
Received: 6 May 2023 Revised: 21 July 2023 Accepted: 24 July 2023

DOI: 10.1111/sapm.12627

ORIG INAL ARTICLE

Properties of given and detected unbounded
solutions to a class of chemotaxis models

Alessandro Columbu Silvia Frassu Giuseppe Viglialoro

Dipartimento di Matematica e
Informatica, Università di Cagliari, Via
Ospedale, Cagliari, Italy

Correspondence
Silvia Frassu, Dipartimento di Matematica
e Informatica, Università di Cagliari, Via
Ospedale 72, 09124. Cagliari, Italy.
Email: silvia.frassu@unica.it

Funding information
Ministero dell’Istruzione, dell’Università
e della Ricerca; Fondazione di Sardegna;
Ministero dell’Università e della Ricerca

Abstract
This paper deals with unbounded solutions to a class
of chemotaxis systems. In particular, for a rather gen-
eral attraction–repulsionmodel, with nonlinear produc-
tions, diffusion, sensitivities, and logistic term, we detect
Lebesgue spaces where given unbounded solutions also
blow up in the corresponding norms of those spaces;
subsequently, estimates for the blow-up time are estab-
lished. Finally, for a simplified version of the model,
some blow-up criteria are proved.
More precisely, we analyze a zero-flux chemotaxis sys-
tem essentially described as

⎧⎪⎪⎨⎪⎪⎩
𝑢𝑡 = ∇ ⋅ ((𝑢 + 1)𝑚1−1∇𝑢 − 𝜒𝑢(𝑢 + 1)𝑚2−1∇𝑣

+ 𝜉𝑢(𝑢 + 1)𝑚3−1∇𝑤) + 𝜆𝑢 − 𝜇𝑢𝑘 in Ω× (0, 𝑇𝑚𝑎𝑥),

0 = Δ𝑣 −
1|Ω| ∫Ω 𝑢𝛼 + 𝑢𝛼 = Δ𝑤 −

1|Ω| ∫Ω 𝑢𝛽 + 𝑢𝛽 in Ω× (0, 𝑇𝑚𝑎𝑥).

(⋄)

The problem is formulated in a bounded and smooth
domain Ω of ℝ𝑛, with 𝑛 ≥ 1, for some 𝑚1,𝑚2,𝑚3 ∈ ℝ,
𝜒, 𝜉, 𝛼, 𝛽, 𝜆, 𝜇 > 0, 𝑘 > 1, and with 𝑇𝑚𝑎𝑥 ∈ (0,∞].
A sufficiently regular initial data 𝑢0 ≥ 0 is also
fixed.
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2 COLUMBU et al.

Under specific relations involving the above parameters,
one of these always requiring some largeness conditions
on𝑚2 + 𝛼,
(i) we prove that any given solution to (◊), blowing up

at some finite time 𝑇𝑚𝑎𝑥 becomes also unbounded
in 𝐿𝔭(Ω)-norm, for all 𝔭 > 𝑛

2
(𝑚2 − 𝑚1 + 𝛼);

(ii) we give lower bounds 𝑇 (depending on ∫
Ω
𝑢�̄�0 ) of

𝑇𝑚𝑎𝑥 for the aforementioned solutions in some
𝐿�̄�(Ω)-norm, being �̄� = �̄�(𝑛,𝑚1,𝑚2,𝑚3, 𝛼, 𝛽) ≥ 𝔭;

(iii) whenever 𝑚2 = 𝑚3, we establish sufficient condi-
tions on the parameters ensuring that for some 𝑢0
solutions to (◊) effectively are unbounded at some
finite time.

Within the context of blow-up phenomena connected to
problem (◊), this research partially improves the analy-
sis in Wang et al. (J Math Anal Appl. 2023;518(1):126679)
and, moreover, contributes to enrich the level of knowl-
edge on the topic.

KEYWORDS
attraction–repulsion, blow-up time, chemotaxis, lower bound,
nonlinear production
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1 INTRODUCTION, MOTIVATIONS, AND STATE OF THE ART

1.1 The continuity equation: The initial-boundary value problem

The well-known continuity equation

𝑢𝑡 = ∇ ⋅ 𝐹 + ℎ (1)

describes the transport of some quantity 𝑢 = 𝑢(𝑥, 𝑡), at the position 𝑥 and at the time 𝑡 > 0. In
this equation, the flux 𝐹 models the motion of such a quantity, whereas ℎ is an additional source
idealizing some external action bymeans of which 𝑢 itselfmay be created or destroyed throughout
the time.
In this paper, we are interested in the analysis of equation (1) in the context of self-organization

mechanisms for biological populations, that is, phenomena for which organisms or entities direct
their trajectory in response to one or more chemical stimuli. More precisely, we want to deal with
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COLUMBU et al. 3

themotion of a certain cell density 𝑢 = 𝑢(𝑥, 𝑡)whose flux has a smooth diffusive part and another
contrasting this spread. In the specific, this counterpart accounts of an attractive and a repulsive
effect, associated with two chemical signals and indicated, respectively, with 𝑣 = 𝑣(𝑥, 𝑡) and 𝑤 =
𝑤(𝑥, 𝑡); 𝑣 (the chemoattractant), tends to gather the cells, 𝑤 (the chemorepellent) to scatter them.
Additionally, an external source with an increasing and decreasing effect on the cell density is
also included.
For our purposes, wanting to formulate what is said above in terms of the continuity equa-

tion (1), it appears meaningful (and convenient) defining for 𝜒, 𝜉, 𝜆, 𝜇 > 0, 𝑚1,𝑚2,𝑚3 ∈ ℝ,
and 𝑘 > 1 the fluxes 𝐹 = 𝐹𝑚1,𝑚2,𝑚3

= 𝐹𝑚1,𝑚2,𝑚3
(𝑢, 𝑣, 𝑤), 𝐺𝑚1

= 𝐺𝑚1
(𝑢), 𝐻𝑚2

= 𝐻𝑚2
(𝑢, 𝑣), 𝐼𝑚3

=
𝐼𝑚3

(𝑢, 𝑤), and the source ℎ = ℎ𝑘 = ℎ𝑘(𝑢):{
𝐹 = 𝐹𝑚1,𝑚2,𝑚3

= (𝑢 + 1)𝑚1−1∇𝑢 − 𝜒𝑢(𝑢 + 1)𝑚2−1∇𝑣 + 𝜉𝑢(𝑢 + 1)𝑚3−1∇𝑤 =∶ 𝐺𝑚1
+ 𝐻𝑚2

+ 𝐼𝑚3

ℎ = ℎ𝑘 = 𝜆𝑢 − 𝜇𝑢𝑘.
(2)

In this way, the diffusion is smoother and smoother for higher and higher values of 𝑚1, the
aggregation/repulsion effects−𝜒𝑢(𝑢 + 1)𝑚2−1∇𝑣∕𝜉𝑢(𝑢 + 1)𝑚3−1∇𝑤 increase for larger sizes of 𝜒
and 𝜉 and𝑚2 and𝑚3, and the cell densitymay incrementwith rate 𝜆𝑢 andmay attenuatewith rate
−𝜇𝑢𝑘. Naturally, since the flux is influenced by the two signals 𝑣 and 𝑤, we will have to consider
two more equations (which for the time being we indicate with 𝑃(𝑣) = 0 and 𝑄(𝑤) = 0, but that
will be specified later), one for the chemoattractant 𝑣 and another for the chemorepellent 𝑤, to
be coupled with the continuity equation. Furthermore, the analysis is studied in impenetrable
domains (so homogeneous Neumann or zero flux boundary conditions are imposed) and some
initial configurations for the cell and chemical densities are assigned: essentially, with position
(2) in mind, we are concerned with this initial boundary value problem:

⎧⎪⎪⎨⎪⎪⎩

𝑢𝑡 = ∇ ⋅ 𝐹𝑚1,𝑚2,𝑚3
+ ℎ𝑘 in Ω× (0, 𝑇𝑚𝑎𝑥),

𝑃(𝑣) = 𝑄(𝑤) = 0 in Ω× (0, 𝑇𝑚𝑎𝑥),

𝑢0(𝑥) = 𝑢(𝑥, 0) ≥ 0; 𝑣0(𝑥) = 𝑣(𝑥, 0) ≥ 0; 𝑤0(𝑥) = 𝑤(𝑥, 0) ≥ 0 𝑥 ∈ Ω̄,

𝑢𝜈 = 𝑣𝜈 = 𝑤𝜈 = 0 on 𝜕Ω × (0, 𝑇𝑚𝑎𝑥).

(3)

The problem is formulated in a bounded and smooth domain Ω of ℝ𝑛, with 𝑛 ≥ 1, 𝑢𝜈 (and simi-
larly for 𝑣𝜈 and𝑤𝜈) indicates the outward normal derivative of 𝑢 on 𝜕Ω. Moreover, 𝑇𝑚𝑎𝑥 ∈ (0,∞]
identifies the maximum time up to which solutions to the system can be extended.

1.2 A view on the state of the art: The attractive and the repulsive
models and the attraction–repulsion model

The aforementioned discussion finds, of course, its roots in the well-known Keller–Segel models
idealizing chemotaxis phenomena (see the celebrated papers1–3), that since the last 50 years have
been attracting the interest of the mathematical community.
In particular, if we refer to chemotaxis models with a single proliferation signal, taking in mind

(2), problem (3) is a (more general) combination of this aggregative signal-productionmechanism

𝑢𝑡 = ∇ ⋅ (𝐺1 + 𝐻1) = Δ𝑢 − 𝜒∇ ⋅ (𝑢∇𝑣) and 𝑃(𝑣)

= 𝑃𝜏1(𝑣) = 𝜏𝑣𝑡 − Δ𝑣 + 𝑣 − 𝑢 = 0, in Ω× (0, 𝑇𝑚𝑎𝑥), (4)
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4 COLUMBU et al.

and this repulsive signal-production one

𝑢𝑡 = ∇ ⋅ (𝐺1 + 𝐼1) = Δ𝑢 + 𝜉∇ ⋅ (𝑢∇𝑤) and 𝑄(𝑤)

= 𝑄𝜏
1(𝑤) = 𝜏𝑤𝑡 − Δ𝑤 + 𝑤 − 𝑢 = 0, in Ω× (0, 𝑇𝑚𝑎𝑥). (5)

(Here 𝜏 ∈ {0, 1}, and it distinguishes between a stationary and evolutive equation for the chem-
ical.) The above models present linear diffusion and linear production rates; specifically, 𝑣 and
𝑤 are linearly produced by the cells themselves, and their mechanism is opposite when in 𝑃𝜏1(𝑣)
the term 𝑣 − 𝑢 (or in 𝑄1(𝑤) the term 𝑤 − 𝑢) is replaced by 𝑢𝑣 (or 𝑢𝑤); in this case, the particle
density consumes the chemical. (We will elaborate on models with absorption.) As far as prob-
lem (4) is concerned, since the attractive signal 𝑣 increases with 𝑢, the natural spreading process
of the cells’ density could interrupt and very high and spatially concentrated spikes formations
(chemotactic collapse or blow-up at finite time) may appear; this is, generally, due to the size of the
chemosensitivity 𝜒, the initial mass of the particle distribution, that is,𝑚 = ∫

Ω
𝑢0(𝑥)𝑑𝑥, and the

space dimension 𝑛. In this direction, the reader interested in learningmore can find in Refs. [4–8]
analyses dealing with existence and properties of global, uniformly bounded or blow-up (local)
solutions to models connected to (4).
On the other hand, for nonlinear segregation chemotaxismodels like thosewe are interested in,

when in problem (4) one has that 𝑃(𝑣) = 𝑃1𝛼(𝑣) = 𝑣𝑡 − Δ𝑣 + 𝑣 − 𝑢𝛼 = 0, with 0 < 𝛼 <
2

𝑛
(𝑛 ≥ 1),

the uniform boundedness of all its solutions is proved in Liu and Tao.9
Concerning the literature about problem (5), it seems rather poor and general (see, for instance,

Mock10,11 for analyses on similar contexts). In particular, no result on the blow-up scenario is
available; this is meaningful due to the repulsive nature of the phenomenon.
Contrarily, the level of understanding for attraction–repulsion chemotaxis problems involv-

ing both (4) and (5) is sensitively rich; more specifically, if we refer to the linear diffusion
and sensitivities version of model (3), for which 𝐹 = 𝐹1,1,1 and 𝑃𝜏𝛼(𝑣) = 𝜏𝑣𝑡 − Δ𝑣 + 𝑏𝑣 −
𝑎𝑢𝛼 and 𝑄𝜏

𝛽
(𝑤) = 𝜏𝑤𝑡 − Δ𝑤 + 𝑑𝑤 − 𝑐𝑢𝛽 , 𝑎, 𝑏, 𝑐, 𝑑, 𝛼, 𝛽 > 0, equipped with regular initial data

𝑢0(𝑥), 𝜏𝑣0(𝑥), 𝜏𝑤0(𝑥) ≥ 0, we can recollect the following outcomes. In the absence of logistics
(ℎ𝑘 ≡ 0), when linear growths of the chemoattractant and the chemorepellent are taken into
consideration, and for elliptic equations for the chemicals (i.e., when 𝑃01(𝑣) = 𝑄0

1(𝑤) = 0), the
value Θ ∶= 𝜒𝑎 − 𝜉𝑐 measures the difference between the attraction and repulsion impacts, and
it is such that whenever Θ < 0 (repulsion-dominated regime), in any dimension all solutions
to the model are globally bounded, whereas for Θ > 0 (attraction-dominated regime) and 𝑛 = 2
unbounded solutions can be detected (see Refs. [12–16] for some details on the issue). Indeed, for
more general expressions of the proliferation laws, modeled by the equations 𝑃0𝛼(𝑣) = 𝑄0

𝛽
(𝑤) = 0,

to the best of our knowledge,17 is the most recent result in this direction; herein, some interplay
between 𝛼 and 𝛽 and some technical conditions on 𝜉 and 𝑢0 are established so to ensure glob-
ality and boundedness of classical solutions. (See also Chiyo and Yokota18 for blow-up results in
the frame of nonlinear attraction–repulsion models with logistics as those formulated in (3) with
𝐹 = 𝐹𝑚1,𝑚2,𝑚3

and ℎ = ℎ𝑘, and with linear segregation for the stimuli, that is, with equations for
𝑣, 𝑤 reading as 𝑃01(𝑣) = 𝑄0

1(𝑤) = 0.)
Putting our attention on evolutive equations for chemoattractant and chemorepellent, 𝑃11(𝑣) =

𝑄1
1(𝑤) = 0, in Tao and Wang14 it is proved that in two-dimensional domains sufficiently smooth

initial data emanate global-in-time bounded solutions whenever

Θ < 0 and 𝑏 = 𝑑 or Θ < 0 and −
𝜒2𝛼2(𝑏 − 𝑑)2

2Θ𝑏2𝐶 ∫Ω 𝑢0(𝑥)𝑑𝑥 ≤ 1, for some 𝐶 > 0.
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COLUMBU et al. 5

(As to blow-up results, we are only aware of Lankeit,19 where unbounded solutions in
three-dimensional domains are constructed.) When ℎ = ℎ𝑘 ≢ 0, for both linear and nonlinear
productions scenarios, and stationary or evolutive equations (formally, 𝑃𝜏𝛼(𝑣) = 𝑄𝜏

𝛽
(𝑤) = 0), crite-

ria toward boundedness, long time behaviors, and blow-up issues for related solutions are studied
in Refs. [20–23].

1.3 The nonlocal case

In this work, we are mainly interested in the so-called nonlocal models tied to (3), for which,
specifically, 𝑃(𝑣) = 𝑃𝛼(𝑣) ∶= Δ𝑣 −

1|Ω| ∫Ω 𝑢𝛼 + 𝑢𝛼 = 0, and 𝑄(𝑤) = 𝑄𝛽(𝑤) ∶= Δ𝑤 −
1|Ω| ∫Ω 𝑢𝛽 +

𝑢𝛽 . In particular, recalling the position in (2), we herein mention the most recent researches we
are aware of and inspiring our study; for this purpose, we refer to the only attraction version

𝑢𝑡 = ∇ ⋅
(
𝐺𝑚1

+ 𝐻𝑚2

)
+ ℎ𝑘 and 𝑃𝛼(𝑣) = 0 in Ω× (0, 𝑇𝑚𝑎𝑥), (6)

and the attraction–repulsion one

𝑢𝑡 = ∇ ⋅ 𝐹𝑚1,𝑚2,𝑚3
+ ℎ𝑘 and 𝑃𝛼(𝑣) = 𝑄𝛽(𝑤) = 0 in Ω× (0, 𝑇𝑚𝑎𝑥). (7)

For the linear diffusion and sensitivity version of model (6), that is, with flux 𝐺1 + 𝐻1, if ℎ𝑘 ≡ 0,
it is known that boundedness of solutions is achieved for any 𝑛 ≥ 1 and 0 < 𝛼 <

2

𝑛
, whereas for

𝛼 >
2

𝑛
blow-up phenomena may be observed (see Winkler24). Some of these results have been

generalized in Cieślak andWinkler,25, where the situationwith nonlinear fluxes of the type𝐺𝑚1
+

𝐻1 but linear production (𝑃1(𝑣) = 0) are discussed.
On the other hand, in the same flavor of the Cauchy problem 𝑢′ = 𝜆𝑢 − 𝜇𝑢𝑘, with 𝑘 > 1 and

𝑢(0) = 𝑢0 > 0, whose solution is bounded, intuitively the presence of logistic sources involving
superlinear damping effects in chemotaxis models should provide smoothness to the mechanism
and henceforth boundedness of related solutions. Nevertheless, this occurs for sufficiently large
values of 𝜇 and 𝑘; precisely, for 𝐺1 + 𝐻1 in (6) and 𝑃01(𝑣) = 0∕𝑃11(𝑣) = 0 we refer to Tello and
Winkler26 or Winkler.27 Oppositely, for 𝑘 close to 1, the destabilizing action coming from the drift
termmay overcome the stabilizing one from the logistics and appearances of 𝛿-formations at finite
time may be detected. In the specific (remaining in the same context of (6)), for the linear flux
𝐺1 + 𝐻1, 𝑃1(𝑣) = 0 and some values of 𝑘 > 1, first (Winkler28) in domains Ω of ℝ𝑛 with 𝑛 ≥ 5,
but later (Winkler29) also in three-dimensional domains, being 𝑘 < 7

6
and 𝑃01(𝑣) = 0, coalescence

phenomena are constructed. In addition, similar situations have been seen to exist for some sub-
quadratic growth of ℎ𝑘, and precisely for ℎ𝑘 with 1 < 𝑘 <

𝑛(𝛼+1)

𝑛+2
< 2 (see Yi et al.30). But there

is more; for the limit linear production scenario, corresponding to 𝑃1(𝑣) = 0, some unbounded
solutions have been constructed in Fuest31 even for quadratic sources ℎ = ℎ2, whenever 𝑛 ≥ 5
and 𝜇 ∈ (0,

𝑛−4

𝑛
).

In nonlinear models without dampening logistic effects (i.e., general flux 𝐺𝑚1
+ 𝐻𝑚2

and ℎ𝑘 ≡
0) and linear production (i.e., 𝑃1(𝑣) = 0), in Winkler and Djie,32 it is shown, among other things,
that for𝑚1 ≤ 1,𝑚2 > 0,𝑚2 > 𝑚1 +

2

𝑛
− 1 situationswith unbounded solutions at some finite time

𝑇𝑚𝑎𝑥 can be found. (See also Marras et al.33 for questions connected to estimates of 𝑇𝑚𝑎𝑥.) Some
results have also been extended in Tanaka34 when ℎ𝑘 ≢ 0 and for nonlinear segregation contexts,
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6 COLUMBU et al.

𝑃𝛼(𝑣) = 0; in particular, inter alia, for𝑚1 ∈ ℝ,𝑚2 > 0, blow-up phenomena are seen to appear if
𝑚2 + 𝛼 > max{𝑚1 +

2

𝑛
𝑘, 𝑘}, whenever𝑚1 ≥ 0 or𝑚2 + 𝛼 > max{

2

𝑛
𝑘, 𝑘}, provided𝑚1 < 0.

On the other hand, for the attraction–repulsion models, in Liu and Li35 it is proved, together
with other results, that if 𝑃𝛼(𝑣) = 𝑄𝛽(𝑤) = 0, 𝛼 >

2

𝑛
and 𝛼 > 𝛽 ensure the existence of unbounded

solutions to (7) for the linear flux 𝐹 = 𝐹1,1,1, without logistic (ℎ𝑘 ≡ 0). Conversely, detecting gath-
ering mechanisms for the nonlinear situation is more complex and we are only aware of Wang
et al.36 ; indeed, this issue is therein addressed only for 𝐹 = 𝐹𝑚1,1,1, with𝑚1 ∈ ℝ, but even in the
presence of dampening logistics. Since in our research,wewill show the existence of blow-up solu-
tions for a larger class of fluxes, precisely for 𝐹 = 𝐹𝑚1,𝑚2,𝑚2

with 𝑚1 ∈ ℝ and any 𝑚2 = 𝑚3 > 0,
we will analyze details of Wang et al.36 below, precisely in Section 3.2.

2 PRESENTATION OF THEMODEL AND OF THEMAIN RESULTS:
AIMS OF THE PAPER

2.1 The formulation of the mathematical problem

In light of what we presented so far, and under the aforementioned main positions, basi-
cally in this paper we are interested in properties of unbounded classical solutions (𝑢, 𝑣, 𝑤) =
(𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡), 𝑤(𝑥, 𝑡)) to this problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑢𝑡 = ∇ ⋅ ((𝑢 + 1)𝑚1−1∇𝑢 − 𝜒𝑢(𝑢 + 1)𝑚2−1∇𝑣 + 𝜉𝑢(𝑢 + 1)𝑚3−1∇𝑤) + 𝜆𝑢 − 𝜇𝑢𝑘 in Ω× (0, 𝑇𝑚𝑎𝑥),

0 = Δ𝑣 − 𝑚1(𝑡) + 𝑓1(𝑢) in Ω× (0, 𝑇𝑚𝑎𝑥),

0 = Δ𝑤 −𝑚2(𝑡) + 𝑓2(𝑢) in Ω× (0, 𝑇𝑚𝑎𝑥),

𝑢𝜈 = 𝑣𝜈 = 𝑤𝜈 = 0 on 𝜕Ω × (0, 𝑇𝑚𝑎𝑥),

𝑢(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ Ω̄,

∫
Ω
𝑣(𝑥, 𝑡)𝑑𝑥 = ∫

Ω
𝑤(𝑥, 𝑡)𝑑𝑥 = 0 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).

(8)

Additionally, the initial cell distribution 𝑢0 ∶= 𝑢0(𝑥) and the production laws 𝑓𝑖 = 𝑓𝑖(𝑢) (for 𝑖 ∈
{1, 2}) are supposed to be nonnegative and sufficiently regular, and the functions𝑚𝑖(𝑡) are defined
for compatibility in the second and third equations (by integrating these overΩ) in terms of 𝑓𝑖(𝑢)
themselves, exactly as

𝑚1(𝑡) =
1|Ω| ∫Ω 𝑓1(𝑢) and 𝑚2(𝑡) =

1|Ω| ∫Ω 𝑓2(𝑢). (9)

Herein, we assume

0 ≤ 𝑓𝑖 ∈
⋃

𝜃∈(0,1)

𝐶𝜃
𝑙𝑜𝑐([0,∞)) ∩ 𝐶1((0,∞)) and 0 ≤ 𝑢0 ∈

⋃
𝜃∈(0,1)

𝐶𝜃(Ω̄); (10)

we also might need that for all 𝑠 ≥ 0, 𝛼, 𝛽 > 0, and some 𝑘1, 𝑘2, 𝑘3 > 0,

𝑓1(𝑠) ≤ 𝑘1(𝑠 + 1)𝛼 and 𝑓2(𝑠) ≤ 𝑘2(𝑠 + 1)𝛽, (11)
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COLUMBU et al. 7

or

𝑓1, 𝑓2 nondecreasing, 𝑓1(𝑠) ≥ 𝑘3(𝑠 + 1)𝛼, 𝑓2(𝑠) ≤ 𝑘2(𝑠 + 1)𝛽 and

𝑢0 = 𝑢0(|𝑥|) radially symmetric and nonincreasing. (12)

Remark 1. Let us clarify that in nonlocal models, and henceforth in this work, 𝑣 stands for the
deviation of the chemoattractant; the deviation is the difference between the signal concentration
and itsmean, and that it changes sign in contrast towhat happenswith the cell and signal densities
(which are nonnegative). In particular, it follows from the definition of 𝑣 itself that itsmean is zero
(as specified in the last positions of the problem (8)), which in turn ensures the uniqueness of the
solution of the Poisson equation under homogeneous Neumann boundary conditions. The same
comments apply for the chemorepellent 𝑤. (We did not introduce different symbols to indicate
the chemicals and their deviations since it is clear from the context.)

2.2 Presentation of the theorems: Overall aims of the paper

Our project finds itsmotivations in the observation that there is no automatic connection between
the occurrence of blow-up for solutions to model (8) in the 𝐿∞(Ω)-norm and that in 𝐿𝑝(Ω)-norm
(𝑝 > 1). Indeed, for a bounded domain Ω, it is seen that

‖𝑢(⋅, 𝑡)‖𝐿𝑝(Ω) ≤ |Ω| 1𝑝 ‖𝑢(⋅, 𝑡)‖𝐿∞(Ω),

so that unboundedness in 𝐿𝑝(Ω)-norm implies that in 𝐿∞(Ω)-norm, but oppositely ∫
Ω
𝑢𝑝 might

even remain bounded in a neighborhood of 𝑇𝑚𝑎𝑥 whenmaxΩ 𝑢 uncontrollably increases at some
finite time 𝑇𝑚𝑎𝑥.
In light of this, in order to bridge the gap between the analysis of the blow-up time 𝑇𝑚𝑎𝑥 in the

two different mentioned norms, we aim at

(i) detecting suitable 𝐿𝑝(Ω) spaces, for certain 𝑝 depending on 𝑛,𝑚1,𝑚2,𝑚3, 𝛼 and 𝛽, such that
given unbounded solutions also blow up in the associated 𝐿𝑝(Ω)-norms;

(ii) providing lower bounds for the blow-up time of the aforementioned solutions in these 𝐿𝑝(Ω)-
norms.

Additionally, another objective of our work is

(iii) giving sufficient conditions on the data of the model such that related solutions are actually
unbounded at finite time.

In order to deal with issues (i)–(iii), we fix the following relations, determining some precise
interplay involving constants defining system (8):

Assumptions 1. Let 𝑛 ∈ ℕ,𝑚1,𝑚2,𝑚3 ∈ ℝ and 𝛼, 𝛽, 𝜒, 𝜉, 𝜆, 𝜇 > 0 and 𝑘 > 1 be such that

(1) 𝑚2 + 𝛼 > 𝑚1 +
2

𝑛
.
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8 COLUMBU et al.

Moreover, for 𝛽 > 0, let either

(2) 𝑚2 + 𝛼 > max{1,𝑚3 + 𝛽} or (3)𝑚2 + 𝛼 ≥ 𝑚3 + 𝛽 and𝑚1 > 1 −
2

𝑛
,

whereas, for 𝛽 ∈ (0, 1], let either

(4) 𝑚3 ≤ 1 and𝑚1 > 1 −
2

𝑛
or (5)𝑚2 + 𝛼 ≥ 𝑚3 and𝑚1 > 1 −

2

𝑛
.

Finally, for𝑚2, 𝛽 > 0, let also

(6) 𝛼 > 𝛽 and

⎧⎪⎨⎪⎩
𝑚2 + 𝛼 > max

{
𝑚1 +

2

𝑛
𝑘, 𝑘

}
if𝑚1 ≥ 0,

𝑚2 + 𝛼 > max
{

2

𝑛
𝑘, 𝑘

}
if𝑚1 < 0.

With the support of the above position, and as far as the analysis of (i) is concerned, in the
spirit of Theorem 2.2 of Freitag37, we will prove this first result, dealing with properties of given
unbounded solutions to model (8). Specifically, the proof is based on the analysis of the functional
𝜑(𝑡) =

1

𝑝
∫
Ω
(𝑢 + 1)𝑝, defined for local solutions to problem (8) on (0, 𝑇𝑚𝑎𝑥). We will show that if

for some 𝑝 sufficiently large 𝜑(𝑡) is uniformly bounded in time, then it also is for any arbitrarily
large 𝑝 > 1, so contrasting with the unboundedness of 𝑢 itself.

Theorem 1. Let Ω be a bounded and smooth domain of ℝ𝑛, and condition (1) as well as one of
(2), (3), (4), (5) in Assumptions 1 hold true. Moreover, for 𝑓𝑖 and 𝑢0 complying with (10) and
(11), let (𝑢, 𝑣, 𝑤), with

𝑢 ∈ 𝐶0(Ω̄ × [0, 𝑇𝑚𝑎𝑥)) ∩ 𝐶2,1(Ω̄ × (0, 𝑇𝑚𝑎𝑥)) and 𝑣, 𝑤 ∈
⋂
𝑞>𝑛

𝐿∞((0, 𝑇𝑚𝑎𝑥);𝑊
1,𝑞(Ω)) ∩ 𝐶2,0(Ω̄ × (0, 𝑇𝑚𝑎𝑥)),

be a solution to problem (8) which blows up at some finite time 𝑇𝑚𝑎𝑥 in the sense that

lim sup
𝑡→𝑇𝑚𝑎𝑥

‖𝑢(⋅, 𝑡)‖𝐿∞(Ω) = +∞. (13)

Then, for any 𝔭 > 𝑛

2
(𝑚2 − 𝑚1 + 𝛼), we also have

lim sup
𝑡→𝑇𝑚𝑎𝑥

‖𝑢(⋅, 𝑡)‖𝐿𝔭(Ω) = +∞.

Successively aim (ii) is achieved by establishing for the same functional 𝜑(𝑡) a first-order differ-
ential inequality (ODI) of the type 𝜑′(𝑡) ≤ Ψ(𝜑(𝑡)) on (0, 𝑇𝑚𝑎𝑥). In particular, for any 𝜏0 > 0 the
function Ψ(𝜏) obeys the Osgood criterion,38

∫
∞

𝜏0

𝑑𝜏
Ψ(𝜏)

< ∞ with 𝜏0 > 0, (14)

 14679590, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12627 by U
niversita D

i C
agliari B

iblioteca C
entrale D

ella, W
iley O

nline L
ibrary on [11/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



COLUMBU et al. 9

so that an integration on (0, 𝑇𝑚𝑎𝑥) of the ODI implies, whenever lim sup𝑡→𝑇𝑚𝑎𝑥
𝜑(𝑡) = ∞, the

following lower bound for 𝑇𝑚𝑎𝑥

𝑇𝑚𝑎𝑥 ≥ ∫
∞

𝜑(0)

𝑑𝜑

Ψ(𝜑)
∶= 𝑇,

and thereby a safe interval of existence [0, 𝑇) for solutions to the model itself.

Theorem 2. Let the hypotheses of Theorem 1 be satisfied. Then there exists �̄� > 1 and positive con-
stants ,,,, as well as 𝛾 > 𝛿 > 1, such that the blow-up time 𝑇𝑚𝑎𝑥 complies with both the
implicit estimate

𝑇𝑚𝑎𝑥 ≥ ∫
∞

𝜑(0)

𝑑𝜏

𝜏𝛾 + 𝜏𝛿 +  , (15)

and the explicit one

𝑇𝑚𝑎𝑥 ≥ 𝜑(0)1−𝛾

(𝛾 − 1)
,

where 𝜑(0) = 1

𝑝
∫
Ω
(𝑢0 + 1)𝑝, for any 𝑝 ≥ �̄�.

Finally, the last theorem (connected to item (iii)) establishes (at least in a particular case)
the existence of unbounded solutions to system (8), so as to make the two previous statements
meaningful. The basic idea consists of the analysis of the temporal evolution of the functional
𝜙(𝑡) ∶= ∫ 𝑠0

0
𝑠−𝛾(𝑠0 − 𝑠)𝑈(𝑠, 𝑡) 𝑑𝑠 for 𝑡 ∈ [0, 𝑇𝑚𝑎𝑥), being 𝑈(𝑠, 𝑡) the so-called mass accumulation

function of 𝑢, obeying a superlinear ODI.

Theorem 3. Let 𝜒, 𝜉, 𝜆, 𝜇,𝑚2 = 𝑚3 > 0 and 𝑘 > 1. Additionally, for some 𝑅 > 0, let Ω = 𝐵𝑅(0) ⊂
ℝ𝑛 be a ball and let 𝑓1 and 𝑓2 satisfy (10) and (12). Finally, let hypotheses (6) be satisfied. Then for

any𝑀0 ≥ 𝐶, with𝐶 =
(
𝜆

𝜇
|Ω|𝑘−1) 1

𝑘−1 , there exist 𝜖0 ∈ (0,𝑀0) and 𝑟∗ ∈ (0, 𝑅)with the property that
whenever 𝑢0 complies with (10) and (12) and it is also chosen such that

∫Ω 𝑢0(𝑥)𝑑𝑥 = 𝑀0 and ∫𝐵𝑟∗ (0)
𝑢0(𝑥)𝑑𝑥 ≥ 𝑀0 − 𝜖0, (16)

the corresponding classical solution (𝑢, 𝑣, 𝑤) to model (8) blows up at some finite time 𝑇𝑚𝑎𝑥 , in the
sense of relation (13).

3 MISCELLANEOUS AND GENERAL COMMENTS

3.1 On the parameters 𝖕 and �̄�

Weherein want to discuss on the role of the parameters 𝔭 and �̄� appearing in Theorems 1 and 2. In
particular, as we will observe in Lemma 2 below, 𝔭 and �̄� depend on 𝑛,𝑚1,𝑚2,𝑚3, 𝛼, and 𝛽, and
Figure 1 presents some of their values on the𝑝 axis. In the specific, for a blowing up solution to (8),
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10 COLUMBU et al.

F IGURE 1 Some infimum of 𝔭 and �̄�, taken from their definitions in Lemma 2. From top to bottom:➢
Under assumption (3), and 𝑛 = 1,𝑚1 =

81

50
,𝑚2 = −

149

100
,𝑚3 =

33

20
, 𝛼 =

587

100
and 𝛽 =

63

25
, we have

𝔭 =
𝑛

2
(𝑚2 − 𝑚1 + 𝛼) =

69

50
and �̄� = 𝑚3(𝑛 + 2)(𝑛 + 1) =

99

10
;➢ Under the assumption (2), and 𝑛 = 5,𝑚1 = −

3

50
,

𝑚2 =
6

5
,𝑚3 = −

143

100
, 𝛼 =

163

100
and 𝛽 =

169

100
, we have 𝔭 = 𝑛

2
(𝑚2 − 𝑚1 + 𝛼) =

289

40
and �̄� = 𝑚2(𝑛 + 2)(𝑛 + 1) =

252

5
;➢

Under the assumption (2), and 𝑛 = 4,𝑚1 = −
187

100
,𝑚2 = −

89

100
,𝑚3 = −

181

100
, 𝛼 =

353

100
and 𝛽 =

19

50
, we have

𝔭 =
𝑛

2
(𝑚2 − 𝑚1 + 𝛼) =

451

50
and �̄� = 𝑛𝛼 =

353

25
;➢ Under the assumption (3), and 𝑛 = 4,𝑚1 =

47

50
,𝑚2 =

6

25
,

𝑚3 = −
63

50
, 𝛼 =

179

100
and 𝛽 =

119

50
, we have 𝔭 = 𝑛

2
(𝑚2 − 𝑚1 + 𝛼) =

109

50
and �̄� = 𝑛𝛽 =

238

25
.

we will have that ∫
Ω
𝑢𝑝 is bounded on (0, 𝑇𝑚𝑎𝑥) for 𝑝 = 1, while it blows up for 𝑝 ≥ 𝔭; in general,

the behavior of ∫
Ω
𝑢𝑝 on (0, 𝑇𝑚𝑎𝑥) for 𝑝 ∈ (1, 𝔭) is unknown. On the other hand, an estimate for

𝑇𝑚𝑎𝑥 is given in terms of
1

𝑝
∫
Ω
(𝑢0 + 1)𝑝, for 𝑝 ≥ �̄�, but not when 𝑝 ∈ (𝔭, �̄�).

3.2 Improving Theorem 1.1 in Wang et al.36 and addressing an open
question in Remark 1.2 of Wang et al.36

Herein we want to compare Theorem 3 and Theorem 1.1 in Wang et al.,36 both dealing with
blow-up solutions to attraction–repulsion models with logistics. First, in order to have consis-
tency between these results, we have to fix𝑚2 = 1 in (6). Additionally, for the ease of the reader,
let us also rephrase the related blow-up assumptions:

Blow-up conditions in Theorem 3: 𝛼>𝛽 and

⎧⎪⎨⎪⎩
𝛼>max

{
𝑚1 +

2

𝑛
𝑘 − 1, 𝑘 − 1

}
if𝑚1 ≥ 0,

𝛼>max
{

2

𝑛
𝑘 − 1, 𝑘 − 1

}
if𝑚1<0,

(17)
and

Blow-up conditions in Theorem 1.1 in Wang et al. [36]: 𝛼>𝛽 and

⎧⎪⎨⎪⎩
𝛼>max

{
𝑚1 +

2

𝑛
𝑘 − 1, 𝑘 − 1

}
if𝑚1>1,

𝛼>max
{

2

𝑛
𝑘, 𝑘 − 1

}
if𝑚1 ≤ 1.

(18)
We easily note that if𝑚1 ≥ 1 the two conditions (17) and (18) coincide. Now, we analyze the cases
𝑚1 ≤ 0 and 0 < 𝑚1 < 1, separately.

➢ Case𝑚1 ≤ 0. By comparing 𝛼 > max{
2

𝑛
𝑘 − 1, 𝑘 − 1} in (17) and 𝛼 > max{

2

𝑛
𝑘, 𝑘 − 1} in (18), we

observe that (17) provides a larger range of values of 𝛼 for which blow-up occurs than (18) does
whenever 𝑛 ∈ {1, 2} or 𝑛 ≥ 3 provided 1 < 𝑘 <

𝑛

𝑛−2
.
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COLUMBU et al. 11

➢ Case 0 < 𝑚1 < 1. The conditions above become 𝛼 > max{𝑚1 +
2

𝑛
𝑘 − 1, 𝑘 − 1} and 𝛼 >

max{
2

𝑛
𝑘, 𝑘 − 1}, respectively. In particular, thanks to the fact that𝑚1 < 1, also in this situation

a sharper condition is achieved for 𝑛 ∈ {1, 2} or 𝑛 ≥ 3, under the assumptions 1 < 𝑘 <
𝑛

𝑛−2
and

0 < 𝑚1 <
𝑘(𝑛−2)

𝑛
or 1 < 𝑘 <

𝑛

𝑛−2
and 𝑘(𝑛−2)

𝑛
< 𝑚1 < 1.

From the above analysis, it is seen that Theorem 3 improves Theorem 1.1 in Wang et al.36; addi-
tionally, it establishes that (1.15) in Theorem 1.1 inWang et al.36 is not optimal, so giving an answer
to an open question in Remark 1.2 in Wang et al.36.

3.3 On the automatic applicability of Theorems 1 and 2 in some
related chemotaxis contexts

We can observe what follows:

➢ Once the blow-up constrains in (6) are accomplished, and taking into account𝑚2 = 𝑚3 > 0,
assumptions (1) and (2) are immediately satisfied; subsequently, Theorems 1 and 2 are
applicable to unbounded solutions to model (8).

➢ Theorems 1 and 2 can also be used inmodels close to (8), forwhich unbounded solutions can be
detected (see Section 1); in particular, for attraction–repulsion (linear and nonlinear) models
with or without logistic and general production laws (Refs. [35, 36]) or for only attraction ones
(Refs. [24, 30, 34, 39, 40]).

3.4 An open problem

As far as we know, establishing conditions ensuring blow-up solutions for the case 𝑚2 ≠ 𝑚3 in
model (8), is still an open problem; in particular, we will give some details on related technical
difficulties connected to this issue in Remark 3.

4 LOCAL EXISTENCE AND NECESSARY PARAMETERS

By an adaption of standard reasoning in the frame of the fixed-point theorem, we can show the
following result on the local existence and extensibility of classical solutions to (8).

Lemma 1. LetΩ be a bounded and smooth domain ofℝ𝑛, with 𝑛 ≥ 1, 𝜒, 𝜉, 𝜆, 𝜇 > 0,𝑚1,𝑚2,𝑚3 ∈
ℝ, 𝑘 > 1, and let 𝑓𝑖 and 𝑢0 comply with (10). Then there exist 𝑇𝑚𝑎𝑥 ∈ (0,∞] and a unique solution
(𝑢, 𝑣, 𝑤) to problem (8), defined inΩ× (0, 𝑇𝑚𝑎𝑥) and such that

𝑢 ∈ 𝐶0(Ω̄ × [0, 𝑇𝑚𝑎𝑥)) ∩ 𝐶2,1(Ω̄ × (0, 𝑇𝑚𝑎𝑥)) and 𝑣, 𝑤 ∈
⋂
𝑞>𝑛

𝐿∞𝑙𝑜𝑐((0, 𝑇𝑚𝑎𝑥);𝑊
1,𝑞(Ω)) ∩ 𝐶2,0(Ω̄ × (0, 𝑇𝑚𝑎𝑥)).

Additionally, one has 𝑢 ≥ 0 inΩ× (0, 𝑇𝑚𝑎𝑥),

∫Ω 𝑢 ≤ 𝑀 ∶= max{𝑀0, 𝐶} for all 𝑡 ∈ [0, 𝑇𝑚𝑎𝑥), (19)
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12 COLUMBU et al.

where𝑀0 = ∫
Ω
𝑢0(𝑥) 𝑑𝑥 and 𝐶 ∶=

(
𝜆

𝜇
|Ω|𝑘−1) 1

𝑘−1 , and

if 𝑇𝑚𝑎𝑥 < ∞, then lim sup
𝑡→𝑇𝑚𝑎𝑥

‖𝑢(⋅, 𝑡)‖𝐿∞(Ω) = ∞.

Furthermore, if 𝑢0 also satisfies the symmetrical assumptions in (12) andΩ = 𝐵𝑅(0), with some 𝑅 >
0, then 𝑢, 𝑣, and 𝑤 are radially symmetric with respect to |𝑥| inΩ× (0, 𝑇𝑚𝑎𝑥).

Proof. The proof can be achieved by following well-established results: for instance, we refer the inter-
ested reader to Refs. [7, 25, 32, 41]. In particular, an integration of the first equation in (8) and an
application of the Hölder inequality give bound (19).

□

Let us start with the following technical

Lemma 2. Let 𝑛 ∈ ℕ,𝑚1,𝑚2,𝑚3, 𝛼, 𝛽 be as in Assumptions 1. Moreover, for 𝔭 >
𝑛

2
(𝑚2 − 𝑚1 + 𝛼)

let

�̄� > max

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝔭

1 − 𝑚1(𝑛 + 2)

1 − 𝑚2

1 − 𝑚3

2 − 𝑚1 −
2

𝑛

𝑛𝛼

𝑛𝛽

𝑚2(𝑛 + 2)(𝑛 + 1)

𝑚3(𝑛 + 2)(𝑛 + 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

,

𝜎 ∶=
2(𝑝 + 𝑚2 + 𝛼 − 1)

𝑝 + 𝑚1 − 1
, �̂� ∶=

2𝑝
𝑝 + 𝑚1 − 1

, 𝛾 ∶=

𝑚1−𝑚2−𝛼

2
+

𝑝

𝑛
+

𝑚2+𝛼−1

𝑛
𝑚1−𝑚2−𝛼

2
+

𝑝

𝑛

, 𝛿 ∶=
𝑝 +𝑚2 + 𝛼 − 1

𝑝
.

Then for all 𝑝 ≥ �̄� these relations hold

𝑝 >
𝑛
2
(1 − 𝑚1), (20a)

0 < 𝜃 ∶=

𝑝+𝑚1−1

2𝔭
−

𝑝+𝑚1−1

2(𝑝+𝑚2+𝛼−1)

𝑝+𝑚1−1

2𝔭
+

1

𝑛
−

1

2

< 1, (20b)

0 <
𝜎𝜃
2

< 1, (20c)
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COLUMBU et al. 13

0 < �̂� =

𝑝+𝑚1−1

2
−

𝑝+𝑚1−1

2𝑝

𝑝+𝑚1−1

2
+

1

𝑛
−

1

2

< 1, (20d)

0 <
�̂��̂�
2

< 1, (20e)

0 <
𝑝 +𝑚3 − 1

𝑝 + 𝑚2 + 𝛼 − 1
< 1, (20f)

0 <
𝛽

𝑝 +𝑚2 + 𝛼 − 1
< 1, (20g)

𝑝 +𝑚3 − 1
𝑝 + 𝑚2 + 𝛼 − 1

+
𝛽

𝑝 +𝑚2 + 𝛼 − 1
< 1, (20h)

0 <
𝑝

𝑝 +𝑚2 + 𝛼 − 1
< 1, (20i)

𝛾 > 𝛿 > 1, (20j)

0 < �̄� ∶=

𝑝+𝑚1−1

2𝑝
−

𝑝+𝑚1−1

2(𝑝+𝑚2+𝛼−1)

𝑝+𝑚1−1

2𝑝
+

1

𝑛
−

1

2

< 1, (20k)

0 <
𝜎�̄�
2

< 1, (20l)

0 <
𝑝 +𝑚3 − 1

𝑝
< 1. (20m)

Proof. To show our relations, we will need 𝑝 > 1 − 𝑚1 and 𝑝 > 1 + 𝛽 −𝑚2 − 𝛼. As to the first
inequality, due to (1) and the restriction on 𝔭, we have that 𝑝 ≥ �̄� > 𝔭 > 1 ≥ 1 − 𝑚1 for 𝑚1 ≥ 0,
while for 𝑚1 < 0 it suddenly derives from 𝑝 ≥ �̄� > 1 − 𝑚1(𝑛 + 2). For the second lower bound,
assumptions (2) or (3), together with the definition of �̄�, give 𝑝 ≥ �̄� > 1 − 𝑚3 > 1 + 𝛽 −𝑚2 − 𝛼.
Besides, 𝑚2 + 𝛼 > 1 is automatically true through (2), or alternatively by means of assumption
(1) in conjunction with one among (3)–(5). The same condition 𝑚2 + 𝛼 > 1, 𝑝 ≥ �̄� and the
restriction on 𝔭 and 𝑝 > 1 − 𝑚1 ensure relations (20a), (20b), (20c), (20k), and (20l). Moreover,
from (20a), 𝑝 > 1 − 𝑚1 and 𝑝 > 2 − 𝑚1 −

2

𝑛
, we obtain (20d) and by using also𝑚1 > 1 −

2

𝑛
, we get

(20e). On the other hand, restrictions (20f), (20g), (20h), (20i), and (20m) come from the definition
of �̄� in conjunction with 𝑚2 + 𝛼 > 𝑚3, 𝑝 > 1 + 𝛽 −𝑚2 − 𝛼, 𝑚2 + 𝛼 > 𝑚3 + 𝛽, and 𝑚2 + 𝛼 > 1,
respectively. Finally, from (1) it follows that𝑚2 + 𝛼 > 𝑚1, which combined with𝑚2 + 𝛼 > 1 gives
(20j). □

Remark 2. For reasons which will be exploited later on, and precisely in Lemma 3, it appears
important to point out that assumptions (3)–(5) imply that the ratios (20f), (20h), and (20m)
in Lemma 2 can also be taken equal to 1.

 14679590, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12627 by U
niversita D

i C
agliari B

iblioteca C
entrale D

ella, W
iley O

nline L
ibrary on [11/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 COLUMBU et al.

5 A PRIORI ESTIMATES AND PROOF OF THEOREMS 1 AND 2

In this section, we will use (1)–(5). Moreover, without explicitly computing their values, we
underline that the constants 𝑐𝑖 appearing below and throughout the paper depend inter alia on 𝑝,
are positive and their subscripts 𝑖 start anew in each new proof.

Lemma3. Under the hypotheses of Lemma2, let𝑝 = �̄� and𝔭 be any of the constants therein defined.
If (𝑢, 𝑣, 𝑤) is a classical solution to problem (8), 𝑢 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥); 𝐿

𝔭(Ω)) and 𝜑(𝑡) is the energy
function

𝜑(𝑡) ∶=
1
𝑝 ∫Ω(𝑢 + 1)𝑝 on (0, 𝑇𝑚𝑎𝑥),

then there exist 𝑐1, 𝑐2 such that

𝜑′(𝑡) ≤ −𝑐1 ∫Ω |∇(𝑢 + 1)
𝑝+𝑚1−1

2 |2 + 𝑐2 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥). (21)

Proof. Let us differentiate the functional 𝜑(𝑡) = 1

𝑝
∫
Ω
(𝑢 + 1)𝑝. Using the first equation of (8) and the

divergence theorem, we have for every 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥)

𝜑′(𝑡) = ∫
Ω

(𝑢 + 1)𝑝−1𝑢𝑡 =∫
Ω

(𝑢 + 1)𝑝−1∇ ⋅ ((𝑢 + 1)𝑚1−1∇𝑢) − 𝜒 ∫
Ω

(𝑢 + 1)𝑝−1∇ ⋅ (𝑢(𝑢 + 1)
𝑚2−1∇𝑣)

+ 𝜉 ∫
Ω

(𝑢 + 1)𝑝−1∇ ⋅ (𝑢(𝑢 + 1)𝑚3−1∇𝑤) + 𝜆 ∫
Ω

(𝑢 + 1)𝑝−1𝑢 − 𝜇 ∫
Ω

(𝑢 + 1)𝑝−1𝑢𝑘

= − (𝑝 − 1)∫
Ω

(𝑢 + 1)𝑝+𝑚1−3|∇𝑢|2 + (𝑝 − 1)𝜒 ∫
Ω

𝑢(𝑢 + 1)𝑝+𝑚2−3∇𝑢 ⋅ ∇𝑣

− (𝑝 − 1)𝜉 ∫
Ω

𝑢(𝑢 + 1)𝑝+𝑚3−3∇𝑢 ⋅ ∇𝑤 + 𝜆 ∫
Ω

(𝑢 + 1)𝑝−1𝑢 − 𝜇 ∫
Ω

(𝑢 + 1)𝑝−1𝑢𝑘.

For 𝑗 ∈ {𝑚2,𝑚3}, we now define

𝐹𝑗(𝑢) = ∫
𝑢

0
�̂�(�̂� + 1)𝑝+𝑗−3𝑑�̂�,

so observing that

0 ≤ 𝐹𝑗(𝑢) ≤ 1
𝑝 + 𝑗 − 1

[
(𝑢 + 1)𝑝+𝑗−1 − 1

]
. (22)

By considering the definition of 𝐹𝑗(𝑢) above again the divergence theorem, we have for every 𝑡 ∈
(0, 𝑇𝑚𝑎𝑥),

𝜑′(𝑡) ≤ − 𝑐3 ∫Ω |∇(𝑢 + 1)
𝑝+𝑚1−1

2 |2 + 𝑐4 ∫Ω ∇𝐹𝑚2
(𝑢) ⋅ ∇𝑣 − 𝑐5 ∫Ω ∇𝐹𝑚3

(𝑢) ⋅ ∇𝑤 + 𝑐6 ∫Ω(𝑢 + 1)𝑝 − 𝑐7 ∫Ω(𝑢 + 1)𝑝−1𝑢𝑘

= − 𝑐3 ∫Ω |∇(𝑢 + 1)
𝑝+𝑚1−1

2 |2 − 𝑐4 ∫Ω 𝐹𝑚2
(𝑢)Δ𝑣 + 𝑐5 ∫Ω 𝐹𝑚3

(𝑢)Δ𝑤 + 𝑐6 ∫Ω(𝑢 + 1)𝑝 − 𝑐7 ∫Ω(𝑢 + 1)𝑝−1𝑢𝑘.

(23)

Let us now specify how each of the constrains in Assumptions 1 takes part in our computation.
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COLUMBU et al. 15

First, from (1), we have 𝔭 > 1; this makes meaningful our assumption 𝑢 ∈
𝐿∞((0, 𝑇𝑚𝑎𝑥); 𝐿

𝔭(Ω)). (Recall that 𝑢 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥); 𝐿
1(Ω)) is always met by (19).)

Now, by exploiting (2), the second and third equation of (8) and (22), we can see that from (23),
if we neglect the nonpositive terms we get on (0, 𝑇𝑚𝑎𝑥)

𝜑′(𝑡) ≤ −𝑐3 ∫
Ω

|∇(𝑢 + 1)
𝑝+𝑚1−1

2 |2 + 𝑐8 ∫
Ω

(𝑢 + 1)𝑝+𝑚2+𝛼−1 + 𝑐9 ∫
Ω

(𝑢 + 1)𝑝+𝑚3−1 ∫
Ω

(𝑢 + 1)𝛽 + 𝑐6 ∫
Ω

(𝑢 + 1)𝑝.

(24)
As to the third term, by using twice Hölder’s inequality (recall (20f) and (20g)), we obtain, for every
𝑡 ∈ (0, 𝑇𝑚𝑎𝑥),

𝑐9 ∫Ω(𝑢 + 1)𝑝+𝑚3−1 ∫Ω(𝑢 + 1)𝛽 ≤ 𝑐10(∫Ω(𝑢 + 1)𝑝+𝑚2+𝛼−1)
𝑝+𝑚3−1

𝑝+𝑚2+𝛼−1 (∫Ω(𝑢 + 1)𝑝+𝑚2+𝛼−1)
𝛽

𝑝+𝑚2+𝛼−1 .

(25)
Moreover, since for any 𝜀 > 0 there is 𝑑(𝜀) > 0 such that this inequality (see Lemma 4.3 in Frassu and
Viglialoro42)

𝐴𝑑1𝐵𝑑2 ≤ 𝜀(𝐴 + 𝐵) + 𝑑(𝜀), 𝐴, 𝐵 ≥ 0, 𝑑1, 𝑑2 > 0, 𝑑1 + 𝑑2 < 1,

is true, by virtue of (20h), we have that

𝑐9 ∫Ω(𝑢 + 1)𝑝+𝑚3−1 ∫Ω(𝑢 + 1)𝛽 ≤ ∫Ω(𝑢 + 1)𝑝+𝑚2+𝛼−1 + 𝑐11 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥). (26)

Through (20i), an application of Young’s inequality provides

𝑐6 ∫Ω(𝑢 + 1)𝑝 ≤ ∫Ω(𝑢 + 1)𝑝+𝑚2+𝛼−1 + 𝑐12 on (0, 𝑇𝑚𝑎𝑥). (27)

To control the term ∫
Ω
(𝑢 + 1)𝑝+𝑚2+𝛼−1, we invoke the Gagliardo–Nirenberg and Young’s inequal-

ities, so to bound the mentioned integral with ∫
Ω
|∇(𝑢 + 1)

𝑝+𝑚1−1

2 |2. More exactly by relying on
relations (20b) and (20c), boundedness of ∫

Ω
(𝑢 + 1)𝔭 and of ∫

Ω
𝑢 provides for any 𝐿1 > 0

𝐿1 ∫Ω(𝑢 + 1)𝑝+𝑚2+𝛼−1 =𝐿1‖(𝑢 + 1)
𝑝+𝑚1−1

2 ‖ 2(𝑝+𝑚2+𝛼−1)

𝑝+𝑚1−1

𝐿
2(𝑝+𝑚2+𝛼−1)

𝑝+𝑚1−1 (Ω)

≤ 𝑐13

(‖∇(𝑢 + 1)
𝑝+𝑚1−1

2 ‖𝜎𝜃
𝐿2(Ω)

‖(𝑢 + 1)
𝑝+𝑚1−1

2 ‖𝜎(1−𝜃)
𝐿

2𝔭
𝑝+𝑚1−1 (Ω)

+ ‖(𝑢 + 1)
𝑝+𝑚1−1

2 ‖𝜎
𝐿

2
𝑝+𝑚1−1 (Ω)

)

≤ 𝑐14

(
∫Ω |∇(𝑢 + 1)

𝑝+𝑚1−1

2 |2) 𝜎𝜃

2

+ 𝑐15 ≤ 𝑐3
2 ∫Ω |∇(𝑢 + 1)

𝑝+𝑚1−1

2 |2 + 𝑐16 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).

(28)

(We underline that herein we have used the elementary inequality

𝐶1(𝜏)(𝐴
𝜏 + 𝐵𝜏) ≤ (𝐴 + 𝐵)𝜏 ≤ 𝐶2(𝜏)(𝐴

𝜏 + 𝐵𝜏) for all 𝐴, 𝐵 ≥ 0, 𝜏 > 0 and proper 𝐶1, 𝐶2 > 0,
(29)

which might tacitly be used in the next lines.) Putting together (24) and (26)–(28), we have the claim.
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16 COLUMBU et al.

If assumption (3) is complied, bound (27) can be replaced for any 𝐿2 > 0 with

𝐿2 ∫
Ω

(𝑢 + 1)𝑝 = 𝐿2‖(𝑢 + 1)
𝑝+𝑚1−1

2 ‖ 2𝑝

𝑝+𝑚1−1

𝐿
2𝑝

𝑝+𝑚1−1 (Ω)

≤ 𝑐17

(‖∇(𝑢 + 1)
𝑝+𝑚1−1

2 ‖�̂��̂�
𝐿2(Ω)

‖(𝑢 + 1)
𝑝+𝑚1−1

2 ‖�̂�(1−𝜃)
𝐿

2
𝑝+𝑚1−1 (Ω)

+ ‖(𝑢 + 1)
𝑝+𝑚1−1

2 ‖�̂�
𝐿

2
𝑝+𝑚1−1 (Ω)

)

≤ 𝑐17

(
∫
Ω

|∇(𝑢 + 1)
𝑝+𝑚1−1

2 |2) �̂��̂�

2

+ 𝑐18 ≤ 𝑐3
4 ∫

Ω

|∇(𝑢 + 1)
𝑝+𝑚1−1

2 |2 + 𝑐19 on (0, 𝑇𝑚𝑎𝑥),

(30)

where in this last step we used Young’s inequality in conjunction with (20d) and (20e). Moreover, by
taking𝑚2 + 𝛼 = 𝑚3 + 𝛽 in (3) (recall Remark 2), in estimate (25) the powers at the right-hand side
have 1 as sum; subsequently, up to constants, it becomes (26). So, by considering (24), (26), (28), and
(30) we have the claim when either (1) and (2) or (1) and (3) are used.
Let us show how to achieve the same conclusion by applying either (1) and (4) or (1) and

(5). The main idea is alternatively treating in relation (24) the term

∫Ω(𝑢 + 1)𝑝+𝑚3−1 ∫Ω(𝑢 + 1)𝛽 on (0, 𝑇𝑚𝑎𝑥).

More specifically, if 𝛽 ∈ (0, 1] and we take into account the boundedness of ∫
Ω
𝑢 on (0, 𝑇𝑚𝑎𝑥), we

have that

∫Ω(𝑢 + 1)𝑝+𝑚3−1 ∫Ω(𝑢 + 1)𝛽 ≤ 𝑐20 ∫Ω(𝑢 + 1)𝑝+𝑚3−1 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥). (31)

In turn, by relying on, respectively, assumption (4) or (5) (both with strict inequality), by means
of Young’s inequality, thanks to (20m) and (20f), it is also possible to see that

𝑐20 ∫Ω(𝑢 + 1)𝑝+𝑚3−1 ≤ ∫Ω(𝑢 + 1)𝑝 + 𝑐21 on (0, 𝑇𝑚𝑎𝑥), (32)

or

𝑐20 ∫Ω(𝑢 + 1)𝑝+𝑚3−1 ≤ ∫Ω(𝑢 + 1)𝑝+𝑚2−1+𝛼 + 𝑐22 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥). (33)

As before, bounds (24), (31), (32), or alternatively (33), (30), and (28), lead to the same conclusion.
(For the limit cases in (4) or (5), namely𝑚3 = 1 or𝑚2 + 𝛼 = 𝑚3, by relying again on Remark 2,
we can directly exploit estimate (31), without using Young’s inequality, and conclude as above.)

□

The next step consists of ensuring some time independent estimate of 𝑢 in the 𝐿�̄�(Ω)-norm.

Lemma 4. Let Lemma 3 be true. Then 𝑢 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥); 𝐿
�̄�(Ω)).
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COLUMBU et al. 17

Proof. With a view to inequality (21), as already done in (30), a further application of the Gagliardo–
Nirenberg inequality, supported by (20d), leads also thanks to (29) to

∫Ω(𝑢 + 1)𝑝 ≤ 𝑐1

(‖∇(𝑢 + 1)
𝑝+𝑚1−1

2 ‖�̂��̂�
𝐿2(Ω)

+ 1

)
≤ 𝑐2

(
∫Ω |∇(𝑢 + 1)

𝑝+𝑚1−1

2 |2 + 1

) �̂��̂�

2

on (0, 𝑇𝑚𝑎𝑥),

or, equivalently

−𝑐3 ∫Ω |∇(𝑢 + 1)
𝑝+𝑚1−1

2 |2 ≤ −

(
∫Ω(𝑢 + 1)𝑝

) 2

�̂��̂�

+ 𝑐3 for every 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥). (34)

Finally, by using relations (21) and (34), we arrive at this initial problem

⎧⎪⎨⎪⎩
𝜑′(𝑡) ≤ 𝑐4 − 𝑐5𝜑(𝑡)

2

�̂��̂� for every 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥),

𝜑(0) =
1

𝑝
∫
Ω
(𝑢0 + 1)𝑝,

which ensures that ∫
Ω
𝑢�̄� = ∫

Ω
𝑢𝑝 ≤ ∫

Ω
(𝑢 + 1)𝑝 ≤ 𝑝max{𝜑(0), (

𝑐4
𝑐5
)
�̂��̂�

2 } for all 𝑡 < 𝑇𝑚𝑎𝑥 . □

By taking advantage of the previous lemma, let us show the uniform-in-time boundedness of
𝑢.

Lemma 5. Under the hypotheses of Lemma 4, 𝑢 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥); 𝐿
∞(Ω)).

Proof. With the same nomenclature used by Tao and Winkler, 𝑢 also classically solves in Ω×
(0, 𝑇𝑚𝑎𝑥) problem (A.1) in Appendix A of Tao and Winkler43 for

𝐷(𝑥, 𝑡, 𝑢) = (𝑢 + 1)𝑚1−1, 𝑓(𝑥, 𝑡) = 𝜒𝑢(𝑢 + 1)𝑚2−1∇𝑣 − 𝜉𝑢(𝑢 + 1)𝑚3−1∇𝑤, 𝑔(𝑥, 𝑡) = 𝜆𝑢 − 𝜇𝑢𝑘.

In particular, also taking into account the boundary condition on 𝑣 and 𝑤, we can see that (A.2)–
(A.5) are met. On the other hand, for any 𝜆, 𝜇 > 0 and 𝑘 > 1, it holds that 𝜆𝑢 − 𝜇𝑢𝑘 has a positive

maximum 𝐿 at 𝑢𝑀 = (
𝜆

𝑘𝜇
)

1

𝑘−1 , so that from 𝑔(𝑥, 𝑡) ≤ 𝐿 inΩ× (0, 𝑇𝑚𝑎𝑥) the second inclusion of (A.6)
is accomplished for any choice of 𝑞2. As to (A.7)–(A.10), let us first define the quantities

𝑙1(𝑞1) = 1 − 𝑚1
(𝑛 + 1)𝑞1 − (𝑛 + 2)

𝑞1 − (𝑛 + 2)
, 𝑙2(𝑞2) = 1 − 𝑚1

1

1 −
𝑛𝑞2

(𝑛+2)(𝑞2−1)

, and 𝑙3 =
𝑛
2
(1 − 𝑚1).

Recalling the definition and properties of 𝑝 = �̄�, we have 𝑝 > 1 − 𝑚1(𝑛 + 2) and henceforth for
any 𝑚1 ∈ ℝ, it holds 1 − 𝑚1(𝑛 + 2) ≥ 𝑙1((𝑛 + 2)(𝑛 + 1)) and for all 𝑞2 ≤ 𝑛 + 1 we also have 1 −
𝑚1(𝑛 + 2) ≥ 𝑙2(𝑞2). Subsequently, (A.7) in Tao and Winkler43 (i.e., 𝑢 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥); 𝐿

𝑝(Ω)), that
is, ∫

Ω
𝑢𝑝 ≤ 𝑐1) is obviously accomplished, (A.8) in Lemma A.1 in Tao and Winkler43 is fulfilled for

𝑞1 = (𝑛 + 2)(𝑛 + 1), (A.9) in LemmaA.1 in Tao andWinkler43 for 𝑛+2
2

< 𝑞2 ≤ 𝑛 + 1, whereas (A.10)
in Lemma A.1 in Tao and Winkler43 is directly true thanks to (20a). Let us dedicate to the first
inclusion of (A.6) in Tao and Winkler43. Starting from the gained bound of 𝑢, let us exploit elliptic
regularity results applied to the second and third equations of system (8); in particular, we only ana-
lyze −Δ𝑣 = 𝑓1(𝑢) −

1|Ω| ∫Ω 𝑓1(𝑢), being the case for 𝑤 equivalent. Let us observe that from relation
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18 COLUMBU et al.

(11) on 𝑓1, and 𝑝 = �̄� > 𝑛𝛼 naturally implying (1 + 𝑢)𝛼 ≤ (1 + 𝑢)𝑝, we have for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥)

∫Ω |𝑓1(𝑢) − 1|Ω| ∫Ω 𝑓1(𝑢)| 𝑝𝛼 ≤ 𝑐2 ∫Ω(1 + 𝑢)𝑝 + 𝑐3 ∫Ω
(
∫Ω(1 + 𝑢)𝛼

) 𝑝

𝛼 ≤ 𝑐2 ∫Ω(1 + 𝑢)𝑝 + 𝑐3 ∫Ω
(
∫Ω(1 + 𝑢)𝑝

) 𝑝

𝛼 ≤ 𝑐4,

which gives 𝑓1(𝑢) −
1|Ω| ∫Ω 𝑓1(𝑢) ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥); 𝐿

𝑝

𝛼 (Ω)), in turn 𝑣 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥);𝑊
2,
𝑝

𝛼 (Ω))

and, hence, through the Sobolev embeddings ∇𝑣 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥);𝑊
1,
𝑝

𝛼 (Ω)) k→
𝐿∞((0, 𝑇𝑚𝑎𝑥); 𝐿

∞(Ω)). Consequently, thanks to the Hölder inequality (recall that from Lemma 2
one has that 𝑝 > 𝑚2(𝑛 + 2)(𝑛 + 1)), by using the uniform-in-time boundedness of 𝑢 in 𝐿�̄�(Ω) we
can write on (0, 𝑇𝑚𝑎𝑥)

∫Ω |𝑢(𝑢 + 1)𝑚2−1∇𝑣|(𝑛+2)(𝑛+1) ≤ ‖∇𝑣(⋅, 𝑡)‖(𝑛+2)(𝑛+1)
𝐿∞(Ω)

|Ω| 𝑝−𝑚2(𝑛+2)(𝑛+1)𝑝

(
∫Ω(𝑢 + 1)𝑝

)𝑚2(𝑛+2)(𝑛+1)

𝑝 ≤ 𝑐5.

Reasoning in a similar way on the third equation of (8), we have ∇𝑤 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥); 𝐿
∞(Ω)),

∫Ω |𝑢(𝑢 + 1)𝑚3−1∇𝑤|(𝑛+2)(𝑛+1) ≤ 𝑐6 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥),

and as a consequence

𝑓 = 𝜒𝑢(𝑢 + 1)𝑚2−1∇𝑣 − 𝜉𝑢(𝑢 + 1)𝑚3−1∇𝑤 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥); 𝐿
(𝑛+2)(𝑛+1)(Ω)).

Since all the hypotheses of Lemma A.1 in Tao and Winkler43 are fulfilled, we have the claim. □

Now we are in a position to prove our first results.

Proof of Theorem 1

Let (𝑢, 𝑣, 𝑤) be a given blow-up solution at some finite time 𝑇𝑚𝑎𝑥 to problem (8). If 𝑢 was not
unbounded in some 𝐿𝔭(Ω)-norm, Lemma 5 would imply the uniform-in-time boundedness of 𝑢,
contradicting hypothesis (13).

Proof of Theorem 2

Bymaking use of (26) and (27) (up to a constant) or altogether (31)–(33) and again (27), we observe
that bound (24) can essentially be reorganized as

𝜑′(𝑡) ≤ −𝑐1 ∫Ω |∇(𝑢 + 1)
𝑝+𝑚1−1

2 |2 + 𝑐2 ∫Ω(𝑢 + 1)𝑝+𝑚2+𝛼−1 + 𝑐3 on (0, 𝑇𝑚𝑎𝑥). (35)
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COLUMBU et al. 19

Moreover, by recalling (20k) and (20l), we can derive again through the Gagliardo–Nirenberg and
Young’s inequalities this bound

𝑐2 ∫
Ω

(𝑢 + 1)𝑝+𝑚2+𝛼−1 = 𝑐2‖(𝑢 + 1)
𝑝+𝑚1−1

2 ‖ 2(𝑝+𝑚2+𝛼−1)

𝑝+𝑚1−1

𝐿
2(𝑝+𝑚2+𝛼−1)

𝑝+𝑚1−1 (Ω)

≤ 𝑐4

(‖∇(𝑢 + 1)
𝑝+𝑚1−1

2 ‖𝜎�̄�
𝐿2(Ω)

‖(𝑢 + 1)
𝑝+𝑚1−1

2 ‖𝜎(1−�̄�)
𝐿

2𝑝
𝑝+𝑚1−1 (Ω)

+ ‖(𝑢 + 1)
𝑝+𝑚1−1

2 ‖𝜎
𝐿

2𝑝
𝑝+𝑚1−1 (Ω)

)

≤ 𝑐5

(
∫
Ω

|∇(𝑢 + 1)
𝑝+𝑚1−1

2 |2) 𝜎�̄�

2
(
∫
Ω

(𝑢 + 1)𝑝
) 𝑝+𝑚1−1

2𝑝
𝜎(1−�̄�)

+ 𝑐6

(
∫
Ω

(𝑢 + 1)𝑝
) 𝑝+𝑚1−1

2𝑝
𝜎

≤ 𝑐1 ∫
Ω

|∇(𝑢 + 1)
𝑝+𝑚1−1

2 |2 + 𝑐7

(
∫
Ω

(𝑢 + 1)𝑝
)𝛾

+ 𝑐8

(
∫
Ω

(𝑢 + 1)𝑝
)𝛿

on (0, 𝑇𝑚𝑎𝑥).

(36)

Finally, by inserting relation (36) into (35), we obtain for proper positive,, and 
𝜑′(𝑡) ≤ 𝜑𝛾(𝑡) + 𝜑𝛿(𝑡) +  on (0, 𝑇𝑚𝑎𝑥). (37)

Since 𝑝 = �̄� > 𝔭, from Theorem 1 we know that lim sup𝑡→𝑇𝑚𝑎𝑥

1

𝑝
∫
Ω
(𝑢 + 1)𝑝 = ∞. On the other

hand, since 𝜑(𝑡) satisfies relation (37) for any 0 < 𝑡 < 𝑇𝑚𝑎𝑥, the function Ψ(𝜉) = 𝜉𝛾 + 𝜉𝛿 + 
obeys the Osgood criterion (14). Thereafter, by integrating (37) between 0 and 𝑇𝑚𝑎𝑥, we obtain
estimate (15), and the first conclusion is achieved.
As to the derivation of the explicit expression for the lower bound𝑇, let us reduce (37) as follows:

from |Ω| ≤ ∫
Ω
(𝑢 + 1)𝑝 = 𝑝𝜑(𝑡), we can estimate  in relation (37) as

 ≤ 𝑝
|Ω|𝜑(𝑡) =∶ ̄𝜑(𝑡),

so that (37) can be rewritten in this form:

𝜑′(𝑡) ≤ 𝜑𝛾(𝑡) + 𝜑𝛿(𝑡) + ̄𝜑(𝑡) on (0, 𝑇𝑚𝑎𝑥). (38)

Now, since 𝜑 blows up at finite time 𝑇𝑚𝑎𝑥, there exists a time 𝑡1 ∈ [0, 𝑇𝑚𝑎𝑥) such that

𝜑(𝑡) ≥ 𝜑(0) for all 𝑡 ≥ 𝑡1.

From 𝛾 > 𝛿 > 1 (recall (20j)), we can estimate the second and third terms on the right-hand side
of (38) by means of 𝜑𝛾:

𝜑𝛿(𝑡) ≤ 𝜑(0)𝛿−𝛾𝜑𝛾(𝑡) and 𝜑(𝑡) ≤ 𝜑(0)1−𝛾𝜑𝛾(𝑡) for all 𝑡 ≥ 𝑡1. (39)

By plugging expressions (39) into (38), we obtain for

 =  + 𝜑(0)𝛿−𝛾 + ̄𝜑(0)1−𝛾,

𝜑′(𝑡) ≤ 𝜑𝛾(𝑡) for all 𝑡 ≥ 𝑡1, (40)
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20 COLUMBU et al.

so that an integration of (40) on (𝑡1, 𝑇𝑚𝑎𝑥) yields this explicit lower bound for 𝑇𝑚𝑎𝑥:

𝑇 =
𝜑(0)1−𝛾

(𝛾 − 1)
= ∫

∞

𝜑(0)

𝑑𝜏
𝜏𝛾 ≤ ∫

𝑇𝑚𝑎𝑥

𝑡1

𝑑𝜏 ≤ ∫
𝑇𝑚𝑎𝑥

0
𝑑𝜏 = 𝑇𝑚𝑎𝑥.

6 FINITE-TIME BLOW-UP TO A SIMPLIFIED VERSION OF
PROBLEM (8)

This section is dedicated to prove finite time blow-up for solutions to problem (8) in amore specific
case; in our computations, we will partially extend,34,36 where adapting the method in Winkler24
blow-up is, respectively, established in a model with only attraction, nonlinear diffusion and sen-
sitivity, and logistic term, and in an attraction–repulsion one, with nonlinear diffusion but linear
sensitivities and logistics.

6.1 Detecting unbounded solutions to problem (8) for𝒎𝟐 = 𝒎𝟑 > 𝟎

Let us fix𝑚2 = 𝑚3 > 0 in model (8), and in turn let us set 𝑧 = 𝜒𝑣 − 𝜉𝑤,𝑚(𝑡) = 𝜒𝑚1(𝑡) − 𝜉𝑚2(𝑡)
and 𝑓(𝑢) = 𝜒𝑓1(𝑢) − 𝜉𝑓2(𝑢), being𝑚1(𝑡) and𝑚2(𝑡) defined in (9); in this way, problem (8) itself
is reduced into

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢𝑡 = ∇ ⋅ ((𝑢 + 1)𝑚1−1∇𝑢 − 𝑢(𝑢 + 1)𝑚2−1∇𝑧) + 𝜆𝑢 − 𝜇𝑢𝑘 in Ω× (0, 𝑇𝑚𝑎𝑥),

0 = Δ𝑧 − 𝑚(𝑡) + 𝑓(𝑢) in Ω× (0, 𝑇𝑚𝑎𝑥),

𝑢𝜈 = 𝑧𝜈 = 0 on 𝜕Ω × (0, 𝑇𝑚𝑎𝑥),

𝑢(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ Ω̄,

∫
Ω
𝑧(𝑥, 𝑡)𝑑𝑥 = 0 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).

(41)

In particular, if we confine our study to radially symmetric cases, by setting 𝑟 ∶= |𝑥| and by
considering Ω = 𝐵𝑅(0) ⊂ ℝ𝑛, 𝑛 ≥ 1 and some 𝑅 > 0, the radially symmetric local solution

(𝑢, 𝑧) = (𝑢(𝑟, 𝑡), 𝑧(𝑟, 𝑡))

to model (41) solves the following scalar problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑟𝑛−1𝑢𝑡 = (𝑟𝑛−1(𝑢 + 1)𝑚1−1𝑢𝑟)𝑟 − (𝑟𝑛−1𝑢(𝑢 + 1)𝑚2−1𝑧𝑟)𝑟 + 𝜆𝑟𝑛−1𝑢 − 𝜇𝑟𝑛−1𝑢𝑘 𝑟 ∈ (0, 𝑅), 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥),

0 = (𝑟𝑛−1𝑧𝑟)𝑟 − 𝑟𝑛−1𝑚(𝑡) + 𝑟𝑛−1𝑓(𝑢) 𝑟 ∈ (0, 𝑅), 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥),

𝑢𝑟 = 𝑧𝑟 = 0 𝑟 = 𝑅, 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥),

𝑢(𝑟, 0) = 𝑢0(𝑟) 𝑟 ∈ (0, 𝑅),

∫ 𝑅

0
𝑟𝑛−1𝑧(𝑟, 𝑡) 𝑑𝑟 = 0 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).

(42)
In the same spirit of Jäger and Luckhaus,5 we introduce the mass accumulation function

𝑈(𝑠, 𝑡) ∶= ∫
𝑠
1
𝑛

0
𝜌𝑛−1𝑢(𝜌, 𝑡) 𝑑𝜌 for 𝑠 ∈ [0, 𝑅𝑛] and 𝑡 ∈ [0, 𝑇𝑚𝑎𝑥), (43)
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COLUMBU et al. 21

which implies that

𝑈𝑠(𝑠, 𝑡) =
1
𝑛
𝑢(𝑠

1

𝑛 , 𝑡) and 𝑈𝑠𝑠(𝑠, 𝑡) =
1
𝑛2
𝑠
1

𝑛
−1
𝑢𝑟(𝑠

1

𝑛 , 𝑡) for 𝑠 ∈ (0, 𝑅𝑛) and 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥). (44)

By the definition of 𝑈 and by exploiting (44), we obtain

𝑈𝑡(𝑠, 𝑡) = 𝑠
1−

1

𝑛 (𝑢(𝑠
1

𝑛 , 𝑡) + 1)𝑚1−1𝑢𝑟(𝑠
1

𝑛 , 𝑡) − 𝑠
1−

1

𝑛 𝑢(𝑠
1

𝑛 , 𝑡)(𝑢(𝑠
1

𝑛 , 𝑡) + 1)𝑚2−1𝑧𝑟(𝑠
1

𝑛 , 𝑡)

+ 𝜆 ∫
𝑠
1
𝑛

0
𝜌𝑛−1𝑢(𝜌, 𝑡) 𝑑𝜌 − 𝜇 ∫

𝑠
1
𝑛

0
𝜌𝑛−1𝑢𝑘(𝜌, 𝑡) 𝑑𝜌

= 𝑛2𝑠
2−

2

𝑛 (𝑛𝑈𝑠(𝑠, 𝑡) + 1)𝑚1−1𝑈𝑠𝑠(𝑠, 𝑡) − 𝑛𝑠
1−

1

𝑛 𝑈𝑠(𝑠, 𝑡)(𝑛𝑈𝑠(𝑠, 𝑡) + 1)𝑚2−1𝑧𝑟(𝑠
1

𝑛 , 𝑡)

+ 𝜆𝑈(𝑠, 𝑡) − 𝜇𝑛𝑘−1 ∫
𝑠

0
𝑈𝑘
𝑠 (𝜎, 𝑡) 𝑑𝜎 for 𝑠 ∈ (0, 𝑅𝑛) and 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).

(45)

Besides, with an integration over (0, 𝑟) of the second equation in (42) and the substitution 𝑟 = 𝑠
1

𝑛 ,
we arrive at

𝑧𝑟 =
𝑚(𝑡)
𝑛

𝑠
1

𝑛 −
1
𝑛
𝑠
1

𝑛
−1

∫
𝑠

0
𝑓(𝑛𝑈𝑠(𝜎, 𝑡)) 𝑑𝜎 for 𝑠 ∈ (0, 𝑅𝑛) and 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥),

which inserted into relation (45) gives (observe 𝑈 ≥ 0)

𝑈𝑡(𝑠, 𝑡) ≥ 𝑛2𝑠2−
2

𝑛 (𝑛𝑈𝑠 + 1)𝑚1−1𝑈𝑠𝑠 − 𝑠𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1𝑚(𝑡) + 𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1 ∫
𝑠

0

𝑓(𝑛𝑈𝑠(𝜎, 𝑡)) 𝑑𝜎

− 𝜇𝑛𝑘−1 ∫
𝑠

0

𝑈𝑘
𝑠 (𝜎, 𝑡) 𝑑𝜎 for all 𝑠 ∈ (0, 𝑅𝑛) and 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).

(46)

In addition, given 𝑠0 ∈ (0, 𝑅𝑛), 𝛾 ∈ (−∞, 1), and 𝑈 as in (43), we introduce the moment-type
functional

𝜙(𝑡) ∶= ∫
𝑠0

0
𝑠−𝛾(𝑠0 − 𝑠)𝑈(𝑠, 𝑡) 𝑑𝑠 for 𝑡 ∈ [0, 𝑇𝑚𝑎𝑥), (47)

which is well defined and belongs to 𝐶0([0, 𝑇𝑚𝑎𝑥)) ∩ 𝐶1((0, 𝑇𝑚𝑎𝑥)). Moreover, we define

𝜓(𝑡) ∶= ∫
𝑠0

0
𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑚2+𝛼

𝑠 (𝑠, 𝑡) 𝑑𝑠 for 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥), (48)

and the set

𝑆𝜙 =

{
𝑡 ∈ (0, 𝑇𝑚𝑎𝑥) ∶ 𝜙(𝑡) ≥ 𝑀 − 𝑠0

(1 − 𝛾)(2 − 𝛾)𝜔𝑛
𝑠2−𝛾0

}
, (49)

where𝑀 is the bound of the 𝐿1(Ω)-norm of 𝑢 established in (19) and 𝜔𝑛 = 𝑛|𝐵1(0)|. With these
preparations in our hands, let us give a series of necessary lemmas, some of which are not new.
We start with a result dealing with the concavity of 𝑈 and some estimate for𝑚(𝑡).
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22 COLUMBU et al.

Lemma 6. Let 𝑓1, 𝑓2, and 𝑢0 satisfy (10) and (12), 𝛼 > 𝛽 and 𝛾 ∈ (−∞, 1). Then the following
relations hold:

𝑈𝑠𝑠(𝑠, 𝑡) ≤ 0 for all 𝑠 ∈ (0, 𝑅𝑛) and 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥),

and

𝑚(𝑡) ≤ 𝑐0 +
1
2𝑠 ∫

𝑠

0
𝑓(𝑛𝑈𝑠(𝜎, 𝑡)) 𝑑𝜎 for 𝑠0 ∈

(
0,
𝑅𝑛

6

]
and for all 𝑠 ∈ (0, 𝑠0), (50)

for all 𝑡 ∈ 𝑆𝜙, and with some 𝑐0.

Proof. As to the concavity property, the proof is based on minor adjustments of Lemma 3.2 in Wang
et al.36 or Lemma 2.2 in Winkler24. The remaining conclusion follows by closely reasoning as in
Lemma 2.5 in Liu and Li35 , but herein we have to underline some specifics. First of all, the derivation
of bound (50) requires a previous estimate from above of 𝑧𝑟(𝑟, 𝑡); such an estimate involves, inter alia,
the integral

−∫
𝑟

0
𝜌𝑛−1𝑓(𝑢(𝜌, 𝑡)) 𝑑𝜌. (51)

We observe that inmodel (41) the function 𝑓(𝑢) = 𝜒𝑓1(𝑢) − 𝜉𝑓2(𝑢), 𝑢 ≥ 0, is not automatically non-
negative, and henceforth the term (51) cannot be neglected (conversely to what done in Lemma 2.1 in
Winkler24 ). In particular, we can see from 𝛼 > 𝛽 and (12) that

𝑓(𝑢) ≥ 0, for 𝑢 ≥ 𝐶∗ ∶= max

⎧⎪⎨⎪⎩1,
(
𝜉𝑘2
𝜒𝑘3

) 1

𝛼−𝛽
⎫⎪⎬⎪⎭, and 𝑓(𝑢) < 0 for 𝑢 < 𝐶∗.

Consequently, by splitting (51) in the sets where 𝑢 ≥ 𝐶∗ and 𝑢 < 𝐶∗, dropping the nonpositive
contribution tied to the first set, only the nonnegative integral

−∫
𝑟

0
𝜒{𝑢(⋅,𝑡)<𝐶∗}(𝜌)𝜌

𝑛−1𝑓(𝑢(𝜌, 𝑡)) 𝑑𝜌

has to be controlled; to this aim, we use assumption (10), from which it is seen that the value
max𝑠∈[0,𝐶∗] |𝑓(𝑠)| is finite and 𝑢0-independent. In this way, we have

−∫
𝑟

0

𝜒{𝑢(⋅,𝑡)<𝐶∗}(𝜌)𝜌
𝑛−1𝑓(𝑢(𝜌, 𝑡)) 𝑑𝜌 ≤ max

𝑠∈[0,𝐶∗]
|𝑓(𝑠)|∫ 𝑟

0

𝜒{𝑢(⋅,𝑡)<𝐶∗}(𝜌)𝜌
𝑛−1 𝑑𝜌 ≤ max

𝑠∈[0,𝐶∗]
|𝑓(𝑠)|∫ 𝑟

0

𝜌𝑛−1 𝑑𝜌.

The remaining technical details can be found in Liu and Li,35 where similar splitting procedures on
integrals involving 𝑓1 are as well performed; in particular, for a further finite and 𝑢0-independent
𝐿 > 0 one can achieve this expression for 𝑐0:

𝑐0 = 𝜒𝑓1

(
8𝑛

2𝛾(3 − 𝛾)𝜔𝑛

)
+
1
6

⎛⎜⎜⎝
𝜒𝑘3(𝛼 − 𝛽)

𝛽

(
2𝜉𝑘2𝛽
𝜒𝑘3𝛼

) 𝛼

𝛼−𝛽

+ 𝐿(𝜒 + 2)
⎞⎟⎟⎠ > 0.

(We point out that 𝑐0 will be used in some other places below.) □

Let us now start with the analysis of the temporal evolution of 𝜙.
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COLUMBU et al. 23

Lemma 7. Under the same assumptions of Lemma 6, let 𝑠0 ∈ (0,
𝑅𝑛

6
]. Then

𝜙′(𝑡) ≥ 𝑛2 ∫
𝑠0

0
𝑠
2−

2

𝑛
−𝛾
(𝑠0 − 𝑠)(𝑛𝑈𝑠 + 1)𝑚1−1𝑈𝑠𝑠 𝑑𝑠 − 𝑐0 ∫

𝑠0

0
𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1 𝑑𝑠

+
1
2 ∫

𝑠0

0
𝑠−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1

[
∫

𝑠

0
𝑓(𝑛𝑈𝑠(𝜎, 𝑡)) 𝑑𝜎

]
𝑑𝑠

− 𝜇𝑛𝑘−1 ∫
𝑠0

0
𝑠−𝛾(𝑠0 − 𝑠)

[
∫

𝑠

0
𝑈𝑘
𝑠 (𝜎, 𝑡) 𝑑𝜎

]
𝑑𝑠

=∶ 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 for all 𝑡 ∈ 𝑆𝜙.

(52)

Proof. By the definition of 𝜙 (recall (47)) and exploiting (46), we get this estimate

𝜙′(𝑡) = ∫
𝑠0

0
𝑠−𝛾(𝑠0 − 𝑠)𝑈𝑡(𝑠, 𝑡) 𝑑𝑠

≥ 𝑛2 ∫
𝑠0

0
𝑠
2−

2

𝑛
−𝛾
(𝑠0 − 𝑠)(𝑛𝑈𝑠 + 1)𝑚1−1𝑈𝑠𝑠 𝑑𝑠 − ∫

𝑠0

0
𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1𝑚(𝑡) 𝑑𝑠

+ ∫
𝑠0

0
𝑠−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1

[
∫

𝑠

0
𝑓(𝑛𝑈𝑠(𝜎, 𝑡)) 𝑑𝜎

]
𝑑𝑠

− 𝜇𝑛𝑘−1 ∫
𝑠0

0
𝑠−𝛾(𝑠0 − 𝑠)

[
∫

𝑠

0
𝑈𝑘
𝑠 (𝜎, 𝑡) 𝑑𝜎

]
𝑑𝑠 for all 𝑡 ∈ 𝑆𝜙.

Finally, by applying (50), we obtain the thesis. □

The next results provide some lower bounds of 𝐼1, 𝐼2, 𝐼3, and 𝐼4 in respect of 𝜓(𝑡) defined in (48).

Lemma 8. Let 𝑢0 satisfy the related assumptions in (10) and (12), 𝑚1 ∈ ℝ, 𝑚2, 𝛼 > 0, 𝑘 > 1, and
𝛾 ∈ (−∞, 1).

➢ If𝑚1,𝑚2, 𝛼 and 𝛾 comply with

𝑚2 + 𝛼 > 𝑚1 and 𝛾 > 2 −
2
𝑛

(𝑚2 + 𝛼)

(𝑚2 + 𝛼 −𝑚1)
if 𝑚1 ≥ 0,

𝛾 < 2 −
2
𝑛

if 𝑚1 < 0,

then there exist 𝜀 > 0 (sufficiently small), and 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 such that for any 𝑠0 ∈ (0,
𝑅𝑛

6
]

𝐼1 ≥
⎧⎪⎪⎨⎪⎪⎩
−𝑐1𝑠

(3−𝛾)
(𝑚2+𝛼−𝑚1)

𝑚2+𝛼
−

2

𝑛

0 𝜓
𝑚1

𝑚2+𝛼 (𝑡) − 𝑐2𝑠
3−𝛾−

2

𝑛
0 if𝑚1 > 0,

−𝑐3𝑠
(3−𝛾)

(𝑚2+𝛼−𝜀)

𝑚2+𝛼
−

2

𝑛

0 𝜓
𝜀

𝑚2+𝛼 (𝑡) − 𝑐4𝑠
3−𝛾−

2

𝑛
0 if𝑚1 = 0,

−𝑐5𝑠
3−𝛾−

2

𝑛
0 if𝑚1 < 0

for all 𝑡 ∈ 𝑆𝜙.
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24 COLUMBU et al.

➢ If𝑚2, 𝛼, 𝑘, and 𝛾 are such that

𝑚2 + 𝛼 > 𝑘 and 2 −
(𝑚2 + 𝛼)

𝑘
< 𝛾 < 1,

then there exists 𝑐6 such that for any 𝑠0 ∈ (0,
𝑅𝑛

6
]

𝐼4 ≥ −𝑐6𝜓
𝑘

𝑚2+𝛼 (𝑡)𝑠
(3−𝛾)

(𝑚2+𝛼−𝑘)

𝑚2+𝛼

0 for all 𝑡 ∈ 𝑆𝜙.

Proof. The proof can be found in Lemmas 3.6 and 3.7 in Tanaka,34 where the related details are
given for a model in which the expressions of the diffusion and the sensitivity are more general than
(𝑢 + 1)𝑚1−1 and 𝑢(𝑢 + 1)𝑚2−1 appearing in (41). □

As to the estimate of 𝐼2 + 𝐼3, we need to rearrange some computations; this is exactly where we
have to go beyond the analysis in Tanaka34 and Wang et al.36

Lemma 9. Under the same assumptions of Lemma 6, let, moreover, 𝑚2, 𝛼 > 0 comply with 𝑚2 +
𝛼 > 1. Then for some 𝑐1, 𝑐2, and 𝑐3, we have

𝐼2 + 𝐼3 ≥ 𝑐1𝜓(𝑡) − 𝑐2𝜓
𝑚2

𝑚2+𝛼 (𝑡)𝑠
(3−𝛾)

𝛼

𝑚2+𝛼

0 − 𝑐3𝑠
3−𝛾
0 for any 𝑠0 ∈

(
0,
𝑅𝑛

6

]
and for all 𝑡 ∈ 𝑆𝜙. (53)

Proof. Since 𝛼 > 𝛽, by applying the Young inequality and (12), we get

𝜉𝑓2(𝑢) ≤ 𝜉𝑘2(𝑢 + 1)𝛽 ≤ 𝜒𝑘3
2

(𝑢 + 1)𝛼 + 𝑐4 ≤ 𝜒
2
𝑓1(𝑢) + 𝑐4,

with 𝑐4 = (
2𝛽𝜉𝑘2
𝜒𝑘3𝛼

)
𝛼

𝛼−𝛽
𝜒𝑘3(𝛼−𝛽)

2𝛽
> 0, which implies

𝜒
2
𝑓1(𝑢) − 𝑐4 ≤ 𝑓(𝑢) ≤ 𝜒𝑓1(𝑢). (54)

From the concavity of 𝑈 in Lemma 6, it is seen that 𝑈𝑠 is nonincreasing, namely 𝑈𝑠(𝜎, 𝑡) ≥ 𝑈𝑠(𝑠, 𝑡)
for any 𝜎 ∈ (0, 𝑠). Henceforth, since 𝑓1 is nondecreasing (recall (12)), we have

∫
𝑠

0
𝑓1(𝑛𝑈𝑠(𝜎, 𝑡)) 𝑑𝜎 ≥ ∫

𝑠

0
𝑓1(𝑛𝑈𝑠(𝑠, 𝑡)) 𝑑𝜎 = 𝑠𝑓1(𝑛𝑈𝑠(𝑠, 𝑡)) for all 𝑠 ∈ (0, 𝑠0) and 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).

(55)
Therefore, from (54) and (55) we derive the estimate

𝐼3 =
1
2 ∫

𝑠0

0

𝑠−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1

[
∫

𝑠

0

𝑓(𝑛𝑈𝑠(𝜎, 𝑡)) 𝑑𝜎

]
𝑑𝑠

≥ 1
2 ∫

𝑠0

0

𝑠−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1
(𝜒
2
𝑠𝑓1(𝑛𝑈𝑠) − 𝑐4𝑠

)
𝑑𝑠

≥ 𝜒𝑘3
4 ∫

𝑠0

0

𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1+𝛼 𝑑𝑠 −
𝑐4
2 ∫

𝑠0

0

𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1 𝑑𝑠 for all 𝑡 ∈ 𝑆𝜙.
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COLUMBU et al. 25

Then, for 𝑐0 as in Lemma 6,

𝐼2 + 𝐼3 ≥ 𝜒𝑘3
4 ∫

𝑠0

0

𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1+𝛼 𝑑𝑠 −
(
𝑐0 +

𝑐4
2

)
∫

𝑠0

0

𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1 𝑑𝑠 for all 𝑡 ∈ 𝑆𝜙.

(56)
Now, we focus on the first integral in (56). Since 𝑚2 + 𝛼 − 1 > 0, clearly we get that (𝑛𝑈𝑠 +
1)𝑚2+𝛼−1 > (𝑛𝑈𝑠)

𝑚2+𝛼−1, and by exploiting this latter we have

𝜒𝑘3
4 ∫

𝑠0

0

𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1+𝛼 𝑑𝑠 ≥ 𝜒𝑘3𝑛
𝑚2+𝛼−1

4 ∫
𝑠0

0

𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑚2+𝛼
𝑠 𝑑𝑠 =

𝜒𝑘3𝑛
𝑚2+𝛼−1

4
𝜓(𝑡) on 𝑆𝜙.

(57)
In order to treat the second integral in (56), we use inequality (29): since𝑚2 > 0, we obtain for 𝑐5 =
(𝑐0 +

𝑐4
2
) the following estimate:

− 𝑐5 ∫
𝑠0

0
𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1 𝑑𝑠 = −

1
𝑛
𝑐5 ∫

𝑠0

0
𝑠1−𝛾(𝑠0 − 𝑠)

𝑛𝑈𝑠

𝑛𝑈𝑠 + 1
(𝑛𝑈𝑠 + 1)𝑚2 𝑑𝑠

≥ −
1
𝑛
𝑐5 ∫

𝑠0

0
𝑠1−𝛾(𝑠0 − 𝑠)(𝑛𝑈𝑠 + 1)𝑚2 𝑑𝑠

≥ −𝑐6 ∫
𝑠0

0
𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑚2

𝑠 𝑑𝑠 − 𝑐7 ∫
𝑠0

0
𝑠1−𝛾(𝑠0 − 𝑠) 𝑑𝑠 for all 𝑡 ∈ 𝑆𝜙.

(58)

Additionally, from 𝑚2

𝑚2+𝛼
< 1 we can apply the Hölder inequality to the first integral in (58), which

leads to

∫
𝑠0

0
𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑚2

𝑠 𝑑𝑠 = ∫
𝑠0

0

(
𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑚2+𝛼

𝑠

) 𝑚2
𝑚2+𝛼 𝑠

(1−𝛾)𝛼

𝑚2+𝛼 (𝑠0 − 𝑠)
𝛼

𝑚2+𝛼 𝑑𝑠

≤
(
∫

𝑠0

0
𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑚2+𝛼

𝑠 𝑑𝑠

) 𝑚2
𝑚2+𝛼

(
∫

𝑠0

0
𝑠1−𝛾(𝑠0 − 𝑠) 𝑑𝑠

) 𝛼

𝑚2+𝛼

= 𝜓
𝑚2

𝑚2+𝛼 (𝑡) ((2 − 𝛾)(3 − 𝛾))
−

𝛼

𝑚2+𝛼 𝑠

(3−𝛾)𝛼

𝑚2+𝛼

0 for all 𝑡 ∈ 𝑆𝜙.

(59)

By putting (59) into (58), we obtain for every 𝑡 ∈ 𝑆𝜙

−𝑐5 ∫
𝑠0

0

𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1 𝑑𝑠 ≥ −𝑐6𝜓
𝑚2

𝑚2+𝛼 (𝑡) ((2 − 𝛾)(3 − 𝛾))
−

𝛼

𝑚2+𝛼 𝑠
(3−𝛾)𝛼

𝑚2+𝛼

0 −
𝑐7

(2 − 𝛾)(3 − 𝛾)
𝑠3−𝛾0 ,

(60)

so by invoking (56) and taking into account (57) and (60), we can conclude. □

In order to obtain the desired superlinear ODI for 𝜙, we have to rely on some relations involving
𝑈 and 𝜓 and 𝜙.

Lemma 10. Let 𝑢0 satisfy its related assumptions in (10) and (12), 𝑚2, 𝛼 > 0 and 𝛾 ∈ (−∞, 1) be
such that

𝑚2 + 𝛼 > 1 and 2 − (𝑚2 + 𝛼) < 𝛾 < 1.
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26 COLUMBU et al.

Then there exist 𝑐1, 𝑐2 such that for any 𝑠0 ∈ (0,
𝑅𝑛

6
]

𝑈(𝑠, 𝑡) ≤ 𝑐1𝑠
𝑚2+𝛼+𝛾−2

𝑚2+𝛼 (𝑠0 − 𝑠)
−

1

𝑚2+𝛼 𝜓
1

𝑚2+𝛼 (𝑡) for all 𝑠 ∈ (0, 𝑠0) and 𝑡 ∈ 𝑆𝜙, (61)

and

𝜓(𝑡) ≥ 𝑐2𝑠
−(3−𝛾)(𝑚2+𝛼−1)
0 𝜙𝑚2+𝛼(𝑡) for all 𝑡 ∈ 𝑆𝜙. (62)

Proof. The proof of (61) and (62) follows by Lemma 3.8 in Tanaka34 and Lemma 3.7 in Wang and
Li39, respectively. □

The following is precisely the lemma relying on assumption (6).

Lemma 11. Under the same assumptions of Lemma 6, let 𝑚1 ∈ ℝ, 𝑚2, 𝛼, 𝛽 > 0 and 𝑘 > 1 be
such that constrains (6) in Assumptions 1 are satisfied. Then, there exist 𝜀 > 0 small enough,
𝛾 = 𝛾(𝑚1,𝑚2, 𝛼, 𝑘) ∈ (−∞, 1) and 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 and 𝑐6 such that for 𝑠0 ∈ (0,

𝑅𝑛

6
] one has

𝜙′(𝑡) ≥
⎧⎪⎪⎨⎪⎪⎩
𝑐1𝑠

−(3−𝛾)(𝑚2+𝛼−1)
0 𝜙𝑚2+𝛼(𝑡) − 𝑐2𝑠

3−𝛾−
2

𝑛

(𝑚2+𝛼)

𝑚2+𝛼−𝑚1
0 if𝑚1 > 0,

𝑐3𝑠
−(3−𝛾)(𝑚2+𝛼−1)
0 𝜙𝑚2+𝛼(𝑡) − 𝑐4𝑠

3−𝛾−
2

𝑛

(𝑚2+𝛼)

𝑚2+𝛼−𝜖

0 if𝑚1 = 0,

𝑐5𝑠
−(3−𝛾)(𝑚2+𝛼−1)
0 𝜙𝑚2+𝛼(𝑡) − 𝑐6𝑠

3−𝛾−
2

𝑛
0 if𝑚1 < 0,

for all 𝑡 ∈ 𝑆𝜙.

Proof. By substituting the estimates of 𝐼1, 𝐼2, 𝐼3, 𝐼4 given in Lemmas 8–10 into Lemma 7, we can adapt
Lemma 3.10 in Tanaka34 taking into account that (3.12) in Lemma 3.5 in Tanaka34 is replaced by

(53), so being necessary manipulating the term involving 𝜓
𝑚2

𝑚2+𝛼 (𝑡)𝑠
(3−𝛾)

𝛼

𝑚2+𝛼

0 by the Young inequality
and relation (62). □

The previous lemmas allows us to conclude.

Proof of Theorem 3

We focus only on the situation where 𝑚1 > 0, the cases 𝑚1 = 0 and 𝑚1 < 0 being similar. For

𝐶 =
(
𝜆

𝜇
|Ω|𝑘−1) 1

𝑘−1 , let us fix𝑀0 according to our hypothesis𝑀0 ≥ 𝐶. Next, since (6) holds, we

pick 𝑠0 ≤ 𝑅𝑛

6
small enough such that

𝑠0 ≤ 𝑀0

2
(63)

and for all 𝛾 ∈ (−∞, 1)

𝑠
𝑚2+𝛼−

2

𝑛

(𝑚2+𝛼)

𝑚2+𝛼−𝑚1
0 ≤ 𝑐7

2𝑐8

(
𝑀0

2(1 − 𝛾)(2 − 𝛾)𝜔𝑛

)𝑚2+𝛼

. (64)
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COLUMBU et al. 27

Moreover, from

𝑀0 − 𝜖0
𝜔𝑛 ∫

𝑠0

𝑠∗

𝑠−𝛾(𝑠0 − 𝑠) 𝑑𝑠 =
𝑀0 − 𝜖0
𝜔𝑛

[
𝑠2−𝛾0

(1 − 𝛾)(2 − 𝛾)
− 𝑠1−𝛾∗

𝑠0
1 − 𝛾

+
𝑠2−𝛾∗

2 − 𝛾

]
,

we can take 𝜖0 ∈ (0,
𝑠0
2
) and 𝑠∗ ∈ (0, 𝑠0) so small and satisfying

𝑀0 − 𝜖0
𝜔𝑛 ∫

𝑠0

𝑠∗

𝑠−𝛾(𝑠0 − 𝑠) 𝑑𝑠 >
𝑀0 − 𝑠0

(1 − 𝛾)(2 − 𝛾)𝜔𝑛
𝑠2−𝛾0 . (65)

We set 𝑟∗ ∶= 𝑠
1

𝑛
∗ ∈ (0, 𝑅) and require to 𝑢0 to comply with (10), (12), and (16). With such 𝑢0 in

our hands, we recall the definition of 𝜙 in (47) and the assumption 𝑀 = max{𝑀0, 𝐶} = 𝑀0; in
order to show that 𝑇𝑚𝑎𝑥 < ∞, we argue by establishing that if by contradiction 𝑇𝑚𝑎𝑥 = ∞, then
�̃� = sup 𝑆 ∈ (0,∞], with

𝑆 ∶=

{
𝑇 > 0 such that 𝜙(𝑡) >

𝑀0 − 𝑠0
(1 − 𝛾)(2 − 𝛾)𝜔𝑛

𝑠2−𝛾0 for all 𝑡 ∈ [0, 𝑇]

}
, (66)

would be at the same time finite and infinite.
First, by observing that 𝜙(0) > 𝑀0−𝑠0

(1−𝛾)(2−𝛾)𝜔𝑛
𝑠2−𝛾0 , the continuity of 𝜙 ensures that 𝑆 is not empty.

Indeed, we have that for any 𝑠 ∈ (𝑠∗, 𝑅
𝑛)

𝑈(𝑠, 0) ≥ 𝑈(𝑠∗, 0) =
1
𝜔𝑛 ∫𝐵𝑟∗ (0)

𝑢0 𝑑𝑥 ≥ 𝑀0 − 𝜖0
𝜔𝑛

,

so we deduce from (65) that

𝜙(0) ≥ ∫
𝑠0

𝑠∗

𝑠−𝛾(𝑠0 − 𝑠)𝑈(𝑠, 0) 𝑑𝑠 ≥ 𝑀0 − 𝜖0
𝜔𝑛 ∫

𝑠0

𝑠∗

𝑠−𝛾(𝑠0 − 𝑠) 𝑑𝑠 >
𝑀0 − 𝑠0

(1 − 𝛾)(2 − 𝛾)𝜔𝑛
𝑠2−𝛾0 .

Now, by exploiting (66) and (63) leads to

𝜙(𝑡) ≥ 𝑀0

2(1 − 𝛾)(2 − 𝛾)𝜔𝑛
𝑠2−𝛾0 for all 𝑡 ∈ (0, �̃�),

so that (0, �̃�) ⊂ 𝑆𝜙 (recall (49) with𝑀 = 𝑀0).
On the other hand, under the assumption (6), we can apply Lemma 11 and find 𝛾 ∈ (−∞, 1),

𝑐7, 𝑐8 such that for 𝑢0 and 𝑠0 as above, one deduces

𝜙′(𝑡) ≥ 𝑐7𝑠
−(3−𝛾)(𝑚2+𝛼−1)
0 𝜙𝑚2+𝛼(𝑡) − 𝑐8𝑠

3−𝛾−
2

𝑛

(𝑚2+𝛼)

𝑚2+𝛼−𝑚1
0 for all 𝑡 ∈ 𝑆𝜙. (67)

Second, condition (64) implies

𝑐7
2
𝑠−(3−𝛾)(𝑚2+𝛼−1)
0 𝜙𝑚2+𝛼(𝑡)

𝑐8𝑠
3−𝛾−

2

𝑛

(𝑚2+𝛼)

𝑚2+𝛼−𝑚1
0

≥ 𝑐7
2𝑐8

(
𝑀0

2(1 − 𝛾)(2 − 𝛾)𝜔𝑛

)𝑚2+𝛼

𝑠
−(𝑚2+𝛼)+

2

𝑛

(𝑚2+𝛼)

𝑚2+𝛼−𝑚1
0 ≥ 1 on (0, �̃�),
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28 COLUMBU et al.

which subsequently gives from (67)

𝜙′(𝑡) ≥ 𝑐7
2
𝑠−(3−𝛾)(𝑚2+𝛼−1)
0 𝜙𝑚2+𝛼(𝑡) ≥ 0 for all 𝑡 ∈ (0, �̃�). (68)

With these facts, let us now establish the inconsistency �̃� < ∞ and �̃� = ∞. By integrating
inequality (68) on (0, �̃�), we have that

∫
�̃�

0

(
1

1 − (𝑚2 + 𝛼)
𝜙1−(𝑚2+𝛼)(𝑡)

)′

𝑑𝑡 ≥ ∫
�̃�

0

𝑐7
2
𝑠−(3−𝛾)(𝑚2+𝛼−1)
0 𝑑𝑡,

so that due to𝑚2 + 𝛼 − 1 > 0 and the nonnegative property of 𝜙

𝑐7
2
𝑠−(3−𝛾)(𝑚2+𝛼−1)
0 �̃� ≤ 𝜙1−(𝑚2+𝛼)(�̃�)

1 − (𝑚2 + 𝛼)
−
𝜙1−(𝑚2+𝛼)(0)

1 − (𝑚2 + 𝛼)
≤ 𝜙1−(𝑚2+𝛼)(0)

𝑚2 + 𝛼 − 1
,

or explicitly

�̃� ≤ 2
𝑐7(𝑚2 + 𝛼 − 1)𝜙𝑚2+𝛼−1(0)

𝑠(3−𝛾)(𝑚2+𝛼−1)
0 < ∞.

Nevertheless, we have to exclude the finiteness of �̃� = sup 𝑆; in fact, by the definition of 𝑆 in (66),
we should have

𝜙(�̃�) =
𝑀0 − 𝑠0

(1 − 𝛾)(2 − 𝛾)𝜔𝑛
𝑠2−𝛾0 , (69)

because if

𝜙(�̃�) >
𝑀0 − 𝑠0

(1 − 𝛾)(2 − 𝛾)𝜔𝑛
𝑠2−𝛾0 ,

by continuity of 𝜙 we would have that �̃� cannot be the supremum of 𝑆. But (69) cannot be true
since from the nondecreasing of 𝜙 in view of inequality (68), we would arrive at

𝑀0 − 𝑠0
(1 − 𝛾)(2 − 𝛾)𝜔𝑛

𝑠2−𝛾0 = 𝜙(�̃�) ≥ 𝜙(0) >
𝑀0 − 𝑠0

(1 − 𝛾)(2 − 𝛾)𝜔𝑛
𝑠2−𝛾0 .

As a conclusion, the constructed 𝑢0 implies that 𝑇𝑚𝑎𝑥 has to be finite.

Remark 3 (Finite-time blow-up with𝑚2 ≠ 𝑚3). As already said in Section 3, the proof of the blow-
up for problem (8) with𝑚2 ≠ 𝑚3 is still an open problem. Since the transformation 𝑧 = 𝜒𝑣 − 𝜉𝑤
used above to reorganize problem (8) with 𝑚2 = 𝑚3 into the simplified version (41) is no longer
employable, by reasoning as in Lemma 7, the corresponding inequality (52) would read

𝜙′(𝑡) ≥ 𝑛2 ∫
𝑠0

0

𝑠2−
2

𝑛
−𝛾(𝑠0 − 𝑠)(𝑛𝑈𝑠 + 1)𝑚1−1𝑈𝑠𝑠 𝑑𝑠 − 𝜒𝑓1𝛾 ∫

𝑠0

0

𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1 𝑑𝑠

+
𝜒
2 ∫

𝑠0

0

𝑠−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚2−1

[
∫

𝑠

0

𝑓1(𝑛𝑈𝑠(𝜎, 𝑡)) 𝑑𝜎

]
𝑑𝑠 − 𝜇𝑛𝑘−1 ∫

𝑠0

0

𝑠−𝛾(𝑠0 − 𝑠)

[
∫

𝑠

0

𝑈𝑘
𝑠 (𝜎, 𝑡) 𝑑𝜎

]
𝑑𝑠

+ 𝜉 ∫
𝑠0

0

𝑠1−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚3−1𝑚2(𝑡) 𝑑𝑠 − 𝜉 ∫
𝑠0

0

𝑠−𝛾(𝑠0 − 𝑠)𝑈𝑠(𝑛𝑈𝑠 + 1)𝑚3−1

[
∫

𝑠

0

𝑓2(𝑛𝑈𝑠(𝜎, 𝑡)) 𝑑𝜎

]
𝑑𝑠,
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COLUMBU et al. 29

valid for all 𝑡 ∈ 𝑆𝜙 and with 𝑓1𝛾 = 𝑓1(
8𝑛

2𝛾(3−𝛾)𝜔𝑛
). In particular, the extra terms involving the repul-

sion coefficient 𝜉 make the analysis more complex. This is also connected to the signs of such
terms (exactly opposite to those of the integrals associatedwith the attraction coefficient𝜒), which
do not allow to use the right inequalities tied to the hypotheses on 𝑓𝑖 , and in turn on𝑚𝑖 .
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