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Abstract

In this note we consider degenerate chemotaxis systems with porous media
type diffusion and a source term satisfying the Hadamard growth condition.
We prove the Hölder regularity for bounded solutions to parabolic-parabolic
as well as for parabolic-elliptic chemotaxis systems.
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equations, Hölder regularity.
2020 MSC: 92C17, 35K65, 35J70, 35B65

1. Introduction

Let us consider the following class of degenerate chemotaxis systems
ut = div(∇um)− χdiv(uq−1∇v) +B(x, t, u,∇u), in RN×(t > 0),

τ̃ vt = ∆v − av + u, in RN×(t > 0),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, in RN ,

(1.1)
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with N ≥ 2,m ≥ 1, q ≥ max{m+1
2
, 2} and a, χ > 0. The constant τ̃ is taken

nonnegative. When τ̃ = 0 we are in the parabolic-elliptic case and, when
τ̃ > 0, we are in the parabolic-parabolic case. In the latter case, without loss
of generality, we may assume τ̃ = 1 . The initial data (u0(x), v0(x)) satisfies{

u0(x) ≥ 0, u0(x) ∈ L∞(RN) ∩ L1(RN), um0 ∈ H1(RN),

v0(x) ≥ 0, v0(x) ∈ L1(RN) ∩W 1,p(RN),
(1.2)

with 1 < p <∞.
A pair (u, v) of non negative measurable functions defined in RN×[0, T ], T >
0 is a local weak solution to (1.1) if

u ∈ L∞(0, T ;Lp(RN)), um ∈ L2(0, T ;H1(RN)), v ∈ L∞(0, T ;H1(RN)),

and (u, v) satisfies (1.1) in the sense that, for every compact set K ⊂ RN and
every time interval [t1, t2] ⊂ [0, T ], one has∫

K
uψdx

∣∣∣∣∣
t2

t1

+

∫ t2

t1

∫
K

[
− uψt + (∇um,∇ψ)− χuq−1(∇v,∇ψ)

]
dx dt

=

∫ t2

t1

∫
K
B(x, t, u,∇u)ψ dxdt;

(1.3)

∫
K
τ̃ vψdx

∣∣∣∣∣
t2

t1

+

∫ t2

t1

∫
K

[
− τ̃ vψt + (∇v,∇ψ)

]
dxdt =

∫ t2

t1

∫
K

(−av + u)ψdxdt,

(1.4)
for all locally bounded non negative testing function ψ ∈ W 1,2

loc (0, T ;L2(K))∩
Lploc(0, T ;W 1,p

0 (K)).

In the last years, there was a growing interest in the chemotaxis systems.
We recall that Keller and Segel in the seminal paper [15] proposed a mathe-
matical model describing the aggregation process of amoebae by chemotaxis.
For such a reason, nowadays, such kind of systems are named Keller-Segel in
their honour. Recently many authors studied systems with porous medium-
type diffusion and with a power factor in the drift term (see [12], [13], [14],
[16], [21] and the references therein). In this note, we consider a degener-
ate chemotaxis model with porous media type diffusion with m > 1. When
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m = 1, q = 2, B = 0, the system (1.1) is reduced to the classical Keller-Segel
system. In our model, the diffusion of the cells (div(∇um)) depends only on
own density and degenerates when u = 0. The number m denotes the inten-
sity of diffusion and the exponent q in the drift term takes in account the
nonlinear aspects of the biological phenomenon. Moreover we assume χ > 0
which means that the cells move toward the increasing signal concentration
(chemoattractant). For sake of simplicity, we take χ = 1.
This model relies on the presence of the the source term B which describes
the growth of the cells. Some experimental evidences (see [1]) show that B is
a nonlinear term and satisfies natural or Hadamard growth condition, more
precisely it satisfies the inequality (see [5], [7])

|B(x, t, u,∇u)| ≤ C|∇um|2 + φ(x, t), C > 0, (1.5)

with φ(x, t) in the parabolic space Lq,rRN×(t>0)
= Lr(0,∞;Lq(RN)). The pres-

ence of this term makes more challenging the math approach of this system
(see the monograph by Giaquinta [9]).

In literature a great part of the results concerns the case B = 0 where,
depending upon the choice of m and q, it is possible to find initial data for
which we have global existence and initial data for which blow-up in finite
time occurs (see [12], [13], [14], [22] and references therein). To our knowl-
edge, in the more general case B 6= 0, the global existence of the solutions and
the blow-up phenomenon are not still studied in fully detail. For the above
reason, we will work in a bounded time interval [0, T ] i.e. before the eventual
blow-up time, assuming, therefore, that the solution u remains bounded.
In the next future, we intend to investigate the existence, uniqueness, bound-
edness and blow up of the solutions.

For the existence, our idea is to approximate the system with regular ones
whose existence of the solution is known. By the regularity results that we
will prove in this paper, the approximate solutions are equi Hölder continuous
and, by well known theorems, it is possible to find a subsequence converging
to a couple of Hölder continuous functions (u, v). Then, we will try to apply
a compactness result such as Minty’s lemma ( [18]) to prove that the couple
(u, v) is a weak solution of the system.

In order to prove the existence, we will try to follow the Kim and Lee
approach ([16]).

The estimates concerning the boundedness of the solution should be ob-
tained modifying to our context the classical DiBenedetto estimates (see, for
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instance, Chapter 5 of ([5]).
For the global existence and the blow up issues, we intend to draw inspi-

ration from the works by Winkler ([24], [25]).
For the solutions to (1.1) with B = 0 and τ̃ = 1, Ishida and Yokota in
[12] proved that a weak solution exists globally when q < m + 2

N
without

restriction on the size of initial data, improving both Sugiyama ([20]) and
Sugiyama and Kunii results ([21]) where q ≤ m was assumed. In [13], the
authors established the global existence of weak solutions with small initial
data when q ≥ m + 2

N
, while in [23] Winkler proved that there are initial

data such that if q > m+ 2
N

the solution blows up in finite time. Moreover,
in [14] uniform boundedness of nonnegative solutions was derived assuming
q < m+ 2

N
.

If B = 0 and τ̃ = 0, the existence in large of the solutions was proved in
the case of m > q − 2

N
without any restrictions on initial data and in the

case 1 ≤ m ≤ q − 2
N

only for small initial data ([21]). We refer to [1] for
(local and global) existence and nonexistence of solutions to different classes
of Keller-Segel type system.
If B 6= 0 and τ̃ = 0,m = 1, q = 2, in [17] the authors investigated blow-up
phenomena and obtained a safe time interval of existence for the solutions
by deriving a lower bound of the blow-up time.
In [16], following the De Giorgi approach, Kim and Lee proved regularity and
uniqueness results for solutions to degenerate chemotaxis parabolic-parabolic
system assuming that the source term is vanishing.

In this paper we focus our attention only on the local Hölder regularity
of the solution (u, v). More precisely, we give a unitary and more organic
proof that allows us to treat in the same framework a more general equa-
tion (with source term) either in the parabolic-parabolic case and in the
parabolic-elliptic case.
Our approach is based on suitable a-priori estimates on the function v that
solves the second equation of (1.1) and on De Giorgi-DiBenedetto approach (
[4], [5], [6]) for proving regularity of um. The regularity of v, either for τ̃ = 1
or τ̃ = 0, follows in a straightforward way from classical results theory (see,
for instance, [5], [10], [19]). The proof has however some remarkable differ-
ences from the classical approach by DiBenedetto. In this paper we focus
our attention only on the real novelties. When the modifications are based
only on technicalities, we quote the corresponding papers by DiBenedetto
and when it is a structural modification we give a detailed proof. Our main
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result is

Theorem 1.1. (Regularity)
Let u be a locally bounded local weak solution of (1.1) and let B satisfy (1.5).

Then (x, t) → u(x, t) is Hölder continuous in RN × (0, T ) and there exists
αo ∈ (0, 1) such that, for every ε > 0, there exists a constant γ(ε) > 0 such
that

|um(x1, t1)− um(x2, t2)| ≤ γ(ε)(|x1 − x2|αo + |t1 − t2|
αo
2 ),

for every pair of points (x1, t1), (x2, t2) ∈ RN × (ε, T ).

The scheme of this paper is the following: in Section 2 we present some
preliminary lemmas that will be used to prove our main results.

In Sections 3 and 4 we consider the parabolic-parabolic chemotaxis sys-
tem. We study the behavior of um near the ess inf um(First Alternative),
and near the ess sup um(Second Alternative) respectively and combining
these estimates we have the Hölder continuity of the solution. The Section
5 is devoted to the study of the Hölder regularity for the parabolic-elliptic
chemotaxis system.

2. Preliminary results

In this section we present some results we will use in the sequel.
In RN , define the N -dimensional cube centered at the origin and wedge
2R: KR = {x ∈ RN/ max

1≤i≤N
|xi| < R} and let |KR| be its measure. Let

QR(T ) := KR × [0, T ]. Consider the parabolic space Lq,r(QR(T )) with the
norm

||w||Lq,r(QR(T )) ≡
(∫ T

0

(∫
KR

|w|qdx
) r
q
dt
) 1
r
<∞.

Moreover, for p > 1, w belongs to the space

V p(QR(T )) ≡ L∞(0, T ;Lp(KR)) ∩ Lp(0, T ;W 1,p(KR))

if ||w||V p(QR(T )) ≡ ess sup
(0,T )

||w||Lp(KR) + ||∇w||Lp(QR(T )) <∞.

Define V p
0 (QR(T )) ≡ L∞(0, T ;Lp(KR)) ∩ Lp(0, T ;W 1,p

0 (KR)).
The proof of the following lemmata can be found in the monograph [5].
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Lemma 2.1. (Sobolev Lemma) Let ζ̄(x, t) be a cut off function compactly
supported in a cube KR, R > 0 and let u(x, t) be defined in RN × (t1, t2), for
any t2 > t1 > 0. Then

||ζ̄u||
L

2N
N−2 (RN )

≤ C||∇(ζ̄u)||L2(RN );

and, for some C > 0,

||ζ̄u||2L2(t1,t2;L2(RN ))

≤ C
(

sup
(t1≤t≤t2)

||ζ̄u||2L2(RN ) + ||∇(ζ̄u)||2L2(t1,t2;L2(RN ))

)
|{ζ̄u > 0}|

2
N+2 .

(2.1)

For the parabolic spaces, the following embedding inequality holds.

Lemma 2.2. (Embedding Lemma) There exists a positive constant γ1 =
γ1(N, p) such that for every function w ∈ V p

0 (QR(T ))

||w||Lq,r(QR(T )) ≤ γ1||w||V p0 (QR(T )), (2.2)

where p, q, r satisfy the relation

1

r
+
N

pq
=
N

p2
,

and in the case 1 ≤ p < N , the admissible range is q ∈
[
p, Np

N−p

]
, r ∈ [p,∞].

Lemma 2.3. (Fast geometric convergence Lemma). Let (Xi) and (Yi), i =
0, 1, ... be two sequences of positive numbers satisfying the recursive inequal-
ities

Xi+1 ≤ c bi(X1+α̂
i +X α̂

i Y 1+κ
i ); Yi+1 ≤ c bi(Xi + Y 1+κ

i )

with c, b > 1 and κ, α̂ > 0 given numbers. If

X0 + Y 1+κ
0 ≤ (2c)−

1+κ
σ b−

1+κ

σ2 , σ = min(κ, α̂),

then (Xi) and (Yi)→ 0 as i→∞.

Steklov averages.
Since the solutions of (1.1) possess a modest degree of regularity in the time
variable, we utilize the Steklov average uh of the weak solution u, for h > 0:

uh(·, t) =
1

h

∫ t+h

t

u(·, τ)dτ.
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For a complete statement of Steklov averages and for their convergence to
u, as h → 0, we refer the reader to [5] and [6]. Then we point out an
alternative formulation of weak solution to (1.1): fix t ∈ (0, T ), let h > 0
with 0 < t < t + h < T and replace in (1.3) with t1 = t and t2 = t + h;
choosing a test function ψ independent on τ ∈ (t, t+h), dividing by h, using
the Steklov averages we get∫

K×t
[(uh)tψ + ((∇um)h,∇ψ)− χ(uq−1∇v)h∇ψ]dxdτ

=

∫
K×t

B(x, t, u,∇u)hψ dxdτ,

(2.3)

for all locally bounded non negative testing function ψ ∈ W 1,2
loc (0, T ;L2(K))∩

Lploc(0, T ;W 1,p
0 (K)).

Integrating over [t1, t2] and letting h→ 0, (2.3) gives (1.3).

We introduce now apriori estimates on the Lp−Lp′ norm of the solutions
of evolution equations with

1 ≤ p′ ≤ p ≤ ∞, 1

p′
− 1

p
<

1

N
. (2.4)

Consider the following Cauchy problem :{
vt = ∆v − av + w, (x, t) ∈ RN × (t > 0),

v(x, 0) = v0(x), x ∈ RN ,
(2.5)

then by classical Lp maximal regularity properties (see for instance [11], see
also [21]) we have:

Lemma 2.4. (Heat) Let v be the solution to (2.5). If v0 ∈ W 1,p(RN) and
w ∈ L∞(0,∞;Lp

′
(RN)), with p, p′ in (2.4), then for t ∈ [0,∞), there exist

positive constants C0, C̄0, depending on p, p′ and N such that{
||v(t)||Lp(RN ) ≤ ||v0||Lp(RN ) + C0||w(τ)||L∞(0,T ;Lp′ (RN )),

||∇v(t)||Lp(RN ) ≤ ||∇v0||Lp(RN ) + C̄0||w(τ)||L∞(0,T ;Lp
′ (RN )).

(2.6)

An essential tool for the regularity are the energy estimates. Define (k−
um)+ ((k − um)−, resp.) as k − um if k > um (um − k if k < um, resp.)
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and 0 otherwise. Here we state these estimates only for (k−um)+, (omitting
the sign +), being the other case specular. Let q, r > 1, 0 < κ < 2

N
and

introduce q̃, r̃ related to q, r, κ by the formulas:

1− 1

q
=

2(1 + κ)

q̃
, 1− 1

r
=

2(1 + κ)

r̃
. (2.7)

Lemma 2.5. (Local Energy Estimates) Let t1 < t2, q > 2, m > 1 and let
(u, v) be a locally bounded weak solution of problem (1.1).
Then there exist constants γ∗ > 0 and C > 0 depending only upon the data
and ||u||L∞(RN×(ε,T )), such that for a cut-off function η compactly supported
in KR and for every level k,∫

KR×t2
η2
[ ∫ (k−um)

0

Φ(ξ) dξ
]
dx+ γ∗

∫ t2

t1

∫
KR

|∇(η(k − um)|2dxdt

≤ Cm
(∫ t2

t1

∫
KR

(k − um)2|∇η|2dxdt+

∫ t2

t1

∫
KR

[ ∫ (k−um)

0

Φ(ξ)dξ
]
|ηηt|dxdt

+

∫
KR×t1

η2
[ ∫ (k−um)

0

Φ(ξ)dξ
]
dx+

[ ∫ t2

t1

(|Ak,R|
r̃
q̃ dt
] 2(1+k)

r̃
)

(2.8)

with Φ(ξ) := (k − ξ) 1
m
−1ξ and Ak,R(t) = {x ∈ KR : (k − um) > 0}.

Proof. The proof of this estimate follows an argument similar to the one by
DiBenedetto ([5]) and for the reader’s convenience we give here a detailed
proof.
Starting from the definition of weak solution with the Steklov averages (2.3)
and with ψ = −(k − um)η2, integrating from t1 to t2 and letting h → 0, we
obtain

−
∫
Q̃

ut(k − um)η2dxdt+

∫
Q̃

∇um · ∇(−(k − um)η2)dxdt

=

∫
Q̃

uq−1∇v · ∇(−(k − um)η2 dxdt+

∫
Q̃

B(−(k − um))η2dxdt,

(2.9)

where we have denoted by Q̃ := KR× [t1, t2]. We rewrite (2.9) as M1 +M2 =
M3 +M4.
For k > um the following identity holds

−
∫
KR

(k − um)η2ut dx =
1

m

∫
KR

d

dt

(∫ k−um

0

Φ(ξ)dξ

)
η2dx, (2.10)
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with Φ(ξ) defined in (2.8). Integrating by parts the right side of (2.10) with
respect to t leads to

M1 =
1

m

∫
KR×t2

(∫ k−um

0

Φ(ξ)dξ
)
η2dx− 1

m

∫
KR×t1

(∫ k−um

0

Φ(ξ)dξ
)
η2dx

− 2

m

∫
Q̃

(∫ k−um

0

Φ(ξ)dξ
)
η ηt dxdt = M11 −M12 −M13.

By standard calculations we derive

M2 =

∫
Q̃

|∇((k − um)η)|2dxdt−
∫
Q̃

(k − um)2|∇η|2dxdt = M21 −M22,

M3=

∫
Q̃

−η∇((k − um)η)(uq−1∇v)−
∫
Q̃

(k − um)η∇η(uq−1∇v) = M31 +M32.

By using the Young inequality we have

M31 ≤
1

2

∫
Q̃

|∇(k − um)η|2dxdt+

1

2

∫ t2

t1

∫
KR∩{(k−um)>0}

u2(q−1)η2|∇v|2dxdt = M311 +M312.

In the same manner we obtain

M32 ≤
1

2

∫
Q̃

(k − um)2|∇η|2

+
1

2

∫ t2

t1

∫
KR∩{(k−um)>0}

u2(q−1)η2|∇v|2dxdt = M321 +M322.

With Ak,R(t) = {x ∈ KR : (k−um(x, t)) > 0}, applying the Hölder inequality
first in the variable x and then in t we obtain

M312 +M322 ≤ µ
2(q−1)
m

+

(∫ t2

t1

(∫
KR

|∇v|2qdx
)r
q
dt

)1
r(∫ t2

t1

∣∣∣Ak,R(t)
∣∣∣ r(q−1)
q(r−1)

dt
)r−1

r
.

We first observe that Lemma 2.4 is satisfied with w = u, p = 2q, p′ =
2, 1

2
− 1

2q
= κ

N
, q = N

N−2κ
, κ in (2.7), then for (t2 − t1) small enough there

9



exists a constant Iu > 0 such that(∫ t2

t1

(∫
KR

|∇v|2qdx
) r
q
dt
) 1
r

≤21− 1
r

[
C̄0 sup

t1<t<t2

(∫
KR

|u(x, t)|2dx
) 1

2
+
(∫

KR

|∇v0(x)|2qdx
) 1

2q

]2

(t2 − t1)
1
r := Iu.

(2.11)
By inserting (2.11) in (2) and using (2.7) it follows that

M312 +M322 ≤ Iu µ
2(q−1)
m

+

(∫ t2

t1

∣∣∣Ak,R(t)
∣∣∣ r̃q̃ dt) 2

r̃
(1+κ)

. (2.12)

Note that Iu is a constant depending on ||u||L∞(t1,t2)L2(KR)) and ||∇v0(x)||L2q(KR).
In order to estimate the term M4 we recall that, since we are using the trun-
cation (k − um), we take k = µ− + ω

2s0
. By assumptions on B and taking

into account that (k − um) ≤ ω
2s0

< 1

M4 ≤ C

∫
Q̃

|∇(k − um)|2η2 dxdt+

∫
Q̃

φ(k − um)η2dxdt = M41 +M42.

An application of the Young Inequality leads, for a suitable γ > 1, to

M41 = C

∫
Q̃

|∇(k − um)|2η2dxdt

≤ C

2

∫
Q̃

|∇(k − um)η|2dxdt+ C

∫
Q̃

(k − um)2|∇η|2dxdt = M411 +M412.

M42 =

∫
Q̃

φ(k − um)η2dxdt ≤ ||φ||Lq,r(Q̃)

(∫ t2

t1

∣∣∣Ak,R(t)
∣∣∣ r̃q̃ dt) 2

r̃
(1+κ)

.

We observe that, choosing C small enough, we have for a suitable constant
γ∗ > 0

M21 −M311 −M411 ≥ γ∗
∫
Q̃

|∇(k − um)η|2dxdt.

Collecting all the previous inequalities obtained for Mi, i = 1, ...4, the lemma
is proved.

We conclude this section recalling the preliminaries necessary for the reg-
ularity machinery.
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Consider 0 < R < 1 sufficiently small. Set Q(2R,R2−ε) := K2R× [−R2−ε, 0],
where ε is a positive number to be chosen later. We set

µ+ = ess sup
Q(2R,R2−ε)

um, µ− = ess inf
Q(2R,R2−ε)

um, ω = ess osc
Q(2R,R2−ε)

um=µ+− µ−.

Let s0 be the smallest integer such that

θ0 =
ω

2s0
< 1, α = 1− 1

m
, a0 =

ω

A
(2.13)

with A > 2s0 , A a positive constant to be determined later. We introduce
sub cylinders with center at (0, t̄) : Qt̄(R, θ−α0 R2) = KR × [t̄− θ̂, t̄] := Qt̄

R(θ̂),

with θ̂ = θ−α0 R2 and

Q(R, a−α0 R2) := QR(â), with Qt̄
R(θ̂)⊂QR(â) (2.14)

without loss of generality, assume that ( ω
A

)α > Rε. If for any R < 1 this does
not hold, we have ω ≤ AR

ε
α and there is nothing to prove since the oscilla-

tion is then comparable to the radius. Next, if ω > AR
ε
α , we prove that the

oscillation of um is reduced by a fixed factor in the set QR(θ̂), by analyzing
two complementary alternatives. In the first alternative, let us assume that
there exists a subcylinder Qt̄

R(θ̂) where um is away from its infimum.
Under such hypothesis, we are able to prove that the oscillation decreases of
a fixed factor in that sub cylinder. Then, by using the so-called expansion
of positivity in time, we are able to transport that information to the top of
the original cylinder, in the ”right ”sub cylinder.
In the second alternative we examine the case when in all the cylinders Qt̄

R(θ̂),
um is essentially away from its supremum and we prove that the oscillation
decreases by a fixed factor also in this case directly in the whole cylinder.

3. 1st alternative in the parabolic-parabolic case

In this section we examine the first alternative with τ̃ = 1 in (1.1): i.e.
there exists a cylinder Qt̄

R(θ̂) where∣∣{(x, t) ∈ Qt̄
R(θ̂) : um < µ− + ω

2s0+1}
∣∣

|Qt̄
R(θ̂)|

≤ ν (3.1)

11



with the positive constant ν to be defined later.

To work in this context, we need the so-called critical mass and expansion
in time lemmata. For more details about these definitions, see, for instance,
the review paper [8].
We start with the folllowing lemma.

Lemma 3.1. (Critical mass Lemma) Let us consider the cylinder Qt̄
R(θ̂)

defined in (2.14) and let s0 be defined in (2.13). Then there exists a number
ν ∈ (0, 1) such that, if

|{(x, t) ∈ Qt̄
R(θ̂) : um < µ− +

ω

2s0
}| ≤ ν |Qt̄

R(θ̂)|, (3.2)

then
um > µ− +

ω

2s0+1
, a.e. in Qt̄

R
2
(θ̂). (3.3)

Proof. First we estimate
∫ (k−um)

0
Φ(ξ)dξ, with Φ(ξ) := (k − ξ)

1
m
−1ξ. We

prove that there exist two positive constants ĉ ≤ 1
2
, and č ≥ m2

1+m
, such

that

ĉ
(k − um)2

(θ0 + µ−)α
≤
∫ (k−um)

0

Φ(ξ) dξ ≤ č
(k − um)2

(θ0 + µ−)α
, (3.4)

with α = 1− 1
m

. For 0 < um < k, we derive∫ (k−um)

0

Φ(ξ) dξ =

∫ (k−um)

0

[k(k − ξ)−α − (k − ξ)1−α]dξ

= k
k1−α − (um)1−α

1− α
− k2−α − (um)2−α

2− α
.

We introduce the function

r(um) := k
k1−α − (um)1−α

1− α
− k2−α − (um)2−α

2− α
− ĉ (k − um)2

(θ0 + µ−)α
,

with r(0) = (k)2−α
(

1
(1−α)(2−α)

− ĉ
)

and r(0) > 0, if ĉ < 1
(1−α)(2−α)

. Moreover

r(k) = 0. Now we observe that r′(um) < 0 if ĉ ≤ 1
2
. As a consequence, the

function r(um), initially positive, is decreasing up to (k, 0) and always non

12



negative in 0 < um < k. For the inequality on the right of (3.4) following
the previous steps, we define the function

g(um) := k
(k)1−α − (um)1−α

1− α
− k2−α − (um)2−α

2− α
− č (k − um)2

(θ0 + µ−)α

and g(k) = 0 and g(0) < 0 if č > 1
(1−α)(2−α)

. Moreover g is decreasing up to

its minimum reached at um = θ0+µ−
(2č)1/α

. Then g is negative and (3.4) is proved.
Now we are ready to prove Lemma 3.1.
Let us introduce some technical tools. Let us construct a family of nested
cylinders QRi(θ̂) with Ri = R

2
+ R

2i+1 , i = 0, 1, 2, ... for which the assumptions
of Lemma 3.1 hold. After a translation we assume (0, t̄) = (0, 0). Let ζi be a
piecewise cut-off function in QRi(θ̂) such that

0 < ζi(x, t) < 1, (x, t) ∈ QRi(θ̂), ζi = 1, (x, t) ∈ QRi+1
(θ̂),

ζi = 0, on the parabolic boundary of QRi(θ̂);

|∇ζi| ≤
2i+1

R
, 0 ≤ (ζi)t ≤

22(i+1)

θ−α0 R2
.

(3.5)

Apply the Energy Estimates (2.8) over the cylinders QRi(θ̂) to the truncated

functions (ki − um) with ki = µ− +
ω

2s0+1
+

ω

2s0+1+i
, i = 0, 1, 2, .... In (2.8)

the first term on the left, the second and the third on the right include the

term
∫ (k−um)

0
Φ(ξ) dξ : then with k replaced by ki, by using (3.4), we have∫

KRi×{t2}
ζ2
i

[ ∫ (ki−um)

0

(ki − ξ)
1
m
−1ξ dξ

]
dx ≥ ĉ

||ζi(ki − um)||2L2(KRi )

(µ− + θ0)α
. (3.6)

In (3.6) we take the supremum in time since t2 is arbitrary. From (2.8)

13



multiplied by kα0 = (µ− + θ0)α and using (3.6), we get

sup
−θα0R2

i<t<0

||ζi(ki − um)||2L2(KRi )
+ kα0 |||∇(ζi(ki − um))||2L2(Ri)

≤ Cmkα0

{∫ 0

−θ−α0 R2
i

∫
KRi

(ki − um)2|∇ζi|2 dxdt

+

∫ 0

−θ−α0 R2
i

∫
KRi

[
k−α0 (ki − um)2

]
|ζi(ζi)t|dxdt

+
(∫ 0

−θ−α0 R2
i

|Aki,Ri(t)|
r̃
q̃ dt
) 2
r̃

(1+κ)}
≤ Cmkα0

{
(1 +m)

22(i+1)

R2
i

ω2

22s0

∫ 0

−θα0R2
i

|Aki,Ri |(t)dt

+
(∫ 0

−θ−α0 R2
i

|Aki,Ri(t)|
r̃
q̃ dt
) 2
r̃

(1+κ)}
,

(3.7)

with Aki,Ri(t) = {x ∈ KRi : um < ki}. In order to simplify the computations
we perform the following change of time variable in (3.7): z = θα0 t. As
a consequence we have QRi(θ̂) → Qi = Q(Ri, R

2
i ); u(x, t) → u(x, θ−α0 z) =

v(x, z); ζ(x, t)→ ζ̂(x, z); dt = θ−α0 dz. We obtain

ess sup
(−R2

i ,0)

||ζ̂i(ki − vm)||2L2(KRi )
+ ||∇(ζ̂i(ki − vm))||2L2(Qi)

≤ Cm
{
(1 +m)

ω2

22s0

22(i+1)

R2
i

kα0
θα0
|Zi|+

kα0

θ
α(1− 1

r
)

0

(∫ 0

−R2
i

|Zi(z)|
r̃
q̃ dz

) 2
r̃

(1+κ)}
,

(3.8)

with Zi(z) = {x ∈ KRi , : vm(x, z) < ki} and |Zi| =
∫ 0

−R2
i
|Zi(z)|dz.

The sequence (Zi) is connected with two sequences (Xi) and (Yi) so defined:

Xi =
|Zi|
|Qi|

; Yi =

(∫ 0

−R2
i
|Zi(z)|

r̃
q̃ dz

) 2
r̃

|KRi |
,

which satisfy Lemma 2.3. In fact we prove that Xi+1 ≤ c 16i(X1+α̂
i +

X α̂
i Y

1+κ
i ), α̂ = 2

N+2
. By inequality (2.1) in the Sobolev lemma (Lemma
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2.1) applied to (ki − vm) we have

||ζ̂i(ki − vm)||2L2(Qi)
≤ Cm(

k

θ0

)α

{
(1+m)

ω2 22(i+1)

22s0R2
i

|Zi|1+ 1
N+2

+ |Zi|
2

N+2 θ
α
r
0

(∫ 0

−R2
i

|Zi(z)|
r̃
q̃ dz

) 2
r̃

(1+κ)}
.

(3.9)

Moreover, we have∫
Qi

|ζ̂i(ki − vm)|2dxdz

≥|ki+1 − ki|2
∫ 0

−R2
i

|{(x, z) ∈ Ri+1 :vm < ki+1}|dz =
( ω

2s0+i+2

)2

|Zi+1|,
(3.10)

from (3.9) and (3.10) we derive the following upper bound of |Zi+1|:

|Zi+1| ≤ C m(
k

θ0

)α

{
(1 +m)

24(i+2)

R2
i

|Zi|1+ 2
N+2

+ (
ω

2s0+i+2
)−2|Zi|

2
N+2 θ

α
r
0

(∫ 0

−R2
i

|Zi(z)|
r̃
q̃ dz

) 2
r̃

(1+κ)}

≤c 16i

{
1

R2
i

|Zi|1+ 2
N+2 + θ

α( 1
r
− 2
α

)

0 |Zi|
2

N+2

(∫ 0

−R2
i

|Zi(z)|
r̃
q̃ dz
) 2
r̃

(1+κ)
}
,

(3.11)

where the constant c depends on the data and r and r̃ in (2.7). Divide (3.11)
by |Qi+1|: in the first term on the right we have

|Zi|1+ 2
N+2

R2
iR

N+2
i

=
|Zi|
RN+2
i

× |Zi|
2

N+2

R
(N+2) 2

N+2

i

and in the second term

|Zi|
2

N+2

( ∫ 0

−R2
i
|Zi(z)|

r̃
q̃ dz
) 2
r̃

(1+κ)

RN
i ×R2

i

=
|Zi|

2
N+2

R
(N+2) 2

N+2

i

×RNκ
i

( ∫ 0

−R2
i
|Zi(z)|

r̃
q̃ dz
) 2
r̃

(1+κ)

(RN
i )1+κ

.

Then

Xi+1 ≤ c 16i
{
X

1+ 2
n+2

i +
1

θ
α( 2

α
− 1
r

)

0

R
(Nκ)
i+1 X

2
N+2

i Y 1+κ
i

}
.
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Recalling that 1
θα0
< 1

Rε
we have 1

θ
α( 2
α−

1
r )

0

< 1

Rεα(
2
α−

1
r )
, choosing ε such that

εα( 2
α
− 1

r
) < Nk, we obtain

Xi+1 ≤ c 16i
{
X

1+ 2
N+2

i +X
2

N+2

i Y 1+κ
i

}
,

where c is a constant independent of R, ω, A.
Now we prove that Yi+1 ≤ c 16i(Xi + Y 1+κ

i ). We have

Yi+1(ki − ki+1)2 =
1

|KRi+1
|

[∫ 0

−R2
i+1

(ki − ki+1)r̃

(∫
{x∈Ri+1:vm(x,z)<ki+1}

dx

) r̃
q̃
] 2
r̃

≤ 1

|KRi+1
|

[∫ 0

−R2
i+1

(∫
Ri+1

(ζ̂i(ki − vm))q̃ dx

) r̃
q̃

dz

] 2
r̃

.

Then (from ki+1 to ki)

Yi+1|ki+1 − ki|2 ≤ |KRi+1
|−1 ||ζ̂i(ki − vm)||2q̃,r̃;Qi .

Moreover, we apply (2.2) in Lemma 2.2 to the truncated ζ̂i(ki−vm), which is
zero on the boundary from the definition (3.5) of ζ̂i. Then from the inequality
(3.8) we have

Yi+1|ki+1 − ki|2 ≤ |KRi+1
|−1||ζ̂i(ki − vm)||2q̃,r̃;Qi ≤ γ|KRi+1

|−1||ζ̂i(ki − vm)||2V 2(Qi)

≤ |KRi+1
|−1
(
c1|Zi|+ c2

(∫ 0

−R2
i

|Zi(z)|
r̃
q̃ dz
) 2
r̃

(1+κ))
,

(3.12)

with c1 = Cmγ(1 +m)( ω
2s0

)2 22(i+1)

R2
i
, c2 = Cmγθ

α̂
r
0 . Then from (3.12)

Yi+1 ≤ c̃1

{
ω222(i+1)

22s0R2
i

1
ω2

22(s0+i+2)

|KRi+1
|−1|Zi|

+
( ω

2s0
)
α̂
q

( ω
2s0

)2
(22(i+2))|KRi+1

|−1

(∫ 0

−R2
i

|Zi(z)|
r̃
q̃ dz

) 2
r̃

(1+κ)}
.

We conclude that Yi+1 ≤ c̄1 16i(Xi + Y 1+κ
i ). The sequences Xi, Yi satisfy

Lemma 2.3 with b = 24 and

X0 + Y 1+k
0 ≤ (

1

2c̄
)
1+k
σ (

1

16
)
1+k

σ2 := ν < 1.

16



Then Xi, Yi → 0 as i→∞. With such ν the hypothesis (3.2) of Lemma 3.1
holds, then as a consequence, returning to the original coordinate in time,
we obtain (3.3).

Now we exhibit the second lemma.

Lemma 3.2. (Expansion in time Lemma) For every ν1 ∈ (0, 1), there exists
a positive integer s1, depending only upon the data and independent of ω,R
such that for all t ∈ (t̄− θ̂, 0)∣∣∣ {x ∈ KR

4
: um(x, t) < µ− +

ω

2s1

} ∣∣∣ ≤ ν1

∣∣KR
4

∣∣,
Proof. First we estimate

(∫ 0

t∗

∣∣∣Ak,R(t)
∣∣∣ r̃q̃ dt) 2

r̃
(1+κ)

.

Since for any t ∈ [−t∗, 0] ,
∣∣∣Ak,R(t)

∣∣∣ ≤ |KR| we have(∫ 0

−t∗

∣∣∣Ak,R(t)
∣∣∣ r̃q̃ dt) 2

r̃
(1+κ)

≤
(
t∗ (|KR|)r̃/q̃

) 2(1+κ)
r̃

≤
(
|KR|r̃/q̃

) 2(1+κ)
r̃
(R2

θα0

) 2(1+κ)
r̃

= |KR|RNκ 1

θ
α(

2(1+k
r̃

)

0

,

(3.13)

where κ satisfies (2.7).

Moreover, we have RNκθ
−α 2(1+κ)

r̃
0 < RNk−ε 2(1+κ)

r̃ . Pick ε so small in order to

have Nκ
2(1+κ)
r̃

> 2ε. Then Nκ − ε2(1+κ)
r̃

> ε2(1+κ)
r̃

and taking into account

that ( ω
A

)α > Rε, it follows RNk−ε 2(1+κ)
r̃ <

(
ω
A

)α 2(1+κ)
r̃ . Insert the last estimate

in (3.13) to get(∫ 0

−t∗

∣∣∣Ak,R(t)
∣∣∣ r̃q̃ dt) 2

r̃
(1+κ)

≤ |KR|
(ω
A

)α 2(1+k)
r̃
. (3.14)

Now we prove Lemma 3.2. Let s0 be the smallest positive integer such
that ω

2s0
≤ 1. Let s1 > s0 + 2 an integer to be stated later. By Lemma 3.1,

in KR
2
× (t̄− θ̂, t̄), u > (µ− + ω

2s0+1 )
1
m a.e.

Set k̂ = (µ− + ω
2s0+1 )

1
m , ĉ = ( ω

2s1
)

1
m . Define inKR

2
× (t̄− θ̂, 0)

ϕ̂(u) = ln+

(
Ĥ

Ĥ − (k̂ − u)+ + ĉ

)
,
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where Ĥ = ess sup
KR

2
×(t̄−θ̂,0)

(k̂ − u)+. We have ϕ̂(u) ≤ ln+
(
Ĥ
ĉ

)
.

Since Ĥ ≤ (µ− + ω
2s0+1 )

1
m − µ

1
m
− , neglecting µ

1
m
− and observing that f(µ−) :=

(µ−
ω

2s0+1 )
1
m − µ

1
m
− attains its max value at µ− = 0, we have

ϕ̂(u) ≤ 1

m
(s1 − s0) ln2. (3.15)

Moreover, ϕ̂′(u) = ∂ϕ̂(u)
∂u

= −1

Ĥ−(k̂−u)++ĉ
, ϕ̂′′(u) = ∂2ϕ̂(u)

∂u2
= (ϕ̂′(u))2 and by

Lemma 3.1 at the level time t̄−θ̂, ϕ̂(u) = 0 in KR
2
×{t̄−θ̂}. To prove Lemma

3.2 we consider the definition of weak solution with the Steklov average. Pick
as test function ψ = (ϕ̂2(uh))

′ξ2, where ξ = ξ(x) is a cut-off function with
ξ = 1 inKR

4
, ξ = 0 on ∂KR

2
, |∇ξ| ≤ 8

R
For any t̄− θ̂ ≤ t ≤ 0 understanding

h→ 0, we directly compute∫∫
KR

4
×(t̄−θ̂,t)

(u)t(ϕ̂
2(u))′ξ2dxdτ

= −
∫∫

KR
4
×(t̄−θ̂,t)

(∇um) · ∇
(
(ϕ̂2((u)′ξ2

)
dxdτ

−
∫∫

KR
4
×(t̄−θ̂,t)

(uq−1∇v) · ∇
(
(ϕ̂2((u))′ξ2

)
dxdτ

+

∫∫
KR

4
×(t̄−θ̂,t)

(C(|∇um)|2 + φ)(ϕ̂2(u))′ξ2dxdτ

≤ −
∫ 0

t̄−θ̂
Îdt +

∫ 0

t̄−θ̂
Ĵdt+

∫ 0

t̄−θ̂
L̂1dt+

∫ 0

t̄−θ̂
L̂2dt.

(3.16)

For the first term on the left hand side∫∫
KR

4
×(t̄−θ̂,t)

((ϕ̂(u)ξ)2)tdxdt =

∫
KR

4
×{t}

((ϕ̂(u)ξ))2dx. (3.17)

To obtain an estimate from below of the term on the right in (3.17), let us
integrate in the smaller set

P̂ := {x ∈ KR/4 : u(x, t) < (µ− +
ω

2s1
)

1
m}, t ∈ (t̄− θ̂, 0).
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In such set P̂ , we have

ϕ̂(u) ≥ ln+ Ĥ

Ĥ − k̂ + (µ− + ω
2s1

)
1
m + ĉ

.

In this inequality, we apply (µ− + ω
2s1

)
1
m ≤ (µ−)

1
m + ( ω

2s1
)

1
m .

Moreover, the right hand side is a decreasing function in Ĥ. Then for t ∈
(t̄− θ̂, 0), with Ĥ ≤ k̂ − µ1/m

− , we have

ϕ̂(u) ≥ ln+ k̂ − µ
1
m
−

2ĉ
.

Then ∫
P̂

ϕ̂2(u)dx ≥ Ĉ

m2
(s1 − s0 − 1)2 ln2 2 |P̂ |, (3.18)

with Ĉ is a constant depending on ||u||L∞ . Let us estimate the terms on the
right hand side of (3.16).

− Î = −
∫
KR

4

mum−1∇u ·
[
( 2((∇ϕ̂)ϕ̂′ξ2 + 2ϕ̂(∇ϕ̂′)ξ2

+4ϕ̂ ϕ̂′ξ∇ξ] dx ≤ −2m

∫
KR

4

um−1(1 + ϕ̂)ϕ̂′2ξ2 |∇u|2dx

+ 4m

∫
KR

4

um−1|∇u||ϕ̂ϕ̂′|ξ |∇ξ|dx = −Î1 + Î2.

Moreover, by Young’s inequality we have

Î2 = 4m

∫
KR

4

um−1ϕ(
1√
2
ϕ′|∇u|)(

√
2∇ξ) ≤ 4m

∫
KR

4

um−1ϕ

[
1

4
ϕ′2ξ2 |∇u|2|+ |∇ξ|2

]
dx

= m

∫
KR

4

um−1ϕϕ′2ξ2|∇u|2dx+ 4m

∫
KR

4

um−1ϕ |∇ξ|2dx = Î21 + Î22

Ĵ=

∫
KR

4

uq−1∇v ·
[
2((∇ϕ)ϕ′ξ2 + 2ϕ(∇ϕ′)ξ2 + 4ϕϕ′ξ∇ξ

]
dx

≤ 2

∫
KR

4

uq−1(1 + ϕ)ϕ′2ξ2|∇u||∇v|dx+ 4

∫
KR

4

uq−1ϕ|ϕ′|ξ|∇v||∇ξ|dx

= Ĵ1 + Ĵ2.
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By hypothesis on q, we can split q − 1 in the sum of two positive term of
the form q− 1 = m−1

2
+ (q− m+1

2
). Using again Young’s inequality in Ĵ1 we

obtain

Ĵ1 ≤
∫
KR

4

(1 + ϕ)ϕ′2um−1|ξ2|∇u|2dx+

∫
KR

4

(1 + ϕ)ϕ′2ξ2u2q−m−1|∇v|2dx

= Ĵ11 + Ĵ12,

Ĵ2 = 4

∫
KR

4

ϕ
[
(|ϕ′|uq−1ξ|∇v|)(|∇ξ|)

]
dx

≤ 2

∫
KR

4

ϕϕ′2u2q−2ξ2|∇v|2dx+ 2

∫
KR

4

ϕ|∇ξ|2dx = Ĵ21 + Ĵ22

Note that −Î + Ĵ + L̂1 + L̂2 ≤ (−Î1 + Ĵ11 + Î21 + L̂1) + (Î22 + Ĵ22)
+(Ĵ12 + Ĵ21 + L̂2). Since L̂1 ≤ 0, we have

− Î1 + Ĵ11 + Î21 + L̂1≤ −(m− 1)

∫
KR

4

um−1ϕ′2ξ2 |∇u|2dx < 0,

a negative term that can be neglected.

Î22 + Ĵ22 = 4m

∫
KR

4

um−1ϕ̂|∇ξ|2dx + 2

∫
KR

4

ϕ̂|∇ξ|2

< C1

∫
KR

4

ϕ̂ |∇ξ|2dx ≤ C1(s1 − s0 − 1) ln 2
26

R4

(∫ 0

−θ
(|Ak,R

4
|
r̃
q̃ dt
) 2(1+k)

r̃
,

(3.19)
with C1 = 4mµm−1

+ + 2. Now we can estimate

Ĵ12 + Ĵ21

=

∫
KR

4

(1 + ϕ̂)ϕ̂′2u2q−2ξ2|∇v|2dx+ 2

∫
KR

4

ϕ̂ϕ̂′2u2q−2ξ2|∇v|2dx

< 3

∫
KR

4

u2q−2(1 + ϕ̂)ϕ̂′2ξ2|∇v|2dx.

(3.20)
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An integration in time of (3.20) yields∫ 0

−θ̂
(Ĵ12 + Ĵ21)dt

≤ µ
2q−2
m

+

3

m
(s1 − s0) ln 2

(
2s1

ω

)2∫∫
QR

4
(θ̂)

ξ2|∇v|2dxdt,
(3.21)

where the estimate 1 + ϕ < 1
m

(s1 − s0) ln 2 is used, thanks to (3.15).
Following the details in computing (2) and (2.11) there exists a positive
constant Iu such that∫∫

QR
4

(θ̂)

ξ2|∇v|2dxdt ≤ Iu

(∫ 0

−θ
(|Ak,R

4
|
r̃
q̃ dt
) 2(1+k)

r̃
. (3.22)

Thus, inserting (3.22) in (3.21) , we have∫ 0

−θ̂
(Ĵ12 + Ĵ21)dt

≤ µ
2q−2
m

+

3

m
(s1 − s0) ln 2

(
2s1

ω

)2

Iu

(∫ 0

−θ̂
(|Ak,R

4
|
r̃
q̃ dt
) 2(1+k)

r̃
.

(3.23)

Now we estimate L̂2. Since φ ∈ Lq,rRN×(t>0)
, applying Hölder inequality, the

following estimate holds∫ 0

−θ̂
L̂2dt ≤ 2

[
(s1 − s0) ln 2

(2s1

ω

)]
||φ||Lq,r

QR
4

(θ̂)

(∫ 0

−θ̂
(|Ak,R

4
|
r̃
q̃ dt
) 2(1+k)

r̃
. (3.24)

Using the estimate (3.14) applied to KR
4

and adding (3.23) with (3.24) , we

obtain∫ 0

−θ̂
(Ĵ12 + Ĵ21 + L2)dt

≤ (s1 − s0) ln 2
2s1

ω

(
µ

2q−2
m

+

3

m

2s1

ω
Iu + 2||φ||Lq,rQR

4

)
|KR

4
|
(ω
A

) 2α(1+k)
r̃

(3.25)
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Inserting (3.18), (3.19) and (3.25) into (3.16), we obtain( 1

2m

)2

(s1 − s0)2 ln2 2 |P̂ |

≤ 2mC1(s1 − s0) ln 2
26

R2
|KR

4
|
(ω
A

) 2α(1+k)
r̃

+ (s1 − s0) ln 2
2s1

ω

(
µ

2q−2
m

+

3

m

2s0

ω
Iu + 2||φ||Lq,rQR

2

)
|KR

4
|
(ω
A

) 2α(1+k)
r̃

.

(3.26)

Dividing by Ĉ
m2 (s1 − s0)2 ln22, choosing A and s1 sufficiently large, we con-

clude

|P̂ | ≤

{
2m3C1

26

R2

Ĉ(s1 − s0) ln 2

+
(m)2 2s1

ω

Ĉ(s1 − s0) ln 2

(
(µ+)

2q−2
m

3

m

2s1

ω
Iu + 2||φ||Lq,rQR

2

)}
|KR

4
|
(ω
A

) 2α(1+k)
r̃

= ν1|KR
4
|.

Now, using Lemma 3.2 and following the same argument developed in
Chapter III, Section 6 of [5], in the subcylinder KR

4
× (t̄− θ−α0 (R

4
)2, 0), one

can prove that the numbers ν1 and s1 of Lemma 3.2 can be chosen a priori
depending only upon the data and independent of ω and R, such that we
have

um > µ− +
ω

2s1+1
a.e. (x, t) ∈ KR

8
×
(
t̄− θ−α0

(R
8

)2

, 0
)
.

This concludes the 1st alternative, because we have proved the reduction of
the oscillation in that sub cylinder. Thanks to the expansion of positivity
in time (for more detail about this now a classic tool, see [5]) we are able
to transport this information to the top of the original cylinder. In fact, we
have shown that in the sub cylinder located at the top, there exist numbers
η1 =

(
1− 1

2s1+1

)
, and A1 > A that can be determined a priori in terms of the

data, such that

either ess osc
QR

8
(θ̂)

um ≤ η1 ω or ω ≤ A1R
ε
α .
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4. 2nd alternative for the parabolic-parabolic case

Suppose that the assumption of the first alternative is violated, i.e. for
all subcylinders Qt̄

R(θ̂) ⊂ QR(â)∣∣∣ {(x, t) ∈ Qt̄
R(θ̂) : um(x, t) < µ− +

ω

2so

} ∣∣∣ > ν
∣∣QR(θ̂)

∣∣. (4.1)

We can rewrite (4.1) as∣∣∣ {(x, t)∈Qt̄
R(θ̂) :um(x, t) > µ+ −

ω

2so

} ∣∣∣ ≤(1−ν)
∣∣QR(θ̂)

∣∣. (4.2)

In order to estimate the measure of the set where um(x, t) > µ+− ω
2so

within
KR, we use the following lemma proven in [5].

Lemma 4.1. (t* Lemma). Fix Qt̄
R(θ̂) ⊂ QR(â) and assume that (4.2) holds.

There exists a time level t∗ ∈ [t̄− θ−α0 R2, t̄− ν
2
θ−α0 R2] such that∣∣∣{x ∈ KR : um(x, t∗)> µ+−

ω

2so

}∣∣∣≤ 1− ν
1− ν

2

|KR|.

Now let us evaluate the measure of the set
{
x ∈ KR : um(x, t) > µ+ − ω

2s1

}
,

t ∈ [t∗, 0], where s1> so is an integer to be fixed later on.
At this end, pick H = ess sup

KR×[t∗,0]

(
um − (µ+ − ω

2so
)
)
. In KR × [t∗, 0], consider

the function

ϕ(H) = ϕ(um) = ln+

(
H

H − (um − k) + c

)
, k = µ+ −

ω

2so
, c =

ω

2s1
.

Note that

ϕ′(um) =
1

H − (um − k) + c
>

H

H − (um − k) + c
≥ 1,

ϕ′′(um) = (ϕ′(um))2, ∇ϕ = ϕ′∇um, ∇ϕ′ = ϕ′2∇um.

Lemma 4.2. (Logarithmic Lemma) There exists an integer s1 > s0, such
that if H > ω

2s1
, then∣∣∣ {x ∈ KR : um(x, t) > µ+ −

ω

2s1

} ∣∣∣ ≤ (1− ν2

4

)
|KR|, ∀t ∈ [t∗, 0].
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Proof. Split KR = K(1−σ)R + KσR, 0 < σ < 1. Making use of the defini-
tion of weak solution, via the Steklov average, pick as test function ψ(umh ) =
m(umh )α(ϕ2(umh ))′ξ2, where ξ = ξ(x) is a cut-off function, ξ = 1 in the cube K(1−σ)R,
ξ = 0 on ∂KR, |∇ξ| ≤ 2

σR
.

For any t∗ ≤ t ≤ 0, letting h→ 0, we get∫∫
KR×(t∗,t)

(ϕ2(um)ξ2)tdxdτ =

∫
KR×{t}

ϕ2(um)ξ2dx−
∫
KR×{t∗}

ϕ2(um)ξ2dx.

Define

−
∫ t

t∗

∫
KR

(∇um) · ∇ψdxdτ +

∫ t

t∗

∫
KR

(uq−1∇v) · ∇ψdxdτ

+

∫ t

t∗

∫
KR

C|∇um|2ψ dxdτ +

∫ t

t∗

∫
KR

φψdxdτ

:= −
∫ t

t∗
Idτ +

∫ t

t∗
Jdτ +

∫ t

t∗
L1dτ +

∫ t

t∗
L2dτ

and, from the definition of weak solution, get the following inequality∫
K(1−σ)R×{0}

ϕ2(um)ξ2 dx ≤
∫
KR×{0}

ϕ2(um)ξ2 dx

=

∫
KR×{t∗}

ϕ2((um)ξ2 dx+

∫ 0

t∗
(−I + J + L1 + L2) dt.

(4.3)

To estimate the term
∫
K(1−σ)R×{t}

ϕ2(um)ξ2 dx define

P̄ = {x ∈ K(1−σ)R : um(x, t) > µ+ − ω
2s1
} , with t∗ < t < 0.

Using the notation ϕ(um) = ϕ(H), in P̄ we have ϕ(H) ≥ (s1 − s0 − 1) ln 2
(to prove this estimate we refer the reader to Chapter II, Section 3-(ii) in
[5]). Hence by Lemma 4.1∫

KR×{t∗}
ϕ2(um)ξ2 dx ≤ ln2 2(s1 − s0)2

(1− ν
1− ν

2

)
|KR| (4.4)

and

∫
P̄×{t}

ϕ2(um)dx

> (s1 − s0 − 1)2 ln2 2
∣∣∣{x ∈ K(1−σ)R : um(x, t) > µ+ −

ω

2s1

}∣∣∣. (4.5)
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Our aim is to estimate
∫ 0

t∗
(−I + J + L1 + L2)dt.

− I = −
∫
KR

mum−1∇u ·
[
(2m(m− 1)um−2(∇u)ϕϕ′ξ2 + 2mum−1((∇ϕ)ϕ′ξ2

+2mum−1ϕ(∇ϕ′)ξ2 + 4mum−1|∇u|ϕϕ′ξ∇ξ
]
dx ≤ −2(m− 1)

∫
KR

u−1(∇um|)2ϕϕ′ξ2dx

− 2m

∫
KR

um−1(1 + ϕ)ϕ′2ξ2 |∇um|2dx+ 4m

∫
KR

um−1|∇um|ϕϕ′ξ |∇ξ|dx = −I1 − I2 + I3.

Moreover, by Young’s inequality we have

I3 = 4m

∫
KR

um−1ϕ(
1√
2
ϕ′∇um)(

√
2∇ξ)dx ≤ 4m

∫
KR

um−1ϕ

[
1

4
ϕ′2ξ2 |∇um|2 + |∇ξ|2

]
dx

= m

∫
KR

um−1ϕϕ′2ξ2|∇um|2dx+ 4m

∫
KR

um−1ϕ |∇ξ|2dx = I31 + I32

J=

∫
KR

uq−1∇v ·
[
2m(m− 1)um−2(∇u)ϕϕ′ξ2 + 2mum−1(∇ϕ)ϕ′ξ2

+2mum−1ϕ(∇ϕ′)ξ2 + 4mum−1ϕϕ′ξ∇ξ
]
dx ≤ 2(m− 1)

∫
KR

uq−2ϕϕ′ξ2|∇um||∇v|dx

+ 2m

∫
KR

uq+m−2(1 + ϕ)ϕ′2ξ2|∇um||∇v|dx+ 4m

∫
KR

uq+m−2ϕϕ′ξ|∇v||∇ξ|dx

= J1 + J2 + J3.

Using Young’s inequality and the fact that ϕ′ > 1 we have

J1 ≤ (m− 1)

∫
KR

u−1ϕϕ′ξ2|∇um|2dx+ (m− 1)

∫
KR

ϕϕ′2ξ2|∇v|2u2q−3dx

= J11 + J12.

Using Young’s inequality in J2 we obtain

J2 ≤ 2m

∫
KR

um−1(1 + ϕ)(ϕ2)′ξ2

[
1

2
|∇um|2 +

1

2
u2q−2|∇v|2

]
= m

∫
KR

um−1(1 + ϕ)(ϕ2)′ξ2|∇um|2 +m

∫
KR

um(1 + ϕ)ϕ′2u2q−3ξ2|∇v|2

= J21 + J22,
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J3 = 4m

∫
KR

um−1ϕ
[
(ϕ′uq−1ξ|∇v|)(|∇ξ|)

]
≤ 2m

∫
KR

umϕϕ′2u2q−3ξ2|∇v|2 + 2m

∫
KR

um−1ϕ|∇ξ|2 = J31 + J32.

Note that −I + J + L1 + L2 ≤ (−I1 + J11) + (−I2 + J21 + I31 + L1)
+(I32 + J32) + (J12 + J22 + J31) + L2.
Moreover

− I1 + J11 = −(m− 1)

∫
KR

u−1|∇um|2ϕϕ′ξ2dx < 0

and

− I2 + J21 + I31 + L1≤ −m(1− 2C)

∫
KR

um−1ϕ′2ξ2 |∇um|2dx;

taking C < 1/2, we obtain a negative term that can be neglected.

I32 + J32 = 4m

∫
KR

um−1ϕ |∇ξ|2dx+ 2m

∫
KR

um−1ϕ|∇ξ|2

= 6m

∫
KR

um−1ϕ |∇ξ|2dx.
(4.6)

It follows that

J12 + J22 + J31

= (m− 1)

∫
KR

ϕϕ′2u2q−3ξ2|∇v|2dx+m

∫
KR

um(1 + ϕ)ϕ′2u2q−3ξ2|∇v|2dx

+ 2m

∫
KR

umϕϕ′2u2q−3ξ2|∇v|2dx < 3m

∫
KR

ϕϕ′2u2q−3ξ2|∇v|2dx

+ 3m

∫
KR

um(1 + ϕ)ϕ′2u2q−3ξ2|∇v|2dx ≤ 3m

∫
KR

(1 + um)(1 + ϕ)ϕ′2u2q−3ξ2|∇v|2dx.

From the last inequalities, taking in account (3.3) and (3.15) we deduce∫
QR(t∗)

(1 + um)(1 + ϕ)ϕ′2u2q−3ξ2|∇v|2dxdt

≤ (1 + µ+)(1 + (s1 − s0) ln 2)

(
2s1

ω

)2

(µ+)
2q−3
m

∫
QR(t∗)

ξ2|∇v|2dxdt.
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Following the details in computing (2.11), there exists Iu such that∫
QR(t∗)

ξ2|∇v|2dxdt ≤ Iu

(∫ 0

t∗

∣∣∣Ak,R(t)
∣∣∣ r̃q̃ dt) 2

r̃
(1+κ)

where
∣∣∣Ak,R(t)

∣∣∣ =
∣∣∣ {x ∈ KR : um > µ+ − ω

2s1

} ∣∣∣.
Thus by using (3.13) and (2.7) we have∫ 0

t∗
(J12 + J22 + J31)dt

≤ 3mIu(1 + µ+)(1 + (s1 − s0) ln 2)
22s1

ω2
µ

2q−3
m

+ |KR|
(ω
A

)α(1− 1
r

)

.

Also we have by (4.6)∫ 0

t∗
(I32 + J32)dt ≤ 6m(s1 − s0) ln 2 (µ+)m−1γ |KR| θ−α0

≤ 6γ̃m
(2s0)α(s1 − s0) ln 2µm−1

+

ωα

∣∣∣KR

∣∣∣. (4.7)

Now we estimate L2. Since φ ∈ Lq,r(RN×(t > 0)), applying Hölder inequality
we have∫ 0

t∗
L2dt ≤ 2mµm−1

+ (s1 − s0)ln2
2s1

ω
||φ||q,r,QR(θ̂)

(∫ 0

−θ
(|Ak,R|

r̃
q̃ dt
) 2(1+k)

r̃
. (4.8)

Adding (4.8) to (4.7), we have∫ 0

t∗
(J12 + J22 + J31 + L2)dt

≤ 3mIu(1 + µ+)(1 + (s1 − s0) ln 2)
(2s1

ω

)2

µ
2q−3
m

+ |KR|
(2s0

A

) 2α(1+k)
r̃

+ 2m
[
µm−1

+ (s1 − s0) ln 2
(2s1

ω

)]
||φ||q,r,QR(θ̂)

(2s0

A

) 2α(1+k)
r̃ |KR|.
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At the end we obtain the final estimate∫ 0

t∗
(−I + J + L1 + L2)dt

≤ 3mIu(1 + µ+)(1 + (s1 − s0) ln 2)
(2s1

ω

)2

µ
2q−3
m

+

(2s0

A

) 2α(1+k)
r̃ |KR|

+ 2m
[
µm−1

+ (s1 − s0) ln 2
(2s1

ω

)]
||φ||q,r,QR(θ̂)

(2s0

A

) 2α(1+k)
r̃ |KR|

+ 6mγ
(2s0)α

ωα
(s1 − s0) ln 2 µm−1

+

σ2
|KR|.

(4.9)

By inserting (4.4), (4.5) and (4.9) in (4.3) and dividing by (s1−s0−1)2 ln2 2,
we obtain

|{x ∈ KR : um(x, t) > µ+ −
ω

2s1
} ≤

(
s1 − s0

s1 − s0 − 1

)2(
1− ν
1− ν

2

)
|KR|

+ 3mIu(1 + µ+)
(1 + (s1 − s0) ln 2)

(s1 − s0 − 1)2 ln2 2

(
2s1

ω

)2

µ
2q−3
m

+

(2s0

A

) 2α(1+k)
r̃ |KR|

+ 2m
µm−1

+ (s1 − s0)

(s1 − s0 − 1)2 ln 2

2s1

ω
||φ||

(2s0

A

) 2α(1+k)
r̃ |KR|

+ 6γm
(2s0)α

ωα
(s1 − s0)µm−1

+

σ2 (s1 − s0 − 1)2 ln 2
|KR|+Nσ|KR|

≡ (A + B1 + B2 + C +Nσ) |KR|,

where we used the fact that∣∣∣{x ∈ KR : um >µ+−
ω

2s1

}∣∣∣ ≤ ∣∣∣{x ∈ K(1−σ)R : um > µ+−
ω

2s1

}∣∣∣+Nσ|KR|.

Choosing σ such that Nσ ≤ 1
4
ν2, s1 such that

(
s1−s0
s1−s0−1

)2

≤ (1− 1
2
ν)(1 + ν),

we have A ≤ 1− ν2 and C ≤ 1
4
ν2 and for such σ and s1, let A be such that

B1 ≤ 1
8
ν2 and B2 ≤ 1

8
ν2 and this implies the statement of Lemma 4.2.

The second alternative is concluded estimating the measure of the set
where um(x, t) > µ+ − ω

2s∗
, s∗ > s2 within a sub cylinder of QR( â

2
). This can

be done via the following two lemmata which proofs can be deduced from
Lemma 8.1 and Lemma 9.1, Chapter 3 in [5].
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Lemma 4.3. For every ν∗ ∈ (0, 1), there exists s∗ > s2, independent on R,ω
such that ∣∣∣{x ∈ QR(

â

2
) : um(x, t) > µ+ −

ω

2s∗

}∣∣∣ ≤ ν∗ |QR(
â

2
)|

with A = 2s
∗
, a0 = ω

A
.

Lemma 4.4. The number ν∗ (and s∗) can be chosen such that

um(x, t) ≤ µ+ −
ω

2s∗+1
, a.e. in Q

(R
2
,
1

2

( ω
2s∗

)−α(R
2

)2 )
.

The reduction of the oscillation concludes the 2st alternative.
Following the approach by Di Benedetto (see [5], Chapter III), the two alter-
natives imply the Hölder continuity of um, hence Theorem 1.1 is proved in
the parabolic-parabolic case.

5. Hölder continuity to the parabolic-elliptic chemotaxis system

The aim of this section is to extend the results obtained in the previous
sections for the system (1.1) with τ̃ = 1, to the following parabolic-elliptic
degenerate system (τ̃ = 0) in RN × (t > 0){

ut = div(∇um)− χdiv(uq−1∇v) +B(x, t, u,∇u),

0 = ∆v − av + u,

with nonnegative initial data satisfying (1.2). Our approach is unitary and
does not see the difference between the parabolic-parabolic and parabolic-
elliptic cases. For this reason the proof of Hölder continuity of um follows
almost entirely the steps of the Sections 3 and 4 for the parabolic-parabolic
case. In this section we will focus our attention only on the main differences.
First, let us state a-priori elliptic Lp estimates.
Consider the elliptic equation

−∆v + av = w, x ∈ RN .

By classical Lp regularity results ([2], [3])

||v(x)||W 2,p(RN ) ≤ c||w(x)||Lp(RN ) (5.1)
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where c is a constant depending upon p,N and a.
Let us start now the study of the 1st Alternative.
In order to extend the result in Lemma 3.1 we must consider the terms
containing |∇v|, and there, instead of (2.6), we have to use the estimate
(5.1). The same must be done in the analogous of Lemma 3.2.
Let us explain some details. To construct the sequences Xi and Yi the Lemma
2.5 must be applied. More precisely, we must change the estimate of the term
with |∇v| (see (2.11)) present in∫ t2

t1

∫
KR

⋂
{(k−um)>0}

u2(q−1)η2|∇v|2dxdt

≤ µ
2(q−1)
m

+

(∫ t2

t1

(∫
KR

|∇v|2qdx
) r
q
dt

) 1
r(∫ t2

t1

∣∣∣Ak,R(t)
∣∣∣ r(q−1)
q(r−1)

dt
) r−1

r
.

(5.2)

By using (5.1) with w = u and p = 2q, we obtain

(∫ t2

t1

(∫
KR

|∇v|2qdx
) r
q
dt

) 1
r

≤ c
(∫ t2

t1

||u||2r2qdt
) 1
r ≤ Eu, (5.3)

with Eu a positive constant depending on sup
t1<t<t2

||u||2q. Replacing (5.3) in

(5.2) and using (2.7) we get∫ t2

t1

∫
KR

⋂
{(k−um)>0}

u2(q−1)η2|∇v|2dxdt ≤Euµ
2(q−1)
m

+

(∫ t2

t1

∣∣∣Ak,R(t)
∣∣∣ r̃q̃ dt) 2

r̃
(1+κ)

.

Inserting the last inequality in the computations of Lemma 3.1 and checking
the validity of Lemma 3.2, we derive also for the parabolic-elliptic case that
the oscillation of um is reduced by a fixed factor.
For the 2nd Alternative, we observe that Lemmata 4.2 and 4.1 hold by re-
placing in the estimate of |∇v| the constant Iu with the constant Eu defined
in (5.3). So also in this case the oscillation is reduced. Exactly as in the
parabolic-parabolic case, this implies the Hölder continuity of um.
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