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Adversarial reprogramming allows stealing computational resources by repurposing machine 
learning models to perform a different task chosen by the attacker. For example, a model trained 
to recognize images of animals can be reprogrammed to recognize medical images by embedding 
an adversarial program in the images provided as inputs. This attack can be perpetrated even 
if the target model is a black box, supposed that the machine-learning model is provided as a 
service and the attacker can query the model and collect its outputs. So far, no defense has been 
demonstrated effective in this scenario. We show for the first time that this attack is detectable 
using stateful defenses, which store the queries made to the classifier and detect the abnormal 
cases in which they are similar. Once a malicious query is detected, the account of the user who 
made it can be blocked. Thus, the attacker must create many accounts to perpetrate the attack. 
To decrease this number, the attacker could create the adversarial program against a surrogate 
classifier and then fine-tune it by making a few queries to the target model. In this scenario, the 
effectiveness of the stateful defense is reduced, but we show that it is still effective.

1. Introduction

Adversarial reprogramming is an attack that allows stealing the computational resources of machine learning models provided as 
a service by repurposing them to perform a task chosen by the attacker. For instance, an online service that uses a deep network to 
classify images of objects can be reprogrammed by attackers to solve CAPTCHAs1 automating the creation of SPAM accounts [1]. Let 
us consider as an example the case depicted in Fig. 1; where an attacker would like to repurpose a model trained to classify samples 
belonging to a source domain (e.g., ImageNet objects) to classify samples belonging to a different, target domain (e.g., the medical 
images of the HAM10000 dataset). To this end, the attacker should first establish a mapping function between the class labels of the 
source domain and those of the target domain (e.g., the first six classes of the ImageNet datasets could be associated with the class 
“akiec” of intraepithelial carcinoma, etc.). Once such a class mapping is established, the target-domain samples will be modified to 
embed the adversarial program. Namely, a universal (equal for all the target-domain samples) adversarial perturbation optimized to 
have such samples assigned to the desired source-domain classes. For a more detailed explanation of how this attack works, we refer 
the reader to Sec. 2. The first work that proposed adversarial reprogramming [1] assumed that the attacker knows the architecture 
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Fig. 1. Adversarial reprogramming of AlexNet [3], trained on the ImageNet dataset. Multiple source-domain classes are mapped to one of the target-domain classes 
(e.g., “tench”, “goldfish”, “white shark”, “tiger shark”, “hammerhead”, “electric ray” are mapped in “akiec”, etc.). In the example, the HAM10000 image “akiec” is 
embedded in the adversarial program, and classified by pre-trained AlexNet as desired, namely as the source-domain class that is mapped to the “akiec” class.

Fig. 2. A machine learning (ML) system provided as a service and protected by a stateful detector that analyzes the queries made by a user’s account and eventually 
bans it.

and weights of the target model (the so-called white-box scenario), which is seldom true. However, recent results [2] showed that 
adversarial reprogramming could be executed even if the attacker has only query access to the target model (black-box scenario). 
Namely, if the attacker can only make a sequence of queries to the target model and collect the outputs. So far, no defense has shown 
to be effective in this scenario; therefore, it remains unclear if and to what extent this attack can be mitigated.

In this work, we show for the first time that this attack can be effectively mitigated with stateful defenses (Sec. 3). In a black-box 
scenario, the attacker can estimate the gradient needed to optimize the adversarial program with numerical techniques. To this end, 
she has to make numerous queries with inputs quite similar to each other. This similarity can be exploited to detect reprogramming 
attacks using a stateful detector. This defense was originally proposed by Chen et al. [4] to protect machine learning systems against 
a different kind of attack, namely the evasion attack: an attack that computes a perturbation that, if applied to a single sample, allows 
the attacker to have it classified as the desired class. Stateful detectors record the queries made by a user to the classifier and store 
them in a temporary history buffer. For each new query, if the detector finds many old queries nearby, it will flag the new query 
as an attack, and the system will block that user (see Fig. 2). The attacker will thus have to create another account to be able to 
continue optimizing the adversarial perturbation. Therefore, this defense substantially increases the effort that the attacker should 
make.

Our experimental analysis (Sec. 4) shows that stateful defenses are highly effective against black-box reprogramming. However, it 
is worth noting that the attacker could reduce the number of queries by leveraging a known property of attacks called (transferability), 
namely, the capability of an attack computed against a given model (surrogate) to be effective against a different (target) model [5]. In 
our experiments, we have tested the effectiveness of adversarial reprogramming when the attacker tries to leverage this property by 
computing the adversarial program against a surrogate model and then fine-tuning it by querying the target model. Our results show 
that the attacker can reduce the number of queries and increase the success of the attack by exploiting (transferability); however, our 
defense remains effective and is a valuable deterrence mechanism.

We conclude this paper by discussing related work (Sec. 5), our main contributions, the limitations of our work, and promising 
directions for future work (Sec. 6).

2. Adversarial reprogramming

In this section, we first explain that the task of developing an adversarial program can be mathematically formulated as an 
optimization problem. Then, we describe the algorithm that the attacker can use to solve this problem when the target model is a 
2

black box, that is the scenario considered in this work (Sec. 2.3).
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Fig. 3. Reprogramming mask 𝐌 used to restrict the adversarial perturbation (𝜹) to the frame surrounding the target-domain input image (𝒙), initially padded with 
zeros.

2.1. Problem formulation

In this section, we introduce the mathematical model of adversarial reprogramming. Let us assume that we have a source-domain 
dataset  = (�̃�𝑗 , ̃𝑦𝑗 )𝑚𝑗=1 and a target-domain dataset  = (𝒙𝑖, 𝑦𝑖)𝑛𝑖=1, consisting of 𝑚 and 𝑛 samples, along with their labels. The samples 
of the source and target domain are represented as vectors, respectively in ̃ = [−1, 1]𝑑×𝑑×3 and  = [−1, 1]𝑑′×𝑑′×3. The class labels 
belong to different domains, respectively, �̃� ∈ ̃ for the source domain, and 𝑦 ∈  for the target domain. Let 𝑠 be the total number 
of classes in the source-domain dataset and ̃ = {�̃�1, … , ̃𝑦𝑘, … , ̃𝑦𝑠} be the set of the source labels. We define the target model that 
we would like to reprogram as 𝑓 ∶ ̃ ↦ ℝ𝑠. This model is parameterized by 𝜽 ∈ ℝ𝑡 and provides as output a vector of confidence 
scores 𝑓 (�̃�𝑗 , 𝜽) = {𝑐�̃�1 (�̃�𝑗 , 𝜽), … , 𝑐�̃�𝑘 (�̃�𝑗 , 𝜽), … , 𝑐�̃�𝑠 (�̃�𝑗 , 𝜽)}. To reprogram it we should define a mapping between the source- and the 
target-domain class labels, e.g. using the Multiple Label Mapping (MLM) proposed by Tsai et al. [2]. Let 𝑡 be the total number of 
classes of the target-domain dataset and  = {𝑦1, … , 𝑦𝑖, … , 𝑦𝑡} be the set of the target domain labels. We can define a MLM function 
ℎ𝑦𝑖∈ (𝑓 (�̃�𝑗 , 𝜽)) =

1
∣𝑲 ∣

∑
𝑘∈𝑲 𝑐𝑘(�̃�𝑗 , 𝜽), where 𝑲 ⊆ ̃ is the subset of source labels, and ∣𝑲 ∣ is the number of elements of 𝑲 , that maps a 

subset of multiple-source labels to a one-target label (e.g., the source-domain label set {“tench”, “goldfish”, “white shark”, “tiger shark”, 
“hammerhead”, “electric ray”} is mapped to the target-domain label “akiec” as in Fig. 1).

Reprogramming mask. In this work, we focus on programs consisting of a frame surrounding the target-domain samples as shown 
in Fig. 1, also considered in the seminal work that proposed adversarial reprogramming [1]. This means that the target-domain 
samples are assumed to be smaller than the source-domain samples, i.e. 𝑑′ < 𝑑, and padded with zeros to reach the input size of 
the target model. For example, the images of the HAM10000 dataset consist of 200 × 200 = 40, 000 pixels per channel and should be 
padded with 10,176 zeros per channel to reach the input size of ImageNet models (which have 224 ×224 = 50, 176 pixels per channel). 
To compute the adversarial programs, we use a reprogramming mask (shown in Fig. 3): a binary vector 𝐌 ∈ {0, 1}𝑑 whose values are 
set to 0 in the region occupied by the target-domain samples, and to 1 in the surrounding frame.

Adversarial program. Under these assumptions, we can define the adversarial program 𝜹 as:

𝜹 = tanh(𝑾 ◦𝐌) = tanh(𝑾 )◦𝐌, (1)

where 𝑾 ∈ ℝ𝑑×𝑑×3 is a vector containing the adversarial program parameters to be learned, the ◦ operator denotes element-wise 
vector multiplication, and the “tanh” function constrains the adversarial program in the feasible domain  = [−1, 1]𝑑×𝑑×3.

Loss function. The optimal adversarial program 𝜹⋆ can be obtained by solving the following optimization problem:

𝜹⋆ ∈ arg min𝐿(𝜹, ) = 1
𝑛

𝑛∑
𝑖=1

𝓁(ℎ𝑦𝑖 (𝑓 (𝒙𝑖 + 𝜹,𝜽)), 𝑦𝑖), (2)

where 𝜹 is the optimized adversarial program, ℎ𝑦𝑖 (⋅) is the MLM function, 𝓁 is the focal loss [6], which takes on high positive values 
when the perturbed target-domain samples are not confidently assigned to the desired target-domain label.

2.2. Solution algorithm

Supposing to have complete access to the target system (white-box attack scenario), the optimization problem in Eq. (2) can 
be solved with the Algorithm 1 which extends the Gradient Descent (GD) algorithm. This algorithm iteratively (line 3) updates the 
adversarial program 𝜹 to minimize the expected loss on the target-domain samples. In each iteration, the target-domain samples are 
randomly shuffled (line 4) and subdivided into 𝑏 batches. The adversarial program is then updated by iterating over the batches 
3

(line 6). To this end, first, the gradient 𝒈 (line 7) is computed by averaging the ones obtained considering each single sample. The 
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Algorithm 1 Adversarial Reprogramming

Input: the target-domain dataset  = (𝒙𝑖 , 𝑦𝑖)𝑛𝑖=1the model parameters 𝜽, the batch size 𝐵, the adversarial program parameters 𝑾 , the reprogramming mask 𝐌, the 
number of iterations 𝑁 , the step size 𝜂, and the function tanh(⋅).

Output: the optimal adversarial program 𝜹∗ .

1: 𝜹← 𝟎, loss𝜹∗ ←∞, Randomly initialize 𝑾
2: 𝑡 ← 0
3: for 𝑡 <𝑁 do

4: Randomly shuffle the samples in 

5: 𝑏 ← 0
6: for 𝑏 < ⌊ 𝑛

𝐵
⌋ do

7: 𝒈← 1
𝐵

∑𝐵⋅𝑏+𝐵−1
𝑖=𝐵⋅𝑏 𝒈𝑖

8: 𝑾 ←𝑾 − 𝜂 × 𝒈

9: 𝜹← tanh(𝑾 ◦𝐌)
10: 𝑏 ← 𝑏 + 1
11: end for

12: loss𝜹 =𝐿(𝜹,  ) (compute loss as given in Eq. (2))

13: if loss𝜹 < loss𝜹∗ then

14: 𝜹∗ ← 𝜹

15: loss𝜹∗ ← loss𝜹
16: end if

17: 𝑡 ← 𝑡 + 1
18: end for

19: return 𝜹⋆

gradient for the 𝑖th sample is computed as 𝒈𝑖 = ∇𝒙𝓁(ℎ𝑦𝑖 (𝑓 (𝒙𝑖 + 𝜹, 𝜽)), 𝑦𝑖). Then, the adversarial program parameters are updated with 
an 𝜂-sized step (line 8) in the steepest descent direction (the opposite of 𝒈). After updating 𝜹, the algorithm constrains the program 
to be onto the feasible space  = [−1, 1]𝑑×𝑑×3 employing the function tanh(⋅) (line 9). The algorithm finally returns the adversarial 
program 𝜹⋆ that achieves the minimum classification loss across the whole optimization process (line 19).

2.3. Black-box adversarial reprogramming

The methodology we explained in the previous section assumes that the attacker has full knowledge of the target system (i.e., it 
knows its architecture and weights) and thus can compute the gradient of the loss function w.r.t the input samples. However, this 
is hardly ever true because online machine-learning services avoid disclosing information about their machine-learning algorithms. 
Often the attackers have no information about the target system (back-box scenario). They know only the task (i.e., image classifi-

cation, object detection, malware classification, etc.) and know which potential transformations they can apply to the input to cause 
some feature changes [7]. For example, the attackers know that its input features represent image pixels; thus, the input features can 
assume any value suitable for the images’ pixels.

In the black-box scenario, the gradients needed in line 7 of Algorithm 1 cannot be analytically computed by the attacker. Never-

theless, the attacker can still execute reprogramming attacks [2]. Querying the target system and collecting outputs (i.e., provided 
labels, confidence scores), the attacker can estimate the required gradient with numerical techniques. Using one-sided averaged 
gradient estimators [8,9], as done in [2], the gradient for the 𝑖th sample can be estimated as:

�̂�𝑖 =
𝑏

𝑞𝜇

𝑞∑
𝑗=1

[𝓁(ℎ𝑦𝑖 (𝑓 (𝒙𝑖 + 𝜇𝒖𝑖𝑗 ,𝜽)), 𝑦𝑖)

−𝓁(ℎ𝑦𝑖 (𝑓 (𝒙𝑖,𝜽)), 𝑦𝑖)]𝒖𝑖𝑗 ,

(3)

where 𝑏 is a tunable scaling parameter that balances the bias and variance trade-off of the gradient estimation error, 𝜇 > 0 is a 
smoothing parameter, 𝑞 > 0 is the parameter that influences the number of queries, and {𝒖𝑖𝑗}

𝑞

𝑗=1 ∈ℝ𝑑×𝑑×3 are i.i.d. random directions 
drawn from a uniform distribution over a unit sphere.

3. Stateful defenses

This section explains the working principles behind stateful defenses and how an attacker could reduce their effectiveness.

As we explained in the previous section, to perform adversarial reprogramming in a black-box scenario, the attacker has to send 
many queries that are quite similar to each other to the target model. This is required to estimate the gradients as explained in 
Eq. (3). Therefore, we conjecture that this attack can be easily detected with the stateful detector proposed by Chen et al. [4]. The 
key hypothesis of the Chen et al. method implies that the sequence of queries used to generate a black-box attack are distinguishable 
from the ones usually made by benign users. Based on this hypothesis, the authors proposed a defense that relies on the observation 
that existing black-box attacks often make a sequence of highly self-similar queries (i.e., each query in the sequence is highly similar 
to some prior queries in the sequence).

As shown in Fig. 4, the detector, for each query (𝒙) received by a user: (i) Maps it into a low-dimensional space using a similarity 
encoder 𝐺𝒘(𝒙); (ii) it computes the average 𝑙2 distance in the low-dimensional space between the new query (the yellow point in 
4

Fig. 4) and the 𝑘-nearest queries memorized (the ones inside the gray sphere in Fig. 4); (iii) if the computed average distance (𝑑) 
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Fig. 4. A high-level representation of a stateful defense. The detector maps the received queries in a low-dimensional space using a similarity encoder (𝐺𝒘(𝒙)) and 
stores them in a temporary buffer. If the average distance (𝑑) between the current query (in yellow) and its 𝑘-nearest neighbor queries in the buffer (the points inside 
the gray sphere) is lower than a threshold (𝜌), the query is flagged as malicious.

Fig. 5. A high-level representation of the procedure used to train the similarity encoder. The samples of the source dataset are first paired. Then, the similarity encoder 
is trained on pair of samples to find a mapping in which the samples belonging to the same class are near, whereas the ones belonging to different classes are far from 
each other.

is smaller a chosen threshold 𝜌, the detector flags this sequence of queries as an attack. The user that issued these queries will be 
blocked, and the attacker will have to create another account to issue more queries to refine the attack.

3.1. Dimensionality reduction

As we have explained before, to detect attacks, the detector evaluates the 𝑙2-norm distance of the current query with the ones 
stored in its buffer. Their distance in input space would be computationally expensive to compute and would not be significant. E.g., 
a small rotation or translation can cause dramatic distance changes. Therefore, we consider their distance in a space with a smaller 
dimensionality. Following Chen et al. [4], we use a similarity encoder to reduce the dimensionality.

To create the similarity encoder, as shown in Fig. 5, we use a Siamese architecture. The Siamese architecture is constituted by two 
neural networks initialized with the same weights. We follow [10] and [11] to create the sample pairs (see Fig. 5) required to train 
it. We construct a training dataset 𝑉 = (𝒗𝑗 , 𝑙𝑗 )

𝑝

𝑗=1, where 𝒗𝑗 = (�̃�1
𝑗
∈ ℝ𝑑×𝑑×3, ̃𝒙2

𝑗
∈ ℝ𝑑×𝑑×3) is the 𝑗-th sample pair made by samples of 

the source-domain dataset, 𝑙𝑗 is the label of the 𝑗-th sample pair, where 𝑙𝑗 = 0 (𝑙𝑗 = 1) if �̃�1
𝑗

and �̃�2
𝑗

are similar, namely they belong 
to the same class (dissimilar, namely they belong to different classes), and 𝑝 is the number of possible pairs of samples belonging to 
the source domain dataset. Let 𝒘 be the weights shared by the two networks 𝐺𝒘(⋅). As shown in Eq. (4), we compute the 𝑙2 distance 
between 𝐺𝒘(�̃�1𝑗 ) and 𝐺𝒘(�̃�2𝑗 ), namely between two samples in the lower-dimensional space produced by the similarity encoder as:

𝐷𝑆𝒘(𝒗𝑗 ) = ‖𝐺𝒘(�̃�1𝑗 ) −𝐺𝒘(�̃�2𝑗 )‖2. (4)

As in [10] we train the siamese architecture that we use to implement the similarity encoder with the contrastive loss function:

𝐿𝑐 (𝒘, 𝑉 ) =
𝑝∑
𝑗=1

𝓁𝑐 (𝒘,𝒗𝑗 , 𝑙𝑗 ), (5)

𝓁𝑐 (𝒘,𝒗𝑗 , 𝑙𝑗 ) = (1 − 𝑙𝑗 )
1
2
[𝐷𝑆𝒘(𝒗𝑗 )]2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑙𝑠

+

𝑙𝑗
1
2
{max[0, 𝑧−𝐷𝑆𝒘(𝒗𝑗 )]}2,

(6)
5

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑙𝑑
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where 𝑙𝑠 is the partial loss function for similar pairs, 𝑙𝑑 is the partial loss function for dissimilar pairs, and 𝑧 is a margin. The 𝑙𝑠 term 
encourages the similarity encoder to find the weights for which similar pairs are mapped near each other. The 𝑙𝑑 term enables it to 
find weights for which the dissimilar pairs have a distance lower than the chosen margin 𝑧.

3.2. Detection buffer and query detection

The detection buffer will check how many queries it has already stored in its memory (𝑄). If the detector has already memorized 
at least 𝑘 queries (𝑄 > 𝑘), first, it computes the average 𝑙2 distance in the low-dimensional space between the new query and the 
𝑘-nearest queries memorized. Then, the computed distance is sent to the Query Detection module, which will trigger if the received 
distance is smaller than a selected threshold 𝜌.

To assess the detection capabilities of the defense, for simplicity, we will consider all the queries made by the attacker as coming 
from the same user. However, to assess the detector performance fairly, we will reset the memory buffer whenever an attack is 
detected. In the real world, the attacker will have to change the account, and thus we will not know that the queries made by the 
two users, namely the new user and the old one, are actually made by the same person (the attacker).

In the following, we propose a metric that can be used to assess the detectors’ success. To this end, let us consider a detector that 
has just stored the first 𝑘 queries made by a user. When the user makes its 𝑘 +1 query, if the average distance of this query from the 
𝑘 stored queries falls below a chosen threshold (𝜌), the detector will consider it an attack. Upon detection, the number of detected 
malicious queries will be equal to “1”, and the buffer containing the previous 𝑘 + 1 queries will be cleared. Otherwise, the detector 
will focus on the next query. Therefore, the number of detections is 𝐷 ≤ ⌊ 𝑄

𝑘+1 ⌋, where the latter is the maximum number of possible 
detections, given that the detector should collect at least 𝑘 queries before examining them to detect attacks.

It is not difficult to see that the stateful defense is based on groups rather than individual queries, where the size of each group 
is 𝑘 + 1 (the maximum number of detections is one every 𝑘 + 1 samples) thus in our example 𝐷 ≤ 2. Therefore, to evaluate the 
performance of the stateful defense, we introduce the detection coefficient 𝜎 computed as follows:

𝜎 = 𝐷

𝑄
≤

1
𝑘+ 1

. (7)

From the Eq. (7), we can see 𝜎 is only related to 𝑘. Consequently, 𝑘 plays an important role in the scheme of stateful defense. To 
obtain a value ∈ [0, 1], we define 𝜎⋆ as the normalization of 𝜎:

𝜎⋆ = (𝑘+ 1)𝜎. (8)

From Eq. (8), it’s not difficult to see that 𝜎⋆ ∈ [0, 1], where 𝜎⋆ = 0 when 𝐷 = 0, and 𝜎⋆ = 1 when 𝐷 = 𝑄

𝑘+1 , which is the maximum 
number of detections that we can have for a chosen 𝑘.

Parameters influencing the performance of the detector. The two main parameters that influence the detection performances 
of the defense are the size of the buffer 𝑘 and the detection threshold 𝜌. Specifically, increasing the buffer size 𝑘 will consider a 
bigger observation window, making the detector more sensitive to long-term attacks (at the cost of having a bigger delay in the 
first detection, as the detector has to fill the buffer first). In other words, 𝑘 regulates the temporal distance between similar queries 
that would trigger the detector. On the other hand, increasing the detection threshold 𝜌 will reduce the sensitivity of the detector, 
reducing the false positives. In other words, 𝜌 regulates the minimum average spatial distance that will trigger the detector.

Application example. To clarify the description of the detector, we explain in detail how it will work on the following ten queries 
(𝑄 = 10): (𝒂, 𝒃, 𝒄, 𝒅, 𝒆, 𝒇 , 𝒈, 𝒉, 𝒊, 𝒋), when the number of detections 𝐷 = 0, and the parameter 𝑘 = 3. The detector will start checking for 
attacks once it have stored at least 𝑘 queries in its buffer. In the presented case, the queries (𝒂, 𝒃, 𝒄). Then, once it has received the 
𝑘 + 1 query (𝒅), the detector will compute the average distance between 𝒅 and 𝒂, 𝒃, 𝒄. Let (𝒊, 𝒋) represent the distance of 𝒊 and 𝒋. 
The detector will compute (𝒂, 𝒅), (𝒃, 𝒅), (𝒄, 𝒅), and the average distance ̄𝒂𝒃𝒄𝒅 = (𝒂,𝒅)+(𝒃,𝒅)+(𝒄,𝒅)

3 . If ̄𝒂𝒃𝒄𝒅 is smaller than 𝜌, 
the detector will flag the queries (𝒂, 𝒃, 𝒄, 𝒅) as malicious. Thus, will add “1” to the number of the detections, i.e. 𝐷 = 1, and then will 
clear its memory buffer. Otherwise, the detector will continue to compute the distance of the next new input 𝒆 with (𝒂, 𝒃, 𝒄, 𝒅), i.e. 
(𝒂, 𝒆) (𝒃, 𝒆), (𝒄, 𝒆), (𝒅, 𝒆). Then, if the average distance with the 3 nearest queries is smaller than 𝜌, the detector will flag the 
queries as an attack and add “1” to the number of the detections, i.e. 𝐷 = 1, then will clear its buffer, thus in our example 𝐷 ≤ 2.

3.3. Leveraging transferability to defeat stateful defenses

Stateful defenses detect malicious queries and, consequently, are able to block the attacker’s account. To execute adversarial 
reprogramming, the attackers will have to create multiple accounts. To reduce the number of detections and thus accounts that they 
have to create, attackers might leverage a property of attacks called transferability, namely the ability of an attack computed against 
a model (surrogate) to be effective against a different (target) model [5]. For the transfer-based attack, we assume that the input 
feature representation of the target model is known (that is, for images, the features of the models will be the pixels of the input 
images). Then, the attacker can collect a surrogate dataset and train a surrogate model on such data to approximate the decision 
function (and the gradients) of the target model. The surrogate dataset does not have to be the same as the source dataset, however, 
they should at least be sampled from the same distribution. An attacker can exploit transferability to craft an adversarial program 
with the white-box reprogramming attack against the newly-created surrogate model, thus avoiding making any malicious query to 
6

the target model. However, if the surrogate and the target model are not similar, the computed adversarial program might not be 
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Fig. 6. The distribution of the two medical datasets considered as the target-domain dataset.

sufficiently accurate in reprogramming the target model. Nevertheless, transferability might still be exploited by the attacker. The 
attacker might use it to initialize the adversarial program and then fine-tune it by making a few queries to the target model. In 
the next Section, we evaluate experimentally to which extent one attacker could exploit the transferability of attacks to defeat our 
stateful defense.

4. Experimental analysis

In the following, we describe the experimental setup we used to assess the effectiveness of stateful defenses, and then we report 
the experimental results.

4.1. Experimental setup

In the following, we describe all the details required to replicate our experiments.

Datasets. Because the ImageNet large-scale training corpus has gained popularity in computer vision as an evaluation benchmark 
and many pre-trained architectures are available on the Internet, we choose ImageNet as our source-domain dataset. Adversarial 
reprogramming has been recently shown in [2] to be particularly useful for reprogramming models for datasets containing only a 
few samples. This is usually true for medical datasets as their samples are quite costly to collect; thus, only a few samples are usually 
available. Therefore, we have chosen the two medical datasets used in that work as our target domain datasets. We present the 
details of the dataset used in the following.

ImageNet2 is one of the largest publicly-available computer-vision datasets. It contains images belonging to 1, 000 categories subdi-

vided into around 1.2 million training images, 50, 000 validation images, and 100, 000 test images. The images are collected from the 
Internet by search engines and labeled by humans via crowdsourcing. We use this dataset as our source-domain dataset. We use its 
training set as our training dataset (we use models pre-trained on it) and its validation dataset to create our similarity encoder. To 
this end, we subdivide the validation dataset into 40, 000 samples that we use to train the similarity encoder and 10, 000 that we use 
to test its performances.

Diabetic Retinopathy Detection (DR)3 is a medical dataset consisting of 35, 126 images with dimensions 4, 652 × 3, 168 and a label that 
ranges from 0 to 4, corresponding to the rating of the presence of diabetic retinopathy. We resize these samples to be 200 × 200. We 
perform re-sampling on the data samples to get a training/testing set of 3, 000/2, 400 samples. The original and the re-sampled DR 
dataset distribution is represented as orange bars in the left and right plots of Fig. 6.

HAM100004 is a large collection of multi-source dermatoscopic images of common pigmented skin lesions, which includes 10, 015
samples of 7 types (“akiec”, “bcc”, “bkl”, “df”, “mel”, “nv”, “vasc”) of skin cancer. The average image size is 600 ×450 pixels. We resize 
these data samples to be 200 × 200 pixels. Similarly to the DR dataset, we perform re-sampling on this dataset. The collected training 
set contains 7, 800 samples, the testing set contains 780 samples, and the distribution of re-sampled HAM10000 is represented as blue 
bar in the histograms in Fig. 6b.

Preprocessing. We rescale the input images in  = [0, 1]𝑑′×𝑑′×3 to match the input size 𝑑 of the considered models. In the process of 
generating adversarial queries, this requires padding input images with zeros.

2 https://www .image -net .org/.
3 https://www .kaggle .com /c /diabetic -retinopathy -detection /data.
7

4 https://dataverse .harvard .edu /dataset .xhtml ?persistentId =doi :10 .7910 /DVN /DBW86T.

https://www.image-net.org/
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T


Information Sciences 642 (2023) 119093Y. Zheng, X. Feng, Z. Xia et al.

Table 1

The architecture of the similarity encoder [4].

Layer Type Dimension

Conv. + ReLU 32 filters (3 × 3)

Conv. + ReLU 32 filters (3 × 3)

Max Pooling 2 × 2
Dropout 𝑝 = 0.25
Conv. + ReLU 64 filters (3 × 3)

Conv. + ReLU 64 filters (3 × 3)

Max Pooling 2 × 2
Dropout 𝑝 = 0.25
Dense + ReLU 512

Dropout 𝑝 = 0.5
Dense 256

Table 2

The performance of the similarity encoder.

𝑑 Accuracy of Similarity Encoder

224 62.60%

299 63.98%

Classifiers. We consider three different architectures pretrained on ImageNet and implemented on TensorFlow-Slim5 as target 
models: AlexNet [3], ResNet50 [12] and Inception-V3 [13]. AlexNet6 and ResNet507 have input size 𝑑 = 224, Inception-V38 has 
input size 𝑑 = 299.

Similarity encoder. Following Chen et al. [4], our similarity encoder is based on a three-layer CNN. The architecture of this CNN is 
represented in Table 1. In our experiments, we set the dimension of the space in which the samples are projected to 256. To train the 
similarity encoder, as shown in Fig. 5 and explained in detail in Section 3, we first create 𝑝 sample pairs from the validation dataset 
of ImageNet. Then, we train the encoder from scratch on these sample pairs using the RMSprop optimizer with a batch size of 32, 
100 epochs, a learning rate of 10−4, and weight decay of 10−6. We set the 𝑧 parameter of Eq. (5) to 1. We are considering, as target 
models, classifiers with two different input dimensions (224 and 299). Therefore, we trained two different similarity encoders to use 
a similarity encoder with the same input dimension as the considered classifier. We show their performance in Table 2.

Stateful detection. Given that we choose the ImageNet dataset as our source domain, we use the ImageNet validation dataset to 
compute the threshold 𝜌 of the detector. Following [4], we set 𝑘 = 50, and we employ the same procedure used by its authors to 
compute the detection threshold so that only a low and thus a reasonable number of benign queries is flagged. This procedure sets 
the threshold so that if the entire set (constituted by benign samples) were randomly streamed as queries, the false positive rate 
would be 0.1%.

Adversarial reprogramming. To optimize the adversarial program 𝜹, we use Algorithm 1. Before optimizing it, for the target-

domain datasets, we fix ℎ as an MLM function that maps every 6 labels of the source dataset to one label of the target dataset, 
as explained in Sec. 2. We set the step size for updating the adversarial program parameters (𝑾 ) 𝜂 to 0.05, and we use 𝑁 = 10
epochs. We consider DR, and HAM10000 as target-domain datasets, and we employ a batch size of 𝐵 = 24 and 𝐵 = 39 for DR and 
HAM10000 samples, sampled randomly from the training set of the target-domain dataset  . To optimize the adversarial program 
in the white-box scenario, we set the learning rate 𝑙𝑟 = 0.05. For the black-box scenario, as in [2], we set 𝑏 = 𝑑 × 𝑑 × 3 and 𝜇 = 0.1. In 
our experiments, we consider many different values for the parameter 𝑞.

4.2. Experimental results

In the following, we report the experimental results to assess the effectiveness of stateful defenses against adversarial repro-

gramming. We denote with 𝑅 the accuracy obtained executing adversarial reprogramming in a white-box scenario and with 𝐵𝑅 the 
accuracy obtained in a black-box scenario.

White vs black-box reprogramming. First, we compare the success rates of reprogramming programs generated in the black-box 
scenario with those generated in the white-box scenario. To this end, we employ three different models (AlexNet, ResNet50, and 
Inception-V3) and two medical datasets (DR and HAM10000), fixing the parameter 𝑞 of DR and HAM10000 respectively to 𝑞 = 55
and 𝑞 = 65. We denote with 𝑇 𝑟 (𝑇 𝑠) the dataset of the target domains we use to compute (test) the adversarial programs and the 
accuracy obtained reprogramming the target model in the white-box (black-box) scenario with 𝑅𝑡 (𝐵𝑅𝑡). As the sample for computing 

5 https://github .com /tensorflow /models /tree /master /research /slim #Pretrained.
6 https://drive .google .com /file /d /1ICnwX2fgyPMkJ0DyjOdLDadEO0C9C _ll /view.
7 http://download .tensorflow .org /models /resnet _v2 _50 _2017 _04 _14 .tar .gz.
8

8 http://download .tensorflow .org /models /inception _v3 _2016 _08 _28 .tar .gz.

https://github.com/tensorflow/models/tree/master/research/slim#Pretrained
https://drive.google.com/file/d/1ICnwX2fgyPMkJ0DyjOdLDadEO0C9C_ll/view
http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz
http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz
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Table 3

Results of reprogramming AlexNet, ResNet50, and Inception-V3 for different sizes of the dataset employed by the attacker to compute the adversarial program (𝑇 𝑟). 
For each reprogramming task, the table reports the reprogramming accuracy obtained in a white box scenario (𝑅𝑡), the reprogramming accuracy obtained in a 
black-box scenario (𝐵𝑅𝑡) and the difference between them (𝑅𝑡 −𝐵𝑅𝑡). (For interpretation of the references to colour please refer to the web version of this article.)

AlexNet ResNet50 Inception-V3

Dataset 𝑇 𝑟 𝑇 𝑠 𝑅𝑡 𝐵𝑅𝑡 𝑅𝑡 −𝐵𝑅𝑡 𝑅𝑡 𝐵𝑅𝑡 𝑅𝑡 −𝐵𝑅𝑡 𝑅𝑡 𝐵𝑅𝑡 𝑅𝑡 −𝐵𝑅𝑡

DR

6000 2400 80.70% 80.09% 0.61% 80.16% 79.51% 0.65% 80.13% 79.80% 0.33%

3000 2400 80.33% 79.25% 1.08% 79.36% 78.17% 1.19% 79.84% 79.27% 0.57%

1500 2400 79.81% 78.39% 1.42% 78.06% 74.78% 3.28% 79.40% 76.68% 2.72%

HAM10000

9200 780 81.07% 80.71% 0.36% 81.55% 80.20% 1.35% 80.32% 79.98% 0.34%

7800 780 80.78% 79.72% 1.06% 80.92% 79.11% 1.81% 78.68% 77.52% 1.16%

3900 780 77.24% 76.28% 0.96% 75.34% 71.77% 3.57% 74.42% 68.67% 5.75%

Table 4

The reprogramming accuracy obtained reprogramming the target model in a black-box scenario (𝐵𝑅𝑡) for different values of the 
attack’s hyperparameter 𝑞 that controls the number of queries 𝑄 made by the attacker to the target model, and the corresponding 
performance of the detector, measured as the number of detections (𝐷) and the percentage of detected attacks (𝜎∗) with respect to 
the number of possible detections.

Dataset Target Model 𝑞 𝐵𝑅𝑡 𝑄 𝐷 𝜎⋆

DR

AlexNet
45 77.54% 110400 1810 83.61%

55 79.25% 134400 2266 85.99%

ResNet50
45 76.56% 110400 1794 82.88%

55 78.17% 134400 2237 84.89%

HAM10000

AlexNet
55 79.36% 43680 805 93.99%

65 79.72% 51480 980 97.09%

ResNet50
55 77.54% 43680 779 90.95%

65 79.11% 51480 973 96.39%

the adversarial program are usually difficult to collect for the attacker, in this experiment, we assess the performance for different 
numbers of training samples 𝑇 𝑟. We present the result in Table 3. From the Table 3, we can see that 𝑅𝑡 is always greater than 𝐵𝑅𝑡, 
and the difference, 𝑅𝑡 − 𝐵𝑅𝑡, between 𝑅𝑡 and 𝐵𝑅𝑡 is located in [0.33%, 5.75%]. Moreover, we also notice that 𝑅𝑡 − 𝐵𝑅𝑡 is relatively 
large when the number of training samples is small. If we ignore the cases with a small number of training samples (pink values in 
Table 3), we obtain 𝑅𝑡 −𝐵𝑅𝑡 ∈ [0.33%, 1.81%]. Therefore, we can conclude that the performance of reprogramming queries generated 
in the black-box scenario is almost the same as the one generated in the white-box scenario when the training dataset is sufficiently 
large.

Defending against black-box reprogramming. After, we assess the performance of the proposed detector against a black-box 
attack. In this experiment, we also evaluate the effect of tuning the parameter 𝑞 that influences the number of queries the attack 
will make to the target model. In this experiment, we consider AlexNet and ResNet50 as the target models, and we fix the number 
of training samples of DR and HAM10000 as 𝑇 𝑟 = 3, 000 and 𝑇 𝑟 = 7, 800, the number of samples in the testing dataset of DR and 
HAM10000 as 𝑇 𝑠 = 2, 400 and 𝑇 𝑠 = 780. Then, we compute the program with different values of 𝑞 and present the result in Table 4. 
From this Table, we can see how the attack performance of adversarial reprogramming queries generated based on the target model 
(𝐵𝑅𝑡) positively correlates with the parameter 𝑞 and, thus, the number of queries.

Adaptive evaluation. To evaluate the worst-case scenario, we also test the performance of our detector against an attack designed to 
bypass it. Specifically, we employ an attack that injects random queries to hide the query sequence from the defender (query blinding, 
as in [4]). In particular, we use a blinding strategy that adds Gaussian noise to the full images. We evaluate the performance of the 
target model when the full image is perturbed with this noise when considering different numbers of queries that the attacker can 
make, controlled by the parameter 𝑞. In this experiment, we consider AlexNet and ResNet50 as the target models, and we set the 
number of training and testing samples as in our previous experiment (for DR: 𝑇 𝑟 = 3, 000 and 𝑇 𝑠 = 2, 400; and for HAM10000: 
𝑇 𝑟 = 7, 800 and 𝑇 𝑠 = 780). Given the target-domain image values in our experiment belong [−1, 1]𝑑×𝑑×3, we add the noise drawn 
from a Gaussian distribution  (0, 𝑟) to the target-domain image, and then clip the images with noise in [−1, 1]𝑑×𝑑×3, we set the 
variance 𝑟 of Gaussian noise is 0.001, 0.1, 1 and 2 respectively. We compute the performance with different values of 𝑞 and 𝑟, and 
present the result in Table 5–8. By comparing the results obtained with Gaussian noise with a smaller variance (𝑟 = 0.001) and 𝑞 = 55
with the ones obtained with the same 𝑞 but without adding the Gaussian noise to the query (reported in Table 5), it is clear that 
even this smaller amount of noise can have a high impact on the reprogramming accuracy (𝐵𝑅𝑡), which on average decreases of 
around the 50%. In this setting, the detector can still detect a notable amount of queries (from 50% up to 80%) in the majority of the 
considered cases. Analyzing the results obtained with Gaussian noise with the higher considered variance (𝑟 = 2), shown in Table 8, 
we can see that when the amount of Gaussian noise is large, the detector performance decreases quite a lot. However, in this case, 
the reprogramming accuracy (𝐵𝑅𝑡) becomes almost equal to the one we would obtain with a randomly generated program (𝐵𝐵𝑅𝑡), 
namely with a program that is randomly initialized and not optimized to achieve reprogramming. This means that this amount 
9

of noise makes the reprogramming almost ineffective. The results obtained when an intermediate amount of noise is added to the 
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Table 5

The reprogramming accuracy obtained by optimizing the target model and adding the Gaussian noise to the full images in a black-

box scenario (𝐵𝑅𝑡) for different values of the attack’s hyperparameter 𝑞 that controls the number of queries 𝑄 made by the attacker 
to the target model, where the variance of Gaussian noise 𝑟 = 0.001, and the reprogramming accuracy before optimization is 𝐵𝐵𝑅𝑡 . 
The corresponding performance of the detector, measured as the number of detections (𝐷) and the percentage of detected attacks 
(𝜎∗) with respect to the number of possible detections.

Dataset Target Model 𝐵𝐵𝑅𝑡 𝑞 𝐵𝑅𝑡 𝑄 𝐷 𝜎⋆

DR

AlexNet 9.87%
2 19.71% 7200 0 0.00%

55 19.79% 134400 1230 46.67%

ResNet50 11.50%
2 21.76% 7200 0 0.00%

55 22.12% 134400 1746 66.25%

HAM10000

AlexNet 7.82%
2 17.82% 2340 29 63.21%

55 18.44% 43680 662 77.29%

ResNet50 8.67%
2 22.18% 2340 31 67.56%

55 22.92% 43680 683 79.75%

Table 6

The reprogramming accuracy obtained by optimizing the target model and adding the Gaussian noise to the full images in a black-box 
scenario (𝐵𝑅𝑡) for different values of the attack’s hyperparameter 𝑞 that controls the number of queries 𝑄 made by the attacker to 
the target model, where the variance of Gaussian noise 𝑟 = 0.1, and the reprogramming accuracy before optimization is 𝐵𝐵𝑅𝑡 . The 
corresponding performance of the detector, measured as the number of detections (𝐷) and the percentage of detected attacks (𝜎∗) 
with respect to the number of possible detections.

Dataset Target Model 𝐵𝐵𝑅𝑡 𝑞 𝐵𝑅𝑡 𝑄 𝐷 𝜎⋆

DR

AlexNet 9.21%
2 12.38% 7200 0 0.00%

55 13.58% 134400 811 30.77%

ResNet50 10.83%
2 18.63% 7200 0 0.00%

55 19.50% 134400 1202 45.61%

HAM10000

AlexNet 6.95%
2 17.49% 2340 25 54.49%

55 19.74% 43680 598 69.82%

ResNet50 5.51%
2 16.15% 2340 22 47.95%

55 18.41% 43680 584 68.19%

Table 7

The reprogramming accuracy obtained by optimizing the target model and adding the Gaussian noise to the full images in a black-

box scenario (𝐵𝑅𝑡) for different values of the attack’s hyperparameter 𝑞 that controls the number of queries 𝑄 made by the attacker 
to the target model, where the variance of Gaussian noise 𝑟 = 1, and the reprogramming accuracy before optimization is 𝐵𝐵𝑅𝑡 . The 
corresponding performance of the detector, measured as the number of detections (𝐷) and the percentage of detected attacks (𝜎∗) 
with respect to the number of possible detections.

Dataset Target Model 𝐵𝐵𝑅𝑡 𝑞 𝐵𝑅𝑡 𝑄 𝐷 𝜎⋆

DR

AlexNet 4.88%
2 4.71% 7200 0 0.00%

55 5.42% 134400 0 0.00%

ResNet50 7.50%
2 10.54% 7200 0 0.00%

55 12.88% 134400 0 0.00%

HAM10000

AlexNet 8.33%
2 8.33% 2340 11 23.97%

55 10.90% 43680 46 5.37%

ResNet50 7.72%
2 7.82% 2340 8 17.44%

55 8.33% 43680 30 3.50%

reprogrammed images (𝑟 = 0.1 and 𝑟 = 1) are reported respectively in Table 6 and Table 7. Overall, although it is possible to decrease 
the number of the attacker’s queries detected by our detector by adding a relevant amount of noise to them, this operation degrades 
the quality of the generated adversarial program very much, making the reprogramming attack unsuccessful.

Defending against fine-tuned programs. Finally, we test the effectiveness of our detector when the attacker first computes the 
adversarial program on a surrogate model and then refines it, making a few queries to their target model. In this experiment, we 
consider AlexNet and ResNet50 as target and surrogate models. These two models are trained on the same dataset. This situation 
is more advantageous than the general case for the attacker, as this condition assumes that the training dataset is fully known and 
available. We set the number of training (testing) samples of DR and HAM10000 as in our previous experiment and vary 𝑞. We 
denote the accuracy of the surrogate model in the white-box scenario with 𝑅𝑠. We present the results in Table 9. In this Table, we 
can see that when the attacker employs a surrogate model can obtain 𝐵𝑅𝑡 ∈ [77.64%, 82.21%] and 𝐵𝑅𝑡 ∈ [75.86%, 81.19%] for DR and 
HAM10000 when the surrogate model is applied. By comparing Table 9 with Table 4, we can see that by using a surrogate model, 
the attacker obtains a similar reprogramming accuracy, greatly reducing the number of queries 𝑄 that it has to issue to the model. 
10

Moreover, we can see that when the attacker makes only a few queries to the target model, the detector’s performances (in light blue 
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Table 8

The reprogramming accuracy obtained by optimizing the target model and adding the Gaussian noise to the full images in a black-

box scenario (𝐵𝑅𝑡) for different values of the attack’s hyperparameter 𝑞 that controls the number of queries 𝑄 made by the attacker 
to the target model, where the variance of Gaussian noise 𝑟 = 2, and the reprogramming accuracy before optimization is 𝐵𝐵𝑅𝑡 . The 
corresponding performance of the detector, measured as the number of detections (𝐷) and the percentage of detected attacks (𝜎∗) 
with respect to the number of possible detections.

Dataset Target Model 𝐵𝐵𝑅𝑡 𝑞 𝐵𝑅𝑡 𝑄 𝐷 𝜎⋆

DR

AlexNet 7.78%
2 7.25% 7200 0 0.00%

55 8.71% 134400 0 0.00%

ResNet50 7.96%
2 8.13% 7200 0 0.00%

55 11.33% 134400 0 0.00%

HAM10000

AlexNet 7.31%
2 7.05% 2340 19 41.41%

55 10.13% 43680 95 11.09%

ResNet50 7.19%
2 6.15% 2340 16 34.87%

55 10.90% 43680 98 11.44%

Table 9

The performance of the adversarial programs computed on a surrogate model and fine-tuned with a few queries to the target 
model. We denote with 𝑅𝑠 the reprogramming accuracy obtained reprogramming the surrogate model in a white-box scenario, with 
𝐵𝑅𝑡 the reprogramming accuracy obtained fine-tuning the program by querying the target model with the black-box adversarial 
reprogramming attack, with 𝑞 the attack’s hyperparameter that controls the number of queries 𝑄, with 𝐷 the number of detections 
and with 𝜎∗ the percentage of detected attacks with respect to the number of possible detections.

Dataset Target Model Surrogate Model 𝑅𝑠 𝑞 𝐵𝑅𝑡 𝑄 𝐷 𝜎⋆

DR

AlexNet ResNet50 79.36%
5 79.96% 14400 208 73.67%

10 80.29% 26400 452 87.32%

ResNet50 AlexNet 80.33%
5 77.64% 14400 193 68.35%

10 82.21% 26400 461 89.06%

HAM10000

AlexNet ResNet50 80.92%
5 78.71% 4680 78 85.00%

10 81.19% 8580 148 87.97%

ResNet50 AlexNet 80.78%
5 75.86% 4680 73 79.55%

10 80.43% 8580 144 85.59%

in the Table) are lower. Overall, we can conclude that, in this scenario, the considered stateful defense remains effective, although 
its effectiveness is reduced.

Making random queries. Supposing the attacker knows the number of subsequent queries our detector considers, they can send 
random queries to defeat the defense. However, in this case, they will have to make many more queries to the system, which are 
costly when made to platforms that make a machine learning model as a service available. As discussed in Section 7 of paper [4], 
supposing the detector stores the last N queries made by each user, an attacker will have to make N queries to flush the buffer before 
detection, and they should do this to avoid D detections. Considering as an example Google’s Cloud Vision API, 1000 queries cost 
$1.50 USD. Therefore, if the buffer stores 𝑁 = 104 examples, considering the case with less detection in Table 9, the attack would 
require 73 × 104 queries to the target model to be executed without being detected that would cost the attacker around $1000 USD, 
which would significantly decrease the probability of the attacker targeting that system.

5. Related work

In this section, we briefly review related work on adversarial reprogramming. We then focus on the defense against adversarial 
attacks in the black-box scenario.

5.1. Adversarial reprogramming

Adversarial reprogramming has been originally proposed in [1]. The authors have empirically assessed the performance of ad-

versarial reprogramming using different trained and untrained deep neural networks. They showed that reprogramming usually fails 
when applied to untrained networks (i.e., neural networks with random weights), whereas it works when the target model is trained. 
In the latter case, reprogramming works even when the attacker can manipulate only a small subset of the image pixels. In [14], 
the authors have developed a first-order linear model of adversarial reprogramming to analyze the factors that affect its success. 
They show that reprogramming can fail and that its success inherently depends on the size of the average input gradient, which 
grows when input gradients for the target model are more aligned, and inputs have higher dimensionality. The authors of [2] have 
shown that adversarial reprogramming also works in black-box scenarios where the attacker has a query-only access to its target 
model. Moreover, they have demonstrated reprogramming can be particularly beneficial in tasks with scarce data, as in that case, 
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it can achieve even better performance than fine-tuning. No defense has been proposed against reprogramming in a black box sce-
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nario; therefore, in this work, we assess to which extent a defense previously proposed against evasion attacks can defend against 
adversarial reprogramming.

5.2. Previously proposed defenses

To the best of our knowledge, only one defense [15] has been proposed against adversarial reprogramming. This defense, named 
hierarchical random switching (HRS), randomizes the model at test time to prevent adversaries from exploiting fixed model structures 
and parameters for malicious purposes. However, this defense has been tested only against white-box adversarial reprogramming 
attacks, which is not a realistic scenario. Defenses have been proposed against evasion attacks for the black-box scenarios: an attack 
that computes a perturbation that, if applied to a single sample, allows the attacker to have it classified as the desired class. It is 
worth noting that evasion attacks are less challenging than adversarial reprogramming because the attacker computes a perturbation 
ad-hoc for each input image. Differently, in reprogramming attacks, a single perturbation should allow having all the test images 
classified as belonging to a target class. Most defenses against black-box evasion attacks examine each query singularly (stateless 
detection), usually by checking if this query lays out the distribution of normal/benign data [16–18]. However, effective detection 
under this stateless threat model has proven to be difficult [19]. For this reason, Chen et al. [4] developed a stateful defense that 
jointly considers all the queries received by the classifier. In this work, we have shown to which extent this defense is effective 
against adversarial reprogramming in the black-box scenario.

6. Contributions and limitations of this work

In this work, we addressed the problem of defending machine learning models against adversarial reprogramming in a black-box 
scenario.

To the best of our knowledge, this is the first work proposing a countermeasure for this attack considering the realistic scenario 
where the target model is unknown to the attacker. Therefore, our stateful defense provides users for the first time with a simple 
tool to mitigate this threat. We assessed the effectiveness of a stateful defense against this attack. To this end, a similarity encoder 
has been trained to map the adversarial queries to a low-dimensional space. In this space, we flag as adversarial the queries quite 
similar to other queries previously made by the same user. Our experimental analysis shows that a large percentage of the queries 
made by the attacker to compute the adversarial program are flagged by our defense as adversarial. Once a single query has been 
detected as malicious, the account of the attacker can be blocked. Therefore, the attacker will have to create many different accounts 
to perpetrate the attack. Stateful defenses are thus highly effective for increasing the attacker’s cost in this back-box scenario and, 
consequently, they represent a good deterrence mechanism. Even if the attacker exploits the transferability property of the attacks 
to reduce the number of detected queries and thus her effort, our experiments show that the proposed defense is still effective.

The main limitation of our work is that as in [4], we have considered an infinite memory buffer, whereas, in practice, the defender 
should set the memory buffer length according to the system capacity. Analyzing the effectiveness of our defense in these scenarios 
is one of our future research directions.
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