.0094 0.0078

b = −1.15 𝜏 = 0.5 n = 300 True 0.2968 0.2405 0.1919
Estimated 0.2930 0.2443 0.2018
se 0.0183 0.0148 0.0193

n = 600 Estimated 0.2939 0.2430 0.1986
se 0.0136 0.0110 0.0141

b = 0.4 𝜏 = 0.75 True 0.5744 0.5987 0.6225
n = 300 Estimated 0.5780 0.5976 0.6168

se 0.0152 0.0118 0.0162
n = 600 Estimated 0.5756 0.5971 0.6182

se 0.0105 0.0082 0.0113

We investigated the effect of a variety of predictors on two important spirometric indexes: forced vital
capacity (FVC, in liters), and forced expiratory volume in 1 s (FEV1, also in liters). FVC is a measure of the
volume change in the lung between a full inspiration to total lung capacity, and a maximal expiration to
residual volume. FEV1 represents the volume exhaled during the first second of a forced expiratory maneuver
started from the level of total lung capacity. We used data from 945 individuals from the Po river delta study
[39], a prospective study conducted to investigate obstructive pulmonary diseases in the general population
of a rural area in northern Italy. The patients’ age ranged 18 to 64.We only analyzedmales, which represented
about forty-nine percent (466 subjects) of the entire dataset. We considered four covariates: height (cm,
centered at its sample mean), age (years, centered at its sample mean), an indicator of comorbidities such as
asthma, cough or wheeze, and an indicator of smoking (0 = never smoker, 1 = ever smoker). All considered
predictors are known relevant determinants of lung function [36, 37].

Exploratory analyses were performed to assess the relationship between the responses considered.
Figure 1 suggested a strong positive association between FVC and FEV1 (Spearman’s correlation= 0.878).

Figure 1: Scatterplot of the sample values of FEV1 (liters) against FVC
(liters).
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We estimated the following quantile regression models for 𝜏 = {0.1,0.5,0.9}:

QFVC(𝜏) = 𝛽

(1)
𝜏,0 + 𝛽

(1)
𝜏,1(age− 37)+ 𝛽

(1)
𝜏,2(height− 172)+ 𝛽

(1)
𝜏,3comorb.+ 𝛽

(1)
𝜏,4smoke,

QFEV1(𝜏) = 𝛽

(2)
𝜏,0 + 𝛽

(2)
𝜏,1(age− 37)+ 𝛽

(2)
𝜏,2(height− 172)+ 𝛽

(2)
𝜏,3comorb.+ 𝛽

(2)
𝜏,4smoke.

The estimated quantile regression coefficients are reported in Table 6. Standard errorswere obtained from
1000 tilted bootstrap replicates [40, 41]. Results suggested that age and height were two important predictors
of lung function.

Using the estimated quantile regression residuals, we calculated the concordance indicator zi defined in
Eq. (3), and modeled its conditional distribution using a multinomial regression:

log
(

P(Z = z)
P(Z = “00”)

)
= 𝛾z:𝜏,0 + 𝛾z:𝜏,1s(age)+ 𝛾z:𝜏,2s(height)+ 𝛾z:𝜏,3comorb.+ 𝛾z:𝜏,4smoke, (10)

z = {“11”, “01”, “10”}. In the regression equation, s(x) denotes the basis of a natural cubic splines with two
internal knots at the empirical tertiles. Using splines allows achieving any desired flexibility, but makes it
difficult to interpret the 𝛾 model coefficients. Note, however, that the second-step multinomial regression is
only used for prediction purposes. We remark that, in general, it is possible to use different sets of covariates
in the first- and second-step model.

The conditional correlation ̂
𝜙(x) was computed by applying Eq. (6) to the fitted probabilities frommodel

(Eq. (10)). In Figures 2–4, we represent how correlation depends on covariates at different values of 𝜏. To
computeconfidence intervals,weobtainedbootstrapstandarderrorsof logit

(
̂
𝜙(x)

)
. Indoingso theunivariate

quantile models of first step have been re-evaluated on each bootstrap replicate. The values corresponding
to 𝜙Indep, 𝜙Min, and 𝜙Max are shown as horizontal lines.

Results showed a consistently positive correlation between FVC and FEV1. At 𝜏 = 0.1, the estimated
𝜙 coefficients was considerable (close to 0.5), suggesting that patients are more often below or above the
lower limit of normality with respect to both spirometric measurements. Interestingly, the correlation was
slightly smaller in presence of comorbidities. This could be explained by the fact that some comorbidities
may only affect one of the two response variables of interest, breaking the existing correlation. At 𝜏 = 0.5,
correlations were generally large, and unaffected by predictors. At 𝜏 = 0.9, the estimated 𝜙 coefficient was
typically around 0.5, but approached zero at young ages (<25 years), and in tall patients (>180 cm). This

Table 6: Estimated quantile regression coefficients with response FVC (top table) and FEV1 (bottom table).

𝝉 = 0.10 𝝉 = 0.50 𝝉 = 0.90

Coefficient SE Coefficient SE Coefficient SE

FVC

Intercept 4.227 0.153∗ 4.977 0.118∗ 5.816 0.14∗
Age−37 −0.019 0.004∗ −0.024 0.003∗ −0.022 0.004
Height−172 0.058 0.008∗ 0.056 0.005∗ 0.065 0.008∗
Comorbidity 0.055 0.111 0.112 0.088 0.162 0.129
Ever smoker 0.037 0.164 −0.105 0.129 −0.259 0.149

FEV1

Intercept 3.168 0.123∗ 3.961 0.080∗ 4.413 0.073∗
Age−37 −0.027 0.003∗ −0.027 0.003∗ −0.029 0.003∗
Height−172 0.045 0.006∗ 0.043 0.004∗ 0.043 0.006∗
Comorbidity −0.188 0.103 −0.029 0.073 0.044 0.106
Ever smoker 0.059 0.128 −0.183 0.088∗ −0.113 0.085

The asterisk (∗) indicates p-values less than 0.05.



S. Columbu et al.: Modeling sign concordance of quantile regression residuals | 9

Figure 2: Predicted correlation at the 10th percentile, expressed as a function of the predictors. The horizontal lines indicate,
from top to bottom, perfect positive correlation (𝜙Max), independence (𝜙Indep), and perfect negative correlation (𝜙Min),
respectively.

could be explained by the fact that particularly large values of both FVC and FEV1 indicate good health,
without underlying pathological conditions that may induce correlation.

5 National Merit Twin Study
In this section we consider an application to the National Merit Twin Study, that was previously analyzed,
among others, by [42] and [20]. Extensive questionnaireswere administered to 839 adolescent twins identified
among the roughly 600,000 US high school juniors who took the national merit scholarship qualifying test
(NMSQT) in 1962. The dataset is available in the mdhglm R package [43], and includes 768 pairs of same-
gender twins. The twins were classified as identical or fraternal based on amail-in questionnaire. The NMSQT
consists of five subtests, covering the domains of English, mathematics, social science, natural science, and
vocabulary. A total score is calculated as the sum of the scores obtained from the five subtests. In our analysis,
the bivariate outcome (Y (1), Y (2)) is given by the total NMSQT scores of the twin pair. We considered the
following binary covariates: Sex (0 = male, 1 = female), Income (an indicator of family income level being
above 10,000USdollars), Education (an indicator ofwhether at least one of the parents had education beyond
high school), and Zygosity (1 for identical twins, and zero otherwise). The aim of the analysis was to study the
association between twins in terms of academic abilities, conditional on the observed factors.

We first estimated two univariate quantile regression models (𝜏 = 0.01,0.02,… ,0.99) to describe the
effect of covariates on the NMSQT scores (Y (1), Y (2)). The regression equation also included an interaction
term Zigosity × Income. Results showed that male students coming from families with high income and
high parental education tend to score higher. The interaction was generally significant, suggesting that, in
whealthier families, identical twins tend to perform better than heterozygous twins.

We then calculated the concordance indicator zi defined in Eq. (3), and estimated the multinomial model
of concordance. Following [20], we restricted the analysis to quantiles in the range [0.2,0.8]. Because NMSQT
scores in each twins’ pair can be considered exchangeable (as the twins cannot be ordered), the discordant
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Figure 3: Predicted correlation at the median.

Figure 4: Predicted correlation at the 90th percentile.

residuals can be considered as a single category, simplifying the multinomial regression model. We initially
included thesamepredictorsused in theunivariatequantile regressionmodels;however, ourfinal second-step
model only included zigosity, that was the only significant predictor.

Figure 5(a) and (b) illustrate the parameters’ estimates (�̂�z:𝜏 ) together with 95% bootstrap confidence
intervals. The figures compare the negative concordance (Z = “11”) and the discordance (Z = “01” + “10”) to
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Figure 5: Estimated coefficients (�̂� z:𝜏 ) of the multinomial logistic model, 𝜏 ∈ [0.2,0.8].

Figure 6: Predicted correlation ̂
𝜙(x) for fraternal twins and identical twins, 𝜏 ∈ [0.2,0.8].

the situation of positive concordance (Z= “00”). Themodel coefficients show that identical twins have a lower
chance of being discordant and a higher chance of being positively concordant. The estimated coefficients are
decreasing function of the quantile, showing a stronger difference between twins with higher performances
in NMSQT test.

In Figure 6 we report the estimates of the conditional coefficient of correlation ̂
𝜙(x). In the calculation

of ̂𝜙(x), the predicted probability of discordant residuals in Eq. (6) was equally split in the two terms p01 and
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p10. The correlation was always positive for both identical and fraternal twins, and was higher for identical
ones. These results are in line with those obtained by [20], and strongly support the presence of a genetic
component in the students’ performances.

6 Final remarks
Dependence between multiple response variables of interest is very common, and occurs in cross-sectional,
case-control, and longitudinal studies. The method presented in this paper allows to investigate the condi-
tional correlation structure of a multivariate response, by analyzing the signs of the residuals from univariate
quantile regression models. In the paper, we assumed that the same quantile, 𝜏, was estimated for all out-
comes. However, depending on the purpose of the analysis, one could consider a different quantile, say 𝜏 (j),
for each outcome of interest, j = 1,… , d.

In principle, other families of regression models could be used in place of quantile regression: for
example, one could apply the same method to the residuals of a linear (mean) regression. However, the
residuals’ signs are a natural outcome of quantile regression, in which by definition a proportion 𝜏 of the
observations lie below the estimated regression line. Also, in Eq. (1), the conditional quantiles of Y (j) are
assumed to be linear in the parameters. Although this parametrization is very popular and computationally
convenient, the method presented in this paper can be applied to any nonlinear quantile function.

In our work, we mainly considered a bivariate response. When the response vector has more than two
elements, the proposed approach can be modified by introducing higher-order sign-concordance probabil-
ities, that can be combined into more complicated summary statistics. For example, the simple correlation
coefficient 𝜙 defined in Eq. (6) could be replaced by some multivariate measure of correlation (e.g. [44]).
Alternatively, one can calculate a standard measure of correlation for each pair of response variables.

The usedmultinomial logistic model is completely unstructured, and has a number of parameters which
is proportional to 2d where d is the number of outcomes being considered. Some simplifying assumptions
may be used to investigate the joint distribution of multiple binary responses. For example, in the Twin Study
presented in Section 5, we categorized the combinations of two responses into three groups only. Another
possibility for the case d = 2 is to directly model a binary variable indicating concordance (Zi = {00, 11})
using standard logistic regression. When d is large, identification problemsmay occur. For example, if d = 10
and all outcomes are independent, the relative frequency of the cell in which all responses are above the
median is 0.510 = 1∕1024. While an empty cell is simply ignored, a cell with very few observations will cause
the multinomial regression model to be poorly identified and to have large standard errors. This could be
solved by merging multiple cells, for example by defining a binary indicator of “at least 5 responses above
the median”.

Finally, the use ofmultinomial logistic regression is just a possible solution. Any othermethod that allows
to predict probabilities could be used, including a multinomial model with a different link function (e.g., a
probit model) or a probabilistic classifier.

All methods described in this paper are implemented in standard software. The R code used to
analyze the two datasets presented in Sections 4 and 5 is available on GitHub repository at the link
https://github.com/silviacolumbu/Sign-concordance-of-QR-residuals.
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