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Abstract
We consider a Dirichlet problem for a nonlinear, nonlocal equation driven by
the degenerate fractional 𝑝-Laplacian, with a logistic-type reaction depending
on a positive parameter. In the subdiffusive and equidiffusive cases, we prove
existence and uniqueness of the positive solutionwhen the parameter lies in con-
venient intervals. In the superdiffusive case, we establish a bifurcation result. A
new strong comparison result, of independent interest, plays a crucial role in the
proof of such bifurcation result.
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1 INTRODUCTION

The paper is devoted to the study of the following nonlinear elliptic equation of fractional order with Dirichlet-type
condition:

(𝑃𝜆)

⎧⎪⎨⎪⎩
(−Δ)𝑠𝑝 𝑢 = 𝜆𝑢

𝑞−1 − 𝑢𝑟−1 in Ω
𝑢 > 0 in Ω
𝑢 = 0 in ℝ𝑁 ⧵ Ω.

Here, Ω ⊂ ℝ𝑁 (𝑁 ⩾ 2) is a bounded domain with 𝐶1,1 boundary 𝜕Ω, 𝑠 ∈ (0, 1), 𝑝 ⩾ 2 are s.t. 𝑝𝑠 < 𝑁, and the leading
operator is the degenerate fractional 𝑝-Laplacian, defined for all 𝑢 ∶ ℝ𝑁 → ℝ smooth enough and 𝑥 ∈ ℝ𝑁 by

(−Δ)𝑠𝑝 𝑢(𝑥) = 2 lim
𝜀↘0 ∫{|𝑥−𝑦|>𝜀}

|𝑢(𝑥) − 𝑢(𝑦)|𝑝−2(𝑢(𝑥) − 𝑢(𝑦))|𝑥 − 𝑦|𝑁+𝑝𝑠 𝑑𝑦
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(which for 𝑝 = 2 reduces to the linear fractional Laplacian, up to a dimensional constant 𝐶(𝑁, 𝑠) > 0). The reaction is of
logistic type, with powers 1 < 𝑞 < 𝑟 < 𝑝∗𝑠 , where 𝑝∗𝑠 = 𝑁𝑝∕(𝑁 − 𝑝𝑠) denotes the critical exponent for fractional Sobolev
spaces, and 𝜆 > 0 is a parameter. Problem (𝑃𝜆) is classified in three different cases, according to the principal exponent
𝑞 > 1:

(a) subdiffusive, if 𝑞 < 𝑝 < 𝑟;
(b) equidiffusive, if 𝑝 = 𝑞 < 𝑟;
(c) superdiffusive, if 𝑝 < 𝑞 < 𝑟.

Logistic equations are widely studied mainly because of their important applications in mathematical biology. Indeed,
the parabolic semilinear logistic equation describes the evolution and spatial distribution of a biological population
in the presence of constant rates of reproduction and mortality (Verhulst’s law), see [17]. This is the obvious reason
why, in the study of logistic-type equations, authors are usually interested in positive solutions. More recently, evolutive
systems involving logistic terms have been studied as a model for the biological phenomenon of chemotaxis [37], and
existence of solutions in the presence of a parameter was studied in [1, 7]. Regarding the elliptic counterpart, it models
an equilibrium distribution, see [10]. Several existence results for the equidiffusive case (𝑏), combining variational and
topological methods, can be found in [2, 3, 36] (note that multiplicity often includes negative and nodal solutions).
Bifurcation results for the superdiffusive case (𝑐) can be found in [23] for the Dirichlet problem, and in [29] for the
whole space.
Fractional order equations also have a close connection to mathematical biology. Indeed, since fractional elliptic opera-

torsmodel space diffusion via Lévy-type randommotionwith jumps, they can be effectively used to describe themovement
of populations, see [4, 31]. Studies on logistic equations with several nonlocal operators of fractional order have appeared
in recent years, including the square root of the Dirichlet Laplacian [8], the spectral Neumann fractional Laplacian [28],
and the fractional Laplacian on the whole space [35].
The operatorwe consider here is bothnonlinear andnonlocal. It represents the nonlinear generalization of the fractional

Laplacian, and it can be seen as the gradient of the functional 𝑢 ↦ [𝑢]𝑝𝑠,𝑝∕𝑝 in the fractional Sobolev space𝑊𝑠,𝑝(ℝ𝑁) (see
Section 2), as first pointed out in [5]. The corresponding eigenvalue problem was studied in [26], which led to existence
results for general nonlinear reactions via Morse theory in [18]. Due to the nature of the operator, regularity theory for
weak solutions required a considerable effort as most of the usual techniques (including the Caffarelli–Silvestre extension
method) do not apply here. For any 𝑝 > 1, Hölder continuity of weak solutions in the interior and up to the boundary was
studied in [14] and [20], respectively.
In the degenerate case 𝑝 > 2, optimal interior Hölder regularity was proved in [6], while a weighted global Hölder reg-

ularity result was proved in [21] (the singular case 𝑝 ∈ (1, 2) is still open). The result of [21] is the fractional counterpart of
Lieberman’s 𝐶1,𝛼-regularity result for the classical 𝑝-Laplacian [25] and yields many applications, such as the equivalence
of Sobolev and Hölder local minimizers of the energy functional [22], the existence of extremal constant sign solutions
[16], and more recently a Brezis–Oswald-type weak comparison principle [19]. We also recall other interesting related
results, such as the study of critical growth and singularity performed in [9] and the bifurcation results of [12, 32]. For
further information, we refer the reader to the surveys [27, 30].
As far aswe know, the present literature includes no specific study on the logistic equation for the fractional𝑝-Laplacian.

This paper aims at filling the gap, by presenting the following general result for the existence of solutions to problem (𝑃𝜆)
(in which �̂�1 > 0 denotes the principal eigenvalue of (−Δ)𝑠𝑝 in Ωwith Dirichlet conditions, see Equation (2.4)):

Theorem 1.1. Let Ω ⊂ ℝ𝑁 be a bounded domain with 𝐶1,1-boundary, 𝑝 ⩾ 2, 𝑠 ∈ (0, 1) s.t. 𝑝𝑠 < 𝑁, and 1 < 𝑞 < 𝑟 < 𝑝∗𝑠 .
Then, the following hold:

(a) if 𝑞 < 𝑝, then for all 𝜆 > 0 problem (𝑃𝜆) has a unique solution 𝑢𝜆 > 0, with 𝑢𝜆 > 𝑢𝜇 in Ω for all 𝜆 > 𝜇 > 0 and 𝑢𝜆 → 0
as 𝜆 ↘ 0;

(b) if 𝑞 = 𝑝, then for all 𝜆 ∈ (0, �̂�1] problem (𝑃𝜆) has no solution, while for all 𝜆 > �̂�1 (𝑃𝜆) has a unique solution 𝑢𝜆 > 0, with
𝑢𝜆 > 𝑢𝜇 inΩ for all 𝜆 > 𝜇 > �̂�1 and 𝑢𝜆 → 0 as 𝜆 ↘ �̂�1;

(c) if 𝑞 > 𝑝, then there exists 𝜆∗ > 0 s.t. for all 𝜆 ∈ (0, 𝜆∗) problem (𝑃𝜆) has no solution, while (𝑃𝜆∗) has at least one solution
𝑢∗ > 0, and for all 𝜆 > 𝜆∗ (𝑃𝜆) has at least two solutions 𝑢𝜆 > 𝑣𝜆 > 0, with 𝑢𝜆 > 𝑢𝜇 inΩ for all 𝜆 > 𝜇 > 𝜆∗ and 𝑢𝜆 → 𝑢∗
as 𝜆 ↘ 𝜆∗.
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More precise statements of the results above can be found in Theorems 3.1, 3.2, and 3.7. Our approach is variational,
based on critical point theory and comparison–truncation arguments. For the sub- and equidiffusive cases, we apply direct
minimization and the weak comparison result of [19] for uniqueness. In the superdiffusive case, we prove a bifurcation
result and detect via the mountain pass theorem a second solution for all 𝜆 > 𝜆∗.
We remark that our result is new even in the semilinear case 𝑝 = 2 (fractional Laplacian) and in the local case 𝑠 = 1

(classical 𝑝-Laplacian). Bifurcation theorems are proved in [8] for the superdiffusive logistic equation driven by the square
root of the Laplacian, and in [23] for the classical 𝑝-Laplacian, but with no information aboutmonotonicity, order between
solutions, and convergence. Also, existence and uniqueness for the equidiffusive case with the fractional Laplacian are
proved in [35].
A crucial role in our arguments is played by new strong minimum and comparison principles for weak sub- and super-

solutions, including a Hopf-type property (see Theorems 2.6 and 2.7). Previous results of this type were proved in [13, 24],
respectively, but our versions involve very general reactions and milder restrictions on the constants 𝑝, 𝑠 and can be of
general interest, since they are applicable to a wide class of problems driven by the fractional 𝑝-Laplacian.
Structure of the paper: in Section 2, we recall some preliminary results (Section 2.1) and prove new minimum

and comparison principles (Section 2.2); in Section 3, we deal with the logistic equation, distinguishing between the
subdiffusive case (Section 3.1), the equidiffusive case (Section 3.2), and the superdiffusive case (Section 3.3).
Notation: For any 𝑎 ∈ ℝ, 𝜈 > 0 we set 𝑎𝜈 = |𝑎|𝜈−1𝑎. For any 𝐴 ⊂ ℝ𝑁 we shall set 𝐴𝑐 = ℝ𝑁 ⧵ 𝐴 and denote by |𝐴| the

Lebesgue measure of𝐴. For any two measurable functions 𝑢, 𝑣 ∶ Ω → ℝ, 𝑢 ⩽ 𝑣 will mean that 𝑢(𝑥) ⩽ 𝑣(𝑥) for a.e. 𝑥 ∈ Ω
(and similar expressions). The positive (resp., negative) part of 𝑢 is denoted as 𝑢+ (resp., 𝑢−). Every function 𝑢 defined in
Ω will be identified with its 0-extension to ℝ𝑁 . If 𝑋 is an ordered function space, then 𝑋+ will denote its non-negative
order cone. For all 𝜈 ∈ [1,∞], ‖ ⋅ ‖𝜈 denotes the standard norm of 𝐿𝜈(Ω) (or 𝐿𝜈(ℝ𝑁), which will be clear from the context).
Moreover, 𝐶 will denote a positive constant whose value may change case by case.

2 PRELIMINARIES

Problem (𝑃𝜆) falls into the following class of Dirichlet problems for the fractional 𝑝-Laplacian:{
(−Δ)𝑠𝑝 𝑢 = 𝑓(𝑥, 𝑢) in Ω
𝑢 = 0 in Ω𝑐.

(2.1)

Here,Ω ⊆ ℝ𝑁 (𝑁 ⩾ 2) is a bounded domain with 𝐶1,1 boundary 𝜕Ω, 𝑠 ∈ (0, 1), 𝑝 > 1 satisfy 𝑝𝑠 < 𝑁. Besides, the general
reaction 𝑓 satisfies the following hypothesis:

𝐇 𝑓 ∶ Ω × ℝ → ℝ is a Carathéodory function s.t. for a.e. 𝑥 ∈ Ω and all 𝑡 ∈ ℝ

|𝑓(𝑥, 𝑡)| ⩽ 𝑐0(1 + |𝑡|𝑟−1) (𝑐0 > 0, 𝑟 ∈ (𝑝, 𝑝
∗
𝑠 )).

In this section, we will collect some old and new properties of the solutions of problem (2.1).

2.1 Variational formulation and properties of solutions

Avariational theory for problem (2.1) was established in the recent literature (see, for instance, [16, 18, 22]). For the reader’s
convenience, we recall here some of its main features. First, for all measurable 𝑢 ∶ Ω → ℝ, we introduce the Gagliardo
seminorm

[𝑢]𝑠,𝑝,Ω =

[
∬
Ω×Ω

|𝑢(𝑥) − 𝑢(𝑦)|𝑝|𝑥 − 𝑦|𝑁+𝑝𝑠 𝑑𝑥 𝑑𝑦
] 1
𝑝
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setting [𝑢]𝑠,𝑝,ℝ𝑁 = [𝑢]𝑠,𝑝. Then, we define the fractional Sobolev spaces

𝑊𝑠,𝑝(Ω) =
{
𝑢 ∈ 𝐿𝑝(Ω) ∶ [𝑢]𝑠,𝑝,Ω < ∞

}
,

𝑊
𝑠,𝑝

0
(Ω) =

{
𝑢 ∈ 𝑊𝑠,𝑝(ℝ𝑁) ∶ 𝑢 = 0 in Ω𝑐

}
,

the latter being a uniformly convex, separable Banach space with norm ‖𝑢‖ = [𝑢]𝑠,𝑝, whose dual space is denoted by
𝑊−𝑠,𝑝

′
(Ω) (see [15]). The embedding𝑊𝑠,𝑝

0
(Ω) ↪ 𝐿𝜈(Ω) is continuous for all 𝜈 ∈ [1, 𝑝∗𝑠 ] and compact for all 𝜈 ∈ [1, 𝑝∗𝑠 ).

We also recall from [20, Definition 2.1] the following special space:

𝑊𝑠,𝑝(Ω) =
{
𝑢 ∈ 𝐿

𝑝

loc
(ℝ𝑁) ∶ ∃𝑈 ⋑ Ω s.t. 𝑢 ∈ 𝑊𝑠,𝑝(𝑈), ∫

ℝ𝑁

|𝑢(𝑥)|𝑝−1
(1 + |𝑥|)𝑁+𝑝𝑠 𝑑𝑥 < ∞}

.

By [20, Lemma 2.3], we can define the fractional 𝑝-Laplacian as a nonlinear operator (−Δ)𝑠𝑝 ∶ 𝑊𝑠,𝑝(Ω) → 𝑊−𝑠,𝑝
′
(Ω) by

setting for all 𝑢, 𝑣 ∈ 𝑊𝑠,𝑝
0
(Ω)

⟨(−Δ)𝑠𝑝 𝑢, 𝑣⟩ = ∬
ℝ𝑁×ℝ𝑁

(𝑢(𝑥) − 𝑢(𝑦))𝑝−1(𝑣(𝑥) − 𝑣(𝑦))|𝑥 − 𝑦|𝑁+𝑝𝑠 𝑑𝑥 𝑑𝑦

(with the convention 𝑎𝑝−1 = |𝑎|𝑝−2𝑎 established above). Such definition is equivalent to the one given in Section 1 as soon
as 𝑢 is smooth enough (for instance, if 𝑢 ∈ (ℝ𝑁)).
Clearly 𝑊𝑠,𝑝

0
(Ω) ⊂ 𝑊𝑠,𝑝(Ω). Also, whenever 𝑢 ∈ 𝑊𝑠,𝑝(Ω) satisfies 𝑢 = 0 in Ω𝑐, it is easily seen that 𝑢 ∈ 𝑊𝑠,𝑝

0
(Ω).

The restricted operator (−Δ)𝑠𝑝 ∶ 𝑊
𝑠,𝑝

0
(Ω) → 𝑊−𝑠,𝑝

′
(Ω) is continuous, maximal monotone, and enjoys the (𝑆)+-property,

namely, whenever (𝑢𝑛) is a sequence in𝑊
𝑠,𝑝

0
(Ω) s.t. 𝑢𝑛 ⇀ 𝑢 in𝑊

𝑠,𝑝

0
(Ω) and

lim sup
𝑛

⟨(−Δ)𝑠𝑝 𝑢𝑛, 𝑢𝑛 − 𝑢⟩ ⩽ 0,
then 𝑢𝑛 → 𝑢 in𝑊

𝑠,𝑝

0
(Ω) (see [16, Lemma 2.1] for 𝑝 ⩾ 2, with analogous argument for 𝑝 ∈ (1, 2)). For all 𝑢 ∈ 𝑊𝑠,𝑝

0
(Ω), we

have

‖𝑢±‖𝑝 ⩽ ⟨(−Δ)𝑠𝑝 𝑢, ±𝑢±⟩. (2.2)

Another useful property, referred to as strict 𝑇-monotonicity, of (−Δ)𝑠𝑝 is the following, which holds for any 𝑝 > 1 (see
[26, proof of Lemma 9]):

Proposition 2.1. Let 𝑢, 𝑣 ∈ 𝑊𝑠,𝑝(Ω) s.t. (𝑢 − 𝑣)+ ∈ 𝑊𝑠,𝑝
0
(Ω) satisfy

⟨(−Δ)𝑠𝑝 𝑢 − (−Δ)𝑠𝑝 𝑣, (𝑢 − 𝑣)+⟩ ⩽ 0.
Then, 𝑢 ⩽ 𝑣 inΩ.

We say that 𝑢 ∈ 𝑊𝑠,𝑝(Ω) is a (weak) supersolution of Equation (2.1) if 𝑢 ⩾ 0 in Ω𝑐 and for all 𝑣 ∈ 𝑊𝑠,𝑝
0
(Ω)+

⟨(−Δ)𝑠𝑝 𝑢, 𝑣⟩ ⩾ ∫
Ω

𝑓(𝑥, 𝑢)𝑣 𝑑𝑥,

and similarly we define a (weak) subsolution. Finally, 𝑢 ∈ 𝑊𝑠,𝑝
0
(Ω) is a (weak) solution of Equation (2.1) if it is both a

super- and a subsolution, that is, if for all 𝑣 ∈ 𝑊𝑠,𝑝
0
(Ω)

⟨(−Δ)𝑠𝑝 𝑢, 𝑣⟩ = ∫
Ω

𝑓(𝑥, 𝑢)𝑣 𝑑𝑥.

In such cases, we write that weakly in Ω

(−Δ)𝑠𝑝 𝑢 = (⩾, ⩽) 𝑓(𝑥, 𝑢).
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From [9, Theorem 3.3], we have the following a priori bound on the solutions:

Proposition 2.2. Let𝐇 hold, 𝑢 ∈ 𝑊𝑠,𝑝
0
(Ω) be a solution of Equation (2.1). Then, 𝑢 ∈ 𝐿∞(Ω) with ‖𝑢‖∞ ⩽ 𝐶(‖𝑢‖).

Classical nonlinear regularity theory does not apply to fractional order equations, whose solutions fail to be 𝐶1 in gen-
eral. Nevertheless, weighted Hölder continuity can replace higher smoothness in most cases. We set dΩ(𝑥) = dist(𝑥,Ω𝑐)
for all 𝑥 ∈ ℝ𝑁 and define the following space:

𝐶0𝑠 (Ω) =
{
𝑢 ∈ 𝐶0(Ω) ∶

𝑢

d𝑠
Ω

has a continuous extension to Ω
}
,

a Banach space under the norm ‖𝑢‖0,𝑠 = ‖𝑢∕d𝑠
Ω
‖∞. By [18, Lemma 5.1], the positive order cone 𝐶0𝑠 (Ω)+ has a nonempty

interior

int(𝐶0𝑠 (Ω)+) =
{
𝑢 ∈ 𝐶0𝑠 (Ω) ∶ inf

Ω

𝑢

d𝑠
Ω

> 0
}
.

Similarly, for any 𝛼 ∈ (0, 1) we set

𝐶𝛼𝑠 (Ω) =
{
𝑢 ∈ 𝐶0(Ω) ∶

𝑢

d𝑠
Ω

has a 𝛼-Hölder continuous extension to Ω
}
,

a Banach space under the norm

‖𝑢‖𝛼,𝑠 = ‖𝑢‖0,𝑠 + sup
𝑥,𝑦∈Ω, 𝑥≠𝑦

|𝑢(𝑥)∕d𝑠
Ω
(𝑥) − 𝑢(𝑦)∕d𝑠

Ω
(𝑦)||𝑥 − 𝑦|𝛼 .

By the Ascoli–Arzelà theorem, 𝐶𝛼𝑠 (Ω) ↪ 𝐶0𝑠 (Ω) with compact embedding for all 𝛼 ∈ (0, 1). From Proposition 2.2, [20,
Theorem 1.1], and [21, Theorem 1.1] we have the following weighted Hölder regularity result:

Proposition 2.3. Let𝐇 hold, 𝑢 ∈ 𝑊𝑠,𝑝
0
(Ω) be a solution of Equation (2.1). Then, there exists 𝛼 ∈ (0, 𝑠], independent of 𝑢, s.t.

𝑢 ∈ 𝐶𝛼(Ω). Besides, if 𝑝 ⩾ 2, then 𝑢 ∈ 𝐶𝛼𝑠 (Ω) and ‖𝑢‖𝛼,𝑠 ⩽ 𝐶(‖𝑢‖).
Weighted Hölder continuity is known only for the degenerate case 𝑝 ⩾ 2. This is the main reason why the next results,

which use such type of regularity, are only stated for 𝑝 ⩾ 2. From [19, Proposition 2.8], we have the following weak
comparison principle under a special monotonicity assumption of Brezis–Oswald type:

Proposition 2.4. Let𝐇 hold, 𝑝 ⩾ 2, and assume that

𝑡 ↦
𝑓(𝑥, 𝑡)

𝑡𝑝−1

is decreasing in (0,∞) for a.e. 𝑥 ∈ Ω. Let 𝑢, 𝑣 ∈ int(𝐶0𝑠 (Ω)+) ∩𝑊
𝑠,𝑝

0
(Ω) be a subsolution and a supersolution, respectively, of

Equation (2.1). Then, 𝑢 ⩽ 𝑣 inΩ.

The energy functional for problem (2.1) is defined by setting for all 𝑢 ∈ 𝑊𝑠,𝑝
0
(Ω)

Φ(𝑢) =
‖𝑢‖𝑝
𝑝
− ∫

Ω

𝐹(𝑥, 𝑢) 𝑑𝑥,

where we have set for all (𝑥, 𝑡) ∈ Ω × ℝ

𝐹(𝑥, 𝑡) = ∫
𝑡

0

𝑓(𝑥, 𝜏) 𝑑𝜏.

By classical results, we have Φ ∈ 𝐶1(𝑊𝑠,𝑝
0
(Ω)), and 𝑢 ∈ 𝑊𝑠,𝑝

0
(Ω) is a solution of Equation (2.1) iff Φ′(𝑢) = 0 in𝑊−𝑠,𝑝′ (Ω).

Besides, by [18, Proposition 2.1] Φ satisfies a bounded (𝑃𝑆)-condition, namely, whenever (𝑢𝑛) is a bounded sequence

 15222616, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202100025 by U
niversita D

i C
agliari, W

iley O
nline L

ibrary on [22/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fmana.202100025&mode=


1456 IANNIZZOTTO et al.

in 𝑊𝑠,𝑝
0
(Ω) s.t. (Φ(𝑢𝑛)) is bounded in ℝ and Φ′(𝑢𝑛) → 0 in 𝑊−𝑠,𝑝

′
(Ω), then (𝑢𝑛) has a convergent subsequence. In this

connection, we recall from [22, Theorem 1.1] the following equivalence principle for Sobolev and Hölder local minimizers
of Φ:

Proposition 2.5. Let𝐇 hold, 𝑝 ⩾ 2, 𝑢 ∈ 𝑊𝑠,𝑝
0
(Ω). Then, the following are equivalent:

(i) there exists 𝜌 > 0 s.t. Φ(𝑢 + 𝑣) ⩾ Φ(𝑢) for all 𝑣 ∈ 𝑊𝑠,𝑝
0
(Ω) ∩ 𝐶0𝑠 (Ω), ‖𝑣‖0,𝑠 ⩽ 𝜌;

(ii) there exists 𝜎 > 0 s.t. Φ(𝑢 + 𝑣) ⩾ Φ(𝑢) for all 𝑣 ∈ 𝑊𝑠,𝑝
0
(Ω), ‖𝑣‖ ⩽ 𝜎.

Regarding the spectral properties of the fractional 𝑝-Laplacian, we refer the reader to [26]. We just recall that the
eigenvalue problem is stated as {

(−Δ)𝑠𝑝 𝑢 = 𝜆𝑢
𝑝−1 in Ω

𝑢 = 0 in Ω.
(2.3)

The principal eigenvalue �̂�1 > 0 of Equation (2.3) is simple and isolated, with a unique positive eigenfunction �̂�1 ∈
int(𝐶0𝑠 (Ω)+) s.t. ‖𝑢‖𝑝 = 1, and both are defined as follows:

�̂�1 = inf
𝑢∈𝑊

𝑠,𝑝
0
(Ω)⧵{0}

‖𝑢‖𝑝‖𝑢‖𝑝𝑝 = ‖�̂�1‖𝑝. (2.4)

2.2 Strong minimum and comparison principles

Asmentioned in Section 1, a strongminimumprinciple and aHopf-type lemma for the fractional𝑝-Laplacianwere proved
in [13, Theorems 1.2, 1.5], while a strong comparison principle was obtained in [24, Theorem 1.1]. Nevertheless, the strong
comparison principle of [24] does not fit with our purposes for two reasons: first, in the degenerate case 𝑝 > 2 it requires
some special relations between the parameters 𝑝 and 𝑠 which, combined with the optimal Hölder continuity proved in
[6], lead to the quite restrictive condition 𝑠 ⩽ 1∕𝑝′; second, the result only ensures that the difference between the super-
and the subsolution is positive in Ω, while we need to prove that such difference lies in int(𝐶0𝑠 (Ω)+).
Motivated by such difficulties, we present here a new pair of results, following an alternative approach based on the

nonlocal superposition principle introduced in [21]. In view of future applications, wewill prove such results for any𝑝 > 1.
We begin with a strong minimum principle (including a Hopf-type boundary property):

Theorem 2.6. Let Ω ⊂ ℝ𝑁 be a bounded domain with 𝐶1,1 boundary, 𝑝 > 1, 𝑠 ∈ (0, 1) s.t. 𝑝𝑠 < 𝑁, 𝑔 ∈ 𝐶0(ℝ) ∩ 𝐵𝑉loc(ℝ),
𝑢 ∈ 𝑊𝑠,𝑝(Ω) ∩ 𝐶0(Ω), 𝑢 ≢ 0 s.t. {

(−Δ)𝑠𝑝 𝑢 + 𝑔(𝑢) ⩾ 𝑔(0) weakly inΩ
𝑢 ⩾ 0 inℝ𝑁 .

Then,

inf
Ω

𝑢

d𝑠
Ω

> 0.

In particular, if 𝑢 ∈ 𝐶0𝑠 (Ω), then 𝑢 ∈ int(𝐶0𝑠 (Ω)+).

Proof. By Jordan’s decomposition, we can find 𝑔1, 𝑔2 ∈ 𝐶0(ℝ) nondecreasing s.t. 𝑔(𝑡) = 𝑔1(𝑡) − 𝑔2(𝑡) for all 𝑡 ∈ ℝ, and
𝑔1(0) = 0. So, we have weakly in Ω

(−Δ)𝑠𝑝 𝑢 + 𝑔1(𝑢) = (−Δ)
𝑠
𝑝 𝑢 + 𝑔(𝑢) + 𝑔2(𝑢)

⩾ 𝑔(0) + 𝑔2(0) = 0.
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IANNIZZOTTO et al. 1457

Thus, without loss of generality we may assume that 𝑔 is nondecreasing and 𝑔(0) = 0. In order to prove our assertion, we
need a lower barrier for 𝑢. Let us consider the following torsion problem:{

(−Δ)𝑠𝑝 𝑣 = 1 in Ω
𝑣 = 0 in Ω𝑐.

(2.5)

By convexity, Equation (2.5) has a unique solution 𝑣 ∈ 𝑊𝑠,𝑝
0
(Ω), which by [21, Lemma 2.3] satisfies 𝑣 ⩾ 𝑐 d𝑠

Ω
inΩ, for some

𝑐 > 0. By Proposition 2.3, we have 𝑣 ∈ 𝐶𝛼(Ω), in particular 𝑣 is continuous. So, since 𝑢 ≢ 0, we can find 𝑥0 ∈ Ω, 𝜌, 𝜀 > 0,
and 𝜂0 ∈ (0, 1) s.t. 𝐵𝜌(𝑥0) ⊂ Ω and

sup
𝐵𝜌(𝑥0)

𝜂0𝑣 < inf
𝐵𝜌(𝑥0)

𝑢 − 𝜀. (2.6)

Set for all 𝑥 ∈ ℝ𝑁 , 𝜂 ∈ (0, 𝜂0]

𝑤𝜂(𝑥) =

{
𝜂𝑣(𝑥) if 𝑥 ∈ 𝐵

𝑐

𝜌∕2(𝑥0)

𝑢(𝑥) if 𝑥 ∈ 𝐵𝜌∕2(𝑥0).

First, by Equation (2.6) we have 𝑤𝜂 ⩽ 𝑢 in 𝐵𝜌(𝑥0). Besides, by the nonlocal superposition principle [21, Proposition 2.6]
we have 𝑤𝜂 ∈ 𝑊𝑠,𝑝(Ω ⧵ 𝐵𝜌(𝑥0)) and weakly in Ω ⧵ 𝐵𝜌(𝑥0)

(−Δ)𝑠𝑝 𝑤𝜂(𝑥) = (−Δ)
𝑠
𝑝 (𝜂𝑣)(𝑥) + 2∫

𝐵𝜌∕2(𝑥0)

(𝜂𝑣(𝑥) − 𝑢(𝑦))𝑝−1 − (𝜂𝑣(𝑥) − 𝜂𝑣(𝑦))𝑝−1|𝑥 − 𝑦|𝑁+𝑝𝑠 𝑑𝑦

⩽ 𝜂𝑝−1 + 2∫
𝐵𝜌∕2(𝑥0)

(𝜂𝑣(𝑥) − 𝑢(𝑦))𝑝−1 − (𝜂𝑣(𝑥) − 𝑢(𝑦) + 𝜀)𝑝−1|𝑥 − 𝑦|𝑁+𝑝𝑠 𝑑𝑦,

where we have also used Equation (2.5) and again Inequality (2.6). Now, by continuity we can find 𝐶𝜀 > 0, independent
of 𝜂 ∈ (0, 𝜂0], s.t. for all 𝑥 ∈ Ω ⧵ 𝐵𝜌(𝑥0), 𝑦 ∈ 𝐵𝜌∕2(𝑥0)

(𝜂𝑣(𝑥) − 𝑢(𝑦))𝑝−1 − (𝜂𝑣(𝑥) − 𝑢(𝑦) + 𝜀)𝑝−1 ⩽ −𝐶𝜀,

and 𝐶𝜀 → 0 as 𝜀 ↘ 0. So, we have weakly in Ω ⧵ 𝐵𝜌(𝑥0)

(−Δ)𝑠𝑝 𝑤𝜂(𝑥) ⩽ 𝜂
𝑝−1 − 2∫

𝐵𝜌∕2(𝑥0)

𝐶𝜀

(𝜌∕2)𝑁+𝑝𝑠
𝑑𝑦 ⩽ 𝜂𝑝−1 − �̃�𝜀,

with �̃�𝜀 > 0 independent of 𝜂. Choosing 𝜂 ∈ (0, 𝜂0] small enough, we have weakly in Ω ⧵ 𝐵𝜌(𝑥0)

(−Δ)𝑠𝑝 𝑤𝜂(𝑥) ⩽ −
�̃�𝜀
2
.

Note that 𝑔(𝑤𝜂) → 0 uniformly in Ω ⧵ 𝐵𝜌(𝑥0) as 𝜂 ↘ 0. So, for an even smaller 𝜂 ∈ (0, 𝜂0] we have{
(−Δ)𝑠𝑝 𝑤𝜂 + 𝑔(𝑤𝜂) ⩽ 0 ⩽ (−Δ)

𝑠
𝑝 𝑢 + 𝑔(𝑢) weakly in Ω ⧵ 𝐵𝜌(𝑥0)

𝑤𝜂 ⩽ 𝑢 in (Ω ⧵ 𝐵𝜌(𝑥0))𝑐.

We have (𝑤𝜂 − 𝑢)+ ∈ 𝑊𝑠,𝑝(Ω ⧵ 𝐵𝜌(𝑥0)) and, by the second inequality above, (𝑤𝜂 − 𝑢)+ = 0 in (Ω ⧵ 𝐵𝜌(𝑥0)𝑐, hence
(𝑤𝜂 − 𝑢)

+ ∈ 𝑊
𝑠,𝑝

0
(Ω ⧵ 𝐵𝜌(𝑥0)). So, we can employ such function to test the inequality above. We get

⟨(−Δ)𝑠𝑝 𝑤𝜂 − (−Δ)𝑠𝑝 𝑢, (𝑤𝜂 − 𝑢)+⟩ ⩽ ∫
Ω⧵𝐵𝜌(𝑥0)

(𝑔(𝑢) − 𝑔(𝑤𝜂))(𝑤𝜂 − 𝑢)
+ 𝑑𝑥,
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1458 IANNIZZOTTO et al.

and the latter is negative by the monotonicity of 𝑔. By Proposition 2.1, we have 𝑤𝜂 ⩽ 𝑢 in Ω ⧵ 𝐵𝜌(𝑥0). Combining with
Inequality (2.6) we get in Ω

𝑢 ⩾ 𝜂𝑣 ⩾ 𝜂 𝑐 d𝑠
Ω
,

hence the conclusion. In particular, if 𝑢 ∈ 𝐶0𝑠 (Ω), then clearly we have 𝑢 ∈ int(𝐶0𝑠 (Ω)+). □

With a similar technique, we prove a strong comparison principle:

Theorem 2.7. Let Ω ⊂ ℝ𝑁 be a bounded domain with 𝐶1,1 boundary, 𝑝 > 1, 𝑠 ∈ (0, 1) s.t. 𝑝𝑠 < 𝑁, 𝑔 ∈ 𝐶0(ℝ) ∩ 𝐵𝑉loc(ℝ),
𝑢 ∈ 𝑊𝑠,𝑝(Ω) ∩ 𝐶0(Ω), 𝑣 ∈ 𝑊𝑠,𝑝

0
(Ω) ∩ 𝐶0(Ω) s.t. 𝑢 ≢ 𝑣, 𝐾 > 0 satisfy
⎧⎪⎨⎪⎩
(−Δ)𝑠𝑝 𝑣 + 𝑔(𝑣) ⩽ (−Δ)

𝑠
𝑝 𝑢 + 𝑔(𝑢) ⩽ 𝐾 weakly inΩ

0 < 𝑣 ⩽ 𝑢 inΩ
𝑢 ⩾ 0 inΩ𝑐.

Then, 𝑢 > 𝑣 inΩ. In particular, if 𝑢, 𝑣 ∈ int(𝐶0𝑠 (Ω)+), then 𝑢 − 𝑣 ∈ int(𝐶0𝑠 (Ω)+).

Proof. As in Theorem 2.6, we may assume 𝑔 nondecreasing. By continuity, we can find 𝑥0 ∈ Ω, 𝜌, 𝜀 > 0 s.t. 𝐵𝜌(𝑥0) ⊂ Ω
and

sup
𝐵𝜌(𝑥0)

𝑣 < inf
𝐵𝜌(𝑥0)

𝑢 − 𝜀.

Hence, for all 𝜂 ∈ (1, 2) close enough to 1 we have

sup
𝐵𝜌(𝑥0)

𝜂𝑣 < inf
𝐵𝜌(𝑥0)

𝑢 −
𝜀

2
. (2.7)

Define 𝑤𝜂 ∈ 𝑊𝑠,𝑝(Ω ⧵ 𝐵𝜌(𝑥0)) as in Theorem 2.6, so by Inequality (2.7) we have 𝑤𝜂 ⩽ 𝑢 in (Ω ⧵ 𝐵𝜌(𝑥0))𝑐. Applying
nonlocal superposition as in the previous proof, we have weakly in Ω ⧵ 𝐵𝜌(𝑥0)

(−Δ)𝑠𝑝 𝑤𝜂 ⩽ 𝜂
𝑝−1(−Δ)𝑠𝑝 𝑣 − 𝐶𝜀,

for some 𝐶𝜀 > 0 independent of 𝜂 ∈ (1, 2). Further, we have weakly in Ω ⧵ 𝐵𝜌(𝑥0)

(−Δ)𝑠𝑝 𝑤𝜂 + 𝑔(𝑤𝜂) ⩽ 𝜂
𝑝−1(−Δ)𝑠𝑝 𝑣 + 𝑔(𝑤𝜂) − 𝐶𝜀

⩽ 𝜂𝑝−1
(
(−Δ)𝑠𝑝 𝑣 + 𝑔(𝑣)

)
+
(
𝑔(𝑤𝜂) − 𝜂

𝑝−1𝑔(𝑣)
)
− 𝐶𝜀

⩽ 𝜂𝑝−1
(
(−Δ)𝑠𝑝 𝑢 + 𝑔(𝑢)

)
+
(
𝑔(𝑤𝜂) − 𝜂

𝑝−1𝑔(𝑣)
)
− 𝐶𝜀

⩽ (−Δ)𝑠𝑝 𝑢 + 𝑔(𝑢) + 𝐾(𝜂
𝑝−1 − 1) +

(
𝑔(𝑤𝜂) − 𝜂

𝑝−1𝑔(𝑣)
)
− 𝐶𝜀,

where we have used the hypothesis and the monotonicity of 𝑔. Since

𝐾(𝜂𝑝−1 − 1) +
(
𝑔(𝑤𝜂) − 𝜂

𝑝−1𝑔(𝑣)
)
→ 0

uniformly in Ω ⧵ 𝐵𝜌(𝑥0) as 𝜂 ↘ 1, we have for all 𝜂 > 1 close enough to 1{
(−Δ)𝑠𝑝 𝑤𝜂 + 𝑔(𝑤𝜂) ⩽ (−Δ)

𝑠
𝑝 𝑢 + 𝑔(𝑢) weakly in Ω ⧵ 𝐵𝜌(𝑥0)

𝑤𝜂 ⩽ 𝑢 in (Ω ⧵ 𝐵𝜌(𝑥0))𝑐.
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IANNIZZOTTO et al. 1459

Testing with (𝑤𝜂 − 𝑢)+ ∈ 𝑊
𝑠,𝑝

0
(Ω ⧵ 𝐵𝜌(𝑥0)), recalling the monotonicity of 𝑔, and applying Proposition 2.1 we get 𝑢 ⩾ 𝑤𝜂

in Ω ⧵ 𝐵𝜌(𝑥0). So we have in Ω

𝑢 ⩾ 𝜂𝑣 > 𝑣,

hence the conclusion. In particular, if 𝑢, 𝑣 ∈ int(𝐶0𝑠 (Ω)+), then clearly

inf
Ω

𝑢 − 𝑣

d𝑠
Ω

⩾ inf
Ω

(𝜂 − 1)𝑣

d𝑠
Ω

> 0,

so 𝑢 − 𝑣 ∈ int(𝐶0𝑠 (Ω)+). □

Remark 2.8. Both results above exhibit unexpected differences when compared to the corresponding local versions, that
is, the case of the classical 𝑝-Laplacian. For example, according to Theorem 2.6, the strong minimum principle holds for
non-negative supersolutions of the Dirichlet problem{

(−Δ)𝑠𝑝 𝑢 + 𝑢
𝜎 = 0 in Ω

𝑢 = 0 in Ω𝑐

for any 𝜎 > 0, while for 𝑠 = 1 the same is not true when 𝜎 < 𝑝 − 1 due to the possible presence of dead cores (see [34, p.
204]). Also, the strong comparison principle of Theorem 2.7 includes cases which are excluded in the local case (see [11,
Example 4.1]). This is essentially due to the nonlocal nature of the operator.

3 THE LOGISTIC EQUATION

In this section, we study problem (𝑃𝜆) with Ω ⊂ ℝ𝑁 (𝑁 ⩾ 2) bounded domain with a 𝐶1,1 boundary, 𝑝 ⩾ 2, 𝑠 ∈ (0, 1) s.t.
𝑝𝑠 < 𝑁, and 1 < 𝑞 < 𝑟 < 𝑝∗𝑠 . For all 𝜆 > 0, 𝑡 ∈ ℝ, we set

𝑓𝜆(𝑡) = 𝜆(𝑡
+)𝑞−1 − (𝑡+)𝑟−1,

𝐹𝜆(𝑡) = ∫
𝑡

0

𝑓𝜆(𝜏) 𝑑𝜏 = 𝜆
(𝑡+)𝑞

𝑞
−
(𝑡+)𝑟

𝑟
.

Note that 𝑓𝜆 ∶ ℝ → ℝ satisfies hypotheses𝐇 as stated in Section 2. So we may set for all 𝑢 ∈ 𝑊𝑠,𝑝
0
(Ω)

Φ𝜆(𝑢) =
‖𝑢‖𝑝
𝑝
− ∫

Ω

𝐹𝜆(𝑢) 𝑑𝑥, (3.1)

and deduce that Φ𝜆 ∈ 𝐶1(𝑊
𝑠,𝑝

0
(Ω)). As we will see, the positive critical points of Φ𝜆 coincide with the solutions of (𝑃𝜆).

In the following subsections, we separately study the different cases according to the position of 𝑞.

3.1 The subdiffusive case

We assume 1 < 𝑞 < 𝑝 < 𝑟 < 𝑝∗𝑠 . In this case, we have the following global existence and uniqueness result (corresponding
to case (𝑎) of Theorem 1.1):

Theorem 3.1. Let 1 < 𝑞 < 𝑝 < 𝑟 < 𝑝∗𝑠 . Then, for all 𝜆 > 0 problem (𝑃𝜆) has a unique solution 𝑢𝜆 ∈ int(𝐶0𝑠 (Ω)+), s.t.
𝑢𝜆 − 𝑢𝜇 ∈ int(𝐶

0
𝑠 (Ω)+) for all 𝜆 > 𝜇 > 0 and 𝑢𝜆 → 0 in both𝑊

𝑠,𝑝

0
(Ω) and 𝐶0𝑠 (Ω) as 𝜆 ↘ 0.

Proof. Fix any 𝜆 > 0. We will find the solution of (𝑃𝜆) by direct minimization. First, we prove that the functional Φ𝜆
(defined in Equation (3.1)) is coercive. Indeed, since 𝑞 < 𝑟, the mapping 𝐹𝜆 is clearly bounded from above, that is, there
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1460 IANNIZZOTTO et al.

exists 𝐶 > 0 s.t. 𝐹𝜆(𝑡) ⩽ 𝐶 for all 𝑡 ∈ ℝ. So, for all 𝑢 ∈ 𝑊
𝑠,𝑝

0
(Ω) we have

Φ𝜆(𝑢) ⩾
‖𝑢‖𝑝
𝑝
− 𝐶|Ω|,

and the latter tends to∞ as ‖𝑢‖→∞. Besides, by the compact embeddings𝑊𝑠,𝑝
0
(Ω) ↪ 𝐿𝑞(Ω), 𝐿𝑟(Ω), it is easily seen that

Φ𝜆 is sequentially weakly lower semicontinuous in𝑊
𝑠,𝑝

0
(Ω). So, there exists 𝑢𝜆 ∈ 𝑊

𝑠,𝑝

0
(Ω) s.t.

Φ𝜆(𝑢𝜆) = inf
𝑊
𝑠,𝑝
0
(Ω)
Φ𝜆 =∶ 𝑚𝜆. (3.2)

Besides, let �̂�1 ∈ int(𝐶0𝑠 (Ω)+) be defined by Equation (2.4). Then, for all 𝜏 > 0

Φ𝜆(𝜏�̂�1) = 𝜏
𝑝 ‖�̂�1‖𝑝
𝑝

− 𝜆𝜏𝑞
‖�̂�1‖𝑞𝑞
𝑞
+ 𝜏𝑟

‖�̂�1‖𝑟𝑟
𝑟
,

and the latter is negative for all 𝜏 > 0 small enough (recall that 𝑞 < 𝑝 < 𝑟). So, in Equation (3.2) we have𝑚𝜆 < 0, implying
𝑢𝜆 ≢ 0. From Equation (3.2), we deduce that Φ′

𝜆
(𝑢𝜆) = 0 in𝑊−𝑠,𝑝

′
(Ω), that is, we have weakly in Ω

(−Δ)𝑠𝑝 𝑢𝜆 = 𝑓𝜆(𝑢𝜆). (3.3)

By Proposition 2.3, we have 𝑢𝜆 ∈ 𝐶𝛼𝑠 (Ω). Besides, testing Equation (3.3) with−𝑢−𝜆 ∈ 𝑊
𝑠,𝑝

0
(Ω) and applying Equation (2.2),

we have

‖𝑢−
𝜆
‖𝑝 ⩽ ⟨(−Δ)𝑠𝑝 𝑢𝜆, −𝑢−𝜆 ⟩ = ∫

Ω

𝑓𝜆(𝑢𝜆)(−𝑢
−
𝜆
) 𝑑𝑥 = 0,

so 𝑢𝜆 ⩾ 0. Now, Theorem 2.6 implies 𝑢𝜆 ∈ int(𝐶0𝑠 (Ω)+), so 𝑢𝜆 solves (𝑃𝜆).
Next, we prove uniqueness. Let 𝑣𝜆 ∈ int(𝐶0𝑠 (Ω)+) be another solution of (𝑃𝜆). We have for all 𝑡 > 0

𝑓𝜆(𝑡)

𝑡𝑝−1
= 𝜆𝑡𝑞−𝑝 − 𝑡𝑟−𝑝,

and such mapping is decreasing in (0,∞). Applying Proposition 2.4 twice, we have 𝑢𝜆 = 𝑣𝜆.
To seemonotonicity, let 0 < 𝜇 < 𝜆, and 𝑢𝜇, 𝑢𝜆 ∈ int(𝐶0𝑠 (Ω)+) be the solutions of (𝑃𝜇), (𝑃𝜆), respectively.We haveweakly

in Ω

(−Δ)𝑠𝑝 𝑢𝜇 < 𝜆𝑢
𝑞−1
𝜇 − 𝑢𝑟−1𝜇 ,

so 𝑢𝜇 is a strict subsolution of (𝑃𝜆). By Proposition 2.4 again, we have 𝑢𝜇 ⩽ 𝑢𝜆 inΩ. This in turn implies that weakly inΩ

(−Δ)𝑠𝑝 𝑢𝜇 + 𝑢
𝑟−1
𝜇 = 𝜇𝑢

𝑞−1
𝜇 < 𝜆𝑢

𝑞−1

𝜆
= (−Δ)𝑠𝑝 𝑢𝜆 + 𝑢

𝑟−1
𝜆
.

Since 𝑔(𝑡) = 𝑡𝑟−1 is continuous and with locally bounded variation, we can apply Theorem 2.7 and see that 𝑢𝜆 − 𝑢𝜇 ∈
int(𝐶0𝑠 (Ω)+).
Finally, let (𝜆𝑛) be a decreasing sequence in (0,∞) s.t. 𝜆𝑛 ↘ 0, and 𝑢𝑛 ∈ int(𝐶0𝑠 (Ω)+) be the solution of (𝑃𝜆𝑛 ) for all

𝑛 ∈ ℕ, that is, we have weakly in Ω

(−Δ)𝑠𝑝 𝑢𝑛 = 𝑓𝜆𝑛(𝑢𝑛). (3.4)

Since 𝑞 < 𝑝 and (𝜆𝑛) is decreasing, we can find 𝐶 > 0 s.t. for all 𝑛 ∈ ℕ, 𝑡 ∈ ℝ

𝑓𝜆𝑛(𝑡)𝑡 ⩽ 𝐶.

Testing Equation (3.4) with 𝑢𝑛 ∈ 𝑊
𝑠,𝑝

0
(Ω), for all 𝑛 ∈ ℕ we have

‖𝑢𝑛‖𝑝 = ⟨(−Δ)𝑠𝑝 𝑢𝑛, 𝑢𝑛⟩ = ∫
Ω

𝑓𝜆𝑛(𝑢𝑛)𝑢𝑛 𝑑𝑥 ⩽ 𝐶|Ω|.
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IANNIZZOTTO et al. 1461

So, (𝑢𝑛) is a bounded sequence in 𝑊
𝑠,𝑝

0
(Ω). By reflexivity and the compact embeddings 𝑊𝑠,𝑝

0
(Ω) ↪ 𝐿𝑞(Ω), 𝐿𝑟(Ω), we

can pass to a subsequence s.t. 𝑢𝑛 ⇀ 𝑢0 in 𝑊
𝑠,𝑝

0
(Ω) and 𝑢𝑛 → 𝑢0 in both 𝐿𝑞(Ω) and 𝐿𝑟(Ω). Testing Equation (3.4) with

(𝑢𝑛 − 𝑢0) ∈ 𝑊
𝑠,𝑝

0
(Ω) and using Hölder’s inequality, we have for all 𝑛 ∈ ℕ

⟨(−Δ)𝑠𝑝 𝑢𝑛, 𝑢𝑛 − 𝑢0⟩ = ∫
Ω

(𝜆𝑛𝑢
𝑞−1
𝑛 − 𝑢𝑟−1𝑛 )(𝑢𝑛 − 𝑢0) 𝑑𝑥

⩽ 𝜆1‖𝑢𝑛‖𝑞−1𝑞 ‖𝑢𝑛 − 𝑢0‖𝑞 + ‖𝑢𝑛‖𝑟−1𝑟 ‖𝑢𝑛 − 𝑢0‖𝑟,
and the latter tends to 0 as 𝑛 → ∞. By the (𝑆)+-property of (−Δ)𝑠𝑝, we have 𝑢𝑛 → 𝑢0 in𝑊

𝑠,𝑝

0
(Ω). So, we can pass to the

limit in Equation (3.4) as 𝑛 → ∞ and get weakly in Ω

(−Δ)𝑠𝑝 𝑢0 = −𝑢
𝑟−1
0
.

Testing with 𝑢0 ∈ 𝑊
𝑠,𝑝

0
(Ω) we have

‖𝑢0‖𝑝 + ‖𝑢0‖𝑟𝑟 = 0,
that is, 𝑢0 = 0. Plus, we note that, by Equation (3.4) and Proposition 2.3, (𝑢𝑛) is bounded in 𝐶𝛼𝑠 (Ω), hence, passing to a
further subsequence, 𝑢𝑛 → 0 in 𝐶0𝑠 (Ω). Recalling that 𝜆 ↦ 𝑢𝜆 is strictly increasing, we conclude that globally 𝑢𝜆 → 0 in
both𝑊𝑠,𝑝

0
(Ω) and 𝐶0𝑠 (Ω), as 𝜆 ↘ 0. □

3.2 The equidiffusive case

Now, we assume 2 ⩽ 𝑞 = 𝑝 < 𝑟 < 𝑝∗𝑠 , a case that does not differ toomuch from the previous one, except that the threshold
for the parameter 𝜆 turns out to be the principal eigenvalue �̂�1 > 0 defined in Equation (2.4). Our existence and uniqueness
result (corresponding to case (𝑏) of Theorem 1.1) is the following:

Theorem 3.2. Let 2 ⩽ 𝑞 = 𝑝 < 𝑟 < 𝑝∗𝑠 . Then, for all 𝜆 ∈ (0, �̂�1] problem (𝑃𝜆) has no solution, while for all 𝜆 > �̂�1 problem
(𝑃𝜆) has a unique solution 𝑢𝜆 ∈ int(𝐶0𝑠 (Ω)+), s.t. 𝑢𝜆 − 𝑢𝜇 ∈ int(𝐶0𝑠 (Ω)+) for all 𝜆 > 𝜇 > �̂�1 and 𝑢𝜆 → 0 in both𝑊

𝑠,𝑝

0
(Ω) and

𝐶0𝑠 (Ω) as 𝜆 ↘ 𝜆1.

Proof. First, fix 𝜆 ∈ (0, �̂�1]. Assume that 𝑢 ∈ 𝑊
𝑠,𝑝

0
(Ω)+ satisfies weakly in Ω

(−Δ)𝑠𝑝 𝑢 = 𝜆𝑢
𝑝−1 − 𝑢𝑟−1. (3.5)

Testing Equation (3.5) with 𝑢 ∈ 𝑊𝑠,𝑝
0
(Ω) and applying Equation (2.4), we have

0 = ‖𝑢‖𝑝 − 𝜆‖𝑢‖𝑝𝑝 + ‖𝑢‖𝑟𝑟 ⩾ (�̂�1 − 𝜆)‖𝑢‖𝑝𝑝 + ‖𝑢‖𝑟𝑟 ⩾ ‖𝑢‖𝑟𝑟,
hence 𝑢 = 0. So (𝑃𝜆) admits no solution.
Now, let 𝜆 > �̂�1, and define Φ𝜆 as in Equation (3.1). Arguing as in Theorem 3.1, we see that Φ𝜆 has a global minimizer

𝑢𝜆 ∈ 𝑊
𝑠,𝑝

0
(Ω)+. Besides, let �̂�1 ∈ int(𝐶0𝑠 (Ω)+) be as in Equation (2.4). Then, for all 𝜏 > 0 we have

Φ𝜆(𝜏�̂�1) = 𝜏
𝑝

[‖�̂�1‖𝑝
𝑝

− 𝜆
‖�̂�1‖𝑝𝑝
𝑝

]
+ 𝜏𝑟

‖�̂�1‖𝑟𝑟
𝑟

= 𝜏𝑝
�̂�1 − 𝜆

𝑝
+ 𝜏𝑟

‖�̂�1‖𝑟𝑟
𝑟
,

and the latter is negative for 𝜏 > 0 small enough (as 𝑝 < 𝑟). So, 𝑢𝜆 ≢ 0. The rest of the proof follows exactly as in
Theorem 3.1. □
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1462 IANNIZZOTTO et al.

3.3 The superdiffusive case

In this final case, we assume 2 ⩽ 𝑝 < 𝑞 < 𝑟 < 𝑝∗𝑠 and defineΦ𝜆 as in Equation (3.1).Wewill need amore accurate analysis.
Let

Λ =
{
𝜆 > 0 ∶ (𝑃𝜆) has a solution 𝑢𝜆 ∈ int(𝐶0𝑠 (Ω)+)

}
.

In the following lemmas, we shall investigate the structure of the set Λ and additional properties of solutions. We begin
with a lower bound for Λ:

Lemma 3.3. We have Λ ≠ ∅ and 𝜆∗ ∶= inf Λ > 0.
Proof. Fix 𝜆 > 0. As in the proof of Theorem 3.1, we find 𝑢𝜆 ∈ 𝑊

𝑠,𝑝

0
(Ω)+ s.t.

Φ𝜆(𝑢𝜆) = inf
𝑊
𝑠,𝑝
0
(Ω)
Φ𝜆 =∶ 𝑚𝜆. (3.6)

Let �̂�1 ∈ int(𝐶0𝑠 (Ω)+) be as in Equation (2.4), then we have

Φ𝜆(�̂�1) =
‖�̂�1‖𝑝
𝑝

− 𝜆
‖�̂�1‖𝑞𝑞
𝑞
+

‖�̂�1‖𝑟𝑟
𝑟
,

which tends to −∞ as 𝜆 → ∞. So, for all 𝜆 > 0 big enough we have 𝑚𝜆 < 0 in Equation (3.6), hence 𝑢𝜆 ≠ 0. As in
Theorem 3.1 we see that 𝑢𝜆 ∈ int(𝐶0𝑠 (Ω)+) and it solves (𝑃𝜆). Thus, we have Λ ≠ ∅.
We claim that there exists 𝜆0 > 0 s.t. for all 𝑡 ⩾ 0

𝑓𝜆0(𝑡) ⩽ �̂�1𝑡
𝑝−1, (3.7)

with �̂�1 > 0 defined by Equation (2.4). Indeed, since 𝑝 < 𝑞 < 𝑟 we have for any 𝜆 > 0

lim
𝑡↘0

𝑓𝜆(𝑡)

𝑡𝑝−1
= 0, lim

𝑡→∞

𝑓𝜆(𝑡)

𝑡𝑝−1
= −∞.

So, we can find 𝛿 ∈ (0, 1) s.t. for all 𝑡 ∈ (0, 𝛿) ∪ (𝛿−1,∞) and all 𝜆 ∈ (0, 1]

𝑓𝜆(𝑡) ⩽ �̂�1𝑡
𝑝−1.

Now, set

𝜆0 = min{�̂�1𝛿
𝑞−𝑝, 1} > 0.

Then, for all 𝑡 ∈ [𝛿, 𝛿−1] we have

𝑓𝜆0(𝑡) < 𝜆0𝑡
𝑞−1 ⩽ �̂�1𝑡

𝑝−1,

hence Inequality (3.7) holds for all 𝑡 ⩾ 0. We prove that inf Λ ⩾ 𝜆0, arguing by contradiction. Assume that for some 𝜆 ∈
(0, 𝜆0) problem (𝑃𝜆) has a solution 𝑢𝜆 ∈ int(𝐶0𝑠 (Ω)+). Testing with 𝑢𝜆 ∈ 𝑊

𝑠,𝑝

0
(Ω) and using Equation (3.7), we get

‖𝑢𝜆‖𝑝 = ∫
Ω

𝑓𝜆(𝑢𝜆)𝑢𝜆 𝑑𝑥 < ∫
Ω

𝑓𝜆0(𝑢𝜆)𝑢𝜆 𝑑𝑥 ⩽ �̂�1‖𝑢𝜆‖𝑝𝑝,
against the characterization of �̂�1 in Equation (2.4). □

Next, we prove that Λ is a half-line and the mapping 𝜆 ↦ 𝑢𝜆 is strictly increasing:

Lemma 3.4. If 𝜆 > 𝜆∗ then 𝜆 ∈ Λ. Besides, for all 𝜆 > 𝜇 > 𝜆∗, if 𝑢𝜆, 𝑢𝜇 ∈ int(𝐶0𝑠 (Ω)+) are the solutions of (𝑃𝜆), (𝑃𝜇)
respectively, then 𝑢𝜆 − 𝑢𝜇 ∈ int(𝐶0𝑠 (Ω)+).
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IANNIZZOTTO et al. 1463

Proof. Fix 𝜆 > 𝜆∗. Then, we can find 𝜇 ∈ Λ s.t. 𝜇 < 𝜆, and a solution 𝑢𝜇 ∈ int(𝐶0𝑠 (Ω)+) of (𝑃𝜇). We have weakly in Ω

(−Δ)𝑠𝑝 𝑢𝜇 = 𝑓𝜇(𝑢𝜇) < 𝑓𝜆(𝑢𝜇), (3.8)

that is, 𝑢𝜇 is a strict subsolution of (𝑃𝜆). We use 𝑢𝜇 to truncate the reaction 𝑓𝜆. Set for all (𝑥, 𝑡) ∈ Ω × ℝ

𝑓𝜆(𝑥, 𝑡) =

{
𝑓𝜆(𝑢𝜇(𝑥)) if 𝑡 ⩽ 𝑢𝜇(𝑥)
𝑓𝜆(𝑡) if 𝑡 > 𝑢𝜇(𝑥)

and

�̂�𝜆(𝑥, 𝑡) = ∫
𝑡

0

𝑓𝜆(𝑥, 𝜏) 𝑑𝜏.

So 𝑓𝜆 ∶ Ω × ℝ → ℝ satisfies𝐇. Set for all 𝑢 ∈ 𝑊𝑠,𝑝
0
(Ω)

Φ̂𝜆(𝑢) =
‖𝑢‖𝑝
𝑝
− ∫

Ω

�̂�𝜆(𝑥, 𝑢) 𝑑𝑥,

then as in Section 2 it is seen that Φ̂𝜆 ∈ 𝐶1(𝑊
𝑠,𝑝

0
(Ω)). Reasoning as in Theorem 3.1 we also see that Φ̂𝜆 is coercive and

sequentially weakly l.s.c., so there exists 𝑢𝜆 ∈ 𝑊
𝑠,𝑝

0
(Ω) s.t.

Φ̂𝜆(𝑢𝜆) = inf
𝑊
𝑠,𝑝
0
(Ω)
Φ̂𝜆.

As a consequence, we have Φ̂′
𝜆
(𝑢𝜆) = 0 in𝑊−𝑠,𝑝

′
(Ω), that is, weakly in Ω

(−Δ)𝑠𝑝 𝑢𝜆 = 𝑓𝜆(𝑥, 𝑢). (3.9)

Testing Equation (3.9) with (𝑢𝜇 − 𝑢𝜆)+ ∈ 𝑊
𝑠,𝑝

0
(Ω)+ we get

⟨(−Δ)𝑠𝑝 𝑢𝜆, (𝑢𝜇 − 𝑢𝜆)+⟩ = ∫
Ω

𝑓𝜆(𝑥, 𝑢𝜆)(𝑢𝜇 − 𝑢𝜆)
+ 𝑑𝑥

= ∫
Ω

𝑓𝜆(𝑢𝜇)(𝑢𝜇 − 𝑢𝜆)
+ 𝑑𝑥,

which along with Equation (3.8) gives

⟨(−Δ)𝑠𝑝 𝑢𝜇 − (−Δ)𝑠𝑝 𝑢𝜆, (𝑢𝜇 − 𝑢𝜆)+⟩ ⩽ 0.
By Proposition 2.1, we have 𝑢𝜇 ⩽ 𝑢𝜆 in Ω. So, Equation (3.9) rephrases as

(−Δ)𝑠𝑝 𝑢𝜆 = 𝑓𝜆(𝑢𝜆)

weakly in Ω, and moreover 𝑢𝜆 > 0 in Ω. As in Lemma 3.3 we see that 𝑢𝜆 ∈ int(𝐶0𝑠 (Ω)+) and it solves (𝑃𝜆), so 𝜆 ∈ Λ.
Finally, for all 𝜆 > 𝜇 > 𝜆∗ we have 𝑢𝜆, 𝑢𝜇 ∈ 𝑊

𝑠,𝑝

0
(Ω) ∩ 𝐶0𝑠 (Ω) and{

(−Δ)𝑠𝑝 𝑢𝜇 + 𝑢
𝑟−1
𝜇 = 𝜇𝑢

𝑞−1
𝜇 < 𝜆𝑢

𝑞−1

𝜆
= (−Δ)𝑠𝑝 𝑢𝜆 + 𝑢

𝑟−1
𝜆

weakly in Ω
0 < 𝑢𝜇 ⩽ 𝑢𝜆 in Ω.

By Theorem 2.7, we conclude that 𝑢𝜆 − 𝑢𝜇 ∈ int(𝐶0𝑠 (Ω)+). □

Note that in Lemma 3.4 we cannot use Proposition 2.4 to prove the monotonicity of 𝜆 ↦ 𝑢𝜆, as we did in sub- and
equidiffusive cases: this is due to the fact that 𝑡 ↦ 𝑓𝜆(𝑡)∕𝑡𝑝−1 is not a decreasing mapping in (0,∞) (recall that 𝑞 > 𝑝).
The same reason prevents the use of Proposition 2.4 to prove uniqueness of the solution.
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1464 IANNIZZOTTO et al.

In fact, for 𝜆 > 𝜆∗ we detect at least one more solution beside 𝑢𝜆:

Lemma 3.5. For all 𝜆 > 𝜆∗ there exists a second solution 𝑣𝜆 ∈ int(𝐶0𝑠 (Ω)+) of (𝑃𝜆) s.t. 𝑢𝜆 − 𝑣𝜆 ∈ int(𝐶0𝑠 (Ω)+).

Proof. Fix 𝜆 > 𝜆∗. As in Lemma 3.4 we pick 𝜇 ∈ Λ s.t. 𝜆∗ < 𝜇 < 𝜆, define Φ̂𝜆 ∈ 𝐶1(𝑊
𝑠,𝑝

0
(Ω)), and find a global minimizer

𝑢𝜆 ∈ int(𝐶
0
𝑠 (Ω)+), which solves (𝑃𝜆) and satisfies 𝑢𝜆 − 𝑢𝜇 ∈ int(𝐶0𝑠 (Ω)+). Set now

𝑉 =
{
𝑢𝜇 + 𝑣 ∶ 𝑣 ∈ int(𝐶

0
𝑠 (Ω)+)

}
,

which is an open set in 𝐶0𝑠 (Ω) containing 𝑢𝜆. For all 𝑥 ∈ Ω, 𝑡 > 𝑢𝜇(𝑥), we have

�̂�𝜆(𝑥, 𝑡) = ∫
𝑢𝜇(𝑥)

0

𝑓𝜆(𝑢𝜇(𝑥)) 𝑑𝜏 + ∫
𝑡

𝑢𝜇(𝑥)

𝑓𝜆(𝜏) 𝑑𝜏

= 𝐹𝜆(𝑡) +
[
𝑓𝜆(𝑢𝜇(𝑥))𝑢𝜇(𝑥) − 𝐹𝜆(𝑢𝜇(𝑥))

]
,

hence for all 𝑢 ∈ 𝑉 ∩𝑊𝑠,𝑝
0
(Ω) (note that 𝑢 > 𝑢𝜇 in Ω)

Φ̂𝜆(𝑢) =
‖𝑢‖𝑝
𝑝
− ∫

Ω

𝐹𝜆(𝑢) 𝑑𝑥 − ∫
Ω

[
𝑓𝜆(𝑢𝜇)𝑢𝜇 − 𝐹𝜆(𝑢𝜇)

]
𝑑𝑥 = Φ𝜆(𝑢) − 𝐶,

with 𝐶 ∈ ℝ independent of 𝑢. So, recalling that 𝑢𝜆 minimizes Φ̂𝜆 over𝑊
𝑠,𝑝

0
(Ω), for all 𝑢 ∈ 𝑉 ∩𝑊𝑠,𝑝

0
(Ω) we have

Φ𝜆(𝑢) ⩾ Φ𝜆(𝑢𝜆),

that is, 𝑢𝜆 is a local minimizer of Φ𝜆 in 𝐶0𝑠 (Ω). By Proposition 2.5, 𝑢𝜆 is as well a local minimizer of Φ𝜆 in 𝑊
𝑠,𝑝

0
(Ω). To

proceed with the proof, we need to perform a different truncation on the reaction. Set for all (𝑥, 𝑡) ∈ Ω × ℝ

𝑓𝜆(𝑥, 𝑡) =

{
𝑓𝜆(𝑡) if 𝑡 ⩽ 𝑢𝜆(𝑥)
𝜆𝑢
𝑞−1

𝜆
(𝑥) − 𝑡𝑟−1 if 𝑡 > 𝑢𝜆(𝑥)

and as usual

�̃�𝜆(𝑥, 𝑡) = ∫
𝑡

0

𝑓𝜆(𝑥, 𝜏) 𝑑𝜏.

Clearly 𝑓𝜆 ∶ Ω × ℝ → ℝ satisfies𝐇. So, we set for all 𝑢 ∈ 𝑊𝑠,𝑝
0
(Ω)

Φ̃𝜆(𝑢) =
‖𝑢‖𝑝
𝑝
− ∫

Ω

�̃�𝜆(𝑥, 𝑢) 𝑑𝑥

and thus define a functional Φ̃𝜆 ∈ 𝐶1(𝑊
𝑠,𝑝

0
(Ω)). We note that for all (𝑥, 𝑡) ∈ Ω × ℝ we have 𝑓𝜆(𝑥, 𝑡) ⩽ 𝑓𝜆(𝑡) and hence

�̃�𝜆(𝑥, 𝑡) ⩽ 𝐹𝜆(𝑡). This in turn implies for all 𝑢 ∈ 𝑊
𝑠,𝑝

0
(Ω)

Φ̃𝜆(𝑢) ⩾ Φ𝜆(𝑢). (3.10)

Since 𝑢𝜆 is a local minimizer of Φ𝜆, we can find 𝜌 > 0 s.t. Φ𝜆(𝑢) ⩾ Φ𝜆(𝑢𝜆) for all 𝑢 ∈ 𝐵𝜌(𝑢𝜆), hence by Inequality (3.10)

Φ̃𝜆(𝑢) ⩾ Φ𝜆(𝑢) ⩾ Φ𝜆(𝑢𝜆) = Φ̃𝜆(𝑢𝜆).

So, 𝑢𝜆 is as well a local minimizer of Φ̃𝜆. Besides, fix 𝜀 ∈ (0, �̂�1) (with �̂�1 > 0 defined by Equation (2.4)), then we can find
𝛿 > 0 s.t. for all 𝑥 ∈ ℝ, |𝑡| ⩽ 𝛿

�̃�𝜆(𝑥, 𝑡) ⩽ 𝐹𝜆(𝑡) ⩽ 𝜀
(𝑡+)𝑝

𝑝
.
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IANNIZZOTTO et al. 1465

SinceΩ is bounded, we can find 𝜎 > 0 s.t. ‖𝑢‖∞ ⩽ 𝛿 for all 𝑢 ∈ 𝐶0𝑠 (Ω), ‖𝑢‖0,𝑠 ⩽ 𝜎. Then, using also Equation (2.4), for all
𝑢 ∈ 𝑊

𝑠,𝑝

0
(Ω) ∩ 𝐶0𝑠 (Ω) with 0 < ‖𝑢‖0,𝑠 ⩽ 𝜎 we have

Φ̃𝜆(𝑢) ⩾
‖𝑢‖𝑝
𝑝
− ∫

Ω

𝜀
(𝑢+)𝑝

𝑝
𝑑𝑥 ⩾ (�̂�1 − 𝜀)

‖𝑢‖𝑝𝑝
𝑝
> 0.

So, 0 is a strict local minimizer of Φ̃𝜆 in 𝐶0𝑠 (Ω). By Proposition 2.5 again, 0 is as well a local minimizer of Φ̃𝜆 in𝑊
𝑠,𝑝

0
(Ω).

From Lemma 3.3, we know that Φ𝜆 is coercive in𝑊
𝑠,𝑝

0
(Ω), so by Inequality (3.10) Φ̃𝜆 is coercive as well. As recalled in

Section 2, Φ̃𝜆 then satisfies the (𝑃𝑆)-condition. Thus, we may apply the mountain pass theorem (see [33, Theorem 2.1])
and deduce the existence of 𝑣𝜆 ∈ 𝑊

𝑠,𝑝

0
(Ω) ⧵ {0, 𝑢𝜆} s.t. Φ̃′𝜆(𝑣𝜆) = 0 in𝑊

−𝑠,𝑝′ (Ω). So, we have weakly in Ω

(−Δ)𝑠𝑝 𝑣𝜆 = 𝑓𝜆(𝑥, 𝑣𝜆). (3.11)

Testing Equation (3.11) with −𝑣−
𝜆
∈ 𝑊

𝑠,𝑝

0
(Ω) and applying Equation (2.2) we have

‖𝑣−
𝜆
‖𝑝 ⩽ ⟨(−Δ)𝑠𝑝 𝑣𝜆, −𝑣−𝜆 ⟩ = ∫

Ω

𝑓𝜆(𝑥, 𝑣𝜆)(−𝑣
−
𝜆
) 𝑑𝑥 = 0,

so 𝑣𝜆 ∈ 𝑊
𝑠,𝑝

0
(Ω)+ ⧵ {0}. Recalling the definition of 𝑓𝜆 and testing Equation (3.11) with (𝑣𝜆 − 𝑢𝜆)+ ∈ 𝑊

𝑠,𝑝

0
(Ω), we have

⟨(−Δ)𝑠𝑝 𝑣𝜆, (𝑣𝜆 − 𝑢𝜆)+⟩ = ∫
Ω

𝑓𝜆(𝑥, 𝑣𝜆)(𝑣𝜆 − 𝑢𝜆)
+ 𝑑𝑥

⩽ ∫
Ω

𝑓𝜆(𝑢𝜆)(𝑣𝜆 − 𝑢𝜆)
+ 𝑑𝑥

= ⟨(−Δ)𝑠𝑝 𝑢𝜆, (𝑣𝜆 − 𝑢𝜆)+⟩,
which by Proposition 2.1 implies 𝑣𝜆 ⩽ 𝑢𝜆 in Ω. So, Equation (3.11) rephrases as

(−Δ)𝑠𝑝 𝑣𝜆 = 𝑓𝜆(𝑣𝜆)

weakly in Ω. Using Theorem 2.6 as in Theorem 3.1, we see that 𝑣𝜆 ∈ int(𝐶0𝑠 (Ω)+) and it solves (𝑃𝜆). So we have{
(−Δ)𝑠𝑝 𝑣𝜆 + 𝑣

𝑟−1
𝜆
= 𝜆𝑣

𝑞−1

𝜆
⩽ 𝜆𝑢

𝑞−1

𝜆
= (−Δ)𝑠𝑝 𝑢𝜆 + 𝑢

𝑟−1
𝜆

weakly in Ω
𝑣𝜆 ⩽ 𝑢𝜆 in Ω,

while 𝑣𝜆 ≢ 𝑢𝜆. By Theorem 2.7, we have 𝑢𝜆 − 𝑣𝜆 ∈ int(𝐶0𝑠 (Ω)+). □

To complete the picture, we examine the limiting case 𝜆 = 𝜆∗. In such case, we can prove existence of at least one
solution, to which all principal solutions 𝑢𝜆 converge:

Lemma 3.6. There exists a solution 𝑢∗ ∈ int(𝐶0𝑠 (Ω)+) of (𝑃𝜆∗). Besides, if 𝑢𝜆 ∈ int(𝐶
0
𝑠 (Ω)+) is the solution given in

Lemma 3.4, then 𝑢𝜆 → 𝑢∗ in both𝑊
𝑠,𝑝

0
(Ω) and 𝐶0𝑠 (Ω) as 𝜆 ↘ 𝜆∗.

Proof. We prove a slightly more general assertion. Let (𝜆𝑛) be a decreasing sequence s.t. 𝜆𝑛 ↘ 𝜆∗, and denote by 𝑢𝑛 ∈
int(𝐶0𝑠 (Ω)+) any solution of (𝑃𝜆𝑛 ), then up to a subsequence 𝑢𝑛 → 𝑢∗ in both𝑊

𝑠,𝑝

0
(Ω) and 𝐶0𝑠 (Ω) as 𝑛 → ∞, being 𝑢∗ ∈

int(𝐶0𝑠 (Ω)+) a solution of (𝑃𝜆∗). First, for all 𝑛 ∈ ℕ we have weakly in Ω

(−Δ)𝑠𝑝 𝑢𝑛 = 𝑓𝜆𝑛(𝑢𝑛). (3.12)

Arguing as in the proof of Theorem 3.1, we find 𝑢∗ ∈ 𝑊
𝑠,𝑝

0
(Ω)+ s.t. up to a subsequence 𝑢𝑛 → 𝑢∗ in both 𝑊

𝑠,𝑝

0
(Ω) and

𝐶0𝑠 (Ω), hence we can pass to the limit in Equation (3.12) and get weakly in Ω

(−Δ)𝑠𝑝 𝑢∗ = 𝑓𝜆∗(𝑢∗). (3.13)
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1466 IANNIZZOTTO et al.

We claim that 𝑢∗ ≢ 0. Arguing by contradiction, assume that 𝑢𝑛 → 0 in both 𝑊𝑠,𝑝
0
(Ω) and 𝐶0𝑠 (Ω), hence in particular

𝑢𝑛 → 0 uniformly in Ω. Then, for all 𝑛 ∈ ℕ big enough we have 0 < 𝑢𝑛 ⩽ 1 in Ω. Set for all 𝑛 ∈ ℕ

𝑣𝑛 =
𝑢𝑛‖𝑢𝑛‖ ∈ 𝑊𝑠,𝑝0 (Ω) ∩ int(𝐶0𝑠 (Ω)+).

The sequence (𝑣𝑛) is obviously bounded in𝑊
𝑠,𝑝

0
(Ω). By reflexivity and the compact embedding𝑊𝑠,𝑝

0
(Ω) ↪ 𝐿𝑝(Ω), passing

to a subsequence we have 𝑣𝑛 ⇀ 𝑣 in𝑊
𝑠,𝑝

0
(Ω), 𝑣𝑛 → 𝑣 in 𝐿𝑝(Ω). Besides, by Equation (3.12), for all 𝑛 ∈ ℕ we have weakly

in Ω

(−Δ)𝑠𝑝 𝑣𝑛 = 𝜆𝑛
𝑢
𝑞−1
𝑛‖𝑢𝑛‖𝑝−1 − 𝑢𝑟−1𝑛‖𝑢𝑛‖𝑝−1 . (3.14)

Consider the first term in the right-hand side of Equation (3.14). Since 0 < 𝑢𝑛 ⩽ 1 in Ω and 𝑝 < 𝑞, we have

0 <
𝑢
𝑞−1
𝑛‖𝑢𝑛‖𝑝−1 ⩽ 𝑢

𝑝−1
𝑛‖𝑢𝑛‖𝑝−1 = 𝑣𝑝−1𝑛 ,

so (𝑢𝑞−1𝑛 ∕‖𝑢𝑛‖𝑝−1) is bounded in 𝐿𝑝′(Ω). Passing to a subsequence, we have 𝑢𝑞−1𝑛 ∕‖𝑢𝑛‖𝑝−1 ⇀ 𝑤 in 𝐿𝑝′(Ω), hence a fortiori
in 𝐿1(Ω). By Hölder’s inequality and the continuous embedding𝑊𝑠,𝑝

0
(Ω) ↪ 𝐿𝑞(Ω), we have

‖𝑤‖1 ⩽ lim inf
𝑛 ∫

Ω

𝑢
𝑞−1
𝑛‖𝑢𝑛‖𝑝−1 𝑑𝑥

⩽ lim sup
𝑛

‖𝑢𝑛‖𝑞−1𝑞 |Ω| 1𝑞‖𝑢𝑛‖𝑝−1
⩽ 𝐶 lim sup

𝑛
‖𝑢𝑛‖𝑞−𝑝 = 0.

So, we get 𝑤 = 0, that is,

𝑢
𝑞−1
𝑛‖𝑢𝑛‖𝑝−1 ⇀ 0 in 𝐿𝑝′(Ω). (3.15)

An entirely similar argument proves that (𝑢𝑟−1𝑛 ∕‖𝑢𝑛‖𝑝−1) is bounded in 𝐿𝑝′(Ω) and, up to a subsequence,
𝑢𝑟−1𝑛‖𝑢𝑛‖𝑝−1 ⇀ 0 in 𝐿𝑝′(Ω). (3.16)

Testing Equation (3.14) with (𝑣𝑛 − 𝑣) ∈ 𝑊
𝑠,𝑝

0
(Ω) and using Hölder’s inequality, we have for all 𝑛 ∈ ℕ

⟨(−Δ)𝑠𝑝 𝑣𝑛, 𝑣𝑛 − 𝑣⟩ = ∫
Ω

[
𝜆𝑛

𝑢
𝑞−1
𝑛‖𝑢𝑛‖𝑝−1 − 𝑢𝑟−1𝑛‖𝑢𝑛‖𝑝−1

]
(𝑣𝑛 − 𝑣) 𝑑𝑥

⩽ 𝜆1
‖‖‖ 𝑢

𝑞−1
𝑛‖𝑢𝑛‖𝑝−1 ‖‖‖𝑝′‖𝑣𝑛 − 𝑣‖𝑝 − ‖‖‖ 𝑢𝑟−1𝑛‖𝑢𝑛‖𝑝−1 ‖‖‖𝑝′‖𝑣𝑛 − 𝑣‖𝑝,

and the latter tends to 0 as 𝑛 → ∞ by the relations above. By the (𝑆)+-property of (−Δ)𝑠𝑝 we have 𝑣𝑛 → 𝑣 in𝑊
𝑠,𝑝

0
(Ω), hence‖𝑣‖ = 1. On the other hand, testing Equation (3.14) with 𝑣 ∈ 𝑊𝑠,𝑝

0
(Ω), we have for all 𝑛 ∈ ℕ

⟨(−Δ)𝑠𝑝 𝑣𝑛, 𝑣⟩ = ∫
Ω

[
𝜆𝑛

𝑢
𝑞−1
𝑛‖𝑢𝑛‖𝑝−1 − 𝑢𝑟−1𝑛‖𝑢𝑛‖𝑝−1

]
𝑣 𝑑𝑥.

Passing to the limit as 𝑛 → ∞ and recalling Equations (3.15) and (3.16), we get ‖𝑣‖𝑝 = 0, a contradiction. Summarizing,
𝑢∗ ∈ 𝑊

𝑠,𝑝

0
(Ω)+ ⧵ {0} and satisfies Equation (3.13). As in Lemma 3.3 we see that 𝑢∗ ∈ int(𝐶0𝑠 (Ω)+) solves (𝑃𝜆∗).

Finally, taking into account themonotonicity property of Lemma3.4,we conclude that globally𝑢𝜆 → 𝑢∗ in both𝑊
𝑠,𝑝

0
(Ω)

and 𝐶0𝑠 (Ω), with monotone convergence, as 𝜆 ↘ 𝜆∗, for some 𝑢∗ ∈ int(𝐶0𝑠 (Ω)+) solving (𝑃𝜆∗). □
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Looking at the proof of Lemma 3.6 above, we can easily argue that, for any sequence (𝜆𝑛) s.t. 𝜆𝑛 ↘ 𝜆∗, the sequence of
solutions (𝑣𝜆𝑛 ) provided by Lemma 3.5 has a subsequence which converges to a solution of (𝑃𝜆∗), which might differ from
the global limit of 𝑢𝜆.
Combining Lemmas 3.3–3.6, we obtain the following bifurcation result for the superdiffusive case (corresponding to

case (𝑐) of Theorem 1.1):

Theorem3.7. Let 2 ⩽ 𝑝 < 𝑞 < 𝑟 < 𝑝∗𝑠 . Then, there exists 𝜆∗ > 0with the following properties: for all 𝜆 ∈ (0, 𝜆∗) problem (𝑃𝜆)
has no solution; (𝑃𝜆∗) has at least one solution 𝑢∗ ∈ int(𝐶

0
𝑠 (Ω)+); and for all 𝜆 > 𝜆∗ problem (𝑃𝜆) has at least two solutions

𝑢𝜆, 𝑣𝜆 ∈ int(𝐶
0
𝑠 (Ω)+) s.t. 𝑢𝜆 − 𝑣𝜆 ∈ int(𝐶0𝑠 (Ω)+), 𝑢𝜆 − 𝑢𝜇 ∈ int(𝐶0𝑠 (Ω)+) for all 𝜆 > 𝜇 > 𝜆∗, and 𝑢𝜆 → 𝑢∗ in both𝑊

𝑠,𝑝

0
(Ω)

and 𝐶0𝑠 (Ω) as 𝜆 ↘ 𝜆∗.

Remark 3.8. For simplicity, we confined our study to the pure power logistic reactions. Nevertheless, most of our
Theorem 3.7 can be extended to the following generalized logistic equation:

⎧⎪⎨⎪⎩
(−Δ)𝑠𝑝 𝑢 = 𝜆𝑓(𝑥, 𝑢) − 𝑔(𝑥, 𝑢) in Ω
𝑢 > 0 in Ω
𝑢 = 0 in Ω𝑐,

where 𝑓, 𝑔 ∶ Ω × ℝ → ℝ are Carathéodory mappings, both (𝑝 − 1)-superlinear at ∞ and at 0, satisfying a subcritical
growth condition like𝐇, and jointly satisfying a pseudo-monotonicity condition (see [23] for the case of the 𝑝-Laplacian).
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