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ARTICLE INFO ABSTRACT

Keywords: Prosumers have a central role in the context of smart grids, and in particular within local energy communities
Renewable energies incentive systems (LECs), as they are capable of being both energy producers and consumers. In a scenario where peer-to-peer
Smart grid (P2P) energy trading is allowed, prosumers can exchange the energy they produce with other prosumers:

Cooperative game theory

' the primary outcome of this is the improvement of energy self-consumption across the grid, which leads to
Peer-to-peer energy trading

decreased transmission losses, as well as lower energy costs and diminished long-term damage to the grid itself.
Previous work proposed a mechanism to achieve multiple objectives for a cooperative game theory perspective
for small coalitions, but its behavior for coalitions of arbitrary size remains unexplored, and it does not consider
the objective of peak shaving. This paper aims to (i) design an algorithm for calculating schedules for coalitions
of arbitrary size, (ii) analyze the behavior of this mechanism for large coalitions, (iii) create a new incentive
mechanism by proposing new selling functions that ensure that the resulting mechanism would optimize for the
objective of peak shaving when all the prosumers work together in one large coalition, and (iv) demonstrate
the performance of the existing mechanism in terms of peak shaving, by comparing against the mechanism
specifically optimized for this objective. Simulations conducted on data from a grid in Cardiff, UK, reveal
that the existing mechanism works particularly well for the non-cooperative game, achieving results for cost
reduction and self-consumption almost identical to the cooperative game, no matter the size of the coalitions.
More precisely, although all mechanisms achieve optimal peak shaving for the grand coalition, the existing
mechanism achieves this objective even within the framework of the selfish game, resulting in a reduction of
the peak by approximately 29% compared to alternative methods. Furthermore, the mechanism is proven to
optimally achieve peak shaving in both cooperative and non-cooperative cases.

1. Introduction allocation and quantity of consumed energy [3]. Certain incentive

mechanisms leverage energy flexibility by introducing payment sys-

Exploiting renewable energies has become a crucial focus in recent
decades, addressing both environmental concerns and the quest for
alternative energy sources. Numerous policies have been implemented
in order to encourage grid users to join renewable production, and
become therefore prosumers - i.e., users who are producers in addition
to being consumers. The most common incentives for prosumers are
financial, such as payment for the energy prosumers produce and inject
into the grid, or provisioning of free energy at a later point in time. The
introduction of those policies came along with some issues that were
not present before: renewable energy generation is often unpredictable,
and this brings new challenges to grids in terms of stability [1,2], as
well as having to align consumption with production through the grid
as closely as possible.

A key concept for addressing those challenges is energy flexibility:
that is, the ability to adjust energy loads with respect to their time
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tems that encourage users to align their consumption with the energy
production peaks through the grid [4-8]. In particular, a notably
interesting mechanism is NRG-X-Change [5]: the idea behind it is
that prosumers can export their energy production to the grid and be
rewarded for that, while consumers may draw energy from the grid
and have to pay accordingly. The rewards for production and costs
for consumption are determined by two functions, and the behavior
of those functions influences the behavior of the users from the grid.
Also, the mechanism originally supported a virtual currency called
NRGcoin, although its underlying principle remains effective even with
fiat currency. The mechanism revolves around prosumers producing
energy and sharing it with the community, while consumers purchase
energy: prices for selling and buying energy are regulated by two
functions that depend on the amount of energy consumed and produced
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within the grid. There have been several studies with the aim of
improving this mechanism, focusing on user behavior both from a
single user perspective [9] and the whole grid’s perspective [10,11].
For the specific case of the whole grid, a game theory approach has
been chosen.

Concerning the topic of game theory, numerous studies have delved
into the application of game theoretical methods in smart grids, specif-
ically focusing on enhancing self-consumption through the grid and
improving economic benefits by utilizing energy flexibility [12]. How-
ever, none of them have addressed the case of pricing schemes tailored
in order to prevent curtailment and user self-consumption. The work
performed by authors in [10] has done this from a perspective where
users adopt a selfish behavior: this behavior is modeled by defining a
game over the grid, demonstrating that exploiting flexibility can lead
to improvements in energy costs and self-consumption. Building upon
this, another research effort [11] has extended the previous work from
a coalition game theory perspective, analyzing the consequences of the
possibility of forming small coalitions. It has been shown that small
coalitions (i.e., with 4 or less players in each) do not yield significant
advantages compared to the selfish game. However, it is still unknown
what happens with games with bigger coalitions since, in this case,
it is difficult to compute the optimal schedules for the coalitions.
Moreover, until now, the effect of incentive mechanisms has been
studied mainly in terms of energy consumption [9-11]; however, there
are other aspects, such as peak shaving [13], that would be important
to consider. Therefore, this work has the following main objectives:

» Enhance the current incentive mechanism by devising a method-
ology that efficiently computes optimization for energy flexibility
within coalitions of arbitrary sizes, accomplishing this task within
a practical timeframe.

Analyze the impact of coalitions of arbitrary size for flexibility
exploitation in a local grid.

Introduce two novel incentive mechanisms by devising two dis-
tinct selling functions, explicitly aimed at achieving peak shaving,
while coalitions optimize for profitability.

Evaluate the existing mechanism’s performance in terms of peaks,
both for the cooperative (of any size) and non-cooperative cases,
and determine if optimal peak shaving is achieved.

It is crucial to emphasize that this paper does not encompass general
applications of game theory to local energy communities (LECs); rather,
it is specifically centered on incentive mechanisms. Consequently, the
primary focus is on investigating the impact of these mechanisms
on user behavior through the lens of game theory. Furthermore, the
analysis of peak shaving in this study aims to determine whether
the proposed incentive mechanism actively promotes its attainment or
not. The development of a computation method for large coalitions
is essential for observing the behavior of the grand coalition in this
context.

This work is organized as follows. Section 2 contains the related
work, Section 3 describes the game theoretical model and the existing
frameworks, while Section 4 contains the new optimization techniques
and functions. Furthermore, Section 5 shows the experiments we have
carried out to validate our results, and Section 6 discusses the results
found. Finally, Section 7 describes our conclusions and draws the future
directions where we are headed.

2. Related work

In this section, we describe the works present in the literature that
are relevant to our research.

This paper builds upon prior research endeavors. The original in-
centive mechanism, NRG-X-Change [5], conceptualized a LEC wherein
energy buying and selling prices were contingent upon the aggregate
energy production and consumption within the community. Subsequent
work [9] refined this mechanism by mitigating prosumers’ tendencies
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to curtail their energy production or excessively consume energy si-
multaneously, thereby minimizing congestion risks. Instead, prosumers
were incentivized to prioritize the consumption of self-generated en-
ergy before engaging in excess buying or selling activities. This refine-
ment was further enhanced in [10] through the introduction of a selfish
game theory framework to scrutinize user behavior. Additionally, a
new mechanism was devised to preserve the advantageous properties
of previous iterations while ensuring the existence of a Nash Equilib-
rium. Furthermore, [11] extended this line of inquiry by examining
cooperative games of small scale and proposing more versatile selling
and buying functions.

For what incentive mechanisms are concerned, the work conducted
by authors in [14] describes the status of traditional incentive mech-
anisms in southeast Europe, giving an overview of the electricity pro-
duction in those countries with a focus on renewable energy, and offers
an economic insight on feed-in tariffs and incentives on renewable
energy. On the other hand, the work in [15] provides an analysis of
how incentive mechanisms are evolving, comparing old mechanisms
such as net metering and feed-in tariffs with more recent ones, demon-
strating the superior performance of the latter. In a more specific and
localized context, the work described in [16] is a review of the current
legislation and incentive mechanisms in Italy for LECs, with a focus
on the currently existing projects and the challenges they are facing.
Moreover, [17] illustrates the application of incentive mechanisms in a
specific scenario in Italy, highlighting weaknesses and improvements in
local self-consumption for the case of a desalination unit. In a different
context, researchers in [18] presented a case study in Nepal for peer-to-
peer energy trading, showcasing and comparing different approaches,
and emphasizing the main challenges for isolated energy systems and
microgrids. Regarding incentive mechanisms that propose payment
schemes, the work conducted by authors in [19] proposes two payment
schemes to allow distribution companies to promote energy efficiency:
one considers uncertainty, while the other does not. This work com-
pares performance-based mechanisms against fixed prices and also
proposes a hybrid model incorporating both those components. In [20],
a pricing method is introduced to discourage grid users from cheating
when reporting their energy consumption. This is based on the principle
of an auction game, ensuring that the users will be truthful about their
energy consumption, which will encourage a better usage of energy
through the grid. The work [21] proposes a two-stage mechanism that
operates on the demand response market, whose objective is to address
the issues of the uncertainty of consumption baselines and curtailment
costs by requesting for day-ahead probabilistic estimates, and the actual
consumption baseline when called for demand response.

Concerning the application of game theory in the context of smart
grids, various examples exist. The study referenced in [22] effectively
illustrates the dynamics of the game within a LEC, considering flexible
loads and the formation of coalitions. However, a key distinction lies in
the focus of our work, which centers on investigating incentive mech-
anisms and their interplay within the cooperative game framework. In
contrast, [22] primarily examines coalition formation within a context
where coalitions are dynamic. Also, [23] studies cooperative game
theory effects on LECs, with a game formulation similar to ours: here
the main difference is that the strategies are to join or not a coalition,
while this paper focuses on exploiting flexibility for achieving profit
maximization, and therefore taking part in coalitions means to unite
flexibility with the other coalition members. A similar approach has
been taken from [24], which uses cooperative game theory and energy
storage to improve global self-consumption. However, this work has its
main focus on single buildings, and its exploitation of cooperative game
theory refers again to taking part in a coalition or not as a strategy,
rather than exploiting flexibility. Regarding other game theory works
authors in [25] provided a survey paper that describes in general how
game theory is employed in relation to smart grid issues, describing,
in particular, both the selfish and cooperative cases. The same has
been done in [26], but with an emphasis on cooperative games: the
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three main points of this work are to emphasize why cooperation is
important, in which ways it may occur, and how game theory can
model it. Another approach [27] introduces a 3-level game theoretical
approach for managing electric vehicles and charging stations. The
work considers three different approaches from a system operator
perspective, comparing voltage magnitude for each load. In another
work [28], game theory is employed for selling stored energy by
exploiting competition between aggregators. The effectiveness of the
approach is demonstrated on four different use cases. Meanwhile, [29]
proposes a simple game theoretical approach for selling and buy-
ing energy, and compares it against some single-behavior baselines,
demonstrating its benefits in terms of economic profit. One more work
described in [30] provides a simple example of coalition formation
between different grids, showcasing how cooperative game theory can
minimize energy losses between different smart grids when allowed
to trade energy between each other. Game theory has in particular
been applied to the NRG-X-Change mechanism itself. The work illus-
trated in [31] builds and simulates the functioning of NRG-X-Change,
although it uses the original functions and only hints at the idea of
exploiting cooperative game theory in future work. However, none
of these works explicitly integrates game theory with multi-objective
incentive mechanisms while defining the impact of flexibility in the
game. The work we propose in this paper aims to fill this gap, allowing
the possibility of forming coalitions of arbitrary size.

Finally, peak shaving is a widely discussed problem in literature.
The work illustrated in [13] describes a use case in Switzerland, where
battery storage is employed for peak shaving within a deep learning
load forecasting model, demonstrating the effectiveness of the approach
and the economic savings obtained. In [32] it is shown how sharing
distributed energy resources can be used by the aggregator to achieve
peak shaving and load balance: the strategy is based on an asymmetric
Nash bargaining model [33], and it is implemented in a decentral-
ized manner by using an Alternating Direction Method of Multipliers
(ADMM) algorithm [34]. Finally, the work performed in [35] optimizes
demand-side management for a building to improve peak shaving, by
defining a multi-energy flexibility measure and utilizing it for building
operation optimization, reducing the peak and associated costs in the
process.

Following the same objective, in this paper we introduce two new
functions that optimize peak shaving for big coalitions.

3. Preliminaries

This section outlines the model employed to represent our problem.
We will show how the user behavior is modeled in terms of game
theory, and how our approach interacts with the users’ behavior. Our
model draws inspiration by [36] and [37].

Table 1 provides a nomenclature for all the symbols we have used
throughout the paper.

3.1. Game theory approach to our smart grid problems

We start by defining what a game is. We define a game as a triple
G = (U, S, Q) as follows:

U ={U,,...,Uy} are the players.

+ §={S),..., Sy} contains all the strategies. More specifically, for
every i € {1,..., N}, S, is the set of strategies for the player U;.

* 0 ={q,....qy} is the set of payoff functions. More precisely, for
eachie(l,....,N}, q; : )(jN=l S; — R is U;’s payoff function.

It is important to notice that, throughout this paper, S; indicates the
set of strategies of U;, while the notation s; indicates an element of S,
i.e., one single strategy for the user U;.

The objective of each user U, is to maximize the function g;: this will
depend on the choices of the strategies from U; and all other users.
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Table 1
Table of symbols used throughout this paper.
Notation Description
U, Player of a given game.
S, Set of strategies of U,.
q; Payoff function for player U,.
Number of players in a given game.
T Time horizon.
¢ Consumption vector of U,.
p; Production vector of U,.
n; Net consumption vector of U,.
[ Total consumption among all users
at a given time.
1, Total production among all users
at a given time.
! Total consumption among all users
except u; at a given time.
! Total production among all users
except u; at a given time.
f; Fixed load vector of U;.
hji' jth flexible load vector of U;.
e Shift operation on vector
by k places forward.
B Congestion threshold.
ec, Effective global consumption at time 7.
TC Total effective global consumption

through the day.

We define a game on a grid with N users as follows. The players are
the grid users, which we will designate as U, for i € 1, ..., N. Following
that, we will define the payoff functions for each player, and finally
their respective set of strategies.

We take into consideration two vectors for each user U;: ¢;, which
represents the energy consumption of U;, and p;, which represents the
energy production of U,. These vectors consist of non-negative real
numbers, representing the amount of energy consumed and produced
during the considered time unit. In particular, a user who does not
produce energy will have the p; vector equal to the zero vector. The
number of time intervals that make up the temporal horizon under
consideration — which we shall refer to as T — determines the length
of these vectors. For instance, in our experiments, we will use a time
horizon of 24 h, and the time intervals we consider are each 15 min
long. As a result, there are 96 total time intervals, and both ¢; and p;
will be vectors of length 96.

We also need to define the vector

n=¢ —p; 6.1

This vector represents the difference between consumption and produc-
tion of the user U;, and is positive in case the consumption is higher
than the production, negative otherwise. We denote by ni+ the vector
obtained by replacing all the negative components of n; with zero, and
by —n;” the vector obtained by replacing all the positive components of
n; with zero (we used the minus sign so that all the components of n;°
are non-negative). The vectors ni+ and n; represent respectively the net
consumption and net production of U;.

We now define each payoff function ¢; as the combined utility over
each time unit for the user U;. In more precise terms,

T
4= 4 (3.2)
=1

where the term ¢,(¢) represents the utility of U; at time r € T, and can
be written as

4,(1) = gy (0,1, 1) = h(F (0, 1, 1,). 3.3)
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In this case, g is a function representing the reward for the user
for producing energy, while i represents the cost for the user for
consuming energy. Those functions are defined in such a way that, for
every 1,1, € R,

8(0.1,.1,) = h(0,1,,1,) = 0, 3.4

which implies that users will not receive rewards if they do not produce
energy, and they will not incur charges if they do not consume energy.
The functions g and & define the mechanism, since the game changes
depending on their definition: we will show in the following sections
how they can be defined. For every time 1, 7, and ¢, are defined as:

N
1,0 =Y n. (1)

k=1

N
()= Y ).

k=1

(3.5)

t, and 1, represent, respectively, the total amount of energy pro-
duced in the grid at the considered time, and the total amount of
energy consumed in the grid at the considered time. At each time 7,
by definition, the values of ¢, and 7. depend respectively on the values
of n; (1) and ni+(t), since they are included in their respective sum. This
is important to consider in Eq. (3.3).

Another work in literature [5] inspired us to create cost and re-
ward functions based on the overall quantity of energy generated
and consumed. The proposed mechanism in that work serves as the
foundational element upon which our work has been constructed.

The players of the game and the payoff functions have been pre-
viously described: the only missing element is the set of strategies. To
achieve this, it is necessary to specify the types of energy loads available
and their degrees of flexibility. A similar approach has been taken
in [37], where this modeling has been employed for solving demand-
side management problems. Three main types of energy loads will be
considered in this paper.

» Production: It is denoted as p;, and describes how much energy
has been produced by U;. In this paper, it will always be treated
as a fixed vector; however, in general, this vector may possess
some degree of flexibility.

Fixed consumption: It is denoted as f;. It is a fixed vector, and
it describes the part of energy consumption for the user U; that
does not have any flexibility. In this paper, we assume that this
value is known in advance; however, generally speaking, it is not
always possible to know it beforehand, as it may be subject to
uncertainty. This problem is addressed in [38].

Shiftable load: If U; has several shiftable loads, its j—th shiftable
load will be denoted as h{ . A shiftable load is an energy load whose
energy profile cannot be changed in amount, but whose starting
point in time can be chosen. Suppose we have the load h{ , and
we want to start it k time units later: we will denote this new
energy profile as rk(h{ ). We can describe r; as a vector operation
that rotates forward (from left to right) the components of the
vector by k places. Of course, k can also have negative values,
corresponding to a backward rotation (from right to left). In our
case, we assume the loads can only be operated within a 24-hour
time interval: for this reason, the rotation of the load cannot move
a nonzero element from last to first place, or from first to last
place if backward.

It is important to notice that the vector ¢;, representing the con-
sumption from U;, is obtained by the sum of the fixed consumption f;
and the shiftable loads h{ . In formal terms, this is expressed as follows.
If, for each j, the jth shiftable load h{ is shifted forward by k; time
units, ¢; can be written as

¢ =6+ ) ry (). 3.6)
j=1

J
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Note that ¢; depends on the choice of each k;, and shifting the loads
changes the user’s energy profile accordingly.

For each user U, the set of strategies can be therefore defined as all
the possible values of ¢; that can be obtained by shifting the loads.

3.2. Cooperative game

So far we described a game in which every player aims to maximize
her' payoff function and, consequently, her benefit. In this section, we
want to explore what would happen if players were allowed to form
coalitions. We define a coalition as the union of one or more players,
who choose their strategy collectively to maximize their combined
payoff function. Formally, if the users U, ...,U; form a coalition, they
will choose the strategies s, ..., s; respectively so that the function

q1(sp) + -+ q;(s;)

is maximized among all the possible choices of s, € S;,...,s; € S;.
Note that in general, it is not possible to maximize each ¢, one by
one, as every function ¢, depends on the strategies of all the users.
For example, the choice that maximizes ¢, might greatly reduce every
other g, or vice versa.

We want to formally introduce the existence of coalitions in a game
G = (U, S,Q). We do so by creating a new game, which we will call
Gy = (U, S, 6): it is a game that behaves similarly to the one defined
in Section 3.1, except the players are not the single users, but the
coalitions. We now explain more in detail how this game works, using
the notation G = (U, S, Q) for the game defined in Section 3.1.

Letus call Uy, ...,U,, the coalitions: the set of players of Gy is then
defined as U = {U,,...,U,, }. Every coalition has at least one user, and
every user belongs to one and only one coalition: in other words, U is
a partition of U.

We define now the set of strategies S = {gl, ,EM}. Consider
the coalition U,: we define .S, as the set of all possible allocations of
every consumption load belonging to the coalition (i.e., every ¢; such
that U, € U,). This set is isomorphic to XU/ T, S;. This is because
the coalition behaves like a bigger user that can allocate every load
to maximize its interest, so it can choose every possible combination
of allocations for the users inside. Finally, we have to define Q0 =

{41 ... .95 }. Considering the coalition Uy, the payoff function
M —_—

7 XS, =R 3.7
j=1

for the coalition is defined as the combined payoff functions of each
user belonging to the coalition U,. In other words,

%= g (3.8)

U; €Uy

This is intuitive, as the coalition represents the interests of all
the users belonging to it, and therefore its utility corresponds to the
combined utility of the users within the coalition.

This is the generic formulation of a cooperative game. In particular,
in this paper, we will focus on games with large coalitions, i.e., coali-
tions with many members. It is not easy to compute the optimal strategy
for such coalitions, since by definition of S, the number of possible
strategies grows exponentially with respect to the number of users
inside the coalition. In Section 5 we will show how we addressed this
problem.

1 from now on, this will be read as his/her.
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3.3. Incentive mechanisms

This section will describe existing incentive mechanisms for the
game outlined in Section 3.1. As mentioned earlier, the game relies
entirely on the definition of the selling function g and the buying
function h: this is because the payoff functions are entirely defined by g
and h. Therefore, we will see how those functions have been defined in
existing mechanisms, and how they affect users’ choices of strategies.

We start from the NRG-X-Change mechanism [5]. Here, g is defined
as

(3.9

x,t,,1.)=Xx"
8Cxtpate) (tp=te)?

e a

where ¢ and a are two positive real numbers. The number g corresponds
to the maximum possible reward per unit of energy, while a« determines
how the reward changes depending on how different 7, and 7, are. The
rationale behind this choice for g is to encourage self-consumption at
grid level: the reward is higher when 7, and ¢, are close, i.e., when grid
consumption matches grid production, and lower when the difference
between 7, and . is high.
The function A is defined as

-1
LA (3.10)
t,+1,

h(y.1p,1.) =y

This function depends on a parameter r, corresponding to the maxi-
mum possible unitary cost for energy. The function # has been designed
so that the cost becomes higher when there is overconsumption in the
local grid, that is, when . is higher than 7,: the purpose is to discour-
age consumption during such occurrences and encourage consumption
when production is higher.

There are some issues in this mechanism, that have been outlined
in [9]. Specifically, the mechanism may encourage production curtail-
ment, may discourage self-consumption, and does not take congestion
into account. In [9], a new selling function and a new buying func-
tion have been proposed so that the resulting game would encourage
some specific behavior from the users that solve the aforementioned
problems.

Given a user U;, we will denote by 7,7 and 7, the values of 7, and
t. when x and y, i.e., respectively the amount of energy produced and
consumed by the user, are both zero. In general,

0= pyn
#

0 = Z ¢(0).
J#i

(3.11)

In other words, t;" and 17 are respectively the total values of energy
production and consumption around the grid, counting all the users
except U;.

The function g proposed in [9] is therefore defined as

8,1y, 1e) =P (8o (100 1), 17)=
840,11, 171) ) =P(x,1,017")

Here, P is a penalty function that assumes values above zero only if
1, and ¢, would cause congestion for overproduction in the local grid.
P,..x determines the theoretical maximum unitary cost for energy. The
function g, is defined as

(3.12)

0 ifu<o
1 .
gw=4 2z SuelD (3.13)
I+eu?-u
1 ifux1
and defines the behavior of g. The function ¢ is defined as
it x -t
i iy _ P c 1
t(x, 0 )= —5 13 (3.149)

where B is a number indicating the congestion threshold. The idea
behind this is that if |l;i —1t7'| < B, a congestion will not happen.
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Regarding the buying function 4, it is defined as

h(y, 11 =
t;i+y_t;[ —i i
— 3 +1)-y+ P(y.1, . ).

The parameter Q,,,, corresponds to half of the maximum possible
tariff, and P is a function that assumes values higher than zero if and
only if 7, and 7, would cause congestion for overconsumption in the
grid. The function A, is defined as

(3.15)
Qmax : ha(

0 ifu<o0

By ) = Vi ifue®.1] (3.16)
2-V2—u ifue(l2)
2 ifu>?2.

The purpose of this mechanism was to fulfill three main properties:
(i) discourage energy production curtailment from the prosumers, (ii)
actively discourage consumption/production if it would cause conges-
tion to the grid, and (iii) encourage energy self-consumption for the
prosumers. The rationale behind proposing these specific functions
is their monotonicity concerning x or y, ensuring property (i); their
inclusion of a penalty term and specific convexity properties, ensuring
property (ii); and their consistent guarantee of g < h with appropriate
parameters, thereby ensuring property (iii).

The two mechanisms described above have been defined outside
of a game-theory context and then analyzed in that context in the
following work [10]. However, it has been proved that neither of them
guarantees the existence of a Nash Equilibrium (NE) for the game.
Therefore, the next step has been to create new selling and buying
functions that would fulfill the same properties as the ones above
but, in addition to that, would also guarantee the existence of a Nash
equilibrium.

Several functions have been created for this purpose [34]. We report
them below. The proposed selling functions are

g1Gety 1) = Ky - (m“zi—;'l“l) (3.17)
and

& (x,1,,1.) = ky ~((x+Z+a1)% —(Z+al)%) (3.18)
while the proposed reward functions are

hy 0, tyt) =ky (Y= Z + ap)" = (ap — Z)") (3.19)
and

hy(y.1,,1) = ky -((Z+a2)% —(Z+a2—y)i) (3.20)

It has been proved that they guarantee the existence of an NE in
the game described at the beginning of the section because of their
concavity/convexity. However, they have been analyzed for coopera-
tive games with small coalitions (4 members or less per coalition) [11],
and they did not encourage cooperation between users. In this paper,
we will examine the cooperative game with the possibility of forming
arbitrarily big coalitions.

3.4. Game mechanics

The game described in this section is performed as follows. For
simplicity, we will use the notation of Section 3.1.

We start from a configuration (s;,...,sy), where each s, € S is
the strategy chosen by U,. U, is the first player to choose the strategy
and will update s; to the strategy that maximizes ¢, in the current
configuration. In other words,

s; = argmaxq(x, s, ..., Sy), (3.21)

XES|
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which, generalizing, becomes:

S, =argmax q(sy, ..., S, ..., Sy)- (3.22)

XESy

After this, we do the same for U, by updating s,, and so on until
we do the same for U,,. We call the process just described an iteration of
the game. Now, we check if the current configuration (s, ..., sy) is the
same as it was at the beginning of the iteration. If it is, the game is over
and an NE has been found since the strategy was already optimal for
all the players. Otherwise, we start a new iteration and continue doing
so until an NE is found.

If the model guarantees the existence of an NE, the game will
conclude in a finite number of iterations. Otherwise, this scenario is
not guaranteed, and it may happen that a sequence (greater than 1) of
configurations will repeat over and over from a certain point onward.
The algorithm’s computational complexity is O(T'- N) for each iteration.
As demonstrated in [11], the average number of iterations required for
game convergence is typically fewer than 5, with no instances exceed-
ing 15. Nonetheless, for practical application, a termination threshold
N;, can be defined to halt the game after a set number of iterations.
It is noteworthy that employing nonlinear functions for energy selling
or buying does not affect the model’s implementation. These functions
are solely utilized to compute potential values of the payoff function
for each choice, while user optimization is executed by the arg max
function.

4. Methods and techniques

This section highlights the key contributions of the paper. Specif-
ically, Section 4.1 outlines the algorithm employed for load optimiza-
tion, while Section 4.2 describes the newly proposed functions designed
to maximize peak shaving.

4.1. Game optimization algorithm

In this section, we describe the algorithm that we use for optimizing
load allocations within a coalition. It is a diagonalization algorithm,
similar to the one from [39].

The algorithm works as follows. Suppose that we have some users
U,,...,U, forming a coalition. We call ¢ the combined utility of the
users, that is,

g=4qp+ - +qp.

We will allocate the loads as follows. First, we re-arrange the indexes
of the users, so that U, has the biggest load, U, the second biggest, and
so on. Now, we consider an initial configuration (s, ..., s;). From here,
we choose a new strategy for U, that maximizes the combined profit
of all the users of the coalition: in other words,
s; = argmaxq(x, s, ..., Sg).

XES|
We then do the same for U, by updating s, and so on, in such a way
that

s; = argmaxq(sy, ...
XES/

2 Sja s Sg). 4.1)

Once we have done this for all the users, we have performed
an iteration of the optimization. If the current configuration remains
unchanged from the iteration’s start, the optimization concludes. Oth-
erwise, we start a new iteration and continue until the configuration
remains stable. It is important to notice that, under certain conditions,
we can be sure that the optimization ends: in particular, this happens
if each payoff function g¢; is convex. This is because in that case the
function ¢ is convex too, and the optimization is equivalent to a game
that guarantees the existence of an NE, which in our case means that
the optimization reaches an end.
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4.2. Proposed functions

The functions proposed so far, i.e., the ones described in Eq. (3.17),
Eq. (3.18), Eq. (3.19) and Eq. (3.20), comply with a series of require-
ments, which encourage the behavior of the users to work towards
specific goals (e.g., self-consumption, congestion avoidance) or ensure
the existence of an NE for the game. However, these functions were not
explicitly designed for maximizing peak shaving. For this reason, we
propose two novel buying functions 4,,,,, and A,,,,, for the users. These
functions have been designed with the specific purpose of maximizing
peak shaving within the described game when the users cooperate all
together (i.e., there is only one coalition with all the users inside it,
called grand coadlition). The two functions are defined as follows:

Tt x4k 2
Pt (650 171) = ey - — ( 2 ) 4.2
newt (501 17) = Ky o x ks “2)
ky—t7i 4171 —x
X 2 c P
h ,t,t.=k-,—~(1— —) 4.3
newZ(x P c) 1 t;'+x k2 ( )

We aim to explain how these functions incentive user behavior to
maximize peak shaving. We will denote from now on the effective global
consumption, i.e., the difference between total consumption and total
production, as

e, =t.—1, 4.4)

where ¢ is the time unit we are operating in. If we are referring to selling
functions, i.e., x refers to consumption, we can also use the equivalent
formulation:

(4.5)

i i
ec, =t —1"+x

which is valid for every user U;, where of course x refers to U,’s
consumption. It is also helpful to remember that, in this case,

t.=17"+x. (4.6)
Proposition 1. Consider the game described in Section 3.2, with a selling
function of either g, or g, and buying function h,,,,;. If the only coalition
is the grand coalition, then the functions encourage the users to behave to
decrease the highest values for ec,, and increase the lowest values for ec,.

Proof. We will start from a generic time unit t. We know that Eq. (4.2)
describes the cost for prosumer i depending on the consumed amount
x. By replacing Egs. (4.5) and (4.6) inside, it becomes
x ( ec, + k, )2
t ky ’

Now, the function that each user is trying to optimize at each step of
the coalition optimization is the sum of all the 4,,,,,; for each user inside
the coalition. Since this is the grand coalition, the objective function at
time ¢ becomes

ik (st
1 =
i=1 tc k2

N
2._X- 2
kl.ﬁ.(ﬁ_{_]).

[ k2

k- 4.7)

c

(4.8)

Since by definition Zﬁ | X; =t., we have that the terms of the first
fraction cancel out, and the function becomes

ec, 2
k1-<z+1) . (4.9)
The objective function is the sum of Eq. (4.9) over time, i.e.,
ik -(ﬁ+1)2 (4.10)
1 % . .

1

The objective is to minimize this sum, within the constraint that

ec, =TC (4.11)

M=

1
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for a certain number T'C that represents the total effective consump-
tion across the grid through the whole day. Now, the minimum for
Eq. (4.10) is reached when all the terms of the sum have the same value,
i.e., when all the ec, have the same value. This can be easily proven, for
example by comparing the quadratic and arithmetic mean of the terms
in Eq. (4.9). For this reason, the shiftable loads will be moved from
the time units with the highest values for ec, to the time units with the
lowest values for ec;, which is what we wanted to prove. []

Proposition 2. Consider the game described in Section 3.2, with a selling
function of either g, or g, and buying function h,,,,. If the only coalition
is the grand coalition, then the functions encourage the users to behave to
decrease the highest values for ec, and increase the lowest values for ec,.

Proof. Again, we start from a generic time unit ¢. Like before, by
replacing Egs. (4.5) and (4.6) inside Eq. (4.3), we obtain

k, —
k1'£‘<1— 2 ec,)

4.12
y 5 (4.12)

Similar to the previous proof, each user aims to optimize the func-
tion given by the sum of all the 4,,,,, for each user inside the coalition,
which means that the objective function has the following component
at time

Nk X ] k, —ec; _

zi:l "_'( - k—z)_
ec

-(1— 1—k—2’).

We use the fact that Z,]i | X; =1, to cancel out the first fraction, so
that we have

k1~<1—‘/1—‘;€—2’>.

Once again, the objective function is the sum of Eq. (4.14) over time,
ie.,

(4.13)

| =

kq -

~

c

(4.14)

T
Zkl-(l-,/l-ﬁ). (4.15)
1=1 ka
The objective is to minimize this sum, under the constraint
T
Y ec, =TC. (4.16)

=1

In this case, the minimum for Eq. (4.15) is reached when all the
terms of the sum have the same value, i.e., when all the ec, have the
same value. This can be proven by exploiting the fact that the function
is convex, and therefore we can compare our function with

T~k1~(1—,/1—TT‘iz).

According to Jensen inequality, our function will always have a
higher value than the one in Eq. (4.17), with equality occurring if the
variables have all the same value. Consequently, shiftable loads will be
moved from the time units with the highest values for ec, to the time
units with the lowest values for ec, which is, again, what we wanted to
prove. []

4.17)

5. Simulations and results

This section outlines the simulations conducted to validate our
approaches. Section 5.1 describes the dataset we have used for our sim-
ulations, and Section 5.2 assesses the efficiency of the cooperative game
optimization algorithm within a single coalition, while Section 5.3
shows the effect of many coalitions in the whole grid in terms of
self-consumption and cost savings. Finally, Section 5.4 showcases the
performances of the mechanism in terms of peak shaving.
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5.1. Dataset

Data for the experiments has been taken from a grid in Cardiff,
UK. The number of grid users is 184, and 40 of them can also produce
energy. We extracted the following information from the dataset:

+ Non-flexible consumption data for all the 184 grid users.
» Type and consumption pattern for every flexible device owned by
a grid user. Specifically, the available devices are:

— Dishwashers
Electric overs
Electric vehicles
Tumble dryers

— Washing machines

+ Energy production data for all the 40 prosumers.

Consumption and production information depends on five settings:
smart technology usage (it can be low, medium or high), day of the week
(it can be weekday, Saturday or Sunday), season (it can be winter, spring,
autumn, summer or high summer), and two settings related to specific
policies adopted in the UK, one of which can be either 2020 or 2030,
the other green or business as usual: those last settings are described
better in [40]. For simplicity, we have chosen the settings that enable
the most users to use flexible loads: high, weekdays, summer, 2030, green.
Further information on the dataset can be found in the deliverables of
the MAS?TERING project [41-43].

5.2. Codlition optimization results

In this paragraph, we will describe the results of the experiment we
performed for validating our cooperative game optimization, described
in Section 4.1. More precisely, we show how the algorithm from
Section 4.1 performs for one single coalition, in terms of accuracy and
scalability with respect to a baseline [11]. The baseline calculates the
best possible allocation for every grid user by trying all the available
combinations and choosing the best one. In more formal terms, sup-

pose that the coalition contains k users Uy, ...,U,, and that the loads
S1...., s, belong to the users U|,...,U, respectively. This algorithm
evaluates

qi(sp) + -+ g (sy) 6.1

for every possible choice of
(S15 .05 8;) €S X - XSy, (5.2)

and then chooses the combination of allocations that minimizes the
value in Eq. (5.1). The algorithm from [11] is the same proposed
for load optimization in [38]; the one from [38] is a specific case
that targets multiple loads from the same user but does the same
computation, and scales in the same way. Therefore, for simplicity,
we compared our algorithm with the one from [38] for single users
with multiple loads, since for this purpose a grid user with k loads
behaves in the same way as a coalition of k users with one load each, as
described in Section 3.2. The experiment was conducted by performing
optimization across the entire grid: there were 81 cases of users with
two loads, 79 cases of users with three loads, and 19 cases of users with
four loads. Our objective is to demonstrate that the newly proposed
algorithm scales more efficiently than the baseline while maintaining
similar accuracy, as presented in Tables 2 and 3. Table 2 showcases
the results for optimization time: the All cases column represents the
average time (in seconds) required to optimize loads for users with the
algorithm from [38], while the column New illustrates the average time
needed with the algorithm from Section 4.1. As we can see, the newly
proposed method outperforms the previous one, and, in particular,
scales significantly better with respect to the number of loads. To be
more precise, the New algorithm does not take more than 0.1305 s
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Table 2
Average time (in seconds) needed for optimization.
Users All cases New
2 0.1300 0.1141
3 0.4013 0.1152
4 7.5985 0.1305
Table 3
Average costs (in GBP) with different optimization types.
Users All New Increase %
Cases
2 9.091 9.091 -3.5.1071% -39.10714
3 9.474 9.474 5.6-107 6-107*
4 27.609 27.610 1-1073 43.1073
Table 4

Effect of coalitions in terms of cost reduction (in GBP) and
self-consumption (in kWh), with functions g, and A,.

Size Costs Consumption
1 353.545 2380.436
2 353.541 2380.439
5 353.536 2380.472
10 353.524 2380.481
20 353.514 2380.527
30 353.514 2380.516
40 353.505 2380.554
Table 5

Effect of coalitions in terms of cost reduction (in GBP) and
self-consumption (in kWh), with functions g, and h,.

Size Costs Consumption
1 349.986 2605.241
2 349.984 2605.247
5 349.981 2605.261
10 349.974 2605.269
20 349.965 2605.277
30 349.963 2605.281
40 349.959 2605.283

for all the cases, and the optimization time grows linearly with the
number of loads: this was expected, as in Section 3.4 we showed that
the computational complexity is linear with respect to N. Conversely,
the All cases algorithm requires more than 0.4 s for three loads and
more than 7.59 s for four loads, and the optimization time grows
exponentially with the number of loads. Regarding accuracy, the results
can be seen in Table 3. This table displays the total average costs for
optimization of 2, 3, and 4 loads, respectively. The columns All cases
and New describe the results after applying the respective algorithm.
The column Increase describes how higher is the New cost on average,
while the last column describes the percent increase. We can see that
the increase for 3 and 4 loads is minimal, with the New optimization
proving highly accurate, as the increase in cost is less than 0.01% of
the total. For 2 users the increase results are negative due to numerical
approximation but can be considered negligible.

5.3. Codlitions profits

This paragraph outlines the results for the entire game, illustrat-
ing the impact of coalition formation against the selfish game. The
algorithm from Section 4.1 is used to perform load optimization for
each coalition. These simulations were conducted on grids of size 40
users, 20 of them being prosumers. For each possible choice of the
old selling (g, and g,) and buying (h; and h,) functions described at
the end of Section 3.3, 25 different grids have been randomly selected
and simulated, with the reported results being averaged across them.
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Table 6
Effect of coalitions in terms of cost reduction (in GBP) and
self-consumption (in kWh), with functions g, and A,.

Size Costs Consumption
1 381.481 2532.020
2 381.479 2532.027
5 381.475 2532.048
10 381.462 2532.069
20 381.448 2532.097
30 381.446 2532.091
40 381.440 2532.117
Table 7

Effect of coalitions in terms of cost reduction (in GBP) and
self-consumption (in kWh), with functions g, and h,.

Size Costs Consumption
1 304.713 2344.661
2 304.711 2344.661
5 304.705 2344.670
10 304.699 2344.680
20 304.691 2344.682
30 304.690 2344.684
40 304.685 2344.697
Table 8
Results for peak shaving for every couple of functions tested.
Size gih g hy &l 81y & hy 8 hy
1 75.06 75.06 75.06 75.06 106.16 104.58
2 75.06 75.06 75.06 75.06 106.16 103.92
5 75.06 75.06 75.06 75.06 103.20 102.61
10 75.06 75.06 75.06 75.06 102.79 97.02
20 75.06 75.06 75.06 75.06 92.74 91.36
30 75.06 75.06 75.06 75.06 78.63 84.94
40 75.06 75.06 75.06 75.06 75.06 75.06

Tables 4-7 present the results depending on the coalition size, which
is described in the Size column. For each of those values, the column
Costs describes the global energy costs, while the column Consump-
tion shows the energy consumption through the grid. Lower values in
this column correspond to higher self-consumption. Regarding the Size
column, the value 1 means that coalitions have size 1, i.e., the game is
non-cooperative.

As can be seen from the tables, regardless of the chosen combina-
tion of buying and selling functions, forming larger coalitions aids in
cost reduction, albeit minimally. More specifically, the game with the
global coalition is just 0.01% cheaper compared to the selfish game.
Additionally, we observe a marginal increase in consumption through
the grid with larger coalitions, although the increase is minimal and
the global coalition game consumes 0.001% more energy compared to
the selfish game.

5.4. Peak shaving

In this section, we present the results for peak shaving. Our sim-
ulations were conducted for the game with each pair of selling and
buying functions described in Section 5.3, and also with the function
couples (g,, h3) and (g,, h,) respectively, and the average consumption
peak across the entire grid was measured for each coalition size. In the
table, Size represents the coalition size, while g;, #; denotes the pair of,
respectively, selling and buying functions that are being considered.

Table 8 displays the results for the specified couples of functions.
The table shows, for each coalition size, the result for peak shaving
for each tested combination of the functions. More precisely, the table
describes the highest value of energy consumption across the grid
through the whole day, measured in kWh — in other words, the
peak consumption. We have chosen 40 grid users, more precisely 20
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prosumers and 20 consumers, and we have performed the game on
those users for every couple of functions: we have done this for 5 dif-
ferent combinations of users, took away the one that yields the highest
average peak values and the one that yields the lowest average peak
values respectively, and averaged the 3 remaining ones. As we can see,
with the couples (g,, #3) and (g5, h,), the peak gradually decreases as the
coalition size increases, reaching the highest value for the selfish game
at 106.16 kWh and 104.58 kWh respectively reaching the lowest value,
i.e., 75.06 kWh, for the grand coalition. Nevertheless, the remaining
sets of functions already yield identical results for peak shaving in the
non-cooperative game (i.e., the game where coalitions have a size of
1). This outcome remains consistent as the coalition size increases,
indicating that the current incentive mechanism effectively achieves
optimal peak shaving for both the cooperative and non-cooperative
games. Specifically, for the non-cooperative game, the current incentive
mechanism obtains a peak reduction above 29% compared to the
couple (g,, h3), and above 28% compared to the couple (g,, hy).

6. Discussion

This section presents the results obtained from the experiments and
outlines the key findings from our paper. The experiments yielded
valuable insights into arbitrary size optimization, cost reduction, and
peak shaving.

Regarding coalition optimization, we have introduced an algorithm
that enables the generation of schedules for coalitions of arbitrary size.
The idea was to slightly sacrifice accuracy for the schedule, in exchange
for much better scalability in comparison to the algorithm used in [11]
for small coalitions. The results demonstrate that, for larger coalitions,
our algorithm is notably faster (Table 2) than the baseline from [11],
consistently staying below 0.14s for coalitions with four members,
while the baseline algorithm takes almost 7.6 s in this scenario and,
more crucially, exhibits exponential growth with the number of users,
by a factor bigger than 15 for each additional user. This was expected
because each new user added to the coalition increases multiplicatively
the number of cases that need to be tried. Therefore, the computa-
tional complexity is exponential, leading to a corresponding increase
in computational time. Conversely, the time needed for performing
our proposed algorithm scales linearly with respect to the number of
users, as discussed in Section 3.4. As for accuracy, it becomes lower
with more users; however, the sub-optimality of the solution found
by our proposed algorithm is below 0.01% for coalitions of four users
(Table 3). These results affirm that our proposed algorithm is much
more scalable than the baseline, while the loss in accuracy compared
to the baseline algorithm is minimal.

We also sought to analyze the impact on profits and energy self-
consumption as coalitions increase in size. In [11] we found out that
small coalitions give minimal benefits in terms of both profits and self-
consumption. Tables 4-7 illustrate that the same is true even for bigger
coalitions. Even for coalitions of size 40, the cost reduction achieved
relative to the selfish game is marginal, amounting to only 0.01% of the
total cost. The same is true for energy consumption, which gets worse
(although negligibly) for bigger coalitions. The mechanism with the
old selling (g, and g,) and buying (4, and A,) functions was originally
designed for performing well in the case of the selfish game, and these
results show that, indeed, the results for the selfish game are almost as
good as the grand coalition case.

Lastly, we sought to verify whether our mechanism also optimally
performs peak shaving. To do so, we created two baseline functions A5
and h, that ensure optimal peak shaving for the grand coalition game.
Results in Table 8 indicate that our mechanism indeed achieves optimal
peak shaving regardless of the coalition size in the game, as (g,, #3) and
(g2, hy) achieve optimal peak shaving with 40 users, and the functions
used for our mechanism obtain the same result for any coalition size.
In particular, as the functions were designed for the selfish game,
we showed that even in scenarios where coalitions are not allowed,
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optimal peak shaving is achieved, showcasing the effectiveness of our
mechanism. Precisely, the average peak consistently remains at 75.06
kWh for the existing mechanisms. In contrast, (g,, #3) and (g,, h4) attain
this level exclusively within the grand coalition, while yielding peaks of
106.16 kWh and 104.58 kWh, respectively, in the selfish game scenario.
This signifies a reduction of over 29% in the former case and 28% in
the latter.

7. Conclusions and future work

The incentive mechanism proposed in [9] and improved in [10,
11] promotes good behavior for grid users in terms of load shifting,
enabling increased self-consumption, avoiding unnecessary production
curtailment and congestion, and achieving all these objectives for the
whole community whether the users behave selfishly or form small
coalitions. The objective of this paper was to analyze the behavior
of this mechanism for coalitions of arbitrary size and explore its ef-
ficiency in terms of peak shaving. To achieve this, we proposed an
algorithm capable of computing load shifting for coalitions of any
size. Additionally, we designed two energy-selling functions with the
specific objective of maximizing peak shaving when users form the
grand coalition. Our simulations show that the formation of coalitions
has minimal influence in terms of cost reduction and energy self-
consumption across the grid, showing that the mechanism achieves
good results even when grid users are not permitted to form coali-
tions. Furthermore, we have demonstrated that the current mechanism
achieves optimal peak shaving in scenarios where coalitions are both
allowed and not allowed, respectively. This finding underscores the
effectiveness of the existing mechanism in optimizing peak shaving
outcomes across varying conditions. Whether coalitions are permitted
or not, the established mechanism consistently delivers optimal re-
sults, highlighting their robust performance in diverse settings. More
precisely, the current mechanism is capable of attaining optimal peak
shaving even within the context of the selfish game, leading to a
reduction of approximately 29% compared to alternative approaches.
Future work will investigate further improvements on this mechanism,
in terms of objectives and game theory formulation. Moreover, we will
also consider multi-objective optimization for aspects like user comfort
and CO2 emissions.
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