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Wilson’s disease (WD) is caused by the excessive accumulation of copper
in the brain and liver, leading to death if not diagnosed early. WD shows
its prevalence as white matter hyperintensity (WMH) in MRI scans. It is
challenging and tedious to classify WD against controls when comparing
visually, primarily due to subtle differences inWMH. This Letter presents
a computer-aided design-based automated classification strategy that uses
optimised transfer learning (TL) utilising two novel paradigms known as
(i) MobileNet and (ii) the Visual Geometric Group-19 (VGG-19).
Further, the authors benchmark TL systems against a machine learning
(ML) paradigm. Using four-fold augmentation, VGG-19 is superior to
MobileNet demonstrating accuracy and area under the curve (AUC)
pairs as 95.46 ± 7.70%, 0.932 (p < 0.0001) and 86.87 ± 2.23%, 0.871
(p < 0.0001), respectively. Further, MobileNet and VGG-19 showed
an improvement of 3.4 and 13.5%, respectively, when benchmarked
against the ML-based soft classifier – Random Forest.

Introduction: Wilson’s disease (WD) is a rare disease, which causes
copper accumulation in the liver and brain. As per National
Organizations for Rare Disorders (NORD), WD affects 1 in every
30,000–40,000 people in the world [1]. If not diagnosed early, WD
can lead to disability and death [2]. The disease can further lead to
neurological disorders such as Alzheimer’s and Parkinson’s diseases [3].

WD can be identified and diagnosed using MRI as it reflects the brain
to have white matter hyperintensity (WMH) [4–10]. However, due to
subtle changes in the soft tissues of brain white matter and grey
matter convolutions, it is challenging and tedious to classify visually.

WD classification problems can be looked into by a very popular
paradigm such as artificial intelligence (AI). In this field of computer
science, machine learning (ML) has dominated, especially in healthcare
applications which includes prostate [11, 12], ovarian [13], liver
[14, 15], thyroid [16–18], skin [19], diabetes [20], gene [21],
heart [22], coronary [23], signal [24, 25] and carotid atherosclerotic
plaque [26–32]. These methods have produced accuracies ranging in
the high 80s or even 90s, but the painstaking effort has been put for
feature extraction and selection, thereby manually optimising them,
leading to an ad hoc solution.

Deep learning (DL), on the contrary, is a ‘class’ of AI that has recently
revolutionised image classification framework [33, 34]. Even more
recently, the paradigm of transfer learning (TL) brings a reduction in
training time which is deep rooted in conventional DL frameworks
[35]. Since the crux of the classification process seems to be partially
resolved both in terms of feature extraction and prevention of training
time, we can hypothesise that our WD computer-aided design system
consisting of (a) MobileNet and (b) Visual Geometric Group-19
(VGG-19) will be more accurate compared to existing ML systems.

Methodology: Our cohort consist of 46 (37 controls, 9 diseased)
patients T2W-TSE MRI scans with a mean age of 40.73 + 11.3 years
with equal male and female ratio. All the scans were obtained from
Azienda Ospedaliero Universitaria (A.O.U.) by taking the approvals
from the institutional ethics committee and patient’s approval. The
cohort consisted of full scans of MRI WMH images, so it is essential
to segment the images and remove the skull part for classification.
Using ‘dcm2niix’ software, we converted all the DICOM images to
niix for loading to ‘brain suite’ [36]. This helped in removing the
skull part. Fig. 1 shows the control and WD sample scans of six patients
and their corresponding segmented (skull stripping) images.

Augmentation: Since our cohort consisted of 37 controls and nine WD
patients, and each patient had 12–13 MRI slices, totalling to 458 con-
trols and 115 WD slices. Hence, clearly, it was a ‘class imbalance’
‘problem. As the TL paradigm in the deep framework is well adaptable
for large sample sizes, we, therefore, used the ‘augmentor’ API to gen-
erate a balanced cohort with 458 images in each class. Further, we aug-
mented the data two times (916 images per class) for superior
performance (Table 1).
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Fig. 1 Sample images of controlled and diseased MRI scans with corre-
sponding segmented images (skull stripping)

Table 1: Details of the augmented cohort

SN Augmentation folds No. of images per class

1 balanced 458 (equal control and WD)

2 augmented 2× (Augm 2×) 916 (equal control and WD)

3 augmented 3× (Augm 3×) 1378 (equal control and WD)

4 augmented 4× (Augm 4×) 1832 (equal control and WD)

Transfer learning architectures and experimental protocol: The pro-
posed (i) MobileNet and (ii) VGG-19 are shown in Fig. 2. The
MobileNet consisted of six pools of convolutional blocks with an
average pooling layer followed by one fully connected layer. The
VGG-19 consisted of 19 layers, 4 pools of convolution blocks and
5 max-pooling layers followed by 3 fully connected layers with the
output softmax layer.
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a Proposed TL
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TL is applied to pre-trained neural networks, in which weights already
learned on different data sets are further calibrated for a target data set.
In this study, the pre-trained networks VGG19 and MobileNet were first
trained on an ‘ImageNet’ data set having 1000 classes consisting of
images such as a zebra, volcano, whistle etc. Since the intended classi-
fication has only two classes hence final Softmax layer is updated at the
end of the entire network and retrained for a few epochs to reshape the
weights for the WD data set. To test the updated convolution neural
network, the K10 protocol is used (90% training and 10% testing).
We benchmarked our proposed TL models with ML models K-nearest
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neighbour, Decision Tree and Random Forest. Haralick features were
extracted from the segmented MRI scans.

Results: We trained and tested our TL models on augm1×, 2×, 3×, 4×
data sets using K10 cross-validation achieving a classification accuracy
and receiver operating characteristics (ROC) for MobileNet and
VGG-19 as 86.87%, 0.868 (p < 0.0001) and 95.46%, 0.954
(p < 0.0001), respectively. We benchmarked our proposed TL
methods with previously developed ML techniques.

Further, we benchmarked against three ML models with the best
accuracy/AUC combination for RF classifier as 83.04 + 2.81%, 0.834
(p < 0.0001) (Fig. 3).
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Fig. 3 Visualisation of the performance analysis

a Three-dimensional representation of optimisation of TL methods (augmenta-
tion versus accuracy for MobileNet and VGG-19)
b ML classifiers with K10 cross-validation protocol [accuracy of ML classifiers
(K-NN versus DT versus RF)]
c ROC curves of proposed five AI methods

Sample size computation: Sample size determination was accomplished
using (1), based on the mean difference of TL models while keeping the
augmentation 2× constant. With type I error of 1% Zα = 3.2905, Z1
−β = 1.6449 for type II error with 1%

Sample size = 2 × Za + Z1−b

( )2 × s2

D2 (1)

One would require a cohort of size 793. The cohort adopted in this study
was 1832. Thus, we well met the requirements of the cohort size by
56.71%.

Performance evaluation and scientific validation: Our optimised TL
system showed that it had an accuracy compared with the ML-based
system by 13.01%. Thus, with the help of the TL model, we reduced
one of the major limitations of DL, which is due to computational
cost. We evaluated our model on the most widely and well-accepted
data sets consisting of facial biometric [37] and animal data
(ASSIRA) [38] with optimal performance of classification accuracy of
98.27 and 93.45%, respectively.

Discussion: The objective of this Letter was to optimise the TL models
for detecting WD by using MobileNet and VGG-19 approaches. We
benchmarked our TL models against other studies as shown in
Table 2. This is the first study of its kind to use TL for classification

of WD. This Letter did not consider the tissue characterisation com-
ponent in the analysis and our focus was only on TL classification
and its’ benchmarking against ML-based models.

Table 2: Benchmarking the proposed method against previous studies

SN

C1 C3 C5 C6

Author, Reference (year)
Application, technique,

modality
AI

ACC (%)
(AUC)

R1 Kaden et al. [39] (2015) WD, SVM, and PGLVQ ML 90.1

R2 Suk et al. [40] (2017)
ALZa, DBN +NN, MRI

(ADNI)
DL 85.91 (0.91)

R3
Abiwinanda et al. [41]

(2018)
BTc, CNN, MRI DL 84.19

R4 Zhang et al. [42] (2019) MCIb, SSGSR fMRI ML 88.50 (0.965)

R5 Abrol et al. [43] (2018)
MCIb versus ALZa ResNet,

MRI
DL 82.7 (0.89)

R6 Jing et al. [44] (2019) WD, SVM and ICA, fMRI ML 89.4 (0.94)

R7 Richhariya et al. [45] (2020) MCIb, SVM, MRI ML 90

R9 Liu et al. [46] (2020) MCIb, SVM, MRI ML 88.5 (0.90)

R10 MobileNet CNN DL 86.87 (0.871)

R11 VGG-19 CNN DL 95.46 (0.932)

a ALZ: Alzheimer's Disease, b MCI: mild cognitive impairment, c BT: Brain Tumour.

Limitations: The main strength of the TL system was the saving of
computational time compared with ML approaches. Furthermore, we
showed the implementation of five kinds of AI models (two kinds of
TL and three kinds of ML models). The main limitation of this study
was the small sample size requiring augmentation procedures. A
larger data set would better support the learning of more complex
patterns for enhanced diagnostic performance of the algorithm. This
pilot study could be improved by: (i) usage of advanced texture
feature extraction systems [47], (ii) usage of a reinforcement model to
avoid unbalanced data, (iii) superior segmentation models such as
scholastic models [48] and (iv) benchmarking against other DL
strategies [49, 50].

Conclusion: We proposed the optimised TL methods for the classifi-
cation of WD. We achieved an accuracy of 95.46 and 86.87% and our
model performed better than ML methods by 13.01 and 4.02%. We
validated our model with a power study and the most widely accepted
data sets.
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