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A growing body of research indicates that structural plasticity mechanisms are crucial for learning and memory
consolidation. Starting from a simple phenomenological model, we exploit a mean-field approach to develop a
theoretical framework of learning through this kind of plasticity, capable of taking into account several features
of the connectivity and pattern of activity of biological neural networks, including probability distributions of
neuron firing rates, selectivity of the responses of single neurons to multiple stimuli, probabilistic connection
rules, and noisy stimuli. More importantly, it describes the effects of stabilization, pruning, and reorganization
of synaptic connections. This framework is used to compute the values of some relevant quantities used to
characterize the learning and memory capabilities of the neuronal network in training and testing procedures
as the number of training patterns and other model parameters vary. The results are then compared with those
obtained through simulations with firing-rate-based neuronal network models.
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I. INTRODUCTION

Together with temporary and reversible changes of synap-
tic efficacy such as short and long-term plasticity mechanisms,
structural changes in the synaptic morphology of the network
are fundamental mechanisms that take place in healthy brains.
These changes occur at longer timescales than the short- or
long-term mechanisms mentioned above and consist in the
stabilization, creation of new synapses, or erasure of synapses
that have not been stabilized [1,2]. This type of synaptic plas-
ticity, called structural plasticity, can be spontaneous but also
experience-based [3], and it has a key role in the stabilization
of new concepts that need to be kept in memory after learning
[4].

Indeed, it is known that neurotransmitters can be neu-
rotrophic factors, i.e., participate in the growth or suppression
of dendritic spines, synapses, axons, and dendrites [1,5,6].
Thus, structural plasticity is a neural-activity-driven mecha-
nism, which can increase or decrease the number of synapses.
Such modifications are flanked by a homeostatic kind of
structural plasticity, which has a balancing effect achieved by
adding or removing synapses, as described in Ref. [7].

Moreover, the number of synapses in the brain can change
over time. In Ref. [8] it is shown that synaptic density in
the human cortex reaches the highest values at 1–2 years
age, it drops during adolescence and stabilizes between ages
16 and 72, followed by a slight decline. However, although
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synaptic density remains approximately stable during adult-
hood, rewiring of network connections occurs as well to
efficiently store new memories [9,10]. The activity-dependent
connectivity changes, together with the rearrangement of
synapses lead to a fine-tuning of the brain’s circuits [11].
Indeed, some synapses can be strengthened through long-term
potentiation (LTP) and new connections can be formed next
to the already potentiated ones to further enhance synaptic
transmission. However, when the presynaptic and postsynap-
tic neuron activities have a low correlation, their connection
is more likely to be removed. The latter process is called
synaptic pruning and it is considered essential for optimizing
activity propagation and memory capacity [12–14]. Further-
more, it is commonly believed that synaptic pruning and
rewiring dysfunction are neural correlates of developmental
disorders such as autism or schizophrenia [15,16], leading to,
respectively, a higher or lower synaptic density with respect
to neurotypical subjects [17–19].

In the last decades, computational neuroscience has inves-
tigated brain dynamics at different scales, from cellular [20] to
mesoscopic and macroscopic through mean-field approaches
[21–28]. Regarding synaptic plasticity, computational models
were mostly focused on plasticity mechanisms that involve
strengthening or weakening of existing synapses, like
short-term plasticity (STP) [29] or spike-timing-dependent
plasticity (STDP) [30] and on their role in short-term,
long-term, working memory, and learning [31–36]. Only in
recent times, computational models of structural plasticity and
connectivity rearrangements during learning were developed,
showing intriguing results. [13] and [14] describe a model of
structural plasticity based on ”effectual connectivity”, defined
in these works as the fraction of synapses able to represent a
memory stored in a network. By structural plasticity, effectual
connectivity is improved, since synapses that do not code for
the memory are moved to optimize network’s connectivity.
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Their model defines synapses using a Markov model of three
states: potential (i.e., not instantiated), instantiated but silent
or instantiated and stabilized. Structural plasticity is thus
related to the passage of the synapses from a potential state
to an instantiated state (and vice versa), whereas changes
only related to the synaptic weight are described by the
potentiation of the instantiated synapses. With such a model,
it is possible to show that networks with structural plasticity
have higher or comparable memory capacity to networks with
dense connectivity and it is possible to explain some cognitive
mechanisms such as the spacing effect [13].

[37] simulated a spiking neural network with structural
plasticity and STDP, showing that structural plasticity reduces
the amount of noise of the network after a learning pro-
cess, thus making the network able to have a clearer output.
Furthermore, such a network with structural plasticity shows
higher learning speed than the same network with only STDP
implemented.

Some new insights about the importance of synaptic
pruning are also shown in Ref. [9], in which different prun-
ing rates were studied suggesting that a slowly decreasing
rate of pruning over time leads to more efficient network
architectures.

The model proposed in this work considers two popu-
lations of neurons, P1 and P2, with synaptic connections
directed from the first to the second population (i.e., in a feed-
forward fashion). During the training phase, P1 receives an
input stimulus, while P2 receives a contextual stimulus. The
model assumes that synaptic stabilization is a probabilistic
process driven by pre- and postsynaptic spiking activity. For
each pattern given in input to the model, only a small fraction
of neurons contribute to this process. Connection stabilization
is complemented by a rewiring process: connection pruning,
which eliminates unstabilized connections, and creation of
new connections, which restores network balance. This frame-
work does not specifically refer to a particular region of the
brain; rather, it is built on characteristics that are ubiquitous
for several brain areas.

As discussed above, the biochemical and biophysical
mechanisms underlying structural plasticity are extremely
complex and only partially understood to date. For this rea-
son, rather than attempting to build a biologically detailed
model, this work exploits a relatively simple phenomeno-
logical model, including both the activity-driven and the
homeostatic contributions; despite the lower complexity, this
model accounts for the effects of structural plasticity in terms
of the stabilization of synaptic connections between neurons
with a high activity correlation as well as those of pruning and
rewiring the connections for which this correlation is lower.
This approach is also justified by the requirement for a sim-
ple and effective computational model suitable for simulating
networks with a relatively large number of neurons and con-
nections and for representing learning processes with sizable
numbers of training and testing patterns. The model will then
serve as the foundation for the creation of a mean-field-based
theoretical framework for learning through synaptic plasticity
capable of accounting for a variety of biological network
properties. This framework is used in a training and test-
ing procedure to characterize learning and memory capacity
of plastic neuronal networks as the number of training pat-

terns and other model parameters vary. The results are then
compared with those obtained through simulations based on
feed-forward firing-rate-based neuronal networks.

The proposed approach is capable of accounting for dif-
ferent probabilistic connection rules, firing rate probability
distributions, presence of noise in stimuli, thus providing a
general framework to study the impact of structural plasticity
on learning in large-scale neuronal network models.

II. MODEL DESCRIPTION

This section describes the model proposed in this work.
A pseudo-code of the algorithm used to model the structural
plasticity mechanism is provided in Algorithm 1. The neu-
ronal network consists of two neuron populations, P1 and P2,
with 105 neurons each. The exchange of information between
the two populations takes place through the feed-forward con-
nections from the population P1 to the population P2, which
in the model are on average 5 × 103 per neuron of P2 for a
total of 5 × 108 connections. Each connection has an initial
baseline synaptic weight Wb (initialization in Algorithm 1).
To mimic the activity of P1 in response to an external input
signal (e.g., a visual input), the model assigns to each neuron
of this population a value of firing rate derived from a pre-
defined firing rate distribution. This way, an input is modeled
as a firing rate pattern of P1. During the training stage, using
the same approach previously described for P1, the popula-
tion P2 is injected with a stimulus (e.g., auditory), that we
identify as a contextual stimulus (as proposed in Ref. [33]).
In this phase we assume that the activity of P2 is entirely
derived by the contextual stimulus, neglecting the contri-
bution of the connectivity between P1 and P2 (training in
Algorithm 1).

The structural plasticity model follows the categories pro-
posed by Ref. [7], i.e., activity-dependent and homeostatic.
The firing rate patterns of the two populations have a role
in the activity-dependent structural plasticity. The potentia-
tion and stabilization of a synaptic connection occurs when
the firing rates of both the presynaptic and the postsy-
naptic neurons are concurrently above a certain threshold
(the definition of which varies depending on the firing rate
distribution). In our model, the synaptic weight of a stabi-
lized connection increases from Wb to a value Ws > Wb

(synapses potentiation and stabilization in Algorithm 1).
This is a computationally effective way of taking into ac-
count the several biological mechanisms that concur in the
stabilization of the connection between two neurons. We
flank this mechanism with synaptic rewiring, which con-
sists of the mechanism of pruning of the connections that
have not been stabilized yet together with the creation of
new connections handled by homeostatic structural plastic-
ity (synapse pruning and synapse creation in Algorithm 1).
We apply synaptic rewiring on the simulation periodically
after a certain number of simulation steps. Once a synaptic
connection has been stabilized, it will maintain the synaptic
weight Ws, without the possibility of returning to the initial
state Wb. Thus, these connections are prevented from being
pruned in further simulation steps.

The sets of input and contextual patterns used for net-
work training are independent firing-rate patterns of the two
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ALGORITHM 1. Pseudo-code of structural plasticity during training.

INITIALIZATION
# creating initial connectivity
for i from 1 to N2 do

Ci = extractNumberOfConnections(C, connection_rule)
for c from 1 to Ci do

# presynaptic neuron index is extracted randomly from P1

j = generateRandomInteger(1, N1)
createConnection(i, j)
Wi, j = Wb

end for
end for
TRAINING
# training on T patterns
for t from 1 to T do

# providing to the network a firing rate pattern stimulusInjection()
for i from 1 to N2 do

for c from 1 to Ci do
# retrieve index of the presynaptic neuron for connection c
j = sourceNodeIndex(i, c)
SYNAPSES POTENTIATION AND STABILIZATION
# synapse potentiation and stabilization if both neurons have high rate
if νi � νth and ν j � νth then

Wi, j = Ws

end if
SYNAPSES PRUNING
# connection pruning after every rewiring_step
if isMultipleInteger(t , rewiring_step) then

if Wi, j = Wb then
pruneConnection(i, j)

end if
end if

end for
SYNAPSES CREATION
# creation of new connections after every rewiring step
if isMultipleInteger(t , rewiring_step) then

k = numberOfStabilizedConnections(i)
Ci = extractNumberOfConnections(C, conn_rule)
for c from k to Ci do

j = chooseRandomNeuronFromPopulation(P1)
createConnection(i, j)
Wi, j = Wb

end for
end if

end for
end for

populations randomly generated from predefined firing-rate
probability distributions. The training process is performed
using T independent input patterns, together with the corre-
sponding contextual stimuli.

During training, when both input and contextual stimu-
lus are used, a fraction of the neurons of the population P2

assumes a high value of firing rate (i.e., above threshold),
becoming thus representative of that input. These neurons,
called coding, or selective neurons, play a vital role in in-
put coding. The average input signal to these neurons will
be called 〈Sc〉. The nonselective neurons of P2 will instead
be called noncoding or background neurons, and their average
input signal will be indicated with 〈Sb〉. The average incoming

signals to background and coding neurons of P2 (i.e., 〈Sb〉
and 〈Sc〉) is evaluated in the test phase, during which an input
pattern is provided to P1 and the signal incoming to neurons
of P2 is entirely derived from the connectivity between the
two populations optimized during training thanks to the struc-
tural plasticity mechanism. Input patterns in the test phase
are derived from the training patterns with the addition of
noise. The proposed model accounts for the ability of the
network to learn the association between input patterns and
the corresponding contextual stimuli.

A diagram of the training and testing processes is shown in
Fig. 1. The biological motivations for the choices we adopted
for the model design are reported in the following section.
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FIG. 1. Schematic representation of the network model. The triangles represent neurons of the network, with their rate indicated by the
color (from yellow to red). (a) During training (left), a stimulus is injected into P1, and a contextual stimulus is injected into P2. In this
phase, structural plasticity occurs by refining and reorganizing the connectivity between the two neuron populations (dashed arrow). Moreover,
during training we assume that the activity of P2 is only derived from the contextual stimulus, neglecting the contribution of the connections
between the populations. The stimuli are randomly generated from a predefined firing rate probability distribution. In the test phase (right),
a pattern is injected without the corresponding contextual stimulus and the connections between the two populations project the input to the
neurons of P2. The test patterns are derived from the training patterns with the addition of noise. (b) Detail of the test phase, in which is
shown a subset of neurons of P1 and P2 (triangles) connected through connections (arrows). The triangles are colored so that amber triangles
fall in the low rate regime and red ones in the high rate regime, and the connections are distinguished between baseline (blue, with synaptic
weight Wb) and stabilized (fuchsia, with synaptic weight Ws). The neuron of P2 on the left is a coding neuron, i.e., it is representative
of the input injected, and thus receives an input signal Sc. The other neurons of P2, being noncoding neurons, receive a background
signal Sb.

A. Biological justification of the model choices

The model described above has several biologically moti-
vated features. First, the average number of connections per
neuron has been chosen in agreement with experimental esti-
mation [38]. Training and test patterns are generated so that a
fraction of the neurons targeted by the external stimuli show a
high-rate regime in response to the input.

During training, when input and contextual stimuli are
used, a fraction of the neurons of P2 become representative of
that input. Indeed, the existence of neurons showing selective
firing rates in response to specific stimuli is largely confirmed
by experimental results. Additionally, the neuron populations
assume a continuous firing rate distribution when targeted by
an external stimulus, with the firing rate of each neuron de-
rived by the distribution. In agreement with the experimental

observations, we employ a lognormal distribution of the firing
rate [39].

Regarding the structural plasticity mechanism, we fol-
lowed the description of Ref. [7], thus dividing the structural
mechanism into two categories: activity-dependent and home-
ostatic. Activity-dependent mechanisms lead to stabilization
and potentiation of a synapse when the pre- and postsynaptic
neurons assume a high-rate regime. Indeed, it is believed
that the potentiation of the synapses that connect neurons
with strongly correlated activity is accompanied by greater
stability over time [40]. As a result, the synapse increases the
synaptic efficacy to a value Ws than the baseline value Wb.
This can be seen as an effect of LTP, according to which we
have the formation of new synapses, but also the increase of
synaptic efficacy of the existing ones. Thus, the mechanism of
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stabilization proposed here embraces both structural and func-
tional synaptic modifications, both mediated by LTP [41].

Homeostatic effects of structural plasticity take into ac-
count the mechanisms of synaptic pruning of the connections
that have not been stabilized and the creation of novel synaptic
contacts. We modeled these effects through synaptic rewiring,
according to which nonstabilized connections are periodically
pruned and new connections are created. This mechanism is
not performed after every simulation step since it is known
that the homeostatic effects take place on a longer timescale
than the activity-dependent ones [7]. The mechanism of
synaptic rewiring will be discussed in detail later in this work.
Stabilized connections cannot be affected, by definition, by
synaptic pruning, and will keep their synaptic weight to Ws,
without the possibility of returning to the initial state Wb. This
approach is a simplified way of representing the biological
structural changes that make a stabilized connection strong
and durable.

In the next section, we derive the mean-field equations of
the model, whose description and parameters are summarized
in the Tables I and II in Appendix A.

III. THEORETICAL DERIVATIONS

Here we introduce the theoretical framework of the model.
As mentioned earlier, in this model the injection of an exter-
nal input to a neuron population is represented by neurons
showing firing rate patterns generated from a probability dis-
tribution ρ(ν). The distinction between high-rate and low-rate
neurons is based on two rate thresholds, νt,1 for the population
P1 and νt,2 for the population P2. The value of these thresholds
is related to the fraction of neurons above the threshold (i.e.,
high-rate) for the two populations, α1 and α2, respectively, by
the equations

α1 =
∫ ∞

νt,1

ρ(ν)dν,

α2 =
∫ ∞

νt,2

ρ(ν)dν.

(1)

Thus, the average number of high-rate neurons when an exter-
nal stimulus is provided is

Nh,1 = N1α1,

Nh,2 = N2α2,
(2)

where N1 and N2 are the number of neurons of P1 and P2,
respectively. The average rates of the neurons of P1 below
and above threshold, 〈ν�,1〉 and 〈νh,1〉, can be computed from
the firing rate distribution as

〈ν�,1〉 =
∫ νt,1

0
νρ(ν)dν

/ ∫ νt,1

0
ρ(ν)dν = 1

β1

∫ νt,1

0
νρ(ν)dν,

〈νh,1〉 =
∫ ∞

νt,1

νρ(ν)dν
/ ∫ ∞

νt,1

ρ(ν)dν = 1

α1

∫ ∞

νt,1

νρ(ν)dν,

(3)

where β1 = 1 − α1. Similar equations can be used to compute
〈ν�,2〉 and 〈νh,2〉. In general, the thresholds νt,1 and νt,2 can be
different; however, in this work, we assume that the thresholds
are the same. From these equations, the average firing rate can

be expressed as

〈ν〉 =
∫ ∞

0
νρ(ν)dν = β1〈ν�,1〉 + α1〈νh,1〉

= β2〈ν�,2〉 + α2〈νh,2〉. (4)

The theoretical framework aims to provide an estimation
of how well such a feed-forward network is able, after a
training process, to store the learned patterns only through the
connections changed by the structural plasticity mechanism.
As a result of training, a subset of neurons of P2, called
coding neurons, should receive during the test phase a higher
input than the rest of the neurons of P2, which we call back-
ground neurons. In such a framework, an effective approach
for estimating the capacity of the network to recognize the
pattern would be to evaluate, during the test phase, the signal-
difference-to-noise-ratio (SDNR) using the formula

SDNR = |〈Sc〉 − 〈Sb〉|
σb

, (5)

where 〈Sc〉 and 〈Sb〉 are, respectively, the average input signal
to coding and background neurons of the P2 population due to
the connections coming from the P1 population and σb is the
standard deviation of the signal received by the background
neurons. This choice is justified by the need to evaluate the
memory capacity associated with the plasticity of the connec-
tions from P1 to P2. In Appendix B we derive the relation
between SDNR and the probability of correctly recalling a
pattern after training:

PC � 1

2

[
1 + erf

(
SDNR√

8

)]
. (6)

This equation can be used to set a lower limit to the SDNR
ensuring a probability of correct recall greater than a pre-
determined threshold PC (e.g., PC = 0.95). Since the SDNR
depends on the number of training patterns T , it can be used
to estimate the highest number of patterns viable for training
which ensures retrieval during testing with a probability PC

(i.e., Tmax). Training the network with an excessive number of
patterns surpassing this maximum value makes the SDNR in-
sufficient for distinguishing coding from background signals,
increasing the likelihood of incorrect pattern recall.

During training, when input and contextual stimuli are
provided to the network, a connection is stabilized if both the
presynaptic and the postsynaptic neurons assume a firing rate
above the threshold.

In this work, we use a lognormal distribution of the firing
rates for the continuous model. Indeed, it is known that rate
distribution in the cortex is long-tailed and skewed with a
lognormal shape [39]. More details on the implementation
of the lognormal distribution and the choice of the average
low and high rates can be found in Appendix C. Nevertheless,
the following derivations are valid for a generic probability
distribution ρ(ν).

The test set consists of V firing-rate patterns of the neurons
of P1, randomly extracted from the T input patterns of the
train set. Here we consider the case where the patterns are
unchanged, thus each input pattern of the test set is identical
to an input pattern of the train set. In a later section, we
will discuss the effect of altering these patterns by adding
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noise. To estimate the values of 〈Sc〉, 〈Sb〉, and σ 2
b we can

start by computing the average number of incoming stabilized
connections for every neuron of P2 after a training process in
which T independent patterns are given. This is useful since
the input to a neuron of P2 driven by the connections from
P1 is determined by the product between the synaptic weights
of the connections and the rate of the respective presynaptic
neurons.

The probability that a generic connection is stabilized in
a single example is α1α2, and thus the probability that it is
not stabilized after T training examples is (1 − α1α2)T . The
probability pT that a connection is stabilized in at least one
of the T training examples is given by the complement of the
previous expression:

pT = 1 − (1 − α1α2)T . (7)

As k is the number of stabilized connections for a neuron, the
average number of stabilized connections per neuron of P2 is
defined as the product of the expression above by the number
of incoming connections per neuron C. This way, the average
number of stabilized connections per neuron is

〈k〉 = C[1 − (1 − α1α2)T ] = CpT . (8)

For each neuron we have on average 〈k〉 stabilized con-
nections with synaptic weight Ws and C − 〈k〉 nonstabilized

connections with the baseline synaptic weight Wb. For sim-
plicity, the previous equation and the following derivations
assume that the number of incoming connections per neuron
is constant. However, in the most general case, this number
can be driven from a distribution. In this regard, Sec. III A
describes the changes in the theoretical framework in the case
of Poisson-distributed in-degrees.

First of all, we calculate the input signal to a background
neuron of P2. Let C be the number of incoming connec-
tions to this neuron, k the number of stabilized connections,
ν1, · · · , νk the firing rates of the presynaptic neurons of the
stabilized connections, and ξ1, · · · , ξC−k the firing rates of
the presynaptic neurons of the nonstabilized connections. The
input signal is then

Sb = Ws

k∑
i=1

νi + Wb

C−k∑
i=1

ξi. (9)

To calculate the average background signal we should
average the expression given by Eq. (9) over all the possible
values of k and of the firing rates. As P(k) is the probability
that k of these connections are stabilized, the probability
of having k stabilized connections and rates in the range
(ν1, ν1 + dν1), . . . , (νk, νk + dνk ), (ξ1, ξ1 + dξ1), . . . ,
(ξC−k, ξC−k + dξC−k ) is P(k)ρ(ν1) · · · ρ(νk )ρ(ξ1) · · ·
ρ(ξC−k )dν1 · · · dνkdξ1 · · · dξC−k . Thus,

〈Sb〉 =
∑

k

P(k)
∫

dν1 · · ·
∫

dνk

∫
dξ1 · · ·

∫
dξC−kρ(ν1) · · · ρ(νk )ρ(ξ1) · · · ρ(ξC−k )

× [Ws(ν1 + · · · + νk ) + Wb(ξ1 + · · · + ξC−k )]

=
∑

k

P(k)[Wsk〈ν〉 + Wb(C − k)〈ν〉] = [Ws〈k〉 + Wb(C − 〈k〉)]〈ν〉, (10)

where we used the fact that
∫

νρ(ν)dν = ∫
ξρ(ξ )dξ = 〈ν〉. In this equation, we can clearly observe two distinct contributions:

one related to stabilized connections, which depends on the mean value 〈k〉, and the other related to baseline connections, which
depends on C − 〈k〉. Both these contributions are multiplied by the average firing rate of P1 neurons, which is related to the
nonselectivity of the incoming signal.

The variance of the background signal can be derived by applying its definition:

σ 2
b = 〈(Sb − 〈Sb〉)2〉 =

∑
k

P(k)
∫

dν1 · · ·
∫

dνk

∫
dξ1 · · ·

∫
dξC−kρ(ν1) · · · ρ(ξC−k )

×
[
Ws

k∑
i=1

νi + Wb

C−k∑
i=1

ξi − [Ws〈k〉 + Wb(C − 〈k〉)]〈ν〉
]2

. (11)

Taking advantage of the equality 〈k〉 = k + (〈k〉 − k), we can rewrite

Ws〈k〉 + Wb(C − 〈k〉) = Wsk + Ws(〈k〉 − k) + Wb[(C − k) + (k − 〈k〉)]

= Wsk + Wb(C − k) + Ws(〈k〉 − k) + Wb(k − 〈k〉). (12)

Inserting this last expression in Eq. (11) and rewriting the terms with the multiplicative factors k and C − k with summations,
such as for example Wsk〈ν〉 = Ws

∑k
i=1〈ν〉, we obtain

σ 2
b =

∑
k

P(k)
∫

dν1 · · ·
∫

dξC−kρ(ν1) · · · ρ(ξC−k )

[
Ws

k∑
i=1

(νi − 〈ν〉) + Wb

C−k∑
i=1

(ξi − 〈ν〉) + (k − 〈k〉)(Ws − Wb)〈ν〉
]2

. (13)
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The mixed terms of the equation above are null because
∫

ρ(x)(x − 〈x〉)dx = 0, ergo we can write the variance of the background
signal as follows:

σ 2
b =

∑
k

P(k)
∫

dν1 · · ·
∫

dξC−kρ(ν1) · · · ρ(ξC−k )

× [
W2

s k〈(ν − 〈ν〉)2〉 + W2
b (C − k)〈(ν − 〈ν〉)2〉 + (Ws − Wb)2(k − 〈k〉)2〈ν〉2

]
= [

W2
s 〈k〉 + W2

b (C − 〈k〉)
]
σ 2

ν + (Ws − Wb)2σ 2
k 〈ν〉2, (14)

where σ 2
k = 〈(k − 〈k〉)〉. In the previous formula, we note

two contributions depending, respectively, on the variance of
the firing rate and the variance of the number of stabilized
connections. The value of the variance of k is not shown here,
but is derived in Appendix D, whereas the variance of the rate
is, by definition, σ 2

ν = 〈ν2〉 − 〈ν〉2.
Now we estimate the average input to a coding neuron of

P2. The neuron receives signals from neurons of P1 coming
from both stabilized and baseline connections. If C is the
number of incoming connections, then the average number of
high-rate presynaptic neurons will be α1C, while those with
low rate will be, on average, C ′ = C(1 − α1). Since the input
pattern used here for testing is identical to the corresponding
training pattern, the α1C connections coming from high-rate
neurons will certainly be stabilized. The remaining C ′ connec-
tions come from neurons of P1 at a low rate, however, they
may have been stabilized in one of the other T − 1 training
patterns. The average number of stabilized connections from
low-rate neurons can be calculated using Eq. (8):

〈k′〉 = C ′ pT −1 = C(1 − α1)pT −1, (15)

where pT −1 represents the probability shown in Eq. (7) but
calculated for T − 1 examples. For α1α2 � 1, we can observe
from Eq. (7) than pT −1 � pT and thus

〈k′〉 � C(1 − α1)pT = 〈k〉(1 − α1). (16)

Formalizing what we just discussed and using the defini-
tion of 〈ν�〉 and 〈νh〉 given by Eq. (3) we can write

〈Sc〉 = Wsα1C〈νh〉 + Ws〈k′〉〈ν�〉 + Wb(C ′ − 〈k′〉)〈ν�〉
= Wsα1C〈νh〉 + Ws〈k〉(1 − α1)〈ν�〉

+ Wb(C − 〈k〉)(1 − α1)〈ν�〉
= Wsα1C〈νh〉 + [(Ws − Wb)〈k〉 + CWb](1 − α1)〈ν�〉,

(17)

where we used the expression of 〈k′〉 and the same approxima-
tion pT −1 � pT shown in Eq. (16). Indeed, this equation does
not take into account the rewiring process, but only the effect
of stabilization. Please see Sec. III B for a derivation of 〈Sc〉
which takes into account both the effects of structural plas-
ticity. We identify this case as “with rewiring” to distinguish
it from the case in which nonstabilized connections are not
pruned and rewired. Indeed, this distinction is useful to esti-
mate the contribution of this mechanism on 〈Sc〉.

A. Poisson distribution of incoming connections per neuron

Hitherto we considered a model in which each neuron of
P2 has a fixed number of incoming connections, i.e., a fixed
in-degree, C. However, a more general and more realistic

approach would consider C as a variable across the neurons of
P2 according to an appropriate probability distribution P(C).
Here we focus on the case where the number of incoming
connections follows a Poisson distribution (i.e., a Poisson-
indegree connection rule), although the approach we present
here can be easily extended to other distributions. The values
of 〈Sc〉 and 〈Sb〉, previously averaged over the rate ν and the
number of stabilized connections k, should be also averaged
over the number of incoming connections, so that

〈〈Sb〉ν,k〉C =
∑
C

P(C)〈Sb〉ν,k,

〈〈Sc〉ν,k〉C =
∑
C

P(C)〈Sc〉ν,k,
(18)

where 〈Sb〉ν,k is given by Eq. (10) and 〈Sc〉ν,k is given
by Eq. (17). Since these equations are linear in C and since∑

C CP(C) = 〈C〉, Eqs. (10) and (17) would show 〈C〉 instead
of C when averaged over the number of incoming connections
per neuron.

The variance can be obtained from the equation

Var(〈Sb〉ν,k,C ) = σ 2
ν,k,C = 〈

S2
b

〉
ν,k,C − (〈Sb〉ν,k,C )2. (19)

Knowing that 〈σ 2
b 〉C = 〈〈S2

b 〉ν,k − 〈Sb〉2
ν,k〉C = 〈S2

b 〉ν,k,C −
〈〈Sb〉2

ν,k〉C and that 〈k〉 = pC we can write

σ 2
ν,k,C = 〈

σ 2
b

〉
C + 〈〈Sb〉2

ν,k

〉
C − (〈Sb〉ν,k,C )2

= 〈
σ 2

b

〉
C + {〈ν〉[Wb + p(Ws − Wb)]}2[〈C2〉 − 〈C〉2]

= 〈
σ 2

b

〉
C + 〈ν〉2[Wb + p(Ws − Wb)]2σ 2

C . (20)

B. Connection rewiring

In the proposed approach, rewiring is implemented by pe-
riodically pruning unstabilized connections and creating new
ones. These procedures are performed with a fixed step on the
number of training examples, which we will call rewiring step,
denoted by the letter r. The creation of the new connections is
made in such a way as to keep the distribution of the number
of incoming connections per neuron unchanged. If k is the
number of stabilized incoming connections of a neuron of P2,
then after pruning all the nonstabilized connections, C − k
new connections will be created. C is a fixed number if the
fixed-indegree connection rule is used, while it is extracted
from a Poisson distribution if the Poisson-indegree rule is
selected; in both cases, the presynaptic neurons are randomly
extracted from P1. For this reason, rewiring leaves the ex-
pressions of the background signal and of the variance on this
signal unchanged, while, as we will see, it modifies the input
signal to coding neurons. A diagram of the rewiring process
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FIG. 2. Diagram of the rewiring process. Red and amber trian-
gles represent high and low rate neurons with average rate 〈νh〉 and
〈ν�〉, respectively. Blue and fuchsia connections represent baseline
connections with a weight of Wb and stabilized connections with a
weight of Ws, respectively. (a) Diagram representing the connectivity
between a subset of P1 neurons and a P2 neuron after synaptic
stabilization and before rewiring. (b) Synaptic pruning removes non-
stabilized connections every r steps. Pruned connections are depicted
as dashed arrows. (c) After pruning, new connections are created,
having a randomly chosen presynaptic neuron.

is shown in Fig. 2, which illustrates the activity of a high-rate
neuron of P2 and of the presynaptic neurons of its incoming
connections in a training example, and the effect of connection
rewiring.

The average number of incoming connections that are sta-
bilized in the current example is equal to the average number
of high-rate presynaptic neurons, α1C. The average number
of incoming connections that are stabilized in other examples
after the entire training, 〈k′〉, is given by Eq. (15):

〈k′〉 � pT C(1 − α1). (21)

Let t be the next training index for which rewiring will be
applied, and k′

t the number of connections from low-rate neu-
rons that are stabilized before t . These connections will not be
affected by rewiring, so even in the test phase with the same
input pattern they will have low-rate presynaptic neurons. The
average value of k′

t is

〈k′
t 〉 = ptC(1 − α1), (22)

where pt is given by an expression analogous to the one
obtained for pT [Eq. (7)]

pt = 1 − (1 − α1α2)t . (23)

However, there will be k′ − k′
t connections displaced by

rewiring and stabilized in training examples of index greater
than t . Putting all the contributions together, we obtain the
following expression for Sc:

〈Sc〉 = α1CWs〈νh〉 + (〈k′〉 − 〈k′
t 〉)Ws〈ν〉 + 〈k′

t 〉Ws〈ν�〉
+ Wb(C − α1C − 〈k′〉)〈ν〉

= α1CWs〈νh〉 + 〈k′〉Ws〈ν〉 + Wb[C(1 − α1) − 〈k′〉]〈ν〉
− 〈k′

t 〉Ws(〈ν〉 − 〈ν�〉). (24)

To obtain the average value of Sc over all examples, 〈k′
t 〉 must

be averaged over all values of the index t for which rewiring
is done, i.e.,

t = ri, i = 0, . . . ,
T
r

, (25)

where r is the rewiring step and for simplicity we assume that
T is a multiple of r and that there is a final rewiring after the
last training step. The average of pt over the rewiring values
of t is

〈pt 〉 = 1 − br

T + r
, (26)

where we introduced a parameter b defined as

b = 1 − (1 − α1α2)T +r

1 − (1 − α1α2)r
. (27)

The complete derivation is shown in Appendix E.

C. Introduction of noise into input patterns

In a realistic learning model, the test patterns will never be
exactly the same as the training ones. The ability of a learn-
ing model to generalize is linked to the ability to recognize
which training pattern or patterns are most similar to a given
test pattern, according to appropriate metrics. To study the
generalization capability of the model proposed in this work,
the test input patterns were generated starting from the cor-
responding training input patterns by adding noise, which is
represented by a deviation extracted from a given probability
distribution with assigned standard deviation. In Appendix F
we describe the effect that noise with a truncated Gaussian
distribution has on the firing rates and on the variables Sb, Sc,
σ 2

b , and SDNR, and we derive the modified equations.

IV. COMPUTATIONAL SIMULATIONS OF THE MODEL

The validation of the equations derived in the previous
sections was done through simulations with firing-rate-based
neuronal network models. The code of the simulator was
written in C++ programming language compiled using the
GCC compiler ([42]) (version 10.2.0) and with the GSL ([43])
(version 2.7) scientific libraries. The simulations have been
performed using the supercomputers Galileo 100 and JUSUF
[44]. The networks used for the simulations are generated
according to the selected connection rule. In particular, in
the case of the fixed-indegree rule, C incoming connections
are created for each neuron of the P2 population, where C
has a fixed value. In the case of the Poisson-indegree rule,
for each neuron of the population P2 the number of incom-
ing connections C is extracted from a Poisson distribution
with mean 〈C〉. In both cases, the indexes of the presynaptic
neurons are randomly extracted on the P1 population. The
connection weights are initially set to the baseline value,
Wb. Each training input pattern of the model is generated by
extracting, for each neuron of P1, a random number ν from
a lognormal distribution; if ν < νt,1 the rate of the neuron is
considered high-rate, otherwise it falls in the low-rate regime.
An analogous procedure is used to generate the corresponding
contextual stimulus pattern on the neurons of the population
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P2 (using a rate threshold νt,2). A connection is stabilized in a
training example if both the presynaptic and the postsynaptic
neuron are in the high-rate regime. Connection rewiring is per-
formed every r training steps, as described in Sec. III B. The
test set is generated by randomly extracting V input patterns
from the train set. The patterns of the test set are altered by
adding noise extracted from a truncated Gaussian distribution
with zero mean.

To estimate 〈Sb〉 and 〈Sc〉 we compute the input of each P2

neuron as the sum of the rate of the presynaptic neurons of its
incoming connections multiplied by the synaptic weights (i.e.,
Ws or Wb). The variance σ 2

b is evaluated by the formula

σ 2
b = 〈

S2
b

〉 − 〈Sb〉2, (28)

where the mean values are calculated over the input signals to
all the background neurons of P2. This way, it is possible to
obtain the SDNR according to Eq. (5).

V. RESULTS

This section compares the results of the simulations of the
firing rate model with the theoretical predictions described in
Sec. III. We present the comparison between the theoretical
values of the average input signal to background neurons 〈Sb〉,
the average input signal to coding neurons 〈Sc〉, the variance
of the background input signal σ 2

b and the signal-difference-
to-noise ratio with the values obtained from the simulations.
This way, we are able to assess the capability of the population
P2, and thus of the network, to recognize a pattern memorized
during the training phase by computing the SDNR using the
quantities described above. Last, by setting a threshold to the
SDNR, we can extract the maximum amount of patterns the
network can correctly recall, i.e., the memory capacity.

Here, we present simulation results with a Poisson-driven
number of incoming connections, with 〈C〉 = 5000. We opted
for such an approach since it is more realistic than adopting
a fixed amount of connections per neuron. Additionally, the
rewiring mechanism is always performed with a rewiring step
r = 100, when not explicitly specified. Each simulation is
repeated 10 times using a different seed for random number
generation to ensure the robustness of the simulation results.
The values shown in the plots are a result of averaging over
the different seeds.

A. Comparison between theoretical predictions
and simulation results

To provide a quantitative estimation of the discrepancy
between the theoretical predictions and the simulations, we
evaluate their relative error, using the theoretical values as a
reference.

The first study we present is oriented towards the estima-
tion of these parameters as a function of the number of training
patterns T . As the number of training patterns increases, so
does the number of patterns encoded by each neuron. Since
α2 is the probability that a neuron of P2 is in a high-rate
level for a single training pattern, on average such neuron will
encode α2T patterns of the entire training set. This multiple
selectivity of individual neurons is also present in biological

neural networks, in which the same neuron can be selective
for several stimuli [45].

The test set consists of V = 1000 input patterns, generated
as described in Sec. III. Thus, the simulation outcome used
for our analysis is an average over the entire test set of the
Sb, Sc, σ 2

b and SDNR values obtained for each test pattern.
As described previously, the test input patterns are altered
from the corresponding training input patterns by adding
noise extracted from a truncated Gaussian distribution, with
assigned standard deviation. In this section, we present sim-
ulation results and comparisons with theoretical predictions
for standard deviation values ranging from 0.2 to 2 Hz. The
choice of these values is related to the average of the firing
rate distribution of the neuron populations when a pattern is
provided to the network. As the firing rate is distributed as
a lognormal, we set the highest value of standard deviation
to the same value of 〈ν�〉 (i.e., 2 Hz), which is near the
average firing rate of the whole neuron population. A larger
noise would result in fluctuations significantly larger than the
average rate of P1 when the pattern is injected, thus critically
altering the rate distribution.

Figure 3 shows the curves obtained using different values
for the standard deviation of the noise, together with the rel-
ative error with respect to theoretical predictions. Moreover,
it also shows a set of results in which the test patterns are
not altered by noise to notice the difference that the noise
addition makes in the model results. It can be observed that
the curves obtained from the simulations are compatible with
the theoretical ones for all the noise levels.

Regarding 〈Sb〉 and 〈Sc〉, the curves corresponding to dif-
ferent noise levels appear perfectly superimposed. This is due
to the fact that the noise is driven by a distribution with
zero mean, and thus the addition of noise to the quantities
represented in the curves does not alter their average (see
Appendix F for the details). Regarding σ 2

b , the values corre-
sponding to different noise levels differ from each other and
increase with the standard deviation of the noise, in agreement
with the theoretical model.

The relative error between simulation results and theoret-
ical prediction is quite small: for 〈Sb〉 and 〈Sc〉 the errors
span between 0.01% and 0.05%, whereas σ 2

b shows a relative
error of around 1% for all the simulations performed with a
different number of training patterns. The orange horizontal
line in Fig. 3(d) represents SDNRthr, i.e., the minimum value
of SDNR that is needed for the network for reliably recalling
a pattern, and it is derived using Eq. (6) (see Appendix B
for additional details). From that, it is possible to derive the
network memory capacity Tmax. We can notice that depending
on the noise level, Tmax spans from around 28 000 when the
noise has a standard deviation of 2 Hz to more than 30 000
when no noise is applied.

However, the addition of noise with fluctuations greater
than or comparable to the average firing rate can produce neg-
ative rate values for a fraction of the neurons. Considering that
negative rate values are not physically possible, this behavior
can be corrected in the simulations by simply replacing nega-
tive values of the firing rates with zero, i.e., saturating negative
rates to zero. This correction is equivalent to having a signal-
dependent noise distribution, with an average value greater
than zero. This negative rate correction has been applied in
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FIG. 3. Values of 〈Sb〉 (a), 〈Sc〉 (b), σ 2
b (c), SDNR (d) and percent errors with respect to the theoretical prediction, as a function of the

number of training patterns T . Bigger subplots represent the values of the quantities considered as a function of T for different noise levels,
whereas each smaller subplot represents the percentage error of the values shown in the upper subplot. The different color families identify the
simulation and theory results when no noise is provided (magenta-pink), or having a noise standard deviation of 0.2 Hz (dark khaki-khaki),
0.4 Hz (red-orange), 0.6 Hz (blue-light blue), 0.8 Hz (black-gray), 1 Hz (green-light green), 1.5 Hz (dark cyan-cyan), and 2 Hz (sienna-sand).
Because the noise has zero mean, the lines corresponding to the theoretical values of 〈Sb〉 and 〈Sc〉 coincide, with noise having an impact
only in the evaluation of the variance of the background signal. The orange horizontal line in panel (d) represents the minimum SDNR for the
network to be able to correctly recall the patterns during test.

the simulation, however, the current theoretical model is not
able to take this effect into account. Since negative values are
replaced by zeros, we would expect the average values of Sb

and Sc evaluated by the simulations that exploit saturation to
be greater than the values predicted by the theoretical model.
Figure 4 shows the behavior of the model with this correction
on the neurons firing rate.

As can be seen from the figure, the discrepancies between
simulations and theoretical predictions are much higher and
can arrive at 10%. We also notice that the level of noise with
a standard deviation smaller than the average rate does not
give rise to significant discrepancies between simulations and
theoretical estimations, also because the number of neurons
whose firing rate is saturated to zero is smaller. Moreover, it
can be seen that a higher noise level yields a smaller SDNR

and, consequently, a lower memory capacity. For instance,
the memory capacity with 2 Hz of noise standard deviation
is around 25 000 with saturation enabled, whereas without
saturation is around 28 000.

Last, in Fig. 3 the relative error of σ 2
b is greater than that

shown for 〈Sb〉 and 〈Sc〉. This is due to a simplification used in
theoretical derivation to derive the expression of the variance.
The values of Sb from which we compute the variance are
obtained by incoming connections from neurons of P1, but
since connections are created randomly, different neurons of
the P2 population may have presynaptic neurons in common,
and therefore their input signals are correlated. The theoretical
model does not take this correlation into account. However, in
Appendix G we show that the values adopted here make the
bias due to this simplification negligible.
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FIG. 4. Values of 〈Sb〉 (a), 〈Sc〉 (b), σ 2
b (c), SDNR (d) and percent errors with respect to the theoretical prediction, as a function of

the number of training patterns T when negative rates due to noise addition are saturated to zero. The different color families identify the
simulation and theory results when no noise is provided (magenta-pink), or having a noise standard deviation of 0.2 Hz (dark khaki-khaki),
0.4 Hz (red-orange), 0.6 Hz (blue-light blue), 0.8 Hz (black-gray), 1 Hz (green-light green), 1.5 Hz (dark cyan-cyan), and 2 Hz (sienna-sand).
The orange horizontal line in panel (d) represents the minimum SDNR for the network to be able to correctly recall the patterns during test.

B. Impact of synaptic rewiring

In the simulations discussed so far, the rewiring mechanism
was always performed with a rewiring step r = 100. This
means that every 100 training patterns, all the unstabilized
connections are removed, and new connections are created.
This operation represents the effect of homeostatic structural
plasticity, which aims at keeping the network balanced by
reorganizing connections, while activity-dependent structural
plasticity focuses on the stabilization of connections.

To motivate the choice of this step for connection rewiring,
we show here the results for networks trained for T = 10 000
patterns with a different rewiring step r. We also show the
results of a simulation that does not perform rewiring, to
highlight the different behavior of a network that combines
connection stabilization with periodic rewiring and that of a
network that exploits only connection stabilization. Figure 5

shows the results obtained by these simulations using different
rewiring intervals.

As can be noticed, the values of Sb, Sc, σ 2
b , and SDNR

do not change significantly as the rewiring step varies. This
means that the value of the step r chosen for the connection
rewiring has no substantial impact on the results of the sim-
ulations. However, some differences emerge when comparing
the results of simulations with or without connection rewiring;
it can be observed that the signal-difference-to-noise ratio
has a lower value when connection rewiring is disabled. This
confirms that connection rewiring grants a higher capability
of recognizing an input pattern among the several patterns
for which the network was trained. Figure 5(c) shows also
a discrepancy between the simulation without rewiring and
the theoretical estimation. Indeed, the theoretical prediction
does not show a dependence from the value of r, but the
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FIG. 5. Values of 〈Sb〉 (a), 〈Sc〉 (b), σ 2
b (c), and SDNR (d) for a network trained with 10000 patterns as a function of the rewiring step r.

The simulations used a continuous rate distribution and a noisy input driven by truncated Gaussian distribution with a standard deviation of
1 Hz. Red dots indicate the simulation outcome when connection rewiring is disabled, whereas the blue dots show the simulation results with
connection rewiring, using different values of r. Error bars represent the standard deviation of the mean obtained from 10 simulations using
different seeds for random number generation, and the orange dotted lines represent the theoretical estimations.

simulation results show that when rewiring is not performed,
the variance of the background values is higher than expected.
This is due to the presence of the bias discussed previously
(see also Fig. 11 in Appendix G). Indeed, synaptic rewiring
has a similar effect as random repositioning of nonstabilized
connections, which reduces such a bias.

We also applied a similar protocol for simulations enabling
or disabling connection rewiring as a function of the number
of training patterns T . The results are shown in Fig. 6.

We can say that the performance of the model is im-
proved when connection rewiring is enabled, and the relative
difference between a rewired or just stabilized connectivity
increases when increasing the number of training patterns.
Regarding memory capacity, we can notice that the simula-
tion with rewiring reaches the threshold value of SDNR for
Tmax � 30 000 (indeed, it is the same result as the one shown
in Fig. 3 for 1 Hz noise), whereas it decreases to less than
25 000 when rewiring is disabled, resulting in 20% difference
in memory capacity.

The effect of rewiring can become more relevant when a
greater number of connections is stabilized at every step (i.e.,
with greater values of α1 and α2). Furthermore, the importance
of the rewiring mechanisms can significantly change when the
average number of connections is not constant, but increases
or decreases as a result of rewiring itself. This aspect will be
explored in future work.

VI. DISCUSSION

In the previous section, the predictions of the theoretical
framework have been compared with the results of simula-
tions performed using feed-forward firing-rate-based neuronal
networks. This comparison shows that the proposed frame-
work can accurately predict the values of various relevant
quantities for assessing learning and memory capacity in the

presence of structural plasticity mechanisms, with differences
between theoretical framework and simulation in the order
of 1–2%.

The proposed model offers a detailed framework that
incorporates various features observed in biological neural
networks. In comparison with the classical Hopfield model,
our model considers a more realistic scenario. It accounts
for the lognormal distribution of neuron firing rates, random
connectivity, connection pruning and rewiring, as well as the
potentiation and stabilization of connections between neurons
with highly correlated activity.

Since the biochemical and biophysical mechanisms under-
lying structural plasticity are multiple and extremely complex,
we opted for a phenomenological approach to capture their
main aspects: a simple model of structural plasticity has been
exploited, able to represent plasticity processes driven by
neuronal activity as well as mechanisms which leads to home-
ostasis, in agreement with the work of Ref. [7] which divides
structural plasticity mechanisms into these two categories.
Structural plasticity driven by neuronal activity is achieved
through the potentiation and stabilization of synapses con-
necting neurons that are concurrently at a high-rate level. This
process can be triggered by other forms of plasticity that mod-
ify synaptic efficacy, such as STDP, followed by mechanisms
involving cytoarchitectural changes, such as the creation of
novel connections next to the already existing ones.

The homeostatic form of structural plasticity involves a
balance between pruning connections that are not utilized over
time and the creation of novel connections. This is achieved
in the simulations through periodic connection rewiring,
which consists of the removal of nonstabilized connections
followed by the creation of new connections. Indeed, potenti-
ation and stabilization not only increase the synaptic efficacy
but also prevent connections from being pruned in a sub-
sequent rewiring process. This mechanism can reduce the
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FIG. 6. Values of 〈Sb〉 (a), 〈Sc〉 (b), σ 2
b (c), and SDNR (d) as a function of the number of training patterns T when rewiring is performed

every 100 training patterns (blue dots) and when rewiring is disabled (red triangles). Green lines in the subpanels show the difference between
the values obtained with connections rewired or not rewired (indicated with nr) as percentage error. The orange horizontal line in panel (d)
represents the minimum SDNR for the network to be able to correctly recall the patterns during test.

phenomenon known as catastrophic forgetting, since prevents
the deterioration of synaptic contacts already potentiated and
stabilized, as also discussed in Ref. [13]. This way, previously
learned patterns cannot be forgotten because of further learn-
ing and synaptic refinement.

This is a simplified approach to model the structural
changes that make a connection stable and ensure long-term
memory maintenance. Indeed, structural plasticity mecha-
nisms are also present in brain areas that do not have a
significant portion of stable synapses. For instance, in regions
of the brain such as the hippocampus, long-term memory
storage and maintenance occurs despite the absence of a sig-
nificant fraction of stable connections. This phenomenon is
attributed to the remarkable capacity for synaptic turnover
and structural plasticity observed in this region [46]. Stud-
ies have shown that new dendritic spines tend to form close
to viable presynaptic terminals, with a higher probability of
spine pruning when postsynaptic activity is not correlated
with presynaptic activity [47]. Therefore, while individual
synapses may not persist over time, postsynaptic activity
can induce the formation of new dendritic spines near the

same site. These newly formed dendritic spines contribute to
strengthening the connection between two neurons, facilitat-
ing memory retention. In our model, we adopt a simplified
but computationally efficient approach to represent these com-
plex dynamics. A single connection can represent multiple
synapses between the same pair of neurons, and in the pres-
ence of correlated presynaptic and postsynaptic activity, the
proliferation of dendritic spines around the same site is de-
picted by the stabilization and potentiation of this connection.

Moreover, we were able to estimate the memory capacity
through the evaluation of the SDNR. As shown in Fig. 3, hav-
ing a feed-forward network of N1 = N2 = 100 000 neurons,
the network can correctly retrieve between 30 000 and 28 000
patterns, depending on the noise level of the patterns provided
during test.

In particular, higher noise provided to the input corre-
sponds to lower values of SDNR, and thus a lower memory
capacity. This behavior is also expected from the theoretical
model, since noise addition makes the correct pattern retrieval
more difficult. However, fluctuations in the same order, or
larger, than the average firing rate can significantly alter the
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distribution. For this reason, we limited the level of noise to a
maximum of 2 Hz of standard deviation (i.e., near the average
firing rate of the population, which is closer to 〈ν�〉).

We also studied the behavior of the network in a more
realistic condition related to the neurons firing rate as a result
of noise addition. Indeed, the noise can lead to neurons show-
ing negative firing rates, which are not biologically possible.
Correcting this issue by saturating the negative firing rates to
zero, we noticed in Fig. 4 that the SDNR results are slightly
lower to the same simulation with rate correction disabled: for
instance, when the noise has a standard deviation of 2 Hz, the
network can correctly retrieve around 25 000 patterns, which
is about 12% less than in the case without rate correction. This
correction is not implemented in the theoretical framework,
and thus we notice higher discrepancies in this case, as also
shown in Fig. 10 of Appendix F, in which we further increase
the noise level to highlight the differences between theory
and simulation due to the saturation of negative firing rates.
Indeed, a different choice for the values of 〈ν�〉 and 〈νh〉
(and thus a different average rate of the whole distribution)
would have an impact on the discrepancies discussed here. In
particular, a higher average rate would strongly diminish the
amount of neurons having negative firing rate as a result of
the noise addition, which saturation is not implemented in the
theoretical framework.

Whereas Figs. 3 and 4 show the difference in memory ca-
pacity due to noise level, Fig. 6 shows the impact of rewiring
on the estimation of the memory capacity: this mechanism
is able to increase the SDNR between 10% and 15%, re-
sulting in the increase of memory capacity by around 20%
with respect to the same simulation in which rewiring was
disabled. Indeed, synaptic rewiring plays an important role
in the refinement of the network, together with the fact that
stabilized connections are prevented from being pruned.

The framework proposed in this work can be surely ex-
tended. It can potentially provide a tool to describe the impact
of structural plasticity in cognitive processes such as learning
in a large-scale model of the cortex with natural density and
plausible characteristics. For instance, the stabilization mech-
anism can be probability-driven, with a probability depending
on the rate of pre- and postsynaptic neurons. This would
replace the current deterministic mechanism that requires a
firing rate threshold to be exceeded by both neurons to have
synaptic stabilization. Moreover, the probability could depend
on other variables not necessarily related to the firing rate. In
particular, it has been hypothesized that plasticity mechanisms
may also depend on the bursting activity of neurons [48,49].
The stabilization probability of a connection could therefore
depend, in addition to the firing rate of the presynaptic and
postsynaptic neurons, also on their bursting activity.

While our current model focuses on feed-forward connec-
tions between two neuron populations, it does not include
self-connections within the target population necessary to de-
scribe recurrent network dynamics. Consequently, our model
serves as a foundational framework rather than a comprehen-
sive model. Future extensions of our work could involve in-
corporating self-connections and exploring recurrent network
dynamics. Additionally, introducing an inhibitory population
could enable the modeling of mechanisms like soft winner-
take-all, where competition among neuron groups coding

different patterns is mediated by inhibitory signals. Indeed, it
is known that the mechanisms of competition through lateral
inhibition play a key role in biological learning [50]. These
enhancements would enrich our model’s capabilities and align
it more closely with the complexities of biological neural
networks.

In this extended model, the theoretical framework can
allow to obtain the differential equations governing the dy-
namics of the activity of the population P2 and the dependence
of the coefficients of these equations on the number of training
patterns and on the other model parameters [51]. Such an
extension is currently under development and it will be the
subject of future work.

Another extension of the model could describe more in de-
tail the mechanisms of synaptic pruning and rewiring. Indeed,
connection rewiring as intended in the current model pre-
serves the total number of connections over time, which is a
typical behavior of a healthy adult brain [8]. However, to shed
light on the importance of these mechanisms in neurological
disorders, or to perform studies focused on this mechanism
in different life stages, this mechanism should be extended
to enable different “speed” for the processes embedded in
structural plasticity.

Moreover, it would be interesting to expand this work
through simulations of spiking neural networks, to study
learning through structural plasticity in more detail. Indeed,
simulators such as NEST [52] and its GPU implementation
[53] can lead to fast and efficient simulations of large-scale
models on supercomputer clusters.

In conclusion, this work intends to propose a theoreti-
cal framework for learning through structural plasticity. This
framework can describe synaptic potentiation, stabilization,
pruning, and rewiring, and includes several features that can
be added in a modular fashion. The validation has been per-
formed through simulations with firing-rate-based neuronal
network models, showing remarkable compatibility between
the results of the simulations and theoretical predictions.

All the simulation code needed to reproduce the results
reported in this work, along with the related documentation,
is publicly available at Zenodo: [54].
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APPENDIX A: TABLES AND NEURON DYNAMICS

1. Model description

Table I reports a detailed description of the network model.

2. Model parameters

Table II reports the model parameters and the default val-
ues employed in the simulations.

3. Neuron Dynamics

The dynamics of the neurons evolve according to the fol-
lowing differential equation:

τi
νi

dt
= −νi + 


⎛
⎝∑

j

Wi jν j + bi

⎞
⎠, (A1)

where νi is the firing rate of a single neuron i, τi is a time
constant expressing the time needed for the neuron to reach a
steady-state firing rate when a constant input is given, Wi j is
a matrix containing the synaptic weights, bi is the activation
threshold, and 
 represents the activation function. In the
asymptotic regime, in which the average firing rates no longer
change over time, the previous equation reduces to

νi = 


⎛
⎝∑

j

Wi jν j + bi

⎞
⎠. (A2)

To determine the neuron output rate we have to choose an
activation function.

Assuming that the signal is well below saturation, for
simplicity, the neuron response can be modeled by a
threshold-linear (or ReLU) function


(x) = Amax{0, x}, (A3)

where A is a multiplicative coefficient. With this choice, the
average rates of coding and noncoding neurons of P2 can be
written as

〈νc〉 = 〈
(Sc + So − Sthresh)〉,
〈νnc〉 = 〈
(Sb + So − Sthresh)〉, (A4)

where So is the input signal from (excitatory and/or in-
hibitory) neuron populations different from P1 and Sthresh is
the activation threshold. Assuming that the total input signal is
above the threshold for both coding and background neurons,
the average rates will be linear functions of the input signals:

〈νc〉 = A(〈Sc〉 + 〈So〉 − Sthresh),

〈νnc〉 = A(〈Sb〉 + 〈So〉 − Sthresh),
(A5)

while the variance of the noncoding neuron rate will be

σ 2
nc = A2(σ 2

b + σ 2
o ). (A6)

TABLE I. Description of the network model (continued).

Summary

Populations P1, P2

Connectivity sparse random connectivity
Neurons firing-rate-based models of point-like neurons
Synapses structural plasticity
Input firing rate pattern extracted from a probability

distribution

Populations

Name Elements Size
P1 point-like neurons N1

P2 point-like neurons N2

Neuron

Type firing-rate-based neuron model with linear
activation function

Description the state of each neuron is entirely described by
the continuous variable ν, which represents its
firing rate. We assume that, for a given input
pattern to a neuron population, the external
stimulus targeting each neuron is stationary.
Therefore, the neuron firing rate rapidly
converges to a steady value. The firing rate of
P1 neurons is derived from a continuous
distribution. During training, the neuron
activity of P2 is entirely dependent on the
contextual signal (i.e., the contribution of the
input signal from P1 is neglected). During test,
neurons of P2 show a response that depends
only on the signal projected by the connections
from P1. In this phase, P2 neurons show a
linear response (see next section for more
details). Depending on the firing rate, a neuron
can be considered at a low or high rate regime.
We define νt,1 and νt,2 the thresholds that
distinguish high and low rate neurons in P1

and P2.

Connectivity

Source Target Pattern
P1 P2 the incoming connections are generated

by randomly extracting the source
neurons from P1; the in-degree (i.e.,
the number of incoming
connections) can be homogeneous,
with a fixed number of C
connections per neuron of P2, or
driven by a Poisson distribution;

synaptic weights are Wb for
nonstabilized connections and Ws

for stabilized ones, with Ws > Wb;
multiple connections between the same

couple of presynaptic and
postsynaptic neurons (“multapses”)
are allowed by default, but they can
be disabled.
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TABLE I. (continued).

Synapse

Type structural plasticity
Description initial synaptic weights are set to Wb for all the

instantiated connections; when a training pattern
is used, considering a connection between a P1

neuron i and a P2 neuron j:
Wb → Ws if νi > νt,1 and νj > νt,2, i.e., when
both presynaptic and postsynaptic neurons are at
the high rate regime, the connection is stabilized.
Once a connection is stabilized, it cannot return to
the initial weight.

Connection rewiring

Description after every r training patterns, nonstabilized
connections are pruned, and new connections are
created: if k is the number of incoming stabilized
connections of a neuron of P2, C − k new
connections will be created, where C is a fixed
number if the fixed-indegree connection rule is
used, while it is extracted from a Poisson
distribution if the Poisson-indegree rule is
selected; in both cases, the presynaptic neurons
are randomly extracted from P1.

Input stimulus

Description firing rate pattern of the neurons of P1 selected
from the training or from the test set.

Contextual stimulus

Description firing rate pattern of the neurons of P2 selected
from the training set; used only in the training
phase.

Train set

Type set of T independent firing-rate patterns of the
neurons of P1 (input stimulus) and P2

(contextual stimulus)
Description each pattern is randomly generated from

predefined firing rate probability distributions
(a lognormal probability distribution, in this
work). The thresholds νt,1 and νt,2 are chosen
so that the average rate of the neurons
belonging to the low or high rate regime
corresponds to ν� or νh, respectively, defined as
model parameters. The contribution of the
signals projected through the connections from
P1 to P2 is considered negligible in this case.

Test set

Type set of V firing-rate patterns of the neurons of P1

(input stimulus)
Description each pattern is randomly extracted from the train

set and altered by a noise, which is modeled by
a random deviation extracted from a
predefined probability distribution, and added
to the firing rate of each neuron. In this work,
we model the noise using a truncated Gaussian
distribution. The response of the neurons of P2

is entirely dependent on the signals projected
through the connections from P1.

TABLE II. Model parameters.

Network and connectivity

Name Value Description

N1 100 000 number of neurons of P1

N2 100 000 number of neurons of P2

C 5000 number of connection in-degrees
per neuron of P2. In the case
of Poisson-driven in-degree,
this parameter represents the
average of the Poisson
distribution.

T variable number of training patterns
r 100 number of training patterns

between two consecutive
connection rewiring

Neuron

Name Value Description

ν� 2.0 spikes/s average firing rate for low rate
neurons

νh 50 spikes/s average firing rate for high rate
neurons

Synapse

Name Value Description

Wb 0.1 pA baseline synaptic weight
Ws 1 pA stabilized synaptic weight

Stimulus

Name Value Description

α1 0.001 probability for a neuron of P1 of
falling in the high rate regime
when an input stimulus is
injected

α2 0.001 probability for a neuron of P2 of
falling in the high rate regime
when a contextual stimulus is
injected

The SDNR calculated on the rate will therefore be

SDNRν = |〈νc〉 − 〈νnc〉|
σnc

= |〈Sc〉 − 〈Sb〉|√
σ 2

b + σ 2
o

, (A7)

which has an expression similar to that reported in Eq. (5),
with the only difference that there is an additional contribution
to the noise due to the signal coming from other populations.

It should also be noted that the definitions of SDNR re-
ported in Eqs. (5) and (A7) refer to the mean signal difference
between single coding and background neurons. Now, we can
evaluate the SDNR on the total input signal to coding neurons
and an equivalent number of background neurons. Calling
Nh,2 the mean number of coding neurons in the population
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P2, we can define

SDNRpop = |Nh,2〈Sc〉 − Nh,2〈Sb〉|√
Nh,2σb

=
√

α2N2|〈Sc〉 − 〈Sb〉|
σb

,

(A8)

where we used Eq. (2) and
√

Nh,2σb is the standard deviation
of the total input signal to Nh,2 noncoding neurons. Thus,
SDNRpop scales with the square root of α2N2.

APPENDIX B: SDNR AND MEMORY CAPACITY

In this Appendix, we adopt a methodology similar to the
one presented in Ref. [55]. However, in our model, each neu-
ron’s probability of being classified as coding or background
is distinct (α2 and β2, respectively). Additionally, the variance
of the signal in input on coding neurons may differ from that
observed in background neurons. It is also important to note
that in Ref. [55], the SDNR is called the discriminability of
the signals and referred to by the symbol d ′.

For simplicity, we assume that the coding and the back-
ground neuron signals can be approximated by Gaussian
distributions, as shown in Fig. 7, and we set a threshold
halfway between the averages of the two signals.

By setting a threshold, we can notice that a certain fraction
of background neurons receive a signal that can be identified
as coding. This fraction, identified by the yellow shaded area,
represents the false-positive rate (FPR) and can be described
by the equation

FPR = 1√
2πσ 2

b

∫ ∞

〈Sc〉+〈Sb〉
2

e
(x−〈Sb〉)2

2σ2
b dx. (B1)

Reversely, coding neurons that receive a relatively low signal
may be identified as background neurons. This fraction, iden-
tified by the red shaded area, represents the false-negative rate
(FNR) and can be described by the equation

FNR = 1√
2πσ 2

c

∫ 〈Sc〉+〈Sc〉
2

−∞
e

(x−〈Sc〉)2

2σ2
c dx. (B2)

The probability of correct recall PC is given by the sum of
the rate of correct detections and the rate of correct rejections;
equivalently, it is one minus the sum of the rates of false
negatives and false positives:

PC = 1 − α2FNR − β2FPR. (B3)

The prefactors α2 and β2 in Eq. (B3) account for the dif-
ferent probability of having coding neurons and background
neurons. So PC can be expressed as

PC = 1 − α2
1√

2πσ 2
c

∫ 〈Sc〉+〈Sb〉
2

−∞
e

(x−〈Sc〉)2

2σ2
c dx

− β2
1√

2πσ 2
b

∫ ∞

〈Sc〉+〈Sb〉
2

e
(x−〈Sb〉)2

2σ2
b dx

= 1 − α2
1√

2πσ 2
c

∫ 〈Sc〉

−∞
e

(x−〈Sc〉)2

2σ2
c dx

+ α2
1√

2πσ 2
c

∫ 〈Sc〉

〈Sc〉+〈Sb〉
2

e
(x−〈Sc〉)2

2σ2
c dx

− β2
1√

2πσ 2
b

∫ ∞

〈Sb〉
e

(x−〈Sb〉)2

2σ2
b dx

+ β2
1√

2πσ 2
b

∫ 〈Sc〉+〈Sb〉
2

〈Sb〉
e

(x−〈Sb〉)2

2σ2
b dx. (B4)

So, using the definition of the error function erf, we obtain

PC = 1 − 1

2
(α2 + β2)

+ 1

2

[
α2erf

(
SDNR√

8
φ

)
+ β2erf

(
SDNR√

8

)]

= 1

2
+ 1

2

[
α2erf

(
SDNR√

8
φ

)
+ β2erf

(
SDNR√

8

)]
,

(B5)

where φ is defined as the ratio between the standard deviation
on the input signal of background neurons and the standard
deviation on the input signal of coding neurons:

φ = σb

σc
. (B6)

Simulations show that this value is approximately φ � 1
3 (data

not shown). Equation (B5) show also that the probability of
correct recall depends on the number of neurons through α2

and β2, which take into account the size of the populations
P2. In Eq. (B5), the term with α2 = 10−3 is negligible, leaving
only the term with β2 = (1 − 10−3) � 1:

PC � 1

2

[
1 + erf

(
SDNR√

8

)]
. (B7)

In the graph below we show a plot of the probability of
correct recall as a function of the SDNR using the previous
formula.

By setting a recall probability of 95%, as shown in Fig. 8,
we obtain a threshold equal to SDNRthr � 3.3. This threshold
allows us to calculate the maximum number of patterns stored
by our network, as shown in Sec. V, thereby quantifying the
memory capacity of our network.

APPENDIX C: LOGNORMAL DISTRIBUTION
OF THE FIRING RATE

The theoretical framework proposed in this work is valid
for a generic firing rate probability distribution. However, the
model validation presented in the result section is focused on
a lognormal distribution, which is a continuous probability
distribution of a random variable ν whose logarithm ln(ν) is
normally distributed. The probability density function of this
distribution is

ρLN(ν) = 1√
2πσν

· exp

(
− (ln(ν) − μ)2

2σ 2

)
, (C1)
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FIG. 7. Schematic representation of signal distributions for cod-
ing neurons (dark red line) and background neurons (gold line). The
blue line shows the midpoint of the means of both distributions, used
to distinguish coding neurons from background neurons. The shaded
red area represents the fraction of neurons mistakenly identified as
background, while the yellow area represents the fraction of neurons
mistakenly identified as coding.

where μ and σ are the mean and standard deviation of ln(ν).
Expanding Eq. (3) using Eq. (C1) we have

〈ν�〉 = 1

β1

∫ yt

−∞
ν(y)Gσ,μ(y)dy

= 1

β1

∫ yt

−∞
ey 1√

2πσ 2
e

−(y−μ)2

2σ2 dy,

〈νh〉 = 1

α1

∫ ∞

yt

ν(y)Gσ,μ(y)dy

= 1

α1

∫ ∞

yt

ey 1√
2πσ 2

e
−(y−μ)2

2σ2 dy, (C2)

where y is a variable representing the logarithm of the firing
rate, y = ln(ν), and follows a normal distribution Gσ,μ(y),

FIG. 8. Probability of correct recall as a function of the signal-
difference-to-noise ratio on the single neuron. The blue dotted line
represents the threshold SDNRthr � 3, 3 corresponding to a 95%
probability (red dotted line).

FIG. 9. Lognormal distribution of firing rate. The black solid
line indicates the probability distribution, which is divided into two
sections by the rate threshold νt (blue, vertical line). The amber band
represents the distribution of rate below the threshold, whose mean
is 〈ν�〉 (amber, vertical line). The red band represents the distribution
of neurons whose rate is above the threshold. Here the average of this
section is 〈νh〉 (red, vertical line).

while yt represents the value linked to the threshold value on
the rate νt (yt = ln(νt )). Figure 9 depicts an example of firing
rate distribution, with the threshold and the average values of
low and high firing rates.

In the logarithmic representation the area of the portion
of the Gaussian Gσ,μ(y) having y < yt corresponds to the
probability that a neuron has a low rate, β1. Therefore, we
can write

β1 =
∫ yt

−∞
Gσ,μ(y)dy = 1

2
+

∫ yt

μ

1√
2πσ 2

e− (y−μ)2

2σ2 dy. (C3)

Substituting x = y−μ√
2σ

we obtain

β1 = 1

2
+

∫ yt −μ√
2σ

0

1√
π

e−x2
dx = 1

2
+ 1

2
erf

(
yt − μ√

2σ

)
,

(C4)

where with erf(x) we indicate the error function, defined as

erf(x) = 2√
π

∫ x

0
e−t2

dt, (C5)

and then

yt = μ +
√

2σerf−1(2β1 − 1), (C6)

where erf−1 is the inverse of the erf function. By substituting
z = y − μ we can rewrite νh from Eq. (C2) as

〈νh〉 = 1

α1

∫ ∞

yt −μ

1√
2πσ 2

ez+μ− z2

2σ2 dz

= 1

α1

eμ

√
2πσ 2

∫ ∞

yt −μ

e− z2−2σ2z
2σ2 dz

= 1

α1

eμ

√
2πσ 2

∫ ∞

yt −μ

e− (z−σ2 )2−σ4

2σ2 dz

= 1√
2π

eμ+ σ2

2

σα1

∫ ∞

yt −μ

e
−(z−σ2 )2

2σ2 dz. (C7)
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Making a further substitution ξ = z−σ 2√
2σ

finally we find

〈νh〉 = 1√
π

eμ+ 1
2 σ 2

α1

∫ ∞

yt −μ−σ2√
2σ

e−ξ 2
dξ

= 1√
π

eμ+ 1
2 σ 2

α1

⎛
⎝∫ ∞

0
e−ξ 2

dξ −
∫ yt −μ−σ2√

2σ

0
e−ξ 2

dξ

⎞
⎠

= eμ+ 1
2 σ 2

α1

[
1

2
− 1

2
erf

(
yt − μ − σ 2

√
2σ

)]

= 〈ν〉
2α1

[
1 − erf

(
erf−1(2β1 − 1) − σ√

2

)]
, (C8)

where with 〈ν〉 we indicate the average rate, which for the
lognormal distribution is given by the known expression

〈ν〉 = eμ+ 1
2 σ 2

. (C9)

With similar steps we obtain the expression of 〈νl〉:

〈νl〉 = 〈ν〉
2β1

[
1 − erf

(
erf−1(2α1 − 1) − σ√

2

)]
. (C10)

From these two equations we can finally derive the rela-
tionships between σ , β1, ν and νh or νl , respectively:

σ =
√

2

[
erf−1(2β1 − 1) − erf−1

(
1 − 2α1〈νh〉

〈ν〉
)]

, (C11)

σ =
√

2

[
erf−1(2α1 − 1) − erf−1

(
1 − 2β1〈νl〉

〈ν〉
)]

. (C12)

Using Eq. (C9) we can rewrite μ as

μ = ln(〈ν〉) − σ 2

2
. (C13)

The average rate 〈ν〉 can also be expressed as a function of
〈νh〉 and 〈ν�〉:

〈ν〉 = α1〈νh〉 + β1〈ν�〉. (C14)

The latter equations allow us to express the parameters
of the lognormal distribution σ and μ as a function of the
parameters of the model, α1, 〈νh〉 and 〈ν�〉.

APPENDIX D: ESTIMATION OF THE VARIANCE OF k

In this Appendix, we will compute the variance on the
number of stabilized connections in input to a neuron of
P2 (i.e., σ 2

k ) which, as we have seen previously, enters
the formula for the variance on the background signal. For
the calculation, we will use the table below which represents
the two states, high rate (1) or low rate (0), for a single neuron
of the population P2 and the presynaptic neurons of its input
connections in a complete simulation over T patterns.

Given the scheme of Table III, we call:
α1: probability that a neuron of P1 is in the high-rate level,

i.e., probability that a cell of a column I j is equal to one;

TABLE III. Table representing the two states high rate (1) or low
rate (0) for a single neuron of the population P2 and for the presy-
naptic neurons of its input connections in a complete simulation.
Each row represents a training pattern, with index ranging from 0
to T − 1. The first two columns represent the training pattern index t
and the rate level O, high or low, of the P2 neuron. The other columns
I j represent the rate level, high or low, of the presynaptic neurons
connected to the neuron of P2 through its C incoming connections.
The entries for rate levels can be 0 or 1 for low rate and for high rate,
respectively; in case of continuous distribution of the rate, the two
levels correspond to a rate over or under the threshold νt. The table
shows the case in which the P2 neuron is in the high-rate level for
the first m examples and in the low-rate level for T − m examples,
while the last C − k presynaptic neurons are in the low-rate level for
the first m examples.

t O I0 I1 .... Ik−1 Ik .... IC−1

0 1 x00 xk−1,0 0 0
1 1 .. .. 0 0
2 1 .. .. 0 0
.. .. .. .. .. ..
m-1 1 x0m xk−1,m−1 0 0
.. 0
.. ..
T − 1 0

α2: probability that the neuron of P2 is in the high-rate level
for a given example, i.e., probability that a cell of the column
O is equal to one;

αm
2 : probability that the neuron of P2 is in the high-rate

level for the first m patterns;
(1 − α2)T −m: probability that the neuron of P2 is in the

low-rate level for the remaining T − m patterns;
(1 − α1)m: probability that a neuron of P1 is in the low-rate

level for the first m patterns;
1 − (1 − α1)m: probability that a neuron of P1 is in the

high-rate level for at least one pattern out of the first m;
[1 − (1 − α1)m]k: probability that every neuron of P1 of

the columns I0, …., Ik−1 is above threshold for at least one
pattern among the first m;

(1 − α1)m(C−k): probability that every neuron of P1 of the
last C − k columns is below threshold for the first m patterns.

Now we can combine all these results to calculate the
probability that one neuron of P2 and k presynaptic neurons
of its input connections are at the high level for m generic
patterns (i.e., not necessarily the first m). To do this we have
to take into account that the neuron of P2 will not necessarily
be at the high level in the first m examples and that the neurons
of P1 at the high level will not necessarily be the first k
(as in the case shown in the table). For this, we have to use
binomial coefficients that will take into account all possible
combinations in the choice of m patterns out of all possible T
patterns and in the choice of k presynaptic neurons out of a
total of C connections:

Q(m, k) =
(T

m

)
pm

2 (1 − α2)T −m

(C
k

)

× [1 − (1 − α1)m]k (1 − α1)m(C−k). (D1)
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The probability that k connections of a generic neuron of P2 are stabilized can be calculated by adding Q(m, k) over all
possible values of m:

P(k) =
T∑

m=0

Q(m, k), (D2)

and the average number of stabilized connections can be calculated as

〈k〉 =
∑
m,k

kQ(m, k) =
∑

m

(T
m

)
pm

2 (1 − α2)T −m
C∑

k=0

k

(C
k

)(
1 − βm

1

)k
β

m(C−k)
1

=
∑

m

(T
m

)
pm

2 (1 − α2)T −mC
(
1 − βm

1

)

= C
[∑

m

(T
m

)
pm

2 (1 − α2)T −m −
∑

m

(T
m

)
(α2β1)m(1 − α2)T −m

]

= C
[

1 −
∑

m

(T
m

)
(α2 − α1α2)m(1 − α2)T −m

]
, (D3)

where β1 = 1 − α1 and we have used the formula for the mean
value of a binomial distribution:

n∑
k=0

k

(
n

k

)
pk (1 − p)n−k = np. (D4)

Using the relationship

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k, (D5)

we can get the expression of 〈k〉:
〈k〉 = C[1 − (1 − α1α2)T ]. (D6)

To calculate σ 2
k we must also calculate 〈k2〉:

〈k2〉 =
∑
m,n

Q(m, k)k2,

〈k2〉 =
∑

m

(T
m

)
pm

2 (1 − α2)T −m

·
C∑

k=0

(C
k

)(
1 − βm

1

)k
β

m(C−k)
1 k2. (D7)

After some calculations, analogous to the case of 〈k〉, we
obtain the following formula:

〈k2〉 =C(C − 1)[1 + α1α2(α1 − 2)]T

− C(2C − 1)(1 − α1α2)T + C2. (D8)

Finally, the variance can be calculated from Eqs. (D6) and
(D8) as

σ 2
k = 〈k2〉 − 〈k〉2. (D9)

The values of 〈k〉 and 〈k2〉 derived in the above formulas
represent the expected values of k and k2 over all neurons
of P2 for a random input pattern. The average number of
stabilized incoming connections of a background neuron in

a given example can be computed by observing that, by defi-
nition, such neuron cannot have stabilized connections for the
considered example, while the average number of connections
stabilized in different examples can be computed by replacing
T with T − 1 in Eq. (D6). Same applies to 〈k2〉. In this
work, we assume that α1α2 � 1, and thus (1 − α1α2)T �
(1 − α1α2)T −1 and [1 + α1α2(α1 − 2)]T � [1 + α1α2(α1 −
2)]T −1, and thus the equations above are approximately valid
also for computing the average number of stabilized connec-
tions of a noncoding neuron and its variance.

APPENDIX E: CALCULATION OF THE MEAN VALUE
OF k′

t OVER THE REWIRING STEPS

In Sec. III B we obtained the expression of Sc in the pres-
ence of rewiring and we observed that this depends on the
parameter k′

t , given by [Eq. (22)]:

〈k′
t 〉 = ptC(1 − α1), (E1)

where, according to Eq. (23), pt is given by

pt = 1 − (1 − α1α2)t . (E2)

To calculate the mean value of Sc for all patterns, k′
t should

be averaged over all the values of the training index t for
which the rewiring is performed, i.e.,

t = ri i = 0, . . . ,
T
r

, (E3)

where r is the rewiring step and for simplicity we assume that
T is a multiple of r and that there is a final rewiring after the
last training step. The average of pt over the rewiring values
of t is

〈pt 〉 =
∑T /r

i=0 1 − [(1 − α1α2)r]i

T
r + 1

= 1 −
∑T /r

i=0 [(1 − α1α2)r]i

T
r + 1

= 1 − br

T + r
, (E4)
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where we introduced a parameter b defined as

b =
T /r∑
i=0

[(1 − α1α2)r]i

= 1 − [(1 − α1α2)r]T /r+1

1 − (1 − α1α2)r

= 1 − (1 − α1α2)T +r

1 − (1 − α1α2)r
. (E5)

APPENDIX F: NOISE ADDITION DURING TEST PHASE

As anticipated in Sec. III C, to assess the generalization
capacity of the model proposed in this work, the test input
patterns were generated starting from the corresponding train-
ing input patterns by adding noise with a given probability
distribution. More specifically, each test pattern is generated
by adding to the rate of the corresponding training pattern the
contribution of a further extraction from a truncated Gaussian
distribution G(η)μT,σT . Therefore, the single neuron rate in a
test pattern will be given by the following formula:

νtot = ν + η, (F1)

where η is a rate driven by the distribution G(η)μT,σT . The
input signal to a neuron of the population P2 can be expressed
as the scalar product between the vector 
W of the weights and
the vector 
νtot of the rates of the presynaptic neurons:


W · 
νtot = 
W · 
ν + 
W · 
η. (F2)

Since the noise distribution has zero mean, its contribution to
the average values of the signals in input to the coding and
background neurons, 〈Sc〉 and 〈Sb〉, will be zero. However, it
will affect the variance of the background signal, σ 2

b . Since
ν and η are independent and random variables, the overall
variance will be equal to the sum of the variance in the absence
of noise σ 2

b [see Eq. (14)] plus the variance due to noise. Thus,

σ ∗2
b = σ 2

b + 〈k〉(Wsση )2 + (C − 〈k〉)(Wbση )2

= σ 2
b + σ 2

η C
[
pW2

s + (1 − p)W2
b

]
, (F3)

where σ 2
η = σ 2

T is the variance of G(η)μT,σT . Truncating the
Gaussian distribution in the symmetric interval [−2σ, 2σ ], the
mean is zero, whereas the variance is

σ 2
T = σ 2

[
1 − 4 · e−2

√
2πerf(

√
2)

]
. (F4)

As mentioned in the text, adding noise with fluctuations
greater than or comparable to the average firing rate can pro-
duce negative rate values for a fraction of the neurons. Since
negative rate values are not physically possible, this behavior
can be corrected in the simulations by simply replacing nega-
tive values of the firing rates with zero, i.e., saturating negative
rates to zero. In Fig. 4, we noticed that when the standard
deviation of the noise is equal to 〈ν�〉 = 2 Hz the differences
between simulation and theoretical framework increase up to
5% for the SDNR and more than 10% for 〈Sc〉, 〈Sb〉, and
σ 2

b , meaning that the theoretical framework is currently not
able to take this effect into account. In particular, the SDNR
resulting from simulations is smaller than the theoretical

estimation. For better visibility, we show in Fig. 10 the com-
parison of the SDNR with nonsaturated and saturated negative
rates, respectively, using values of noise standard deviation up
to 5 Hz.

As can be seen, while the addition of noise without nega-
tive rate correction leads to discrepancies between simulations
and theory in the order of 0.5% in the case of a noise stan-
dard deviation of 5 Hz, the same discrepancy with negative
rates saturated to zero is around 10%. The reason behind this
discrepancy is related to the fraction of neurons of P1 that,
because of the noise, can result having a negative firing rate.
Indeed, the firing rate distribution of the neurons is lognormal
with an average near to 〈ν�〉, so in case of addition of noise
with standard deviation compatible or even greater than this
value a large fraction of the neurons can have their firing rate
set to zero and thus do not project any input to neurons of P2

when saturation is enabled. Nevertheless, it should be consid-
ered that the noise levels shown in Fig. 10 are relatively high
when compared to the average rate used in these simulations,
and thus may lead to significant changes in the rate distribu-
tions. Indeed, a different choice for the values of 〈ν�〉 and 〈νh〉
(and thus a different average rate of the whole distribution)
would have an impact on the discrepancies shown here. In
particular, a higher average rate would strongly diminish the
amount of neurons having a negative firing rate as a result of
the noise addition.

APPENDIX G: ESTIMATION OF THE BIAS ON σ2
b

As mentioned in the main text, Fig. 3 show that the relative
error of σ 2

b is greater than that shown for 〈Sb〉 and 〈Sc〉. This
is due to the possibility of input correlation related to random
connectivity, which is not taken into account by the theoretical
framework. In particular, the average number of presynaptic
neurons in common to two arbitrary neurons of P2 depends
on the total number of neurons of P1 and on the number of
incoming connections per neuron of P2. Calling N1 = N , we
can state that the bias due to this simplification becomes more
and more relevant when the ratio C/N increases. To estimate
this bias as a function of the C/N ratio, we performed a series
of simulations with a fixed number of training patterns, T =
1000, changing the C/N ratio. Figure 11 shows the results of
this analysis.

As can be seen in the right panel of Fig. 11, a greater value
of C/N leads to a higher discrepancy between theoretical
prediction and simulation. However, such a ratio, for natural
density circuits in the brain, is very far from values of C/N
near unity. Indeed, a plausible value of the ratio would be less
than 0.1, resulting in negligible relative errors.

APPENDIX H: DISCRETE RATE MODEL

The framework described in this work adopts a general
approach for the firing rate distribution when an external stim-
ulus is injected into a neuron population. Indeed, it would be
possible to simplify this assumption by considering a discrete
distribution, so that neurons can assume, when a stimulus
is provided, only two possible values: νh (high rate) or ν�

(low rate). In this Appendix, we show that this approach
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FIG. 10. Values SDNR and percent error with respect to the theoretical predictions, as a function of the number of training patterns T when
firing rates values during test phase are not corrected if negative (a) and when they are saturated to zero (b). The different color families identify
the simulation and theory results when no noise is provided (magenta-pink), or having a noise standard deviation of 1 Hz (dark khaki-khaki),
2 Hz (red-orange), 3 Hz (blue-light blue), 4 Hz (black-gray), and 5 Hz (green-light green). The orange horizontal line represents the minimum
SDNR for the network to recall the patterns during test correctly.

can provide identical results with respect to the most general
derivation for a continuous distribution.

During training, population P1 is targeted by an external
input, so the neuron can have a high or low rate in agreement
with the probabilities α1 and β1 = 1 − −α1, of falling in the
high or low activity regime. The corresponding pattern for
the contextual stimulus is generated similarly, extracting the
values of the firing rates of the P2 neurons, νh or ν�, with
probabilities α2 and β2 = 1 − −α2, respectively.

A connection will be stabilized in a training example if
both the presynaptic and the postsynaptic neurons assume
a high firing rate νh, and the probability that a connec-
tion is stabilized in at least one of the T training examples
can be derived at the same way as shown in Sec. III, so
that

pT = 1 − (1 − α1α2)T . (H1)

FIG. 11. (a) Comparison between theoretical and experimental values of σ 2
b as a function of the C/N ratio for different values of N . Lines

represent the theoretical prediction (Th), whereas dots represent the values obtained from the simulation (Sim). (b) Relative error between
simulation results and theoretical prediction.
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The average number of stabilized connections is the same as
shown in Eq. (8), so

〈k〉 = C[1 − (1 − α1α2)T ] = CpT . (H2)

The test set consists of V firing-rate patterns of the neurons
of P1, randomly extracted from the T input patterns of the
train set. In the following, the patterns are unaltered, thus each
input pattern of the test set is identical to an input pattern of
the train set. The contextual stimuli are not used in the testing
phase.

The average rate of the neurons in the population P1 is

〈ν〉 = α1νh + (1 − α1)ν�. (H3)

The input signal targeting a background neuron of P2 is equal
to the weighted sum of the signals coming from the C connec-
tions:

Sb = Ws

k∑
i=1

νi + Wb

C−k∑
i=1

ξi, (H4)

where C is the number of incoming connections, k is the
number of stabilized connections, νi are the firing rates of
the neurons connected to the stabilized connections and ξi are
the firing rates of the neurons connected to the unstabilized
connections. From the linearity of Sb with respect to νi and ξi

and from the fact that the rates of presynaptic neurons have
the same mean value 〈ν〉, it follows that

〈Sb〉 = [Ws〈k〉 + Wb(C − 〈k〉)]〈ν〉. (H5)

From these results, we can now calculate the variance on
the background signal, which is defined as

σ 2
b = 〈(Sb − 〈Sb〉)2〉. (H6)

Using Eqs. (H4) and (H5), we can compute the variance as

σ 2
b =

〈[
Ws

k∑
i=1

νi + Wb

C−k∑
i=1

ξi − [Ws〈k〉

+ Wb(C − 〈k〉)]〈ν〉
]2〉

. (H7)

Taking advantage of the equality 〈k〉 = k + (〈k〉 − k), we can
rewrite

Ws〈k〉 + Wb(C − 〈k〉)

= Wsk + Ws(〈k〉 − k) + Wb[(C − k) + (k − 〈k〉)]

= Wsk + Wb(C − k) + Ws(〈k〉 − k) + Wb(k − 〈k〉).
(H8)

Inserting this last expression in Eq. (H7) and rewriting the
terms with the multiplicative factors k and C − k with summa-
tions, such as, for example, Wsk〈ν〉 = Ws

∑k
i=1〈ν〉, we obtain

σ 2
b =

〈[
Ws

k∑
i=1

(νi − 〈ν〉) + Wb

C−k∑
i=1

(ξi − 〈ν〉)

+ (k − 〈k〉)(Ws − Wb)〈ν〉
]2〉

. (H9)

Taking into account that the mixed terms go to zero since∑
i〈(xi − 〈x〉)〉 = 0, setting

∑
i(xi − 〈x〉)2 = σ 2

x , we will have
that

σ 2
b = [

W2
s 〈k〉 + W2

b (C − 〈k〉)
]
σ 2

ν + (Ws − Wb)2σ 2
k 〈ν〉2,

(H10)

where σ 2
k = 〈(k − 〈k〉)2〉. In the previous formula we note

two contributions depending, respectively, on the variance
of the firing rate and on the variance of the number of
stabilized connections. The value of the variance of k is
derived in Appendix D, whereas the variance of the rate is
σ 2

ν = 〈ν2〉 − 〈ν〉2. Please note that the variance of the rate
differs from the one adopted in the case of continuous rate
distribution.

To estimate the average input to a coding neuron of P2, we
can follow the same derivation shown in Sec. III, so that

〈Sc〉 = WsCα1νh + Ws〈k′〉ν� + Wb(C ′ − 〈k′〉)ν�

= WsCα1νh + Ws〈k〉(1 − α1)ν�

+ Wb(C − 〈k〉)(1 − α1)ν�

= WsCα1νh + [(Ws − Wb)〈k〉 + CWb](1 − α1)ν�.

(H11)

The previous formula does not consider the rewiring of
the connections; the effect of rewiring is taken into account
in Eq. (24). In the discrete rate approximation, the equa-
tion changes so that instead of having the average high or low
rate we simply have the values νh and ν�. Now, it would be
possible to obtain the signal-difference-to-noise-ratio (SDNR)
using Eq. (5).

Having derived the values of 〈Sb〉, σ 2
b , and 〈Sc〉 in the

case of lognormal and discrete firing rate distribution, it
would be interesting to compare the results of the simulations
employing the two approaches. As we discussed, the main
difference in calculating 〈Sb〉 and 〈Sc〉 with a continuous rate
model versus the discrete model is that the discrete values of νl

and νh are replaced, respectively, by the average values of the
rate below and above threshold, calculated on the continuous
probability distribution. However, the variance of the back-
ground signal differs in the two models, because it depends
on the variance of the rate, σ 2

ν , which depends on the firing
rate distribution adopted.

Figure 12 shows the comparison of the simulation out-
comes using discrete and lognormal rate values, using the
same parameters needed to produce the data shown in
Fig. 3.

We can see that the curves of 〈Sb〉 and 〈Sc〉 obtained from
the simulations using the continuous firing rate distribution
are superimposed on those obtained using the discrete model;
this is because the choice of the threshold on the lognormal
distribution is done so that the average values for low and high
rate, 〈νl〉 and 〈νh〉, correspond to the values adopted in the
discrete rate model. However, the variance of the background
signal σ 2

b differs in the two models, because it depends on
the variance of the firing rate, σν , which is different in the
two cases. This leads also to the different behavior of the
SDNR.
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FIG. 12. Comparison between 〈Sb〉 (a), 〈Sc〉 (b), σ 2
b (c), and SDNR (d) obtained from simulations using discrete (blue line) or lognormal

(red dotted line) firing rate distribution. The values are given as a function of the number of training patterns T , and no noise is applied during
test. The lognormal rate simulation results are the same as the ones of Fig. 3 labeled as “no noise.”
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