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Abstract: Unreinforced masonry (URM) buildings make up a significant portion of the built environment, with hollow clay being the
predominant choice for the units. The capacity of URM buildings is a function of the capacity of its walls, both to vertical and horizontal
forces. However, URM is particularly vulnerable to the effect of horizontal forces due to the low tensile strength of the mortar that holds the
units together. URM walls are subject to significant in-plane horizontal forces during seismic events, so that a proper quantification of the
capacity of URM walls to this type of forces is required. The models in design codes are often conservative and do not capture the un-
certainties required for estimating the failure probability of URM walls. This paper develops probabilistic capacity models for URM walls
with hollow clay units subject to horizontal in-plane forces. The models are developed considering diagonal cracking, flexural/rocking, and
sliding failure as possible failure modes. The models are constructed starting from existing physics-based models that attempt to capture the
underlying physics, and then developing correction terms that improve the accuracy of the models and remove the inherent bias. Unknown
parameters for the proposed models are calibrated using a Bayesian updating approach. The proposed models are probabilistic and capture the
relevant uncertainties. The proposed models are used to assess fragility functions of example URMwalls subject to horizontal in-plane forces.
The comparison of the fragility functions shows the effect of selected variables. DOI: 10.1061/(ASCE)ST.1943-541X.0003006. © 2021
American Society of Civil Engineers.
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Introduction

Unreinforced masonry (URM) is one of the most common and his-
torically relevant construction methods. In URM buildings, the ver-
tical load is carried by URM walls constructed from individual
units, typically bound together by mortar. The same URMwalls are
also delegated to resist horizontal forces due, for example, to seis-
mic events (Abrams 2001; Lourenço 2002). However, URM walls
are particularly vulnerable to horizontal forces due to the low ten-
sile strength of the mortar holding the units together. Past seismic
events have shown this vulnerability [e.g., FEMA P-273 (FEMA
1997); Andreini et al. 2014; Giresini and Sassu 2018; Sorrentino
et al. 2019]. This is particularly concerning for regions with a large

presence of URM buildings and high seismicity (e.g., southern
Europe, Middle East).

The behavior of URM walls subject to horizontal forces, both
in-plane and out-of-plane, has been extensively investigated in
the past few decades (e.g., Abrams and Shah 1992; Morandi
et al. 2018). Different deterministic models have been proposed
to quantify the capacity of URM walls. Simpler models consider
the walls as homogeneous structural elements characterized by a
nonlinear response (e.g., Benedetti and Benzoni 1984; Tomaževič
1987; Mengi and McNiven 1989; Willis et al. 2010; Penna et al.
2014a, b). However, these models do not consider the hysteretic
behavior in defining the capacity of URM walls. Specifically, they
do not account for the postpeak response and the brittle behavior of
the units [as highlighted by Ignatakis et al. (1989)], and the mortar
interface between units [as highlighted by Page (1978) and Lourenço
et al. (1994)]. Among others, Rots (1991), Gabor et al. (2006), and
Grande et al. (2013) considered the hysteretic behavior using finite-
element (FE) modeling. However, FE modeling can be computation-
ally expensive and might not be viable for the design and assessment
of existing URM buildings. In design codes, the modeling often
reverts to simpler analytical formulations, where the walls are mod-
eled as a homogeneous medium (e.g., Pietruszczak and Niu 1992;
Anthoine 1995). These formulations for different modes of failure
are obtained based on the results of both FE modeling and exper-
imental results.

The level of detail in the design codes varies by region. The
European Code (CEN 2004, 2005b) and the Italian Building Code
(NTC 2018) contain some of the most detailed specifications and
models for URM walls subject to horizontal forces. They consider
diagonal cracking, flexure/rocking, and sliding as modes of failure.
They use models from Turnsek and Čačovic (1970), Turnsek and
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Sheppard (1980), Hendry (1981), Abrams and Shah (1992), and
Magenes and Calvi (1997) in an approach that accounts for the un-
certainties related to the compressive and shear strengths. Such un-
certainties are approximately incorporated by using preset values of
partial safety factors. However, this approach does not account for
other relevant uncertainties like model uncertainties (Gardoni et al.
2002; Murphy et al. 2011), and ultimately does not provide esti-
mates of the actual failure probabilities. Annex D of the European
Code EN 1990 (CEN 2005a) started to acknowledge reliability
methods for statistical determination of resistance models. However,
such methods are presented for general design purposes and have
not been tailored to the field of URM. More recently, fragility es-
timates and probabilistic formulations for URM walls (e.g. Ruiz-
Garcia and Negrete 2009) and buildings (e.g., Lagomarsino and
Cattari 2014) have been developed. However, such formulations
are purely empirical and the fragility functions are obtained by sim-
ple curve-fitting of the results of laboratory experiments and site
surveys.

In this paper, we propose novel physics-based probabilistic mod-
els for the capacity of URM walls subject to horizontal, in-plane
forces. This paper considers diagonal cracking, flexure/rocking, and
sliding as modes of failure. The proposed trivariate models are for-
mulated, following Gardoni et al. (2002), by adding model correc-
tion terms to existing physics-based models. The models selected
for this paper can be found in the European Design Code (CEN
2005b) and in the Italian Building Code (NTC 2018). The addition
of correction terms improves the accuracy and reduces the bias of
the original models. The model correction terms include explanatory
functions that are based on the physics of the phenomena and un-
known model parameters that are calibrated using experimental
data. We calibrate the unknown parameters using a Bayesian ap-
proach with a set of 108 experimental results on URM walls with
different geometric and material characteristics. We formulate the
likelihood function accounting for the contribution of both failure
data and lower bound data, and we develop a trivariate model con-
sidering all possible failure modes at the same time, accounting for
their correlation.

By adding correction terms to models currently available, the
new formulations shed light on the limitations of the common prac-
tice. In addition, the proposed models account for the prevailing
uncertainties (Gardoni et al. 2002; Murphy et al. 2011). We use
the proposed models to obtain fragility functions for typical URM
walls. By comparing the fragility functions of different walls, we
can quantify the effect of selected variables on the wall capacity. As
an example, we investigate the effect of the vertical load and slen-
derness ratio. While the paper focuses on single walls, the capacity

models and fragility functions can be used to assess the reliability
of complete structures (e.g., URM buildings). The results high-
lighted in this work can be used as a starting point for discussing
the variables that play a role in the failure of URM walls subject
to horizontal actions, and suggesting a possible revision of the ex-
isting models.

This paper is organized as follows. The next section describes
the three considered failure modes and reviews the corresponding
existing physics-based capacity models. Then, we present the for-
mulation of the proposed models. Next, we introduce the experi-
mental data and calibrate the models. Finally, we present the
fragility functions of the typical URM wall and investigate the
effect of selected variables.

Existing Physics-Based Capacity Models for
URM Walls

This section summarizes the different failure modes for URM walls
and the corresponding capacity models. The URM walls consid-
ered in this paper are subject to a vertical force N and a horizontal
in-place force V, as shown in Fig. 1(a). The height of the walls isH
and the width is D.

Diagonal Cracking Failure Mode

The failure is due to diagonal cracks that can either pass through
the units or through the mortar joints (e.g., Morandi et al. 2018).
Fig. 1(b) shows both paths in the same wall. However, typically
only one of the two paths is experienced by a wall depending
on the relative resistance of the units and mortar. Because the crack-
ing through the units is more frequent, in the remainder of this pa-
per, we only consider this path. The cracking through mortar joints
is sometimes categorized as diagonal sliding or gaping (Marques
and Lourenço 2011; Morandi et al. 2018), and more closely follows
the physical behavior described in the section for sliding failure.
Diagonal cracking usually occurs for high values of vertical loads
acting on the wall, which is a common trait of URM walls of lower
stories of buildings (Tomaževič 2009).

In this paper, we select the formula proposed by Turnsek and
Čačovic (1970) for the diagonal cracking capacity V̂d, which is also
adopted by the Italian Code (NTC 2018). This formula considers
the wall as an isotropic linearly elastic element that becomes unable
to carry the load when the principal tensile stress σI at the center of
the wall attains a specified maximum (strength) value. Accordingly,
V̂d can be written as (NTC 2018)

Fig. 1. (a) Dimensions and loads acting on the URM wall and diagram for the different failure modes; (b) diagonal cracking; (c) flexure/rocking; and
(d) sliding failure.
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V̂d ¼
ftDt
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N

ftDt

s
ð1Þ

where ft = tensile strength of URM; t = thickness of the wall; and
b ¼ H=D (the slenderness ratio of the wall) for 1 ≤ H=D < 1.5,
b ¼ 1 for H=D < 1, and b ¼ 1.5 for H=D ≥ 1.5. The diagonal
cracking highly depends on the heterogeneity of the wall. Factors
that play a role include the properties of the components (mortar
and units), the bonding strength between these components, and
the bond pattern. The combined effect of these variables is gener-
ally hard to model, such that existing models tend to be overly
conservative.

Flexure/Rocking Failure Mode

Flexure/rocking failure [schematically shown in Fig. 1(c)] usually
starts with the cracking of the bed joints (i.e., the horizontal joints)
on the side of the wall in tension (e.g., Morandi et al. 2018). The
cracking causes a reduction in the section of the wall resisting ver-
tical forces, which eventually leads to the failure in the portion of the
wall in compression with the creation of subvertical cracks. Flexure/
rocking is typical of slender URM walls subject to low and inter-
mediate levels of vertical loads. For large vertical loads, the creation
of diagonal cracking would be more likely as discussed earlier.

In modeling the flexure/rocking capacity, V̂f, the tensile
strength of the URM wall is generally disregarded and the distri-
bution of the compressive stresses on the toe is approximated with
a constant rectangular distribution (stress block). Accordingly, V̂f

can be written as (NTC 2018)

V̂f ¼ D
ψ 0H

N
2

�
1 − N

0.85f 0
cDt

�
ð2Þ

where ψ 0 is a coefficient depending on the boundary conditions of
the wall (ψ 0 ¼ 1 for a fixed-free boundary condition, ψ 0 ¼ 0.5 for
a fixed-fixed boundary condition, and ψ 0 ¼ 0.75 for intermediate
boundary conditions); f 0

c = compressive strength of the URM; and
0.85 is the coefficient used in the stress block approximation. The
flexure/rocking mechanism for URM closely resembles the flex-
ure mechanism for concrete beams, which has been extensively
investigated in the literature. In addition, the heterogeneous nature
of URM walls does not affect flexure/rocking to the same extent
as diagonal cracking, and the homogeneous medium assumption
is satisfactory in most cases. For these reasons, flexure/rocking
can generally be modeled more easily than diagonal cracking.

Sliding Failure Mode

In sliding failure [schematically shown in Fig. 1(d)], a horizontal
sliding plane is created, typically in one of the bed joints in the
lower portion of the wall. Sliding failure usually occurs for low
vertical loads such that the friction between rows of units provided
by the mortar is also low. This is often the case in the top stories of
buildings. Most literature describes the sliding failure capacity V̂s
using a Mohr-Coulomb failure type criterion, where the stress
distribution on the lower part of the wall is approximated as linear
(e.g., Magenes and Calvi 1997). According to Magenes and Calvi
(1997) V̂s can be written as

V̂s ¼
1.5fv0Dtþ μN

1þ 3fv0
ψ 0Ht
N

ð3Þ

where fv0 = shear strength of URM walls under no compressive
stress; and μ = friction coefficient. Eq. (3) can be obtained from

the formulation in the Italian code (NTC 2018) under the assumption
of linear compressive stress distribution. The database used in this
paper provides the value for μ for most of the specimens analyzed. If
the value of μ is not provided, we assume μ ¼ 0.4, following the
prescriptions of the Eurocode (CEN 2005a).

Formulation of Proposed Probabilistic Models

In this section, we propose probabilistic models starting from the
existing physics-based models introduced in the previous section.
The proposed models improve the accuracy of the existing models
and account for the relevant uncertainties. Following Gardoni et al.
(2002) and Tabandeh et al. (2020), we select the following form for
the probabilistic predictive models for the capacity of the URM
wall in the jth mode of failure (e.g., j = d for diagonal cracking,
f for flexure/rocking, and s for sliding):

Yjðx;ΘjÞ ¼ ŷjðxÞ þ γjðx; θjÞ þ σjεj ð4Þ
where Yjðx;ΘjÞ = dimensionless capacity of the variable of interest
or a suitable transformation {e.g., ln½Vjðx;ΘjÞ� where Vj = capac-
ity in the jth mode of failure}; x = set of measurable variables
(e.g., material properties and specimen dimensions) also called state
variables; Θj ¼ ðθj;σjÞ = vector of unknown parameters; ŷjðxÞ =
existing physics-based model (e.g., one of the models described in
the previous section) or a suitable transformation {e.g., ln½V̂jðxÞ�};
γjðx; θjÞ = correction term; and σjεj = model error, where εj =
random variable with zero mean and unit variance, and σj = stan-
dard deviation of the model error. For given x and θj, the variance
of the model is σ2

j . The model formulation makes three assump-
tions: (1) the additivity of σjεj (additivity assumption); (2) that
εj has a normal distribution (normality assumption); and (3) that
σ2
j is independent of x (homoskedasticity). We can at least approx-

imately satisfy these assumptions with a suitable transformation
(e.g., the natural logarithm) of the quantity of interest (Box and
Cox 1964).

Following Gardoni et al. (2002), the term γjðx; θjÞ can be writ-
ten as a linear combination of a set of pj explanatory dimensionless
functions hiðxÞði ¼ 1; : : : ;pjÞ

γjðx; θjÞ ¼ θjhjðxÞ ¼
Xpj

i¼1

θjihjiðxÞ ð5Þ

where θj ¼ ½θj1; : : : ; θjpj
� is the vector of unknown parameters;

and hjðxÞ ¼ ½hj1ðxÞ; : : : ; hjpj
ðxÞ� is the vector of explanatory

functions. Because ŷjðxÞ is physics-based and hjðxÞ is also con-
structed based on physical/mechanical considerations, the probabi-
listic model Yjðx;ΘjÞ is also physics-based.

Bayesian Parameter Estimation

We use a Bayesian updating to obtain estimates for the values of
Θj. We obtain the posterior probability density function (PDF) of
Θj, fðΘjÞ, using the following formula:

fðΘjÞ ¼ κLðΘjÞpðΘjÞ ð6Þ

where κ ¼ ½∫LðΘjÞpðΘjÞdΘj�−1 is a normalizing factor, neces-
sary for the integral of the posterior distribution over the whole sup-
port to be equal to 1; LðΘjÞ is the likelihood function, representing
the information that can be inferred from the experimental obser-
vations; and pðΘjÞ is the prior distribution, incorporating the
knowledge about Θj before the collection of data.

© ASCE 04021074-3 J. Struct. Eng.
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Likelihood Function and Prior Distribution for a Univariate
Model
The likelihood function is proportional to the probability of observ-
ing the experimental outcome for given values of Θj. According to
Gardoni et al. (2002), three different types of outcomes are possible
when testing the kth specimen for the jth mode of failure. Each type
provides different information about the quantity rjkðθjÞ, defined as

rjkðθjÞ ¼ Yjk − ŷjðxÞ − γjðx; θjÞ ð7Þ

where Yjk is the recorded value of the variable of interest (or a suit-
able transformation) for the kth specimen. If Yjk is recorded at the
instant of failure then we have a failure datum, such that Yjk ¼
ŷjðxÞ þ γjðx; θjÞ þ σjεjk or σjεjk ¼ rjkðθjÞ, where εjk denotes
the outcome of the model error term. If the specimen does not fail
or fails in a different mode of failure, then Yjk is a lower bound
censored datum, such that Yjk > ŷjðxÞ þ γjðx; θjÞ þ σjεjk or
σjεjk > rjkðθjÞ. Finally, if the specimen fails before reaching
Yjk, then Yjk is an upper bound censored datum, and Yjk < ŷjðxÞ þ
γjðx; θjÞ þ σjεjk or σjεjk < rjkðθjÞ. Considering the different out-
comes as statistically independent, we can express the likelihood as

LðΘjÞ ∝
Y

Failure data

P½σjεjk ¼ rjkðθjÞ�

×
Y

Lower bound data

P½σjεjk > rjkðθjÞ�

×
Y

Upper bound data

P½σjεjk < rjkðθjÞ� ð8Þ

Assuming that the errors are normally distributed (normality
assumption) we can rewrite Eq. (8) as

LðΘjÞ ∝
Y

Failure data

1

σj
φ

�
rjkðθjÞ
σj

�
×

Y
Lower bound data

Φ

�
− rjkðθjÞ

σj

�

×
Y

Upper bound data

Φ

�
rjkðθjÞ
σj

�
ð9Þ

where φð·Þ and Φð·Þ denote the standard normal PDF and standard
normal cumulative distribution function (CDF).

The prior distribution should incorporate the knowledge avail-
able before the experiments are performed. When no such knowl-
edge is available, a noninformative prior should be used. In this
paper, we choose the noninformative prior proposed by Box and
Tiao (2011)

pðΘjÞ ¼ pðθj; σjÞ ≅ pðσjÞ ¼
1

σj
ð10Þ

We use Eqs. (8)–(10) to obtain the posterior statistics of Θj.
We denote the posterior mean vector for Θj and the posterior
covariance matrix as MΘj

and ΣΘjΘj
. The computation of these

statistics requires a multifold integration over the Bayesian kernel
LðΘjÞpðΘjÞ. In this paper, we use the delayed rejection adaptive
Markov chain Monte Carlo (Haario et al. 2006).

Likelihood Function and Prior Distribution for the
Multivariate Model
To facilitate the understanding of the likelihood formulation for
the multivariate case, let us consider a URM wall that has failed
in diagonal cracking during a laboratory test. In this case, the value
recorded during the test corresponds to the diagonal cracking
capacity of the specimen, while both rocking and sliding capacity
can be assumed to be larger than the recorded value. In other words,
the recorded value can be registered as a failure datum for the
diagonal cracking capacity and as a lower bound datum for the
rocking capacity and sliding capacity. In general, for a q-variate
model, data can be categorized into a total of 2q combinations.
Fig. 2 exemplifies this idea for a trivariate model. Thus, the clas-
sification introduced in the previous section (failure data, lower
bound data, and upper bound data) applies unchanged to the multi-
variate case, but a single observation can fall into different catego-
ries for the different capacity measures.

Tables 1 and 2 show the formulas that can be used to compute
the likelihood in case of a bivariate and a trivariate model, respec-
tively (considering only failure data and lower bound data). We
obtained these formulas under the assumptions that the error terms

Fig. 2. Representation of data types for a bivariate model.
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εjk can be modeled with a multinormal PDF with given covariance
matrix Σ.

We use the following noninformative prior to reflect the lack of
knowledge before the collection of data (Gardoni et al. 2002):

pðθ;ΣÞ ≅ pðΣÞ ¼ jΣj−qþ1
2 ð11Þ

where θ ¼ ½θd; θf; θs� ¼ ½θji�.

Stepwise Deletion

Ideally, models need to be as parsimonious as possible (e.g., simple
and accurate). A simple model is characterized by a small number
of parameters pj. An accurate model is characterized by a small
value of standard deviation σj. Typically, reducing pj tends to in-
crease σj. To find a compromise, we can use a stepwise deletion. A
traditional stepwise deletion based on p-values (Stone 1996) is not
applicable when there are censored data. In this paper, we use the
procedure in Gardoni et al. (2002), which is applicable also to the
case of censored data. The procedure starts with all the candidate
explanatory functions, and at each step removes the least important
explanatory function based on the coefficient of variation (COV) of
the corresponding θji. The model is then reassessed with the re-
duced number of parameters. The procedure continues until σj

grows to an undesirable value or there is an undesirable increase
in σj with respect to reduction in model complexity.

Proposed Physics-Based Probabilistic Capacity
Models for URM Walls

In this section, we develop physics-based probabilistic capacity
models for URM walls. We calibrate the proposed models using
test results on unconfined URM specimens with hollow clay units
subject to in-plane loads. The specimens are obtained from
Frumento et al. (2009) and Morandi et al. (2018). Repetitions in
the two databases were properly identified so that each specimen
was only counted once. Confined masonry specimens were ex-
cluded from the analysis. The total number of specimens is 108.
All the specimens were subject to cyclic lateral horizontal in-plane
forces under a constant vertical load. The horizontal load was ap-
plied in the form of a controlled displacement. The amplitude of
the displacement was gradually increased up to the collapse of
the specimens. Table 3 summarizes the occurrences of each mode
of failure. The off-diagonal terms represent mixed modes of failures.

Table 1. Probability terms for bivariate capacity model with lower bounds and failure data

Capacity model 2

Capacity model 1

Failure datum Lower bound

Failure datum 1

σ1j2
φ

�
r1iðθÞ − μ1j2

σ1j2

�
1

σ2

φ

�
r2iðθÞ
σ2

�
Φ

�
− r1iðθÞ − μ1j2

σ1j2

�
1

σ2

φ

�
r2iðθÞ
σ2

�

Lower bound Φ

�
− r2iðθÞ − μ2j1

σ2j1

�
1

σ1

φ

�
r1iðθÞ
σ1

�
∫∞
r2i
Φ

�
− r1iðθÞ − μ1jζ

σ1j2

�
1

σ2

φ

�
ζ
σ2

�
dζ

Source: Data from Gardoni et al. (2002).

Note: μkjl ¼ ρklðσk=σlÞrli, σkjl ¼ σk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2kl

q
k, l ¼ 1; 2 and μ1jζ ¼ ρ12ðσ1=σ2Þζ.

Table 2. Probability terms for trivariate capacity model with lower bounds and failure data

Type of data Probability terms

Failure data for all models 1

σkjlm
φ

�
rkiðθÞ − μkjlm

σkjlm

�
1

σljm
φ

�
rliðθÞ − μljm

σljm

�
1

σm
φ

�
rmiðθÞ
σm

�

Lower bound for model k Φ

�
− rkiðθÞ − μkjlm

σkjlm

�
1

σljm
φ

�
rliðθÞ − μljm

σljm

�
1

σm
φ

�
rmiðθÞ
σm

�
Failure datum for model l, m

Lower bound for model k, l

�
∫∞
rli
Φ

�
− rkiðθÞ − μkjζm

σkjlm

�
1

σljm
φ

�
ζ − μlj
σljm

�
dζ

�
1

σm
φ

�
rmiðθÞ
σm

�
Failure datum for model m

Lower bound for all models ∫∞
rmi

�
∫∞
rli
Φ

�
− rkiðθÞ − μkjζξ

σkjlm

�
1

σljm
φ

�
ζ − μljξ
σljm

�
dζ

�
1

σm
φ

�
ξ
σm

�
dξ

Note: μkjlm ¼ 1
1−ρ2lm f½ρkl þ ρkmρml� σk

σl
rli þ ½ρkm þ ρklρlm� σk

σm
rmig k; l;m ¼ 1; 2; 3 k ≠ l ≠ m; μkjζm ¼ 1

1−ρ2lm f½ρkl þ ρkmρml� σk
σl
ζ þ ½ρkm þ ρklρlm� σk

σm
rmig

k; l;m ¼ 1; 2; 3 k ≠ l ≠ m; μkjζξ ¼ 1
1−ρ2lm f½ρkl þ ρkmρml� σk

σl
ζ þ ½ρkm þ ρklρlm� σk

σm
ξg k; l;m ¼ 1; 2; 3 k ≠ l ≠ m; μkjl ¼ ρkl

σk
σl
rli k; l ¼ 1; 2 k ≠ l;

σkjlm ¼ σk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

1−ρ2lm ½ρklðρkmρml − ρklÞ þ ρkmðρklρlm − ρkmÞ�
q

k; l;m ¼ 1; 2; 3 k ≠ l ≠ m;. σkjl ¼ σk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2kl

q
k; l ¼ 1; 2 k ≠ l.

Table 3. Occurrences of each mode of failure

Mode of failure
Diagonal
cracking Flexure/rocking Sliding

Diagonal cracking 56 — —
Flexure/rocking 10 36 —
Sliding 1 2 3
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Because of the high vertical load in the test environment, the sliding
mode of failure only occurred for six specimens.

A logarithmic transformation of both Vjðx;ΘjÞ and V̂jðxÞ is
applied to approximately satisfy the additivity, normality, and
homoskedasticity assumptions. So, Eq. (4) is written as

ln½Vjðx;ΘjÞ� ¼ ln½V̂jðxÞ� þ γjðx; θjÞ þ σjεj j ¼ d; f; s ð12Þ

Ideally, both Vjðx;ΘjÞ and V̂jðxÞ should be dimensionless
quantities. However, the logarithmic transformation allows us to
rewrite Eq. (12) as

ln

�
Vjðx;ΘjÞ
V̂jðxÞ

�
¼ γjðx; θjÞ þ σjεj j ¼ d; f; s ð13Þ

which can be used even if Vjðx;ΘjÞ and V̂jðxÞ are not dimension-
less. Based on the normality assumption, the 67% confidence in-
terval for the transformed value of the capacity can be written as

fln½V̂jðxÞ� þ γjðx; θjÞ − σj; ln½V̂jðxÞ� þ γjðx; θjÞ þ σjg ð14Þ

which corresponds to the following interval for the untransformed
value of the capacity:

fV̂jðxÞeγjðx;θjÞe−σj ; V̂jðxÞeγjðx;θjÞeσjg ð15Þ

Model Correction

We select the same set of explanatory functions for the three failure
modes. To capture the presence of a possible constant bias in
ln½V̂jðxÞ�, we select h1ðxÞ ¼ 1. To assess the possible effects of
the void percentage (percentage of all holes) in the units, we select
h2ðxÞ ¼ Volvoids=Voltot, where Volvoids is the volume of the voids
and Voltot is the gross volume of the unit. To assess the influence of
the geometric dimensions of the units, we select h3ðxÞ ¼ h=d,
where h and d are the height and the width of the unit, respectively.
To detect any potential influence of the number of rows of units on
the capacity of the URM wall, we select h4ðxÞ ¼ h=H, where H is
the total height of the wall. Because V̂j does not include any var-
iable related to the units, the explanatory functions h2ðxÞ, h3ðxÞ,
and h4ðxÞ explore the possible effects of such variables. To detect
any possible underestimation or overestimation of the contribution
of the slenderness ratios of the wall in both directions, we select
h5ðxÞ ¼ t=H and h6ðxÞ ¼ H=D. To capture the effect of the tensile
strength of the units ft and of the compressive strength of the mor-
tar fcM, we select h7ðxÞ ¼ ft=f 0

c and h8ðxÞ ¼ fcM=f 0
c (where the

compressive strength of the URM f 0
c is used to obtain dimension-

less explanatory variables). To capture the effect of the vertical load
on the wall N as a fraction of the total vertical load Nmax that the
wall can sustain, we select h9ðxÞ ¼ N=Nmax (where Nmax is pro-
vided along with the data). To capture the effect of the thickness of
the bed-joints, we select the categorical explanatory function
h10ðxÞ equal to 0 for general purpose mortar and 1 for thin layer
mortar. To capture the effect of the head-joint type, we select the
categorical explanatory function h11ðxÞ equal to −1 for filled
joints, −0.5 for thin-filled joints, 0 for mortar pocket joints, 0.5
for unfilled joints, and 1 for tongue-and-groove joints. Finally,
to capture the effect of the boundary conditions, we select the cat-
egorical explanatory function h12ðxÞ ¼ ψ 0, with ψ 0 as defined ear-
lier as in input to Eq. (2). Table 4 reports the range of variation of
the selected explanatory functions for the 108 specimens.

Bayesian Parameter Estimation and Stepwise Deletion

This section provides the results for the univariate models and the
trivariate model.

Univariate Model for Diagonal Cracking
Fig. 3 shows the results of the stepwise deletion process. At each
step, the dots represent the values for the coefficients of variation of
the different θdi’s, while the square represents the value for the
posterior mean of σd.

At the first step, the parameter with the largest coefficient of
variation is θd11 (COV ¼ 19.02). The coefficient of variation of
θd11 is much larger than the coefficients of variation of the other
terms and the standard deviation of the model (σd ¼ 0.215). For
this reason, we decided to drop this term; this is graphically rep-
resented in the figure with a cross over the dot representing the
coefficient of variation of the term that was dropped. Following
the removal of the first term, we observed a 1% increase in σd,
which we deemed acceptable. We repeated the same process until
Step 9. After removing h1, σd increased by 23%. This increase is
deemed undesirable, therefore we kept h1 in the model and stopped
the deletion process. The reduced γdðx; θdÞ has the following
final form:

Table 4. Ranges of the selected explanatory functions for the specimens

Explanatory
function Range

h1ðxÞ 1.00
h2ðxÞ [0.41, 0.54]
h3ðxÞ [0.48, 1.03]
h4ðxÞ [0.07, 0.20]
h5ðxÞ [0.06, 0.26]
h6ðxÞ [0.67, 2.5]
h7ðxÞ [0.01, 0.08]
h8ðxÞ [0.43, 3.43]
h9ðxÞ [0.02, 0.29]
h10ðxÞ [0.00, 1.00]
h11ðxÞ ½−1.00; 1.00�
h12ðxÞ [0.50, 1.00]

1 2 3 4 5 6 7 8 9 10
10-1

100

101

102

    11

    4

    9

    5
    6     3     10     8

    1

Fig. 3. Stepwise deletion process for the diagonal cracking capacity
model.
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γdðx; θdÞ ¼ θd1 þ θd2
Volvoids
Voltot

þ θd7
ft
f 0
c
þ θd12ψ 0 ð16Þ

Table 5 gives the posterior statistics of the five model
parameters.

The following observations can be made based on the results of
the stepwise deletion process and the parameter estimation:
• The h1 is retained in the final model. This is an indication that

V̂dðxÞ has a systematic bias independent of x.
• The h2ðxÞ is also retained in the final model. This suggests that

the properties of the units, neglected in most of the design codes
(including V̂d), play an important role in the total capacity of
the walls.

• The h7ðxÞ and h12ðxÞ are retained in the final model. These
parameters are also included in V̂dðxÞ. By looking at the values
of the θdi’s associated with these explanatory functions, we can
tell that V̂dðxÞ overestimates (θd7 < 0) the effect of ft (URM
tensile strength) and it underestimates (θd12 > 0) the effect of
ψ 0 (boundary conditions).
Fig. 4(a) shows the predicted versus measured capacity for each

experiment. Ideally, the predicted capacity should be equal to the
measured capacity if the sample fails in diagonal cracking (i.e., we
have a failure datum). If the sample fails in a different mode
(i.e., we have a lower bound datum), the predicted capacity for
diagonal cracking should be greater than the measured capacity.
So for a perfect model, failure data lie on the 1:1 line, and the lower
bound data lie above it.

We can observe from Fig. 4(a) how the predicted capacity is
generally lower than the measured one. This reflects the fact that
the model proposed by the code tends to give conservative results.
Fig. 4(b) shows the improvement in the prediction of the diagonal
cracking capacity. The figure shows the median prediction based on
the posterior statistics of θd and εd ¼ 0. The figure also shows the
region within one standard deviation of the median value. The pro-
posed model corrects the bias in the existing model and provides
more accurate predictions. The failure data points are now closer to
the 1:1 line and most of the lower bound data points lie above it.

Univariate Model for Flexure/Rocking
Fig. 5 shows the results of the stepwise deletion process for the
flexure/rocking univariate model.

We carried out the deletion process for 10 steps until the removal
of h3 caused a 9.3% increase in σf , which is deemed undesirable.
Therefore, we kept h3 in the model and stopped the deletion pro-
cess. The final form of the bias correction term is

γfðx; θfÞ ¼ θf2
Volvoids
Voltot

þ θf3
h
d
þ θf7

ft
f 0
c

ð17Þ

Table 6 gives the posterior statistics of the three remaining
θfi and σf.

We can make the following observations:
• The h1 is not kept in the model, highlighting the lack of a

constant bias.
• The h2 and h3 are kept in the model. These variables are related

to the properties of the units, and are neglected in most of the
codes (including V̂f).

• The h7 is kept in the model. This suggests that, while it is gen-
erally not considered in design codes for this mode of failure, ft
(tensile strength of the URM) plays an important role in the
value of the flexure/rocking capacity.
Fig. 6(a) shows the predicted versus measured capacity. The

same comments provided for Fig. 4(a) also apply to this case.
The addition of γfðx; θfÞ improves the accuracy of the model in
particular for the lower bound data. The median predictions are
shown in Fig. 6(b).

Table 5. Posterior statistics for Θd

Parameter Mean
Standard
deviation

Correlation coefficients

θd1 θd2 θd7 θd12 σd

θd1 0.520 0.235 1 — — — —
θd2 −1.365 0.505 −0.50 1 — — —
θd7 −7.096 2.335 −0.12 −0.10 1 — —
θd12 0.826 0.127 −0.17 −0.19 0.10 1 —
σd 0.230 0.021 0.05 −0.11 0.02 0.24 1

Fig. 4. Predicted capacity versus measured capacity for diagonal cracking: (a) existing model; and (b) probabilistic model.
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Univariate Model for Sliding
For the parameter estimation of the sliding model, there is an
identifiability problem (Stone 1996) when we use all 12 explana-
tory functions because we only have six failure data. Given the
number of failure data, we can only estimate a model with three
explanatory functions (i.e., the calibration does not converge when

more explanatory function are used). Hence, we consider all pos-
sible combinations of three hi’s and select the model that has the
smallest σs. The final form the model correction term for the sliding
mode of failure is

γsðx; θsÞ ¼ θs2
Volvoids
Voltot

þ θs3
h
d
þ θs8

fcM
f 0
c

ð18Þ

Table 7 shows the posterior statistics of the Θs in the selected
model. The value of σs (σs ¼ 0.523) is significantly higher than σd
and σf, so we do not proceed with further deletions.

We can make the following observations:
• The h1 is not kept in the model, highlighting the lack of a con-

stant bias.
• The h2 and h3 are kept in the model. These variables are related

to the properties of the units, and are neglected in most of the
codes (including V̂s).

• The h8 is kept in the model and θs8 > 0. This suggests that the
contribution of the compressive strength of the mortar to the
sliding capacity is underestimated in the original model.
Fig. 7(a) shows the measured versus predicted capacity for slid-

ing. The same comments provided for Fig. 4(a) apply to this case.
The results following the calibration of the model are plotted in
Fig. 7(b).

Trivariate Model
We calibrate the trivariate model to obtain the correlation coefficients
between the parameters in Θd, Θf, and Θs and between the model
errors of the different failure modes, required for reliability analysis.
The vector of uncertain parameters for the trivariate model is
Θ ¼ ðΘd;Θf;Θs; ρdf; ρds; ρfsÞ, where Θd, Θf , and Θs contain
the same parameters as the corresponding univariate models, and
ρdf, ρds, and ρfs are the correlations between the error terms of
the different models. We obtain the following noninformative prior
distribution for the trivariate case from Eq. (11) with q ¼ 3:

pðΘÞ ¼ 1þ 2ρdfρdsρfs − ρ2df − ρ2ds − ρ2fs
σdσfσs

ð19Þ

1 2 3 4 5 6 7 8 9 10 11
10-1

100

101

102

    4

    11

    5     12     6
    1

    8
    10

    9
    3

Fig. 5. Stepwise deletion process for the flexure/rocking capacity
model.

Table 6. Posterior statistics for Θf

Parameter Mean
Standard
deviation

Correlation coefficients

θf2 θf3 θf7 σf

θf2 −1.018 0.443 1 — — —
θf3 0.463 0.229 −0.52 1 — —
θf7 6.441 3.072 −0.32 0.02 1 —
σf 0.293 0.030 0.11 −0.08 0.07 1

Fig. 6. Predicted capacity versus measured capacity for flexure/rocking: (a) existing model; and (b) probabilistic model.
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The results of the calibration are available in Table 8. As
expected, the values of Θd, Θf, and Θs are the same as those ob-
tained in the calibration of the univariate models (except for minor
numerical differences). Therefore, the median predictions from
the trivariate model for each mode are the same as the predictions
from the univariate models. As a result, plots of the predicted
versus measured capacity would be the same as in Figs. 4, 6,
and 7.

Table 7. Posterior statistics for Θs

Parameter Mean
Standard
deviation

Correlation coefficients

θs2 θs3 Θs8 σs

θs2 2.007 2.449 1 — — —
θs3 −1.223 1.489 −0.40 1 — —
θs8 1.322 1.217 0.26 −0.41 1 —
σs 0.523 0.358 0.34 −0.23 0.28 1

Fig. 7. Predicted capacity versus measured capacity for sliding: (a) existing model; and (b) probabilistic model.

Table 8. Posterior statistics for Θ of the trivariate model

Parameter Mean
Standard
deviation θd1 θd2 θd7 θd12 σd θf2 θf3 θf7 σf θs2 θs3 θs8 σs ρdf ρds ρsf

θd1 0.633 0.225 1 — — — — — — — — — — — — — — —
θd2 −1.521 0.485 −0.92 1 — — — — — — — — — — — — — —
θd7 −7.384 1.854 −0.05 −0.16 1 — — — — — — — — — — — — —
θd12 0.750 0.119 −0.17 −0.15 0.1 1 — — — — — — — — — — — —
σd 0.222 0.020 0.05 −0.09 0.08 0.25 1 — — — — — — — — — — —
θf2 −0.987 0.387 −0.01 0.05 −0.05 −0.11 −0.03 1 — — — — — — — — — —
θf3 0.431 0.202 0.01 −0.02 −0.04 0.09 −0.02 −0.93 1 — — — — — — — — —
θf7 6.608 2.723 −0.06 −0.03 0.28 0.13 0.12 −0.26 −0.07 1 — — — — — — — —
σf 0.285 0.029 −0.04 0.01 0.07 0.03 0.08 0.15 −0.17 0.19 1 — — — — — — —
θs2 1.883 1.302 0.13 −0.1 −0.06 −0.08 −0.07 −0.11 0.16 −0.17 −0.08 1 — — — — — —
θs3 −1.423 1.047 −0.2 0.17 0.06 0.11 0.09 0.05 −0.11 0.21 0.07 −0.87 1 — — — — —
θs8 1.414 0.828 0.2 −0.17 −0.05 −0.12 −0.08 0.06 −0.01 −0.21 −0.06 0.74 −0.94 1 — — — —
σs 0.485 0.198 0.1 −0.06 −0.05 −0.08 −0.01 0.07 −0.03 −0.17 −0.05 0.77 −0.65 0.68 1 — — —
ρdf 0.404 0.108 0.184 −0.1 −0.06 −0.32 −0.05 0.08 −0.03 −0.18 0.03 0.14 −0.19 0.18 0.08 1 — —
ρds −0.274 0.413 −0.3 0.27 0.09 0.13 0.11 −0.01 −0.05 0.22 0.05 −0.37 0.52 −0.5 −0.31 −0.25 1 —
ρsf −0.521 0.324 0.05 −0.07 0.06 0.03 0.09 0.14 −0.19 0.16 0.12 −0.2 0.15 −0.13 −0.24 0.01 0.37 1
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Proposed Physics-Based Fragility Functions

The fragility is defined as the conditional probability of attaining or
exceeding a prescribed limit state for a given demand (Gardoni
et al. 2002). Mathematically, we first introduce the limit state func-
tion gj (Ditlevsen and Madsen 1996; Gardoni 2017) for the jth
mode of failure as

gjðx;ΘjÞ ¼ ln½Vjðx;ΘjÞ� − ln½V� ð20Þ

where Vjðx;ΘjÞ is the capacity in the jth mode of failure and V
(defined earlier as the horizontal force acting on the wall) is the
corresponding demand, we can express the fragility of the wall
for the jth mode of failure as

FjðV;ΘjÞ ¼ P½fgjðx;ΘjÞ ≤ 0gjV;Θj� ð21Þ

Because the failure of the URM wall is triggered by the exceed-
ance of the capacity in any of the three different failure modes,
following Gardoni et al. (2002) we formulate the problem as a
series system reliability (Ditlevsen and Madsen 1996)

FðV;ΘÞ ¼ P½
[
j

fgjðx;ΘjÞ ≤ 0gjV;Θ� ð22Þ

Following Gardoni et al. (2002), we obtain the predictive esti-
mate of the fragility as the expected value of FðV;ΘÞ over the
posterior distribution of Θ, that is

~FðVÞ ¼
Z

FðV;ΘÞfðΘÞdΘ ð23Þ

Finally, we can then obtain the n-standard deviations bounds for
the fragility estimates as

fΦ½− ~βðVÞ − nσβðVÞ�;Φ½− ~βðVÞ þ nσβðVÞ�g ð24Þ

where ~βðVÞ ¼ Φ−1½1 − ~FðVÞ�; and σβ = standard deviation of the
reliability index, obtainable with a first-order Taylor series expan-
sion (Gardoni et al. 2002). We can obtain confidence bounds of
67%, 95%, and 99% by selecting n ¼ 1, 2, and 3, respectively.

Fragility Functions for an Example of URM Wall

The models obtained in the previous sections are used to obtain
fragility functions for an example URMwall. Table 9 lists the prop-
erties of the URM wall. We take geometric properties of the wall as
deterministic values, while material properties and the vertical load
acting on the wall are taken as lognormally distributed. The choice
of a lognormal distribution is justified by Stewart and Lawrence
(2007), among others, who have found that most common distri-
butions (e.g., gamma, lognormal, Weibull) are accepted by typical
statistical tests. The selected values for the coefficients of variation
of URM strengths are at the low end of the typical range suggested
in the literature (Li et al. 2014; McNeilly et al. 1996), and represent
a design scenario with high-quality material. The value of the co-
efficient of variation of the vertical load depends on the type of
building and occupancy (e.g., Bartlett et al. 2003), and we select
0.25 for the example URM wall.

Fig. 8(a) shows the predictive fragility functions for the different
modes of failure. Flexure is the dominant mode of failure for values
of V below 220 kN, while diagonal cracking dominates for larger
values of V. The fragility functions are shown together with their
1σ confidence bounds, which appear as shaded areas around each
curve. The bounds around the fragility function for sliding are
larger than those for diagonal cracking and flexure/rocking, due
to the higher statistical uncertainty associated with the sliding mode
of failure (caused by the limited number of failure data in
this mode). Fig. 8(b) shows the predictive fragility function of
the series system along with the fragility functions for each mode.

Table 9. Properties of the URM wall used for the computation of the
fragility functions

Variable Type Mean
Coefficient of

variation

H Deterministic 1,500 mm —
D Deterministic 1,500 mm —
t Deterministic 300 mm —
h Deterministic 230 mm —
d Deterministic 150 mm —
% holes Deterministic 50% —
fc Lognormal 5 MPa 0.1
fcM Lognormal 9 MPa 0.1
fv0 Lognormal 0.25 MPa 0.1
N Lognormal 400 kN 0.25

Fig. 8. Fragility functions for the example wall: (a) individual modes of failure with associated confidence bounds; and (b) system fragility.
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The fragility function of the system coincides with the fragility
function of the dominant mode of failure when there is a clear dom-
inant mode (i.e., low and large values of V), while close to the
switching point (V ¼ 200 kN) the system fragility has significant
contributions from both the diagonal cracking and the flexure/
rocking modes of failure.

We can use the fragility functions to investigate the effect of
selected variables on the failure of the URM wall. Next, we inves-
tigate the effect of the vertical load and slenderness ratio.

Effect of Vertical Load

Fig. 9 shows the fragility functions for N ¼ 200 and 800 kN (the
rest of the variables are kept at the values in Table 9 and Fig. 8). As
anticipated, the curve for flexure lies above the curve for diagonal
cracking when the vertical load is lowered to 200 kN, while the
opposite is true when the vertical load is increased to 800 kN. This
is in agreement with experimental and field results (Tomaževič
2009) as it highlights the predominance of flexure/sliding failures
for low levels of vertical loads (e.g., upper stories of buildings) and

of diagonal cracking failures for high levels of vertical loads
(e.g., lower stories of buildings).

Effect of Slenderness Ratio

We investigate the effect of the slenderness ratio of the wall, H=D,
by considering D ¼ 750 and 3,000 mm. The results are shown in
Fig. 10. The flexural mode of failure is dominant for the more slen-
der wall (D ¼ 750 mm), while the diagonal cracking prevails for
the less slender wall (D ¼ 3,000 mm). The results are likely due to
the different redistribution of the stresses that occur in the walls. For
slender walls, the flexure/rocking failure is more likely to be ini-
tiated by cracks in the mortar on the side under tensile stress. For
less slender walls, instead (particularly whenH=D < 1) the creation
of a compressed strut is likely. This can create a redistribution of
internal forces which reduces the tensile stresses at the corner, and
the expected failure becomes the diagonal cracking (consistently
with the diagrams in Fig. 1). Due to the presence of a moderate
vertical load (N ¼ 400 kN), sliding never appears to be the preva-
lent mode of failure for these cases.

Fig. 9. Fragility functions for walls subject to (a) N ¼ 200 kN; and (b) N ¼ 800 kN.

Fig. 10. Fragility functions for walls with different slenderness ratios with H ¼ 1,500 mm and (a) D ¼ 750 mm; and (b) D ¼ 3,000 mm.
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Conclusions

The paper developed new probabilistic models and fragility esti-
mates for unreinforced masonry walls subject to in-plane horizontal
forces. The models are for three possible modes of failure: diagonal
cracking, flexure/rocking, and sliding. The models were con-
structed by adding correction terms to existing equations in the de-
sign code. The correction terms are linear combinations of a set of
explanatory functions that include important physical variables for
the walls. We calibrated the proposed models with a Bayesian
approach using a set of experimental data from the literature.
The explanatory functions were selected from a list of candidates
using a stepwise deletion process. The selected explanatory func-
tions highlight the influence of physical variables either not
included or not properly accounted for in the code equations, sug-
gesting possible revisions of the code equations. In particular, the
properties of the units (such as the percentage of holes and aspect
ratio) are found to play a role on the capacity of the walls. The new
probabilistic models correct the bias in the original models and pro-
vide more accurate predictions. The probabilistic models also pro-
vide boundaries for the predictions.

The probabilistic models were then used to develop fragility
functions for an example unreinforced masonry wall conditioning
on the horizontal in-plane force. Fragility functions were developed
for each failure mode considered individually and all failure modes
considered in a series system. In the fragility analysis a distinction
was made between the effects of the uncertainty in the input var-
iables (e.g., geometric properties, boundary conditions, strength
parameters) and the statistical uncertainty from the variability in
the model parameters. The developed fragility functions can be in-
tegrated with a seismic demand model for the horizontal in-plane
force to obtain seismic fragility functions conditioned on a measure
of seismic load.

Data Availability Statement

All data, models, and code that support the findings of this study are
available from the corresponding author upon reasonable request.
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