
Information Sciences 642 (2023) 119093

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Stateful detection of adversarial reprogramming

Yang Zheng a, Xiaoyi Feng a, Zhaoqiang Xia a, Xiaoyue Jiang a, Maura Pintor b,
Ambra Demontis b,∗, Battista Biggio b, Fabio Roli a,c

a Northwestern Polytechnical University, Xi’an, China
b University of Cagliari, Italy
c University of Genoa, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Adversarial machine learning

Adversarial reprogramming

Neural networks

Stateful defenses

Adversarial reprogramming allows stealing computational resources by repurposing machine
learning models to perform a different task chosen by the attacker. For example, a model trained
to recognize images of animals can be reprogrammed to recognize medical images by embedding
an adversarial program in the images provided as inputs. This attack can be perpetrated even
if the target model is a black box, supposed that the machine-learning model is provided as a
service and the attacker can query the model and collect its outputs. So far, no defense has been
demonstrated effective in this scenario. We show for the first time that this attack is detectable
using stateful defenses, which store the queries made to the classifier and detect the abnormal
cases in which they are similar. Once a malicious query is detected, the account of the user who
made it can be blocked. Thus, the attacker must create many accounts to perpetrate the attack.
To decrease this number, the attacker could create the adversarial program against a surrogate
classifier and then fine-tune it by making a few queries to the target model. In this scenario, the
effectiveness of the stateful defense is reduced, but we show that it is still effective.

1. Introduction

Adversarial reprogramming is an attack that allows stealing the computational resources of machine learning models provided as
a service by repurposing them to perform a task chosen by the attacker. For instance, an online service that uses a deep network to
classify images of objects can be reprogrammed by attackers to solve CAPTCHAs1 automating the creation of SPAM accounts [1]. Let
us consider as an example the case depicted in Fig. 1; where an attacker would like to repurpose a model trained to classify samples
belonging to a source domain (e.g., ImageNet objects) to classify samples belonging to a different, target domain (e.g., the medical
images of the HAM10000 dataset). To this end, the attacker should first establish a mapping function between the class labels of the
source domain and those of the target domain (e.g., the first six classes of the ImageNet datasets could be associated with the class
“akiec” of intraepithelial carcinoma, etc.). Once such a class mapping is established, the target-domain samples will be modified to
embed the adversarial program. Namely, a universal (equal for all the target-domain samples) adversarial perturbation optimized to
have such samples assigned to the desired source-domain classes. For a more detailed explanation of how this attack works, we refer
the reader to Sec. 2. The first work that proposed adversarial reprogramming [1] assumed that the attacker knows the architecture

* Corresponding author.

E-mail address: ambra.demontis@unica.it (A. Demontis).
Available online 8 May 2023
0020-0255/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1 Completely Automated Public Turing test to tell Computers and Humans Apart.

https://doi.org/10.1016/j.ins.2023.119093

Received 8 August 2022; Received in revised form 25 March 2023; Accepted 30 April 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ins
mailto:ambra.demontis@unica.it
https://doi.org/10.1016/j.ins.2023.119093
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2023.119093&domain=pdf
https://doi.org/10.1016/j.ins.2023.119093
http://creativecommons.org/licenses/by/4.0/

Information Sciences 642 (2023) 119093Y. Zheng, X. Feng, Z. Xia et al.

Fig. 1. Adversarial reprogramming of AlexNet [3], trained on the ImageNet dataset. Multiple source-domain classes are mapped to one of the target-domain classes
(e.g., “tench”, “goldfish”, “white shark”, “tiger shark”, “hammerhead”, “electric ray” are mapped in “akiec”, etc.). In the example, the HAM10000 image “akiec” is
embedded in the adversarial program, and classified by pre-trained AlexNet as desired, namely as the source-domain class that is mapped to the “akiec” class.

Fig. 2. A machine learning (ML) system provided as a service and protected by a stateful detector that analyzes the queries made by a user’s account and eventually
bans it.

and weights of the target model (the so-called white-box scenario), which is seldom true. However, recent results [2] showed that
adversarial reprogramming could be executed even if the attacker has only query access to the target model (black-box scenario).
Namely, if the attacker can only make a sequence of queries to the target model and collect the outputs. So far, no defense has shown
to be effective in this scenario; therefore, it remains unclear if and to what extent this attack can be mitigated.

In this work, we show for the first time that this attack can be effectively mitigated with stateful defenses (Sec. 3). In a black-box
scenario, the attacker can estimate the gradient needed to optimize the adversarial program with numerical techniques. To this end,
she has to make numerous queries with inputs quite similar to each other. This similarity can be exploited to detect reprogramming
attacks using a stateful detector. This defense was originally proposed by Chen et al. [4] to protect machine learning systems against
a different kind of attack, namely the evasion attack: an attack that computes a perturbation that, if applied to a single sample, allows
the attacker to have it classified as the desired class. Stateful detectors record the queries made by a user to the classifier and store
them in a temporary history buffer. For each new query, if the detector finds many old queries nearby, it will flag the new query
as an attack, and the system will block that user (see Fig. 2). The attacker will thus have to create another account to be able to
continue optimizing the adversarial perturbation. Therefore, this defense substantially increases the effort that the attacker should
make.

Our experimental analysis (Sec. 4) shows that stateful defenses are highly effective against black-box reprogramming. However, it
is worth noting that the attacker could reduce the number of queries by leveraging a known property of attacks called (transferability),
namely, the capability of an attack computed against a given model (surrogate) to be effective against a different (target) model [5]. In
our experiments, we have tested the effectiveness of adversarial reprogramming when the attacker tries to leverage this property by
computing the adversarial program against a surrogate model and then fine-tuning it by querying the target model. Our results show
that the attacker can reduce the number of queries and increase the success of the attack by exploiting (transferability); however, our
defense remains effective and is a valuable deterrence mechanism.

We conclude this paper by discussing related work (Sec. 5), our main contributions, the limitations of our work, and promising
directions for future work (Sec. 6).

2. Adversarial reprogramming

In this section, we first explain that the task of developing an adversarial program can be mathematically formulated as an
optimization problem. Then, we describe the algorithm that the attacker can use to solve this problem when the target model is a
2

black box, that is the scenario considered in this work (Sec. 2.3).

Information Sciences 642 (2023) 119093Y. Zheng, X. Feng, Z. Xia et al.

Fig. 3. Reprogramming mask 𝐌 used to restrict the adversarial perturbation (𝜹) to the frame surrounding the target-domain input image (𝒙), initially padded with
zeros.

2.1. Problem formulation

In this section, we introduce the mathematical model of adversarial reprogramming. Let us assume that we have a source-domain
dataset  = (𝒙̃𝑗 , ̃𝑦𝑗)𝑚𝑗=1 and a target-domain dataset  = (𝒙𝑖, 𝑦𝑖)𝑛𝑖=1, consisting of 𝑚 and 𝑛 samples, along with their labels. The samples
of the source and target domain are represented as vectors, respectively in ̃ = [−1, 1]𝑑×𝑑×3 and  = [−1, 1]𝑑′×𝑑′×3. The class labels
belong to different domains, respectively, 𝑦̃ ∈ ̃ for the source domain, and 𝑦 ∈  for the target domain. Let 𝑠 be the total number
of classes in the source-domain dataset and ̃ = {𝑦̃1, … , ̃𝑦𝑘, … , ̃𝑦𝑠} be the set of the source labels. We define the target model that
we would like to reprogram as 𝑓 ∶ ̃ ↦ ℝ𝑠. This model is parameterized by 𝜽 ∈ ℝ𝑡 and provides as output a vector of confidence
scores 𝑓 (𝒙̃𝑗 , 𝜽) = {𝑐𝑦̃1 (𝒙̃𝑗 , 𝜽), … , 𝑐𝑦̃𝑘 (𝒙̃𝑗 , 𝜽), … , 𝑐𝑦̃𝑠 (𝒙̃𝑗 , 𝜽)}. To reprogram it we should define a mapping between the source- and the
target-domain class labels, e.g. using the Multiple Label Mapping (MLM) proposed by Tsai et al. [2]. Let 𝑡 be the total number of
classes of the target-domain dataset and  = {𝑦1, … , 𝑦𝑖, … , 𝑦𝑡} be the set of the target domain labels. We can define a MLM function
ℎ𝑦𝑖∈ (𝑓 (𝒙̃𝑗 , 𝜽)) =

1
∣𝑲 ∣

∑
𝑘∈𝑲 𝑐𝑘(𝒙̃𝑗 , 𝜽), where 𝑲 ⊆ ̃ is the subset of source labels, and ∣𝑲 ∣ is the number of elements of 𝑲 , that maps a

subset of multiple-source labels to a one-target label (e.g., the source-domain label set {“tench”, “goldfish”, “white shark”, “tiger shark”,
“hammerhead”, “electric ray”} is mapped to the target-domain label “akiec” as in Fig. 1).

Reprogramming mask. In this work, we focus on programs consisting of a frame surrounding the target-domain samples as shown
in Fig. 1, also considered in the seminal work that proposed adversarial reprogramming [1]. This means that the target-domain
samples are assumed to be smaller than the source-domain samples, i.e. 𝑑′ < 𝑑, and padded with zeros to reach the input size of
the target model. For example, the images of the HAM10000 dataset consist of 200 × 200 = 40, 000 pixels per channel and should be
padded with 10,176 zeros per channel to reach the input size of ImageNet models (which have 224 ×224 = 50, 176 pixels per channel).
To compute the adversarial programs, we use a reprogramming mask (shown in Fig. 3): a binary vector 𝐌 ∈ {0, 1}𝑑 whose values are
set to 0 in the region occupied by the target-domain samples, and to 1 in the surrounding frame.

Adversarial program. Under these assumptions, we can define the adversarial program 𝜹 as:

𝜹 = tanh(𝑾 ◦𝐌) = tanh(𝑾)◦𝐌, (1)

where 𝑾 ∈ ℝ𝑑×𝑑×3 is a vector containing the adversarial program parameters to be learned, the ◦ operator denotes element-wise
vector multiplication, and the “tanh” function constrains the adversarial program in the feasible domain  = [−1, 1]𝑑×𝑑×3.

Loss function. The optimal adversarial program 𝜹⋆ can be obtained by solving the following optimization problem:

𝜹⋆ ∈ arg min𝐿(𝜹,) = 1
𝑛

𝑛∑
𝑖=1

𝓁(ℎ𝑦𝑖 (𝑓 (𝒙𝑖 + 𝜹,𝜽)), 𝑦𝑖), (2)

where 𝜹 is the optimized adversarial program, ℎ𝑦𝑖 (⋅) is the MLM function, 𝓁 is the focal loss [6], which takes on high positive values
when the perturbed target-domain samples are not confidently assigned to the desired target-domain label.

2.2. Solution algorithm

Supposing to have complete access to the target system (white-box attack scenario), the optimization problem in Eq. (2) can
be solved with the Algorithm 1 which extends the Gradient Descent (GD) algorithm. This algorithm iteratively (line 3) updates the
adversarial program 𝜹 to minimize the expected loss on the target-domain samples. In each iteration, the target-domain samples are
randomly shuffled (line 4) and subdivided into 𝑏 batches. The adversarial program is then updated by iterating over the batches
3

(line 6). To this end, first, the gradient 𝒈 (line 7) is computed by averaging the ones obtained considering each single sample. The

Information Sciences 642 (2023) 119093Y. Zheng, X. Feng, Z. Xia et al.

Algorithm 1 Adversarial Reprogramming

Input: the target-domain dataset  = (𝒙𝑖 , 𝑦𝑖)𝑛𝑖=1the model parameters 𝜽, the batch size 𝐵, the adversarial program parameters 𝑾 , the reprogramming mask 𝐌, the
number of iterations 𝑁 , the step size 𝜂, and the function tanh(⋅).

Output: the optimal adversarial program 𝜹∗ .

1: 𝜹← 𝟎, loss𝜹∗ ←∞, Randomly initialize 𝑾
2: 𝑡 ← 0
3: for 𝑡 <𝑁 do

4: Randomly shuffle the samples in 

5: 𝑏 ← 0
6: for 𝑏 < ⌊ 𝑛

𝐵
⌋ do

7: 𝒈← 1
𝐵

∑𝐵⋅𝑏+𝐵−1
𝑖=𝐵⋅𝑏 𝒈𝑖

8: 𝑾 ←𝑾 − 𝜂 × 𝒈

9: 𝜹← tanh(𝑾 ◦𝐌)
10: 𝑏 ← 𝑏 + 1
11: end for

12: loss𝜹 =𝐿(𝜹, ) (compute loss as given in Eq. (2))

13: if loss𝜹 < loss𝜹∗ then

14: 𝜹∗ ← 𝜹

15: loss𝜹∗ ← loss𝜹
16: end if

17: 𝑡 ← 𝑡 + 1
18: end for

19: return 𝜹⋆

gradient for the 𝑖th sample is computed as 𝒈𝑖 = ∇𝒙𝓁(ℎ𝑦𝑖 (𝑓 (𝒙𝑖 + 𝜹, 𝜽)), 𝑦𝑖). Then, the adversarial program parameters are updated with
an 𝜂-sized step (line 8) in the steepest descent direction (the opposite of 𝒈). After updating 𝜹, the algorithm constrains the program
to be onto the feasible space  = [−1, 1]𝑑×𝑑×3 employing the function tanh(⋅) (line 9). The algorithm finally returns the adversarial
program 𝜹⋆ that achieves the minimum classification loss across the whole optimization process (line 19).

2.3. Black-box adversarial reprogramming

The methodology we explained in the previous section assumes that the attacker has full knowledge of the target system (i.e., it
knows its architecture and weights) and thus can compute the gradient of the loss function w.r.t the input samples. However, this
is hardly ever true because online machine-learning services avoid disclosing information about their machine-learning algorithms.
Often the attackers have no information about the target system (back-box scenario). They know only the task (i.e., image classifi-

cation, object detection, malware classification, etc.) and know which potential transformations they can apply to the input to cause
some feature changes [7]. For example, the attackers know that its input features represent image pixels; thus, the input features can
assume any value suitable for the images’ pixels.

In the black-box scenario, the gradients needed in line 7 of Algorithm 1 cannot be analytically computed by the attacker. Never-

theless, the attacker can still execute reprogramming attacks [2]. Querying the target system and collecting outputs (i.e., provided
labels, confidence scores), the attacker can estimate the required gradient with numerical techniques. Using one-sided averaged
gradient estimators [8,9], as done in [2], the gradient for the 𝑖th sample can be estimated as:

𝒈̂𝑖 =
𝑏

𝑞𝜇

𝑞∑
𝑗=1

[𝓁(ℎ𝑦𝑖 (𝑓 (𝒙𝑖 + 𝜇𝒖𝑖𝑗 ,𝜽)), 𝑦𝑖)

−𝓁(ℎ𝑦𝑖 (𝑓 (𝒙𝑖,𝜽)), 𝑦𝑖)]𝒖𝑖𝑗 ,

(3)

where 𝑏 is a tunable scaling parameter that balances the bias and variance trade-off of the gradient estimation error, 𝜇 > 0 is a
smoothing parameter, 𝑞 > 0 is the parameter that influences the number of queries, and {𝒖𝑖𝑗}

𝑞

𝑗=1 ∈ℝ𝑑×𝑑×3 are i.i.d. random directions
drawn from a uniform distribution over a unit sphere.

3. Stateful defenses

This section explains the working principles behind stateful defenses and how an attacker could reduce their effectiveness.

As we explained in the previous section, to perform adversarial reprogramming in a black-box scenario, the attacker has to send
many queries that are quite similar to each other to the target model. This is required to estimate the gradients as explained in
Eq. (3). Therefore, we conjecture that this attack can be easily detected with the stateful detector proposed by Chen et al. [4]. The
key hypothesis of the Chen et al. method implies that the sequence of queries used to generate a black-box attack are distinguishable
from the ones usually made by benign users. Based on this hypothesis, the authors proposed a defense that relies on the observation
that existing black-box attacks often make a sequence of highly self-similar queries (i.e., each query in the sequence is highly similar
to some prior queries in the sequence).

As shown in Fig. 4, the detector, for each query (𝒙) received by a user: (i) Maps it into a low-dimensional space using a similarity
encoder 𝐺𝒘(𝒙); (ii) it computes the average 𝑙2 distance in the low-dimensional space between the new query (the yellow point in
4

Fig. 4) and the 𝑘-nearest queries memorized (the ones inside the gray sphere in Fig. 4); (iii) if the computed average distance (𝑑)

Information Sciences 642 (2023) 119093Y. Zheng, X. Feng, Z. Xia et al.

Fig. 4. A high-level representation of a stateful defense. The detector maps the received queries in a low-dimensional space using a similarity encoder (𝐺𝒘(𝒙)) and
stores them in a temporary buffer. If the average distance (𝑑) between the current query (in yellow) and its 𝑘-nearest neighbor queries in the buffer (the points inside
the gray sphere) is lower than a threshold (𝜌), the query is flagged as malicious.

Fig. 5. A high-level representation of the procedure used to train the similarity encoder. The samples of the source dataset are first paired. Then, the similarity encoder
is trained on pair of samples to find a mapping in which the samples belonging to the same class are near, whereas the ones belonging to different classes are far from
each other.

is smaller a chosen threshold 𝜌, the detector flags this sequence of queries as an attack. The user that issued these queries will be
blocked, and the attacker will have to create another account to issue more queries to refine the attack.

3.1. Dimensionality reduction

As we have explained before, to detect attacks, the detector evaluates the 𝑙2-norm distance of the current query with the ones
stored in its buffer. Their distance in input space would be computationally expensive to compute and would not be significant. E.g.,
a small rotation or translation can cause dramatic distance changes. Therefore, we consider their distance in a space with a smaller
dimensionality. Following Chen et al. [4], we use a similarity encoder to reduce the dimensionality.

To create the similarity encoder, as shown in Fig. 5, we use a Siamese architecture. The Siamese architecture is constituted by two
neural networks initialized with the same weights. We follow [10] and [11] to create the sample pairs (see Fig. 5) required to train
it. We construct a training dataset 𝑉 = (𝒗𝑗 , 𝑙𝑗)

𝑝

𝑗=1, where 𝒗𝑗 = (𝒙̃1
𝑗
∈ ℝ𝑑×𝑑×3, ̃𝒙2

𝑗
∈ ℝ𝑑×𝑑×3) is the 𝑗-th sample pair made by samples of

the source-domain dataset, 𝑙𝑗 is the label of the 𝑗-th sample pair, where 𝑙𝑗 = 0 (𝑙𝑗 = 1) if 𝒙̃1
𝑗

and 𝒙̃2
𝑗

are similar, namely they belong
to the same class (dissimilar, namely they belong to different classes), and 𝑝 is the number of possible pairs of samples belonging to
the source domain dataset. Let 𝒘 be the weights shared by the two networks 𝐺𝒘(⋅). As shown in Eq. (4), we compute the 𝑙2 distance
between 𝐺𝒘(𝒙̃1𝑗) and 𝐺𝒘(𝒙̃2𝑗), namely between two samples in the lower-dimensional space produced by the similarity encoder as:

𝐷𝑆𝒘(𝒗𝑗) = ‖𝐺𝒘(𝒙̃1𝑗) −𝐺𝒘(𝒙̃2𝑗)‖2. (4)

As in [10] we train the siamese architecture that we use to implement the similarity encoder with the contrastive loss function:

𝐿𝑐 (𝒘, 𝑉) =
𝑝∑
𝑗=1

𝓁𝑐 (𝒘,𝒗𝑗 , 𝑙𝑗), (5)

𝓁𝑐 (𝒘,𝒗𝑗 , 𝑙𝑗) = (1 − 𝑙𝑗)
1
2
[𝐷𝑆𝒘(𝒗𝑗)]2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑙𝑠

+

𝑙𝑗
1
2
{max[0, 𝑧−𝐷𝑆𝒘(𝒗𝑗)]}2,

(6)
5

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑙𝑑

Information Sciences 642 (2023) 119093Y. Zheng, X. Feng, Z. Xia et al.

where 𝑙𝑠 is the partial loss function for similar pairs, 𝑙𝑑 is the partial loss function for dissimilar pairs, and 𝑧 is a margin. The 𝑙𝑠 term
encourages the similarity encoder to find the weights for which similar pairs are mapped near each other. The 𝑙𝑑 term enables it to
find weights for which the dissimilar pairs have a distance lower than the chosen margin 𝑧.

3.2. Detection buffer and query detection

The detection buffer will check how many queries it has already stored in its memory (𝑄). If the detector has already memorized
at least 𝑘 queries (𝑄 > 𝑘), first, it computes the average 𝑙2 distance in the low-dimensional space between the new query and the
𝑘-nearest queries memorized. Then, the computed distance is sent to the Query Detection module, which will trigger if the received
distance is smaller than a selected threshold 𝜌.

To assess the detection capabilities of the defense, for simplicity, we will consider all the queries made by the attacker as coming
from the same user. However, to assess the detector performance fairly, we will reset the memory buffer whenever an attack is
detected. In the real world, the attacker will have to change the account, and thus we will not know that the queries made by the
two users, namely the new user and the old one, are actually made by the same person (the attacker).

In the following, we propose a metric that can be used to assess the detectors’ success. To this end, let us consider a detector that
has just stored the first 𝑘 queries made by a user. When the user makes its 𝑘 +1 query, if the average distance of this query from the
𝑘 stored queries falls below a chosen threshold (𝜌), the detector will consider it an attack. Upon detection, the number of detected
malicious queries will be equal to “1”, and the buffer containing the previous 𝑘 + 1 queries will be cleared. Otherwise, the detector
will focus on the next query. Therefore, the number of detections is 𝐷 ≤ ⌊ 𝑄

𝑘+1 ⌋, where the latter is the maximum number of possible
detections, given that the detector should collect at least 𝑘 queries before examining them to detect attacks.

It is not difficult to see that the stateful defense is based on groups rather than individual queries, where the size of each group
is 𝑘 + 1 (the maximum number of detections is one every 𝑘 + 1 samples) thus in our example 𝐷 ≤ 2. Therefore, to evaluate the
performance of the stateful defense, we introduce the detection coefficient 𝜎 computed as follows:

𝜎 = 𝐷

𝑄
≤

1
𝑘+ 1

. (7)

From the Eq. (7), we can see 𝜎 is only related to 𝑘. Consequently, 𝑘 plays an important role in the scheme of stateful defense. To
obtain a value ∈ [0, 1], we define 𝜎⋆ as the normalization of 𝜎:

𝜎⋆ = (𝑘+ 1)𝜎. (8)

From Eq. (8), it’s not difficult to see that 𝜎⋆ ∈ [0, 1], where 𝜎⋆ = 0 when 𝐷 = 0, and 𝜎⋆ = 1 when 𝐷 = 𝑄

𝑘+1 , which is the maximum
number of detections that we can have for a chosen 𝑘.

Parameters influencing the performance of the detector. The two main parameters that influence the detection performances
of the defense are the size of the buffer 𝑘 and the detection threshold 𝜌. Specifically, increasing the buffer size 𝑘 will consider a
bigger observation window, making the detector more sensitive to long-term attacks (at the cost of having a bigger delay in the
first detection, as the detector has to fill the buffer first). In other words, 𝑘 regulates the temporal distance between similar queries
that would trigger the detector. On the other hand, increasing the detection threshold 𝜌 will reduce the sensitivity of the detector,
reducing the false positives. In other words, 𝜌 regulates the minimum average spatial distance that will trigger the detector.

Application example. To clarify the description of the detector, we explain in detail how it will work on the following ten queries
(𝑄 = 10): (𝒂, 𝒃, 𝒄, 𝒅, 𝒆, 𝒇 , 𝒈, 𝒉, 𝒊, 𝒋), when the number of detections 𝐷 = 0, and the parameter 𝑘 = 3. The detector will start checking for
attacks once it have stored at least 𝑘 queries in its buffer. In the presented case, the queries (𝒂, 𝒃, 𝒄). Then, once it has received the
𝑘 + 1 query (𝒅), the detector will compute the average distance between 𝒅 and 𝒂, 𝒃, 𝒄. Let (𝒊, 𝒋) represent the distance of 𝒊 and 𝒋.
The detector will compute (𝒂, 𝒅), (𝒃, 𝒅), (𝒄, 𝒅), and the average distance ̄𝒂𝒃𝒄𝒅 = (𝒂,𝒅)+(𝒃,𝒅)+(𝒄,𝒅)

3 . If ̄𝒂𝒃𝒄𝒅 is smaller than 𝜌,
the detector will flag the queries (𝒂, 𝒃, 𝒄, 𝒅) as malicious. Thus, will add “1” to the number of the detections, i.e. 𝐷 = 1, and then will
clear its memory buffer. Otherwise, the detector will continue to compute the distance of the next new input 𝒆 with (𝒂, 𝒃, 𝒄, 𝒅), i.e.
(𝒂, 𝒆) (𝒃, 𝒆), (𝒄, 𝒆), (𝒅, 𝒆). Then, if the average distance with the 3 nearest queries is smaller than 𝜌, the detector will flag the
queries as an attack and add “1” to the number of the detections, i.e. 𝐷 = 1, then will clear its buffer, thus in our example 𝐷 ≤ 2.

3.3. Leveraging transferability to defeat stateful defenses

Stateful defenses detect malicious queries and, consequently, are able to block the attacker’s account. To execute adversarial
reprogramming, the attackers will have to create multiple accounts. To reduce the number of detections and thus accounts that they
have to create, attackers might leverage a property of attacks called transferability, namely the ability of an attack computed against
a model (surrogate) to be effective against a different (target) model [5]. For the transfer-based attack, we assume that the input
feature representation of the target model is known (that is, for images, the features of the models will be the pixels of the input
images). Then, the attacker can collect a surrogate dataset and train a surrogate model on such data to approximate the decision
function (and the gradients) of the target model. The surrogate dataset does not have to be the same as the source dataset, however,
they should at least be sampled from the same distribution. An attacker can exploit transferability to craft an adversarial program
with the white-box reprogramming attack against the newly-created surrogate model, thus avoiding making any malicious query to
6

the target model. However, if the surrogate and the target model are not similar, the computed adversarial program might not be

Information Sciences 642 (2023) 119093Y. Zheng, X. Feng, Z. Xia et al.

Fig. 6. The distribution of the two medical datasets considered as the target-domain dataset.

sufficiently accurate in reprogramming the target model. Nevertheless, transferability might still be exploited by the attacker. The
attacker might use it to initialize the adversarial program and then fine-tune it by making a few queries to the target model. In
the next Section, we evaluate experimentally to which extent one attacker could exploit the transferability of attacks to defeat our
stateful defense.

4. Experimental analysis

In the following, we describe the experimental setup we used to assess the effectiveness of stateful defenses, and then we report
the experimental results.

4.1. Experimental setup

In the following, we describe all the details required to replicate our experiments.

Datasets. Because the ImageNet large-scale training corpus has gained popularity in computer vision as an evaluation benchmark
and many pre-trained architectures are available on the Internet, we choose ImageNet as our source-domain dataset. Adversarial
reprogramming has been recently shown in [2] to be particularly useful for reprogramming models for datasets containing only a
few samples. This is usually true for medical datasets as their samples are quite costly to collect; thus, only a few samples are usually
available. Therefore, we have chosen the two medical datasets used in that work as our target domain datasets. We present the
details of the dataset used in the following.

ImageNet2 is one of the largest publicly-available computer-vision datasets. It contains images belonging to 1, 000 categories subdi-

vided into around 1.2 million training images, 50, 000 validation images, and 100, 000 test images. The images are collected from the
Internet by search engines and labeled by humans via crowdsourcing. We use this dataset as our source-domain dataset. We use its
training set as our training dataset (we use models pre-trained on it) and its validation dataset to create our similarity encoder. To
this end, we subdivide the validation dataset into 40, 000 samples that we use to train the similarity encoder and 10, 000 that we use
to test its performances.

Diabetic Retinopathy Detection (DR)3 is a medical dataset consisting of 35, 126 images with dimensions 4, 652 × 3, 168 and a label that
ranges from 0 to 4, corresponding to the rating of the presence of diabetic retinopathy. We resize these samples to be 200 × 200. We
perform re-sampling on the data samples to get a training/testing set of 3, 000/2, 400 samples. The original and the re-sampled DR
dataset distribution is represented as orange bars in the left and right plots of Fig. 6.

HAM100004 is a large collection of multi-source dermatoscopic images of common pigmented skin lesions, which includes 10, 015
samples of 7 types (“akiec”, “bcc”, “bkl”, “df”, “mel”, “nv”, “vasc”) of skin cancer. The average image size is 600 ×450 pixels. We resize
these data samples to be 200 × 200 pixels. Similarly to the DR dataset, we perform re-sampling on this dataset. The collected training
set contains 7, 800 samples, the testing set contains 780 samples, and the distribution of re-sampled HAM10000 is represented as blue
bar in the histograms in Fig. 6b.

Preprocessing. We rescale the input images in  = [0, 1]𝑑′×𝑑′×3 to match the input size 𝑑 of the considered models. In the process of
generating adversarial queries, this requires padding input images with zeros.

2 https://www .image -net .org/.
3 https://www .kaggle .com /c /diabetic -retinopathy -detection /data.
7

4 https://dataverse .harvard .edu /dataset .xhtml ?persistentId =doi :10 .7910 /DVN /DBW86T.

https://www.image-net.org/
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T

Information Sciences 642 (2023) 119093Y. Zheng, X. Feng, Z. Xia et al.

Table 1

The architecture of the similarity encoder [4].

Layer Type Dimension

Conv. + ReLU 32 filters (3 × 3)

Conv. + ReLU 32 filters (3 × 3)

Max Pooling 2 × 2
Dropout 𝑝 = 0.25
Conv. + ReLU 64 filters (3 × 3)

Conv. + ReLU 64 filters (3 × 3)

Max Pooling 2 × 2
Dropout 𝑝 = 0.25
Dense + ReLU 512

Dropout 𝑝 = 0.5
Dense 256

Table 2

The performance of the similarity encoder.

𝑑 Accuracy of Similarity Encoder

224 62.60%

299 63.98%

Classifiers. We consider three different architectures pretrained on ImageNet and implemented on TensorFlow-Slim5 as target
models: AlexNet [3], ResNet50 [12] and Inception-V3 [13]. AlexNet6 and ResNet507 have input size 𝑑 = 224, Inception-V38 has
input size 𝑑 = 299.

Similarity encoder. Following Chen et al. [4], our similarity encoder is based on a three-layer CNN. The architecture of this CNN is
represented in Table 1. In our experiments, we set the dimension of the space in which the samples are projected to 256. To train the
similarity encoder, as shown in Fig. 5 and explained in detail in Section 3, we first create 𝑝 sample pairs from the validation dataset
of ImageNet. Then, we train the encoder from scratch on these sample pairs using the RMSprop optimizer with a batch size of 32,
100 epochs, a learning rate of 10−4, and weight decay of 10−6. We set the 𝑧 parameter of Eq. (5) to 1. We are considering, as target
models, classifiers with two different input dimensions (224 and 299). Therefore, we trained two different similarity encoders to use
a similarity encoder with the same input dimension as the considered classifier. We show their performance in Table 2.

Stateful detection. Given that we choose the ImageNet dataset as our source domain, we use the ImageNet validation dataset to
compute the threshold 𝜌 of the detector. Following [4], we set 𝑘 = 50, and we employ the same procedure used by its authors to
compute the detection threshold so that only a low and thus a reasonable number of benign queries is flagged. This procedure sets
the threshold so that if the entire set (constituted by benign samples) were randomly streamed as queries, the false positive rate
would be 0.1%.

Adversarial reprogramming. To optimize the adversarial program 𝜹, we use Algorithm 1. Before optimizing it, for the target-

domain datasets, we fix ℎ as an MLM function that maps every 6 labels of the source dataset to one label of the target dataset,
as explained in Sec. 2. We set the step size for updating the adversarial program parameters (𝑾) 𝜂 to 0.05, and we use 𝑁 = 10
epochs. We consider DR, and HAM10000 as target-domain datasets, and we employ a batch size of 𝐵 = 24 and 𝐵 = 39 for DR and
HAM10000 samples, sampled randomly from the training set of the target-domain dataset  . To optimize the adversarial program
in the white-box scenario, we set the learning rate 𝑙𝑟 = 0.05. For the black-box scenario, as in [2], we set 𝑏 = 𝑑 × 𝑑 × 3 and 𝜇 = 0.1. In
our experiments, we consider many different values for the parameter 𝑞.

4.2. Experimental results

In the following, we report the experimental results to assess the effectiveness of stateful defenses against adversarial repro-

gramming. We denote with 𝑅 the accuracy obtained executing adversarial reprogramming in a white-box scenario and with 𝐵𝑅 the
accuracy obtained in a black-box scenario.

White vs black-box reprogramming. First, we compare the success rates of reprogramming programs generated in the black-box
scenario with those generated in the white-box scenario. To this end, we employ three different models (AlexNet, ResNet50, and
Inception-V3) and two medical datasets (DR and HAM10000), fixing the parameter 𝑞 of DR and HAM10000 respectively to 𝑞 = 55
and 𝑞 = 65. We denote with 𝑇 𝑟 (𝑇 𝑠) the dataset of the target domains we use to compute (test) the adversarial programs and the
accuracy obtained reprogramming the target model in the white-box (black-box) scenario with 𝑅𝑡 (𝐵𝑅𝑡). As the sample for computing

5 https://github .com /tensorflow /models /tree /master /research /slim #Pretrained.
6 https://drive .google .com /file /d /1ICnwX2fgyPMkJ0DyjOdLDadEO0C9C _ll /view.
7 http://download .tensorflow .org /models /resnet _v2 _50 _2017 _04 _14 .tar .gz.
8

8 http://download .tensorflow .org /models /inception _v3 _2016 _08 _28 .tar .gz.

https://github.com/tensorflow/models/tree/master/research/slim#Pretrained
https://drive.google.com/file/d/1ICnwX2fgyPMkJ0DyjOdLDadEO0C9C_ll/view
http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz
http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz

Information Sciences 642 (2023) 119093Y. Zheng, X. Feng, Z. Xia et al.

Table 3

Results of reprogramming AlexNet, ResNet50, and Inception-V3 for different sizes of the dataset employed by the attacker to compute the adversarial program (𝑇 𝑟).
For each reprogramming task, the table reports the reprogramming accuracy obtained in a white box scenario (𝑅𝑡), the reprogramming accuracy obtained in a
black-box scenario (𝐵𝑅𝑡) and the difference between them (𝑅𝑡 −𝐵𝑅𝑡). (For interpretation of the references to colour please refer to the web version of this article.)

AlexNet ResNet50 Inception-V3

Dataset 𝑇 𝑟 𝑇 𝑠 𝑅𝑡 𝐵𝑅𝑡 𝑅𝑡 −𝐵𝑅𝑡 𝑅𝑡 𝐵𝑅𝑡 𝑅𝑡 −𝐵𝑅𝑡 𝑅𝑡 𝐵𝑅𝑡 𝑅𝑡 −𝐵𝑅𝑡

DR

6000 2400 80.70% 80.09% 0.61% 80.16% 79.51% 0.65% 80.13% 79.80% 0.33%

3000 2400 80.33% 79.25% 1.08% 79.36% 78.17% 1.19% 79.84% 79.27% 0.57%

1500 2400 79.81% 78.39% 1.42% 78.06% 74.78% 3.28% 79.40% 76.68% 2.72%

HAM10000

9200 780 81.07% 80.71% 0.36% 81.55% 80.20% 1.35% 80.32% 79.98% 0.34%

7800 780 80.78% 79.72% 1.06% 80.92% 79.11% 1.81% 78.68% 77.52% 1.16%

3900 780 77.24% 76.28% 0.96% 75.34% 71.77% 3.57% 74.42% 68.67% 5.75%

Table 4

The reprogramming accuracy obtained reprogramming the target model in a black-box scenario (𝐵𝑅𝑡) for different values of the
attack’s hyperparameter 𝑞 that controls the number of queries 𝑄 made by the attacker to the target model, and the corresponding
performance of the detector, measured as the number of detections (𝐷) and the percentage of detected attacks (𝜎∗) with respect to
the number of possible detections.

Dataset Target Model 𝑞 𝐵𝑅𝑡 𝑄 𝐷 𝜎⋆

DR

AlexNet
45 77.54% 110400 1810 83.61%

55 79.25% 134400 2266 85.99%

ResNet50
45 76.56% 110400 1794 82.88%

55 78.17% 134400 2237 84.89%

HAM10000

AlexNet
55 79.36% 43680 805 93.99%

65 79.72% 51480 980 97.09%

ResNet50
55 77.54% 43680 779 90.95%

65 79.11% 51480 973 96.39%

the adversarial program are usually difficult to collect for the attacker, in this experiment, we assess the performance for different
numbers of training samples 𝑇 𝑟. We present the result in Table 3. From the Table 3, we can see that 𝑅𝑡 is always greater than 𝐵𝑅𝑡,
and the difference, 𝑅𝑡 − 𝐵𝑅𝑡, between 𝑅𝑡 and 𝐵𝑅𝑡 is located in [0.33%, 5.75%]. Moreover, we also notice that 𝑅𝑡 − 𝐵𝑅𝑡 is relatively
large when the number of training samples is small. If we ignore the cases with a small number of training samples (pink values in
Table 3), we obtain 𝑅𝑡 −𝐵𝑅𝑡 ∈ [0.33%, 1.81%]. Therefore, we can conclude that the performance of reprogramming queries generated
in the black-box scenario is almost the same as the one generated in the white-box scenario when the training dataset is sufficiently
large.

Defending against black-box reprogramming. After, we assess the performance of the proposed detector against a black-box
attack. In this experiment, we also evaluate the effect of tuning the parameter 𝑞 that influences the number of queries the attack
will make to the target model. In this experiment, we consider AlexNet and ResNet50 as the target models, and we fix the number
of training samples of DR and HAM10000 as 𝑇 𝑟 = 3, 000 and 𝑇 𝑟 = 7, 800, the number of samples in the testing dataset of DR and
HAM10000 as 𝑇 𝑠 = 2, 400 and 𝑇 𝑠 = 780. Then, we compute the program with different values of 𝑞 and present the result in Table 4.
From this Table, we can see how the attack performance of adversarial reprogramming queries generated based on the target model
(𝐵𝑅𝑡) positively correlates with the parameter 𝑞 and, thus, the number of queries.

Adaptive evaluation. To evaluate the worst-case scenario, we also test the performance of our detector against an attack designed to
bypass it. Specifically, we employ an attack that injects random queries to hide the query sequence from the defender (query blinding,
as in [4]). In particular, we use a blinding strategy that adds Gaussian noise to the full images. We evaluate the performance of the
target model when the full image is perturbed with this noise when considering different numbers of queries that the attacker can
make, controlled by the parameter 𝑞. In this experiment, we consider AlexNet and ResNet50 as the target models, and we set the
number of training and testing samples as in our previous experiment (for DR: 𝑇 𝑟 = 3, 000 and 𝑇 𝑠 = 2, 400; and for HAM10000:
𝑇 𝑟 = 7, 800 and 𝑇 𝑠 = 780). Given the target-domain image values in our experiment belong [−1, 1]𝑑×𝑑×3, we add the noise drawn
from a Gaussian distribution  (0, 𝑟) to the target-domain image, and then clip the images with noise in [−1, 1]𝑑×𝑑×3, we set the
variance 𝑟 of Gaussian noise is 0.001, 0.1, 1 and 2 respectively. We compute the performance with different values of 𝑞 and 𝑟, and
present the result in Table 5–8. By comparing the results obtained with Gaussian noise with a smaller variance (𝑟 = 0.001) and 𝑞 = 55
with the ones obtained with the same 𝑞 but without adding the Gaussian noise to the query (reported in Table 5), it is clear that
even this smaller amount of noise can have a high impact on the reprogramming accuracy (𝐵𝑅𝑡), which on average decreases of
around the 50%. In this setting, the detector can still detect a notable amount of queries (from 50% up to 80%) in the majority of the
considered cases. Analyzing the results obtained with Gaussian noise with the higher considered variance (𝑟 = 2), shown in Table 8,
we can see that when the amount of Gaussian noise is large, the detector performance decreases quite a lot. However, in this case,
the reprogramming accuracy (𝐵𝑅𝑡) becomes almost equal to the one we would obtain with a randomly generated program (𝐵𝐵𝑅𝑡),
namely with a program that is randomly initialized and not optimized to achieve reprogramming. This means that this amount
9

of noise makes the reprogramming almost ineffective. The results obtained when an intermediate amount of noise is added to the

Information Sciences 642 (2023) 119093Y. Zheng, X. Feng, Z. Xia et al.

Table 5

The reprogramming accuracy obtained by optimizing the target model and adding the Gaussian noise to the full images in a black-

box scenario (𝐵𝑅𝑡) for different values of the attack’s hyperparameter 𝑞 that controls the number of queries 𝑄 made by the attacker
to the target model, where the variance of Gaussian noise 𝑟 = 0.001, and the reprogramming accuracy before optimization is 𝐵𝐵𝑅𝑡 .
The corresponding performance of the detector, measured as the number of detections (𝐷) and the percentage of detected attacks
(𝜎∗) with respect to the number of possible detections.

Dataset Target Model 𝐵𝐵𝑅𝑡 𝑞 𝐵𝑅𝑡 𝑄 𝐷 𝜎⋆

DR

AlexNet 9.87%
2 19.71% 7200 0 0.00%

55 19.79% 134400 1230 46.67%

ResNet50 11.50%
2 21.76% 7200 0 0.00%

55 22.12% 134400 1746 66.25%

HAM10000

AlexNet 7.82%
2 17.82% 2340 29 63.21%

55 18.44% 43680 662 77.29%

ResNet50 8.67%
2 22.18% 2340 31 67.56%

55 22.92% 43680 683 79.75%

Table 6

The reprogramming accuracy obtained by optimizing the target model and adding the Gaussian noise to the full images in a black-box
scenario (𝐵𝑅𝑡) for different values of the attack’s hyperparameter 𝑞 that controls the number of queries 𝑄 made by the attacker to
the target model, where the variance of Gaussian noise 𝑟 = 0.1, and the reprogramming accuracy before optimization is 𝐵𝐵𝑅𝑡 . The
corresponding performance of the detector, measured as the number of detections (𝐷) and the percentage of detected attacks (𝜎∗)
with respect to the number of possible detections.

Dataset Target Model 𝐵𝐵𝑅𝑡 𝑞 𝐵𝑅𝑡 𝑄 𝐷 𝜎⋆

DR

AlexNet 9.21%
2 12.38% 7200 0 0.00%

55 13.58% 134400 811 30.77%

ResNet50 10.83%
2 18.63% 7200 0 0.00%

55 19.50% 134400 1202 45.61%

HAM10000

AlexNet 6.95%
2 17.49% 2340 25 54.49%

55 19.74% 43680 598 69.82%

ResNet50 5.51%
2 16.15% 2340 22 47.95%

55 18.41% 43680 584 68.19%

Table 7

The reprogramming accuracy obtained by optimizing the target model and adding the Gaussian noise to the full images in a black-

box scenario (𝐵𝑅𝑡) for different values of the attack’s hyperparameter 𝑞 that controls the number of queries 𝑄 made by the attacker
to the target model, where the variance of Gaussian noise 𝑟 = 1, and the reprogramming accuracy before optimization is 𝐵𝐵𝑅𝑡 . The
corresponding performance of the detector, measured as the number of detections (𝐷) and the percentage of detected attacks (𝜎∗)
with respect to the number of possible detections.

Dataset Target Model 𝐵𝐵𝑅𝑡 𝑞 𝐵𝑅𝑡 𝑄 𝐷 𝜎⋆

DR

AlexNet 4.88%
2 4.71% 7200 0 0.00%

55 5.42% 134400 0 0.00%

ResNet50 7.50%
2 10.54% 7200 0 0.00%

55 12.88% 134400 0 0.00%

HAM10000

AlexNet 8.33%
2 8.33% 2340 11 23.97%

55 10.90% 43680 46 5.37%

ResNet50 7.72%
2 7.82% 2340 8 17.44%

55 8.33% 43680 30 3.50%

reprogrammed images (𝑟 = 0.1 and 𝑟 = 1) are reported respectively in Table 6 and Table 7. Overall, although it is possible to decrease
the number of the attacker’s queries detected by our detector by adding a relevant amount of noise to them, this operation degrades
the quality of the generated adversarial program very much, making the reprogramming attack unsuccessful.

Defending against fine-tuned programs. Finally, we test the effectiveness of our detector when the attacker first computes the
adversarial program on a surrogate model and then refines it, making a few queries to their target model. In this experiment, we
consider AlexNet and ResNet50 as target and surrogate models. These two models are trained on the same dataset. This situation
is more advantageous than the general case for the attacker, as this condition assumes that the training dataset is fully known and
available. We set the number of training (testing) samples of DR and HAM10000 as in our previous experiment and vary 𝑞. We
denote the accuracy of the surrogate model in the white-box scenario with 𝑅𝑠. We present the results in Table 9. In this Table, we
can see that when the attacker employs a surrogate model can obtain 𝐵𝑅𝑡 ∈ [77.64%, 82.21%] and 𝐵𝑅𝑡 ∈ [75.86%, 81.19%] for DR and
HAM10000 when the surrogate model is applied. By comparing Table 9 with Table 4, we can see that by using a surrogate model,
the attacker obtains a similar reprogramming accuracy, greatly reducing the number of queries 𝑄 that it has to issue to the model.
10

Moreover, we can see that when the attacker makes only a few queries to the target model, the detector’s performances (in light blue

Information Sciences 642 (2023) 119093Y. Zheng, X. Feng, Z. Xia et al.

Table 8

The reprogramming accuracy obtained by optimizing the target model and adding the Gaussian noise to the full images in a black-

box scenario (𝐵𝑅𝑡) for different values of the attack’s hyperparameter 𝑞 that controls the number of queries 𝑄 made by the attacker
to the target model, where the variance of Gaussian noise 𝑟 = 2, and the reprogramming accuracy before optimization is 𝐵𝐵𝑅𝑡 . The
corresponding performance of the detector, measured as the number of detections (𝐷) and the percentage of detected attacks (𝜎∗)
with respect to the number of possible detections.

Dataset Target Model 𝐵𝐵𝑅𝑡 𝑞 𝐵𝑅𝑡 𝑄 𝐷 𝜎⋆

DR

AlexNet 7.78%
2 7.25% 7200 0 0.00%

55 8.71% 134400 0 0.00%

ResNet50 7.96%
2 8.13% 7200 0 0.00%

55 11.33% 134400 0 0.00%

HAM10000

AlexNet 7.31%
2 7.05% 2340 19 41.41%

55 10.13% 43680 95 11.09%

ResNet50 7.19%
2 6.15% 2340 16 34.87%

55 10.90% 43680 98 11.44%

Table 9

The performance of the adversarial programs computed on a surrogate model and fine-tuned with a few queries to the target
model. We denote with 𝑅𝑠 the reprogramming accuracy obtained reprogramming the surrogate model in a white-box scenario, with
𝐵𝑅𝑡 the reprogramming accuracy obtained fine-tuning the program by querying the target model with the black-box adversarial
reprogramming attack, with 𝑞 the attack’s hyperparameter that controls the number of queries 𝑄, with 𝐷 the number of detections
and with 𝜎∗ the percentage of detected attacks with respect to the number of possible detections.

Dataset Target Model Surrogate Model 𝑅𝑠 𝑞 𝐵𝑅𝑡 𝑄 𝐷 𝜎⋆

DR

AlexNet ResNet50 79.36%
5 79.96% 14400 208 73.67%

10 80.29% 26400 452 87.32%

ResNet50 AlexNet 80.33%
5 77.64% 14400 193 68.35%

10 82.21% 26400 461 89.06%

HAM10000

AlexNet ResNet50 80.92%
5 78.71% 4680 78 85.00%

10 81.19% 8580 148 87.97%

ResNet50 AlexNet 80.78%
5 75.86% 4680 73 79.55%

10 80.43% 8580 144 85.59%

in the Table) are lower. Overall, we can conclude that, in this scenario, the considered stateful defense remains effective, although
its effectiveness is reduced.

Making random queries. Supposing the attacker knows the number of subsequent queries our detector considers, they can send
random queries to defeat the defense. However, in this case, they will have to make many more queries to the system, which are
costly when made to platforms that make a machine learning model as a service available. As discussed in Section 7 of paper [4],
supposing the detector stores the last N queries made by each user, an attacker will have to make N queries to flush the buffer before
detection, and they should do this to avoid D detections. Considering as an example Google’s Cloud Vision API, 1000 queries cost
$1.50 USD. Therefore, if the buffer stores 𝑁 = 104 examples, considering the case with less detection in Table 9, the attack would
require 73 × 104 queries to the target model to be executed without being detected that would cost the attacker around $1000 USD,
which would significantly decrease the probability of the attacker targeting that system.

5. Related work

In this section, we briefly review related work on adversarial reprogramming. We then focus on the defense against adversarial
attacks in the black-box scenario.

5.1. Adversarial reprogramming

Adversarial reprogramming has been originally proposed in [1]. The authors have empirically assessed the performance of ad-

versarial reprogramming using different trained and untrained deep neural networks. They showed that reprogramming usually fails
when applied to untrained networks (i.e., neural networks with random weights), whereas it works when the target model is trained.
In the latter case, reprogramming works even when the attacker can manipulate only a small subset of the image pixels. In [14],
the authors have developed a first-order linear model of adversarial reprogramming to analyze the factors that affect its success.
They show that reprogramming can fail and that its success inherently depends on the size of the average input gradient, which
grows when input gradients for the target model are more aligned, and inputs have higher dimensionality. The authors of [2] have
shown that adversarial reprogramming also works in black-box scenarios where the attacker has a query-only access to its target
model. Moreover, they have demonstrated reprogramming can be particularly beneficial in tasks with scarce data, as in that case,
11

it can achieve even better performance than fine-tuning. No defense has been proposed against reprogramming in a black box sce-

Information Sciences 642 (2023) 119093Y. Zheng, X. Feng, Z. Xia et al.

nario; therefore, in this work, we assess to which extent a defense previously proposed against evasion attacks can defend against
adversarial reprogramming.

5.2. Previously proposed defenses

To the best of our knowledge, only one defense [15] has been proposed against adversarial reprogramming. This defense, named
hierarchical random switching (HRS), randomizes the model at test time to prevent adversaries from exploiting fixed model structures
and parameters for malicious purposes. However, this defense has been tested only against white-box adversarial reprogramming
attacks, which is not a realistic scenario. Defenses have been proposed against evasion attacks for the black-box scenarios: an attack
that computes a perturbation that, if applied to a single sample, allows the attacker to have it classified as the desired class. It is
worth noting that evasion attacks are less challenging than adversarial reprogramming because the attacker computes a perturbation
ad-hoc for each input image. Differently, in reprogramming attacks, a single perturbation should allow having all the test images
classified as belonging to a target class. Most defenses against black-box evasion attacks examine each query singularly (stateless
detection), usually by checking if this query lays out the distribution of normal/benign data [16–18]. However, effective detection
under this stateless threat model has proven to be difficult [19]. For this reason, Chen et al. [4] developed a stateful defense that
jointly considers all the queries received by the classifier. In this work, we have shown to which extent this defense is effective
against adversarial reprogramming in the black-box scenario.

6. Contributions and limitations of this work

In this work, we addressed the problem of defending machine learning models against adversarial reprogramming in a black-box
scenario.

To the best of our knowledge, this is the first work proposing a countermeasure for this attack considering the realistic scenario
where the target model is unknown to the attacker. Therefore, our stateful defense provides users for the first time with a simple
tool to mitigate this threat. We assessed the effectiveness of a stateful defense against this attack. To this end, a similarity encoder
has been trained to map the adversarial queries to a low-dimensional space. In this space, we flag as adversarial the queries quite
similar to other queries previously made by the same user. Our experimental analysis shows that a large percentage of the queries
made by the attacker to compute the adversarial program are flagged by our defense as adversarial. Once a single query has been
detected as malicious, the account of the attacker can be blocked. Therefore, the attacker will have to create many different accounts
to perpetrate the attack. Stateful defenses are thus highly effective for increasing the attacker’s cost in this back-box scenario and,
consequently, they represent a good deterrence mechanism. Even if the attacker exploits the transferability property of the attacks
to reduce the number of detected queries and thus her effort, our experiments show that the proposed defense is still effective.

The main limitation of our work is that as in [4], we have considered an infinite memory buffer, whereas, in practice, the defender
should set the memory buffer length according to the system capacity. Analyzing the effectiveness of our defense in these scenarios
is one of our future research directions.

CRediT authorship contribution statement

Yang Zheng: Software, Investigation, Visualization, Writing – Original draft preparation.

Xiaoyi Feng: Supervision, Resources, Funding acquisition.

Zhaoqiang Xia: Supervision, Writing – Reviewing and Editing.

Xiaoyue Jiang: Writing – Original draft preparation.

Maura Pintor: Visualization, Writing – Reviewing and Editing.

Ambra Demontis: Visualization, Methodology, Writing – Reviewing and Editing.

Battista Biggio: Writing – Reviewing and Editing, Conceptualization, Methodology, Supervision.

Fabio Roli: Writing – Reviewing and Editing, Supervision, Resources, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data used for this research are already publicly available.

Acknowledgements

This work was partly supported by the PRIN 2017 project RexLearn, funded by the Italian Ministry of Education, University and
Research (grant no. 2017TWNMH2); by BMK, BMDW, and the Province of Upper Austria in the frame of the COMET Programme
12

managed by FFG in the COMET Module S3AI; by the Horizon 2020 project Starlight, founded by the European Union (grant no.

Information Sciences 642 (2023) 119093Y. Zheng, X. Feng, Z. Xia et al.

101021797); and by the Key Research and Development Program of Shaanxi (Program Nos. 2022ZDLGY06-07, 2021ZDLGY15-

01, 2021ZDLGY09-04 and 2021GY-004), the International Science and Technology Cooperation Research Project of Shenzhen
(GJHZ20200731095204013), the National Natural Science Foundation of China (Grant No. 61772419).

References

[1] G.F. Elsayed, I. Goodfellow, J. Sohl-Dickstein, Adversarial reprogramming of neural networks, in: International Conference on Learning Representations, 2019.

[2] Y.-Y. Tsai, P.-Y. Chen, T.-Y. Ho, Transfer learning without knowing: reprogramming black-box machine learning models with scarce data and limited resources,
in: H. Daumé, A. Singh (Eds.), Proceedings of the 37th International Conference on Machine Learning, in: Proceedings of Machine Learning Research, vol. 119,
PMLR, 2020, pp. 9614–9624.

[3] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger
(Eds.), Advances in Neural Information Processing Systems, vol. 25, Curran Associates, Inc., 2012, pp. 1097–1105.

[4] S. Chen, N. Carlini, D. Wagner, Stateful detection of black-box adversarial attacks, in: Proceedings of the 1st ACM Workshop on Security and Privacy on Artificial
Intelligence, 2020, pp. 30–39.

[5] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea, C. Nita-Rotaru, F. Roli, Why do adversarial attacks transfer? Explaining transferability of
evasion and poisoning attacks, in: 28th USENIX Security Symposium (USENIX Security 19), USENIX Association, 2019.

[6] T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal loss for dense object detection, in: Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2017.

[7] B. Biggio, F. Roli, Wild patterns: ten years after the rise of adversarial machine learning, Pattern Recognit. 84 (2018) 317–331.

[8] S. Liu, B. Kailkhura, P.-Y. Chen, P. Ting, S. Chang, L. Amini, Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization, Advances in Neural
Information Processing Systems, vol. 31, Curran Associates, Inc., 2018, https://proceedings .neurips .cc /paper /2018 /hash /ba9a56ce0a9bfa26e8ed9e10b2cc8f46 -
Abstract .html.

[9] C.-C. Tu, P. Ting, P.-Y. Chen, S. Liu, H. Zhang, J. Yi, C.-J. Hsieh, S.-M. Cheng, Autozoom: autoencoder-based zeroth order optimization method for attacking
black-box neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 742–749.

[10] R. Hadsell, S. Chopra, Y. LeCun, Dimensionality reduction by learning an invariant mapping, in: 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), vol. 2, IEEE, 2006, pp. 1735–1742.

[11] S. Chopra, R. Hadsell, Y. LeCun, Learning a similarity metric discriminatively, with application to face verification, in: 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, IEEE, 2005, pp. 539–546.

[12] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[13] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.

[14] Y. Zheng, X. Feng, Z. Xia, X. Jiang, A. Demontis, M. Pintor, B. Biggio, F. Roli, Why adversarial reprogramming works, when it fails, and how to tell the difference,
arXiv preprint, arXiv :2108 .11673, 2021.

[15] X. Wang, S. Wang, P.-Y. Chen, Y. Wang, B. Kulis, X. Lin, P. Chin, Protecting neural networks with hierarchical random switching: towards better robustness-

accuracy trade-off for stochastic defenses, arXiv preprint, arXiv :1908 .07116, 2019.

[16] R. Feinman, R.R. Curtin, S. Shintre, A.B. Gardner, Detecting adversarial samples from artifacts, arXiv preprint, arXiv :1703 .00410, 2017.

[17] K. Grosse, P. Manoharan, N. Papernot, M. Backes, P. McDaniel, On the (statistical) detection of adversarial examples, arXiv :1702 .06280 [cs , stat], Oct. 2017,
https://doi .org /10 .48550 /arXiv .1702 .06280, http://arxiv .org /abs /1702 .06280.

[18] J.H. Metzen, T. Genewein, V. Fischer, B. Bischoff, On detecting adversarial perturbations, https://openreview .net /forum ?id =SJzCSf9xg, 2017.

[19] N. Carlini, D.A. Wagner, Adversarial examples are not easily detected: bypassing ten detection methods, in: B.M. Thuraisingham, B. Biggio, D.M. Freeman, B.
Miller, A. Sinha (Eds.), 10th ACM Workshop on Artificial Intelligence and Security, AISec ’17, ACM, New York, NY, USA, 2017, pp. 3–14.

Yang Zheng received his M.S. degree from the School of Electronic Engineering, Xi’an University of Posts & Telecommunications, China,
in 2018. He is currently pursuing his Ph.D. in the School of Electronics and Information, Northwestern Polytechnical University. His current
research interests include secure machine learning and deep learning.

Xiaoyi Feng is a Professor with the School of Electronics and Information, Northwestern Polytechnical University. She has authored or
coauthored more than 100 papers in journals and conferences. Her current research interests include computer vision, image process, radar
imagery, and recognition.

Zhaoqiang Xia is an Associate Professor in the School of Electronics and Information, Northwestern Polytechnical University. He has au-

thored or co-authored more than 60 papers in international journals and conferences. His current research interests include visual processing,
search and recognition, and statistical machine learning.
13

http://refhub.elsevier.com/S0020-0255(23)00678-3/bibC7745A6198CE16E0E5B06C37280298D0s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib1D3AAADAC5A51AED791800AAE7F95BB8s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib1D3AAADAC5A51AED791800AAE7F95BB8s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib1D3AAADAC5A51AED791800AAE7F95BB8s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bibA8541428375ABF396363AD2FF5C8F2E8s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bibA8541428375ABF396363AD2FF5C8F2E8s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib5B8C0490DFAE193AA6EED59A4F43E424s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib5B8C0490DFAE193AA6EED59A4F43E424s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib688A52D60CA8DD284691A2024EC0F942s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib688A52D60CA8DD284691A2024EC0F942s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib889EC097F85874258D6AAC2A68721DC6s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib889EC097F85874258D6AAC2A68721DC6s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib504B40E51D30B09B24E17E537EE145EEs1
https://proceedings.neurips.cc/paper/2018/hash/ba9a56ce0a9bfa26e8ed9e10b2cc8f46-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/ba9a56ce0a9bfa26e8ed9e10b2cc8f46-Abstract.html
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib738D4DF0F81FAD81651200D3130E4CA4s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib738D4DF0F81FAD81651200D3130E4CA4s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib9A7C55E40FF315DF7C9E508476D966AFs1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib9A7C55E40FF315DF7C9E508476D966AFs1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib383214764F6DC5049706726081E864C9s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib383214764F6DC5049706726081E864C9s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib33298D22BBE1D0A45E724642CD4F276Cs1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib33298D22BBE1D0A45E724642CD4F276Cs1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bibF71C01FB26A74230D7E697E7A4ADECC1s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bibF71C01FB26A74230D7E697E7A4ADECC1s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bibEF2C981AAF9E44B443E8A51B5E6B30CAs1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bibEF2C981AAF9E44B443E8A51B5E6B30CAs1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bibAC5E0A8A1DA45EA9C2571BAD25C58969s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bibAC5E0A8A1DA45EA9C2571BAD25C58969s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib0E627514282310B91C27421E90E15E95s1
https://doi.org/10.48550/arXiv.1702.06280
http://arxiv.org/abs/1702.06280
https://openreview.net/forum?id=SJzCSf9xg
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib1425F69247A046811B824DB6C9F44779s1
http://refhub.elsevier.com/S0020-0255(23)00678-3/bib1425F69247A046811B824DB6C9F44779s1

Information Sciences 642 (2023) 119093Y. Zheng, X. Feng, Z. Xia et al.

Xiaoyue Jiang received the M.S. and Ph.D. degree from Northwestern Polytechnical University, Xi’an, China, in 2003 and 2006, respec-

tively. She is an associate professor with the School of Electronics and Information, Northwestern Polytechnical University since 2012. Her
research interests include image processing, computer vision and machine learning.

Maura Pintor is a Ph.D. Student at the University of Cagliari, Italy. She received the MSc degree in Telecommunications Engineering
with honors in 2018, from the University of Cagliari (Italy). Her research interests include adversarial machine learning and machine learning
explainability methods, with applications in cybersecurity.

Ambra Demontis is an Assistant Professor at the University of Cagliari, Italy. She received her M.Sc. degree (Hons.) in Computer Science
and her Ph.D. degree in Electronic Engineering and Computer Science from the University of Cagliari, Italy. Her research interests include
secure machine learning, kernel methods, biometrics, and computer security.

Battista Biggio (MSc 2006, PhD 2010) is Assistant Professor at the University of Cagliari, Italy, and co-founder of the company Pluribus
One. His research interests include adversarial machine learning and cybersecurity. He is Senior Member of the IEEE and of the ACM, and
Member of the IAPR and ELLIS.

Fabio Roli is a Full Professor of Computer Science at the University of Genoa, Italy. He has been appointed Fellow of the IEEE and Fellow
of the International Association for Pattern Recognition. He is a recipient of the Pierre Devijver Award for his contributions to statistical
14

pattern recognition.

	Stateful detection of adversarial reprogramming
	1 Introduction
	2 Adversarial reprogramming
	2.1 Problem formulation
	2.2 Solution algorithm
	2.3 Black-box adversarial reprogramming

	3 Stateful defenses
	3.1 Dimensionality reduction
	3.2 Detection buffer and query detection
	3.3 Leveraging transferability to defeat stateful defenses

	4 Experimental analysis
	4.1 Experimental setup
	4.2 Experimental results

	5 Related work
	5.1 Adversarial reprogramming
	5.2 Previously proposed defenses

	6 Contributions and limitations of this work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

