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Microwave imaging system, neck phantom and processing method for the assessment of cervical diseases.

Take-Home Messages

The possibility of performing noninvasive diagnosis of cervical diseases by using microwave imaging systems
is explored in this paper.

A feasibility analysis has been conducted by considering both numerical and simplified experimental
phantoms, showing good capabilities in reconstructing 2D images of the neck.

The envisioned technique could be useful for monitoring different diseases affecting the neck (e.g., cervical
myelopathy) in a safe and less expensive way, thus allowing a frequent use.

The obtained results, although still preliminary, show that it is in principle possible to identify the cervical
spinal canal inside neck models, opening new grounds for the application of microwave imaging to
biomedical diagnostics.

An initial imaging prototype has been presented, comprising a set of transmitting/receiving antennas held in
contact with neck by means of a 3D printed collar as well as an efficient inverse scattering technique based on
a nonlinear Newton-type algorithm for reconstructing neck images. Moreover, a 3D-printed liquid-filled
simplified phantom of the neck has been created to aid the preliminary assessment of the proposed technique.
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Abstract: An inverse scattering method working at microwave frequencies for cervical diagnostics is proposed in this work. The
aim is the diagnosis of cervical myelopathy. which is a disease that affects the first part of the spinal cord (between the C3 and
C7 vertebra). A preliminary feasibility analysis oriented toward the development of an imaging system is reported. The system
prototype includes a set of antennas that illuminate the neck and retrieve samples of the scattered electric field. The related
inverse scattering problem is solved by using a nonlinear Newton-type reconstruction procedure, which provides two-
dimensional images of the dielectric parameters of a neck cross section. A simplified cylindrical phantom mimicking the human
neck has been designed for assessing the feasibility of the envisioned microwave measurement system and processing technique.
Numerical results are reported to evaluate the capabilities of the proposed approach. Moreover, initial experimental results have
been obtained by using cylindrical containers and a 3D printed version of the developed neck phantom.

Keywords — Microwave imaging, inverse problems, spinal cord, tomography.

I. INTRODUCTION

HE use of microwave radiation as a tool to support

diagnostic processes has emerged some decades ago,
together with the development of the first system prototypes
[1]. The range of potential applications is nowadays wide
and covers security, environmental and civil engineering,
non-destructive testing, and biomedical imaging [2]-[7], as
also confirmed by the many technical and clinical reviews
in this latter area [8]-[13]. In the medical field, one of the
first applications of microwave imaging (MWI) was the
detection of breast tumors [14]-[23]. Subsequently, brain
stroke detection has been considered [24]-[26]. too. In this
framework, several techniques and system prototypes have
been developed [27]-[35] and some clinical tests have
already been started [36]-[40]. However, breast cancer and
brain stroke detection are not the unique promising medical
applications: other possible usages include imaging of
torso, arms, and other body parts [41]-[44].

An interesting and rather unexplored field is represented
by MWI of the human neck. Several pathologic conditions
can affect this part of the body, and a non-invasive and safe
imaging method can be useful for monitoring patients.
Indeed, as shown in [45], more than 50% of the middle-age
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population shows radiographic signals of cervical disorder.
One of the common causes is cervical myelopathy [46],
which is a disease that damages the first part of the spinal
cord, between the C3 and C7 cervical vertebrae located near
the head [47]. Because of its important function, the spinal
cord is protected inside the spinal canal, which is formed by
the collection of all the vertebral foramina [48]. A reduction
of the spinal canal sagittal diameter, which may be caused
by different factors [49], is the first effect of cervical
myclopathy. Indeed, as shown in [47], [50], the
physiological diameter of the spinal canal is around 18 mm
and its reduction of ~25% is associated to this pathology.
Some patients are asymptomatic and for this reason
continuous monitoring is important and necessary to control
the pathology progression. The gold-standard diagnostic
methods are computerized tomography (CT), nuclear
magnetic resonance (NMR) and X-rays [47]. [51].
However, X-rays and CT could be cancerogenic due to their
ionizing radiations [52], whilst NMR is expensive and slow
[53], [54]. Consequently, frequent monitoring with these
techniques is not cost effective, motivating the study of
complementary  diagnostic  techniques.  Microwave
techniques are deemed quite interesting, since they use safe
non-lonizing radiations and require low-cost components,
being the frequency range the same of other wide-spread
apparatuses [55]. Although different setups and processing
techniques have been proposed for specific body parts (e.g.,
breast and head), other conformations usually require ad-
hoc designed systems and data inversion procedures. More
importantly, it is necessary to analyze their capabilities in
retrieving the needed information about the parts of interest.

Some preliminary exploratory studies concerning
microwave neck imaging have been presented in [56],
where a simplified structure resembling the neck is
discussed, and in [57], where qualitative techniques are
used for detecting thyroid tumors. In [58], the impact of the
spinal canal size on transmission measurements has been



analyzed using simplified numerical models. Neck has also
been considered in hyperthermia, which is widely adopted
for increasing the effectiveness of radiotherapy and
chemotherapy protocols [59]-[63]. The objective of
hyperthermia systems is however different, since they aim
to focus the electromagnetic energy in specific parts of the
body. Devices like HYPERcollar [64]-[67] allow an
efficient high-power (50 — 100 W) transfer into the body by
using phased arrays with antennas immersed in a water
bolus. Conversely, the proposed setup is specifically
devoted to imaging applications, thus it requires to
sequentially illuminate the whole neck to receive the
scattering contributions without focusing, by also acquiring
multi-frequency data to increase the available information.

In this paper, a feasibility analysis oriented toward the
development of a tomographic MWI system for spinal cord
diagnostics is presented. The use of MWI for this pathology
is quite challenging, due to the limited attainable resolution,
and constitutes the main novelty of this study. A first
system prototype 1s reported and discussed. It 1s based on
the acquisition of transmission measurements between
antennas located all around patient’s neck. Differently from
typical hyperthermia systems, antennas are put very close to
the neck using a custom 3D-printed structure (also
supporting the coupling medium) and the working
frequency is higher (600 — 900 MHz versus 434 MHz). The
acquired data are processed by using a nonlinear Newton-
based inverse scattering procedure [68], [69] in Lebesgue
spaces, whose output is an image of the cross section of the
neck. With respect to methods developed in the
conventional framework of Hilbert spaces, the use of
Lebesgue spaces LP, with p < 2. reduce over-smoothing
and ringing effects on the reconstructed dielectric profiles
[69], [34]. This fact is highly beneficial for the envisioned
application, in which small inclusions are searched.

The paper is organized as follows. The design of the
developed imaging setup is described in Section II. The
custom 3D-printed neck phantom designed for the
validation phase is detailed in Section I11. Numerical results
and a preliminary experimental assessment are discussed in
Section IV and V, respectively. Conclusions follow.

II. DESIGN OF A MICROWAVE IMAGING SYSTEM FOR
CERVICAL DIAGNOSTICS

In order to assess the feasibility of MWI for the
diagnostic of cervical diseases, a first analysis of the
electromagnetic field propagation inside a layered model of
the neck has been carried out. On such basis, an initial
system prototype has been devised and validated through
numerical simulations and experimental measurements.

A. Field propagation in a lavered model of the neck

The structure of the human neck is quite complex, since it
presents several kinds of internal tissues and anatomic
features. However, as in other MWI applications (e.g., brain
stroke detection [70], [71]), simplified models are useful to
draw initial indications about the working conditions in

which the system could operate. In particular, a simplified
1D layered structure of the neck composed by five layers
has been considered. The outermost semi-infinite layer,
whose relative dielectric permittivity is €., € [1,80].
represents the coupling medium outside the neck, which is
used to increase the field penetration and to reduce the skin
reflections that otherwise may be large. Only the real part
of the dielectric permittivity has been considered, being the
main parameter affecting electrical matching. Clearly, in
real applications, a certain loss is present. However, it
usually has a negligible impact on electrical matching [70].
The three internal layers, representing skin, fat and muscle,
have thicknesses dgjn =3 mm, dpe=9 mm and
Amuscie = 26 mm, respectively [72]. The innermost semi-
infinite layer represents the vertebral bone, The diclectric
properties of these tissues have been characterized with the
frequency-dependent Cole-Cole models available in [73].
This layered structure has been used to evaluate the
reflection coefficient at the external interface of the neck, as
well as the transmission coefficient inside the vertebral
bone where the spinal canal is placed. versus the diclectric
permittivity of the external matching medium and the
working frequency (between 100 MHz and 3 GHz). The
magnitude of these two parameters, obtained with a custom
code based on the analytical formulation in [74], is shown
in Fig. 1. The reflection coefficient [Fig. 1(a)] evidences a
significant reflection from the skin in absence of a matching
medium. However, some regions with low reflection values
can be identified. The first one is located around 300 MHz,
when €,,; 2 30. The second one is between 500 MHz and 1
GHz, with a matching medium having 5 < €,,, = 60. The
third one, which is partially overlapped to the second one, is
between | GHz and 1.8 GHz and requires a matching
medium with 5 < €,,, < 30. When the frequency is above
2 GHz, an important reflection appears, specifically in the
absence of a matching medium. As for the transmission
coefficient in Fig. 1(b), as expected higher values appear at
lower frequencies in the presence of an external matching
medium with €,,, 2 5, which increases the ficld penetration
inside the innermost layer of the model. It is worth noting
that the quite low reflection coefficient around 1.1 GHz
does not reflect into a corresponding peak in the
transmission coefficient due to the significant losses that the
considered tissues exhibit in this band, combined with the
multilayer structure. On these bases, the working frequency
range has been chosen as a trade-off between low reflection
from skin and high transmission toward the vertebra.
Consequently, the second frequency band and a matching
medium with 5 < €,.,;, < 60 have been selected.
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Fig. 1. (a) Reflection and (b) transmission coefficients for different values
of the frequency and of the dielectric permittivity of the matching medium.



B. Structure of the Proposed Microwave Imaging System
The feasibility of MWI to detect the considered cervical
disease has been assessed using an initial system prototype,
built on the basis of the operating conditions defined in
Section IILA. The system process the scattered-field data
acquired with a vector network analyzer (VNA) by means
of a nonlinear inverse-scattering technique, and provides an
image of the cross section of the neck useful to estimate the
dimensions of the spinal canal. The structure of the
prototype is outlined in Fig. 2, where both the measurement
instrumentation and the processing scheme are highlighted.
Regarding the hardware part, a two-port 8753E VNA
(Keysight Technologies, Santa Rosa, CA, USA) is used for
performing measurements in a multistatic arrangement, as
in [34]. A single antenna radiates at a time, and all other
antennas are subsequently swept to obtain multi-view data.
To this end. a microwave switch matrix is connected
between the VNA and antenna ports through RG047 50-0
coaxial cables [34]. Switch matrix operations are controlled
by a MATLAB R2019a (The MathWorks, Natick, MA,
USA) interface through a local area network (LAN) link,
whereas measurements are synchronously acquired by
using a 82357A GPIB-to-USB adapter (Keysight
Technologies, Santa  Rosa, CA, USA). The
radiating/receiving device is composed by N, = 10 slotted
bowtie-like antenna elements with back cavity realized on
FR-4 substrate [75]. The probing elements, which work in
the frequency band selected in Section IILA, are supported
by a modular 3D printed assembly with the shape of a
circular collar containing N, holes where antennas are
nestled. The holes have outer and inner sizes 46 X 26 mm
and 42 x 21 mm, respectively, and are 8 mm deep. The
assembly is composed of two equal parts hooked with two
joints that allow a comfortable application on patient’s neck
(inner and outer radiuses are 64.5 mm and 73.5 mm,
respectively, whereas height is 54 mm). The structure is
made of polylactic acid (PLA) and it is 3D printed with
filament size 1.75mm, layer thickness 0.25 mm, infill
density equal to 15%. and infill velocity 80 mm/s.
According to the indications obtained in Section ILA, the
coupling between antennas and neck is ensured by plastic
bags filled with a mixture glycerin/water with 70%
volumetric content of glycerin (whose dielectric properties
are reported in [34], [76] and shown in Fig. 3(a)) placed in
contact with the radiating surface of each antenna. Such
bags also allow to compensate for variations in neck size.

C. Qutline of the Inverse Scattering Procedure

The acquired data are processed by an inverse scattering
procedure for reconstructing the dielectric properties of the
cross section of the neck. Let us assume a tomographic
configuration and denote as R; the region of interest with
circular shape that encloses patient’s neck. The objective is
to retrieve the contrast function y(r) = &(r)/s, —1,
r € R;, where £(r) and &, are the dielectric permittivity of
the region of interest and background, respectively. Starting
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diagnosis of cervical diseases.
from y. the properties of the spinal canal can be estimated.
In order to obtain such a quantity, it is assumed to have at
disposal two distinet sets of measurements at frequency f
(an e/2™* time dependence is considered and omitted). The
first one is related to a reference configuration Y,.¢, e.g., a
known/partially known neck, whereas the second one refers
to the actual diclectric profile y. In a real monitoring
framework, the reference profile can be obtained from other
imaging modalities, e.g., MRI. Transmission measurements
performed by the VNA are used to obtain an estimate of the
z-component of the electric field at receiving antenna
positions, Consequently, the following two sets of electric
field measurements are available: e:ef(r), v=1,..,N,,
reM,, and e, (r), v =1, ..,N,, r € M,, where M, is the
measurement domain for the vth transmitting antenna. The
problem unknown u(r) = y(r) = x,er(r), T € Ry, is the
difference between the actual, y(r), and the reference,
Xrer (T), contrast function, and is related to the electric field
measurements as

ORTH (1) ] Gy u(l — gn,u)“e{"”(r)
(1)
ey, (r) - eref(l‘) Gy, ull = QRIu) eref(r)

where Gy, v = 1, .., Ny, and G, are defined as

Gw(®) =~k [ Wi g x2ar re G @)
i Ry

in which kf = w?uge, and whose kemel, g,.r, is the
Green’s function for the dielectric profile characterized by
the reference contrast function y,.; [27].

Equation (1) can be written in compact form as
N(u) = y. where V' is a non-linear operator describing
the electromagnetic scattering phenomena and y contains
the measured data. Such an equation, which should be
solved with respect to the unknown wu, is strongly nonlinear
and ill-posed. To solve it, a nonlinear inverse-scattering
approach with L”-space regularization capabilities has been
applied. As outlined in Fig. 2, the inversion method is based
on a Newton-type iterative loop [69], [75]. The above
nonlinear equation is first linearized around the wvalue
reconstructed at the [th iteration. leading to the equation
NyS6=y—-N() £r,withd €A, € B, A,B being L?
spaces. The solution of this linear problem is obtained by an
iterative conjugate-gradient-like approach in Lebesgue
spaces (LpCG) [75]. Specifically, at the kth inner iteration,
the search direction is updated as



dy = —'Nﬂ;)"ﬂ (Ntlﬁk _— ?'1) + Brdy_y (3)
and the solution is computed as
Bis1 = JarUa(8y) + apd, ] 4)

where J,, J4+ and Jp are the duality maps of the
corresponding LP spaces, whose explicit formulas are
reported in [77] along with the parameters a; and ;. The
iterations are initialized with 85 = 0 and dy = Ny;/p(n).
Once the linear problem is solved, the solution is updated as
Uy =w + 6. The iterations are stopped when a
predefined maximum number of iterations (L and K for the
outer and inner loops. respectively) or a threshold R, on
the relative variations of the data residuals between two
iterations are reached [69], [75]. The proposed inverse-
scattering method also exploit multifrequency data by using
a frequency-hopping approach, where the solutions
obtained at lower frequencies are used to initialize the
inversion algorithm at the following frequency steps [27].

[TI. NECK PHANTOMS

The feasibility of the diagnostic system in Section II has
been numerically and experimentally assessed with
simplified phantoms of the neck. To the best of authors’
knowledge, 3D printed neck phantoms for MWI are not
available in the scientific literature. Indeed, numerical neck
phantoms were mainly used for hyperthermia treatments
[78] or to evaluate the SAR distribution in semi-deep
hyperthermia [72]. Realistic head phantoms have been
developed for MWI [79], [B0], but without the neck. For
this reason, a simplified neck phantom was specifically
designed and developed. The geometry of the phantom,
which has been designed on the basis of the geometrical
shape reported in [72] and by using the average dimensions
in [48], is shown in Fig. 4. It consists of a plastic cylinder
with an internal circular inclusion close to the outer border
that represents the trachea. The outer boundary has a
circular cross section with diameter dg,, = 110 mm and
height h, = 110 mm. Internally, a circular compartment
with diameter d;; =95 mm was created with center at
(—1.75,0) mm. The trachea has inner and outer diameters
dinje =18 mm and d,,., = 24 mm, respectively, both
with center at (—39.5,0) mm. Inclusions of different sizes
and complexity can be placed inside this structure for
modeling the spinal canal and/or the vertebral column. In
this way, it is possible to simulate different neck conditions
by exchanging the removable parts.

A first model (“Phantom 17) includes liquid-filled glass
tubes [Fig. 4(a)] to simulate different sizes of the spinal
canal, Two tubes have been tested, with inner diameters
d; = 24 mm and d; =10 mm. An improved model
includes a 3D-printed simplified section of the vertebral
column (“Phantom 27). The shape of this part is sketched in
Fig. 4(g), and the corresponding dimensions are
r, =423 mm, r, = 43.1 mm, r; = 13 mm, a, = 48 mm,
a, =39 mm, a; =6 mm, and a, =3 mm. The spinal

canal inclusion has an inner diameter d,. = 18 mm and it
is centered at (5,0) mm. This block has a thickness of 2 mm
to allow its physical stability, Despite their simplicity, the
adopted structures contain many anatomical details that
introduce significant difficulties in a real applicative
scenario (such as the trachea, containing air, and the high
contrast bone parts). Moreover, since different canal sizes
can be used, it is possible to evaluate the reconstruction
capabilities in a controlled environment.

As a preliminary proof of concept, the phantoms have
been filled with glycerin/water mixtures in different
concentrations to approximate the average contrast between
neck tissues. In particular, a glycerin/water mixture with
70% volumetric content of glycerin has been used to fill the
main structure. The spinal canal has been modelled with a
80% glycerin/water mixture, whereas pure glycerin has
been used for the wvertebral bone. The presence of
plastic/glass layers has a tolerable impact on the transmitted
microwave signals and causes a small difference (about
1.3% on the total field measured in the location opposite to
the source, as verified by numerical simulations). The
dielectric properties of the involved liquids have been
obtained by means of reflection coefficient measurements
on a liquid-filled section of a short-circuited coaxial line
[81]. Table 1 reports the parameters of the single pole
Debye models obtained by fitting the measured data. As
shown in Fig. 3(a), the relative dielectric permittivity of the
adopted mixtures are quite similar to those of the
corresponding biological tissues (on the basis of [82], [83],
average neck properties are calculated with a concentration
of 80% muscle and 20% fat). Fig. 3(b) reports the simulated
and actual contrasts between spinal cord and bone (blue
line) and between spinal cord and average neck (green line),
which also show a good agreement. PLA was used to create
the main structure; it is also used as a supporting material
for trachea and internal inclusions. The dielectric properties
of PLA reported in [84] have been considered in this work.

IV. NUMERICAL RESULTS

The suitability of the nonlinear inverse-scattering
method adopted for processing the measured data has been
initially tested by means of numerical simulations involving
numerical models that reproduce the 3D printed phantoms
shown in Fig. 4(a) and Fig. 4(b). First, the simplified neck
model “Phantom 17 was considered. The diclectric
properties of the simulated phantoms have been
characterized by using the Debye model reported in Table 1.

40
T0% glycerdn  avorage meck simulated contrast =—simulated contrast
B0% glycenn spinal cord 30 roal contbrast == rinl contrant
—100% glycanin - - bone cortical

40
20 ) 10
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600 700 800 800 600 700 800 900
Frequency (MHz) Frequency (MHz)
(a) (b)

Fig. 3. (a) Relative dielectric permattivity of biological tissues and glycerin
in different concentrations. (b) Real and simulated dielectric contrast
between spinal cord and bone and between spinal cord and average neck,
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TABLEL
PARAMETERS OF THE FIRST-ORDER DEBYE MODELS OF THE
GLYCERIN/WATER MIXTURES USED INSIDE THE NECK PHANTOM,
Tissue Glycerin(vol) £, Ag, 7, [ps] o, [mS/m]
Avg, neck 70% 12.440 40,157 116,75 127.46
Spinal cord B0% 10,999 35360 19248 135.16
Bone 100% 57649 7.1352  187.52 21974

The outer layer (matching medium) has thickness 5 mm
and is filled with 70% glycerin/water mixture. The PLA
parts have been modeled with relative dielectric
permittivity £, = 3 and electric conductivity o = 0.001
S/m. According to Section 11.LB, N, =10 antennas
uniformly spaced on a circumference of diameter d = 128
mm has been used. Each antenna (modeled as a line-current
source) acts in turn in transmission mode and the remaining
M = N, — 1 positions are used to collect the scattered
electric field data. A 2-D simulator based on method of
moments has been used for performing the forward
simulations [85]. Frequency-domain data between 600 and
900 MHz with 50 MHz frequency step have been
considered. The investigation domain R; is a circular region
located on the horizontal plane with diameter equal to 120
mm and discretized with Ny = 11304 square cells of side 1
mm. A white Gaussian noise with zero mean value and
variance corresponding to a signal-to-noise ratio (SNR) of
35 dB (i.e., comparable to noise from a realistic
measurement system [86]) has been added to the total
electric field data. In the inversion procedure, the
investigation domain has been partitioned into N;,, = 2828
square cells of side 2 mm, and the following parameters
have been heuristically chosen:p = 1.4, L = 20, K = 10,
R;;, = 0.01. The reference scenario has been assumed to be
the actual neck without the spinal canal.

Three different diameters of the spinal canal have been
considered: 14 mm (i.c., comparable to a pathological
condition), 18 mm, and 24 mm. The reconstructed dielectric
properties at 900 MHz are shown in Fig. 4(c), Fig. 4(d) and

Fig. 4(e), respectively. The estimated diameters of the
spinal cord (a threshold equal to 45% of the contrast
between spinal cord and average neck has been used) are
16.6 mm, 21.9 mm, and 25.8 mm, respectively. Such values
are very close to the actual ones and allow distinguishing
between the different canal sizes. The method requires for
each frequency an average number of 3 outer iterations to
converge and the corresponding computational time is 92
seconds on a PC equipped with an Intel® Core™ i7-2600K
(@ 3.4 GHz processor and 8 GB of RAM.

As a second test case, the more complex “Phantom 2~
[Fig. 4(f)]. containing the simplified vertebral column
model, has been considered. Similar to the previous
simulated cases, the three diameters 14 mm, 18 mm and 24
mm of the spinal canal inside the vertebral column have
been considered. All the other parameters are the same as in
the previous case. The reference scenario is the actual neck
with the vertebra bone and without the spinal canal (in real
applications such a profile may be obtained from previous
MRI or CT images). The reconstructed dielectric profiles
are reported in Fig. 4(h), Fig. 4(i). and Fig. 4(j). In this case,
the estimated diameters are 15.8 mm, 22.7 mm, and 28.8
mm, which again allow distinguishing the pathologic
condition from the normal ones.

V. EXPERIMENTAL RESULTS

Some preliminary experimental results are presented in
this Section. Initially, the MWI system has been tested
using the simplified phantom shown in Fig, 5(a), composed
of a circular glass beaker with external diameter d, = 107
mm filled with a 70 % glycerin/water mixture (simulating
the average dielectric properties of internal neck tissues).
Circular inclusions filled with an 80% glycerin/water
mixture have been placed inside the beaker to simulate the
spinal canal. The system described in Section I1.B has been
used to collect data between 600 and 900 MHz with 50
MHz frequency step. The reference configuration is a
homogenous cylinder with the dielectric properties of a
70% glycerin/water mixture.
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Before measurements, a full reflection/transmission 2-
port calibration of the VNA has been performed by
considering the antennas located on the opposite sides of
the target and using the 85033A SMA 508 calibration kit
(Keysight Technologies, Santa Rosa, CA, USA). The
reference configuration has been used to match the
measured values with the simulated ones, in order to
properly scale the internal electric field. The region of
interest R; (which coincides with a horizontal cross section
of the neck phantom) has a diameter of 122 mm and is
partitioned into Ny, = 3024 square cells of side 2 mm.
The following parameters have been used: p = 1.4, L = 20,
K =10, R, =0.1. Two different diameters of the
inclusion modeling the spinal canal have been considered:
d; =124 mm and d, =16.9 mm. The reconstructed
dielectric properties are shown in Fig. 5(e) and Fig. 5(f),
respectively. In both cases, the internal cylindrical inclusion
is characterized correctly. The estimated diameters are 10.3
mm and 15.8 mm, respectively.

Subsequently, the imaging setup has been tested with
the 3D printed neck phantom. Initially, the simplified
structure “Phantom 1" has been adopted. As shown in Fig.
5(b) and Fig. 5(c), two different diameters of the inclusions,
i.e., d; = 24 mm and d, = 10 mm, have been considered.
The investigation domain has a diameter of 124 mm and it
is partitioned into Nj,, = 5024 square cells of side length
equal to 1.5 mm. The printed phantom without inclusions
has been used as reference model and the inversion
parameters for the first dimension are:p = 1.4, L = 20,
K = 10, Ry, = 0.2. For the second case, p = 1.2 whereas
the other parameters are the same. The reconstructed
dielectric properties are shown in Fig. 5(g) and Fig. 5(h),
respectively. The sizes of the inclusion are quite correctly
identified in both cases (the estimated diameters arec 27.4
mm and 7.2 mm, respectively), confirming that even when
using a more complex host structure, it is still possible to
distinguish between the two different sizes.

The last considered configuration is based on the more
accurate “Phantom 27, as shown in Fig. 5(d). The bone-
related sections are filled with pure glycerin and the internal
inclusion is filled with a 80 % glycerin/water mixture to

simulate the spinal canal, which has a diameter of 18 mm,
The investigation domain is the same used in the previous
cases and the considered reference scenario is a numerical
model of the phantom with the vertebral-mimicking section
filled with pure glycerin. It is worth noting that in this case,
the reference configuration is not exact since the PLA
boundaries are not included in the numerical model. The
inversion parameters are the same as before. The
reconstructed dielectric properties are reported i Fig. 5(1).
Although the increased complexity of this phantom leads to
a slight decrease in reconstruction accuracy (the estimated
diameter is 22.5 mm), it confirms the possibility of
identifying the inclusion even in this more challenging case.

V1. CONCLUSION

A feasibility analysis devoted to the development of an
imaging system working at microwave frequencies for
spinal cord diagnostics has been proposed. A preliminary
prototype has been described. It is based on the use of a set
of antennas that can be positioned around patient’s neck.
The samples of the measured scattered electric field are
used to reconstruct two-dimensional images of the neck by
solving the related inverse scattering problem. To perform
this task, an efficient nonlinear Newton-based method has
been applied. Numerical results have been reported and
discussed. Moreover, some experimental reconstructions
performed by using a 3D printed neck phantom have also
been included. Although preliminary, these results seem to
indicate the potentialities of MWI techniques in detecting
significant changes in the spinal cord size, which may be
symptoms of cervical myelopathy. Indeed, the diameters
estimated from the retrieved images seem to allow
discriminating between the normal and pathologic
conditions. Further developments will be devoted to further
improve the proposed initial prototype and to evaluate its
applicability to more realistic models of the human neck.
Moreover, the application to real human subjects will be
also considered, in order to further validate the capabilities
of the approach. Finally, the possibility of using existing
hyperthermia setups for the microwave imaging of the
cervical region will be explored, too.
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