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Abstract
We consider two possible ways, i.e. the Maxwellian iteration (MI) and the
Chapman–Enskog method (CEM), to recover relativistic ordinary thermody-
namics from relativistic extended thermodynamics of Polyatomic gases with
N moments. Both of these methods give the Eckart equations which are the
relativistic version of the Navier–Stokes and Fourier laws as a first iteration.
However, these methods do not lead to the same expressions of the heat con-
ductivity χ, the shear viscosity µ, and the bulk viscosity ν which appear as
coefficients in the Eckart equations. In particular, we prove that the expres-
sions of χ, µ, and ν obtained via the CEM do not depend on N, while those
obtained through the MI depend on N. Moreover, we also prove that these two
methods lead to the same results in the nonrelativistic limit.

Keywords: ordinary thermodynamics, Maxwellian iteration,
Chapman–Enskog method, rational extended thermodynamics

1. Introduction

Rational extended thermodynamics (RET) is an elegant theory appreciated by mathematicians
and physicist. This theory was developed in a systematic way by Liu and Müller in [1] for the
classical case, while the relativistic case was considered by Liu et al in [2]. Both articles [1] and
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[2] are based on few natural assumptions, in fact only universal principles1 are imposed and, as
a consequence of these principles, the hyperbolicity of the field equations is established. This
is an important achievement because in this way in the relativistic case the paradox of infinity
velocity of the propagating waves is automatically eliminated. These and other related results
can also be found in the book [3] but they concern only the case of a monoatomic gas. The
extension to the case of polyatomic gases was done in [4] for the classical case and in [5] for
the relativistic case. More details on these generalizations to the polyatomic case can also be
found in the book [6]. However, a physical observation by Pennisi recently published in [7] has
caused a revision of the previous models both for the classical and relativistic cases leading to
new results that can be found in [8] and [9]. In particular, in the article [9] a satisfactory model
for the relativistic extended thermodynamics of polyatomic gases with N moments (ETN) has
been proposed.

However, so far, ordinary thermodynamics (OT) has been succesfully used in practical
applications, so a good test for establishing the validity of RET consists of finding proced-
ures of approximation which allow us to get the equations of OT as a first step.

On this regard, we address the readers to two recent articles [10, 11] where the authors
consider the case N= 2. In particular, in these papers a constraint between the coefficients
of a triple tensor has been found so that the system converges to the Eckart equations in the
Maxwellian iteration’s first step. Moreover, it is also proved that this constraint is surely sat-
isfied if the system can be put in the symmetric form.

So, in this paper, differently from what is studied in [10, 11], we analyze the results for
different values of N.

In the literature two procedures have been proposed which realize the transition to OT: the
Maxwellian iteration (MI) and the Chapman–Enskog method (CEM).

We will prove that the application of both in the relativistic case of these procedures leads,
as a first iteration, to the Eckart equations [12], which in [2] are called the relativistic version
of the Navier–Stokes and Fourier laws and are two fundamental laws of relativistic OT (ROT).
From now on we refer to the Eckart equations as the Navier–Stokes and Fourier laws. It is
important to remark that in the Navier–Stokes and Fourier equations the following important
quantities appear as coefficients: the heat conductivity χ, the shear viscosity µ, and the bulk
viscosity ν. The aim of this paper is to show that the expressions of χ, µ, and ν obtained via
the CEM do not depend on N, whereas these expressions obtained through the MI depend on
N. In order to get this result, let us recall the basic facts on the field equation of Relativistic
Extended Thermodynamics of Polyatomic gases and ROT.

Let us start by considering the balance equations of ETN [9]. They are obtained starting
from the Boltzmann equation

pα ∂α f = Q ,with Q=
Uµpµ
c2τ

[
fE− f− fE p

γqγ
3

mc4ρθ1,2

(
1+

I
mc2

)]
,

f = e−1− χ
kB , χ =

N∑
n=0

1
mn−1

λα1···αnp
α1 · · ·pαn

(
1 +

I
mc2

)n

,

fE = e−1−
mλE+

Uµ
T pµ (1+ I

mc2 )
kB , θ1,2 =

3p
ρ2 c4

(e + p) .

(1)

1 The universal principles used to develop the RET are: (1) the entropy principle, (2) the causality principle and (3)
the Galileian principle in the classical case or the relativity principle in the relativistic case.
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Here, f is the distribution function, kB the Boltzmann constant,m the relativistic particle mass,
λα1···αn are Lagrange multipliers, c the light speed, pµ the 4-momentum of the particle (from
now on the greek indexes take the values 0,1,2,3) such that pαpα = m2c2, I is the internal
energy of the particle due to rotational and vibrational modes, τ a relaxation time, λE the first
Lagrange multiplier calculated at equilibrium, Uµ the 4-velocity such that UαUα = c2, Q the
production term in the Boltzmann equation, T the absolute temperature, ρ the mass density,
p the pressure, e the energy, and qα the heat flux such that Uαqα = 0. The name ‘Lagrange
multipliers’ has been used in literature [1–3] and this terminology is due to the fact that the
distribution function f can be obtained through a variational principle called the maximum
entropy principle [5] with constrained variables. In the case with six moments, the heat flux
is zero and qα replaces the scalar anonimous quantities which are present in [13] and qα is
an unknown function to be determined by imposing that the production of mass and energy–
momentum are zero.

After that, the function φ(I) is introduced which measures ‘how much’ the gas is
polyatomic.

Finally, by multiplying (1)1 by c
mn−1 pα1 · · ·pαn

(
1 + I

mc2
)n

φ(I) and integrating the result
with respect to dI dP⃗ one obtains the balance equations

∂αA
α = 0 , ∂αA

αα1 = 0,

∂αA
αα1···αn = Iα1···αn , for n= 2, · · · N , (2a)

where

Aα1···αn+1 =
c

mn−1

ˆ
ℜ3

ˆ +∞

0
f pα1 · · ·pαn+1

(
1 +

I
mc2

)n

φ(I) dI dP⃗,

Iα1···αn =
c

mn−1

ˆ
ℜ3

ˆ +∞

0
Qpα1 · · ·pαn

(
1 +

I
mc2

)n

φ(I) dI dP⃗ . (2b)

Obviously, equations (2a)1,2 are particular cases of (2a)3 with n= 0,1 but it is better to write
them separately because they are the mass and energy-momentum conservation laws, respect-
ively; their productions I and Iα1 are zero as a consequence of the definition of Q (see (1)2).
Moreover, we sometimes denote Aα with Vα and Aαα1 with Tαα1 .

Then, the Lagrange multipliers λα1···αn are obtained in terms of the physical variables but
in a linear departure from equilibrium (here denoted with the suffix E) which is defined as the
status where λα1···αn = 0 for n= 2, · · · N and λEα = Uα

T . The calculations for the case N= 2
can be found in [9]. These calculations are based on the expression of the following tensor

Aα1···αn+1

E =
c

mn−1

ˆ
ℜ3

ˆ +∞

0
fE p

α1 · · · pαn+1

(
1+

I
mc2

)n

φ(I) dI dP⃗ . (3)

This tensor is only determined in terms of the energy e which is given by

e
ρc2

=

´ +∞
0 J∗2,2

(
1+ I

mc2
)
φ(I) dI´ +∞

0 J∗2,1φ(I) dI
, (4)

where Jm,n(γ) =
´∞
0 e−γ cosh s coshn ssinhm sds, γ = mc2

kBT
, J∗m,n = Jm,n

[
γ
(
1+ I

mc2
)]

. Here we

report a new short proof of this result because we need to use Aα1···αn+1

E . In fact, from (3) it
follows that

dAα1···αn+1

E =− m
kB

(
Aα1···αn+1

E dλE + Aα1···αn+2

E dλEαn+2

)
. (5)
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This equation, written for n= 0, is

d (ρUα1) =− m
kB

[
ρUα1 dλE +

(
e
Uα1Uα2

c2
+ phα1α2

)
dλEα2

]
,

whose contraction with Uα1 allows us to determine

dλE =− kB
mρ

dρ − e
ρc2

Uα2 dλEα2
.

By substituting this in equation (5), we find

dAα1···αn+1

E = Aα1···αn+1

E

(
1
ρ
dρ +

em
ρc2kB

Uγ dλEγ

)
− m
kB
Aα1···αn+2

E dλEαn+2
.

If we take ρ and λEγ as independent variables, the coefficient of dρ shows that Aα1···αn+1

E is
linear and homogeneous in the variable ρ, while the coefficient of dλEγ allows us to determine

Aα1···αn+2

E =− kB
m

∂Aα1···αn+1

E

∂λEαn+2

+
e

ρc2
Aα1···αn+1

E Uαn+2 . (6)

Taking into account this result, all the tensors Aα1···αn+1

E are determined in terms of the previous
ones. Obviously, we must be careful and express everything in terms of ρ and λEγ . Regarding
λEγ , we note that

λEγ =
Uγ
T

→ T=
c√

λEδλ
Eδ

; Uγ =
c√

λEδλ
Eδ

λEγ ; AγE = ρUγ =
ρc√
λEδλ

Eδ
λEγ .

As a test, let us consider equation (6) for n= 0, i.e.

Tα1α2
E =− kB

m
∂Aα1

E

∂λEα2

+
e

ρc2
Aα1
E Uα2

=− kB
m

(
ρc√
λEδλ

Eδ
gα1α2 − ρc

(λEδλ
Eδ)

3/2
λα1
E λα2

E

)
+

e
λEδλ

Eδ
λα1
E λα2

E

=
kB
m

ρThα1α2 +
e
c2
Uα1Uα2 .

So we have obtained the expression for the coefficient of Uα1Uα2 , while the other term gives

p= nkBT . (7)

Note: In the above calculations we have used the property

λEγλEγ = gµγ λEµλ
E
γ → ∂

∂λEδ

(
λEγλEγ

)
= 2gµδ λEµ = 2λEδ .
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We note also that (6) does not allow us to obtain the expression for the energy e; so to find
it we must go back to the definitions (3) for n= 0 and n= 1 and contract them by Uα1 and
Uα1Uα2 , respectively. The results are

ρc2 =
4π m4c5√

−g
e−1− mλE

kB

ˆ +∞

0
J∗2,1φ(I) dI ,

ec2 =
4π m4c7√

−g
e−1− mλE

kB

ˆ +∞

0
J∗2,2

(
1+

I
mc2

)
φ(I) dI ,

the second one of these expressions, divided by the first one gives the formula (4) reported
above.

From these considerations it is possible to derive the expression for Aαα1···αj

E reported in
equations (29) and (30) of [7] and rewritten in equations (14)–(16) of [9]. For the convenience
of the reader we write this expression below:

Aα1···αj+1

E =

[ j+1
2 ]∑

k=0

ρc2kθk,j h
(α1α2 · · ·hα2k−1α2kUα2k+1 · · ·Uαj+1) , (8)

where the round brackets appearing in h(α1α2 · · ·hα2k−1α2kUα2k+1 · · ·Uαj+1) denote the symmet-
ric part of this tensor, while the scalar coefficients θk,j are defined as follows:

θk,j =
1

2k+ 1

(
j+ 1
2k

) ´ +∞
0 J∗2k+2,j+1−2k

(
1+ I

mc2
)j
ϕ(I) dI´ +∞

0 J∗2,1ϕ(I) dI
. (9)

Moreover, θk,j can be determined by the recurrence relations which use the quantity γ = mc2

kBT
:

θ0,0 = 1 ,

θ0,j+1 =
e

ρc2
θ0,j −

∂ θ0,j
∂ γ

,

θh,j+1 =
j+ 2
γ

(
θh,j+

j+ 3− 2h
2h

θh−1,j

)
, for h= 1, · · · ,

[
j+ 1
2

]
,

θ j+2
2 ,j+1 =

1
γ
θ j

2 , j
, for j even .

(10)

Regarding the production terms in the balance equations (2b)2 we see that, by means of (3), it
becomes

Iα1···αi =− Uα
c2τ

(Aαα1···αi − Aαα1···αi
E ) − 3

ρc6 τ θ1,2
Uα qβ A

αβα1···αi
E ,

where qβ = Uγ
(
Tγβ − TγβE

)
.

(11)

So far we have described the results of Extended Thermodynamics of polyatomic gases, as
obtained in [9] following the new ideas of [7].

On the other hand, Relativistic Ordinary Thermodynamics (ROT) uses only the
equations (2a) with the following definitions

5
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Aαα1 = Tαα1 =
e
c2
UαUα1 + (p+π)hαα1 +

2
c2
U(αqα1) + t<αα1> where

π =−ν ∂αU
α , qβ =−χ hαβ

(
∂αT − T

c2
Uµ ∂µUα

)
, t<βγ> = 2µhαβ h

µ
γ ∂<αUµ> , (12)

where the angular brackets appearing in t<βγ> denote the traceless symmetric part of the
tensor.

Here (12)2−4 are the Eckart equations [12]; in particular, following [2] equation (12)3 cor-
responds to relativistic version of the Fourier law while equations (12)2 and (12)4 correspond
to the relativistic version of the Navier–Stokes law. The coefficients ν, χ, µ are called the bulk
viscosity, the heat conductivity and the shear viscosity, respectively.

These equations have the drawback that they are not hyperbolic but parabolic. As we have
already said, this was the reason for the birth of Extended Thermodynamics whose equations
are hyperbolic.

The paper is organized as follows: In section 2 we briefly recall how the MI procedures
works and show how it is possible to reconstruct the laws of ROT by using this procedure.
Moreover, in section 2 we derive the expressions of the heat conductivity χ, the shear viscosity
µ, and the bulk viscosity ν in the particular cases N= 3 and N= 2 putting in evidence that,
if one uses the MI procedure, these expressions depend on the number of moments N. In
section 3 we explain how the CEM procedure works and derive the laws of the ROT by using
this procedure. In section 4, generalizing a well-known result of [14] for monoatomic case,
we prove that in the non-relativistic case the MI and the CEM procedures lead to the same
results. The convergence of ν, χ, µ in the non relativistic limit is proved in section 4.1. Then,
the results obtained are summarized in section 5. Finally, an appendix is devoted to some
particular integrals used to develop the computations of this paper.

2. The Maxwellian iteration

The MI method was applied to recover OT from Extended Thermodynamics of monoatomic
gases in [1] for the non relativistic case and in [2] for the relativistic framework. The relativistic
case for polyatomic gases with N= 2, and for its subsystems with fourteen and six moments,
has been treated in [9]. In the next section MI will be implemented in the case of an arbitrary
number N. It works in the following way:

• The equations (2a) are considered, but with their left hand sides calculated at equilibrium
and their right hand sides at first order with respect to equilibrium, i.e.

∂αA
α
E = 0 , ∂αA

αα1
E = 0 ,

∂αA
αα1···αn
E = Iα1···αn

MI , for n= 2, · · · N ,
(13)

where the meaning of the subscript MI will be introduced in the next item.
• The deviations of the independent variables from equilibrium are calculated in terms of ∂αλE

and ∂αλ
E
µ from (13)3; they are called ‘first iterates’ and we will denote them with a suffix

MI. After that, they are substituted in Tαβ − TαβE with Tαβ given by (12)1.
• The quantities ∂αλ

E and UαUµ∂αλEµ are calculated from (13)1,2 and substituted in the

expression of Tαβ − TαβE obtained in the previous step.

In this way one obtains (12) of ROT, with particular expressions νNMI, χ
N
MI, µ

N
MI of the bulk

viscosity ν, the heat conductivity χ and the shear viscosity µ.

6
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However, these expressions depend on the number N of the extended model from which
they come from. For example, in [9] it was found that, for the subsystem with 14 moments,
the values of µ and χ remain the same as for the model with 15 moments (i.e. N= 2) while
ν changes. This expression for ν changes again for its further subsystem with six moments
(In this subsystem with six moments µ and χ do not play a role). This is not fully satisfactory
because there is only one OT and it is strange that its equations depend on the number N of the
extended model from which they are derived. In the next subsection this MI will be described
in more detail for an arbitrary number N; furthermore, we will see what is the difference of the
expressions of µ, χ and ν in the cases N= 3 and N= 2 in the sections 2.2 and 2.3, respectively.

2.1. ROT recovered with the Maxwellian iteration

It is easy to prove that equations (13)1,2 can be written as (see [5] for more details)

VαE ∂αλ
E + TαµE ∂αλ

E
µ = 0 , TαβE ∂αλ

E + AαβµE ∂αλ
E
µ = 0 . (14)

The first one of these equations and the second one contracted with Uβ give a system whose
solution is:

Uα ∂αλ
E =−

∣∣∣∣ ρ e
c2

e
c2 ρθ0,2

∣∣∣∣−1 ∣∣∣∣ p e
c2

1
3 ρc

2 θ1,2 ρθ0,2

∣∣∣∣ hαδ ∂αλEδ ,
UαUβ ∂αλ

E
β =−

∣∣∣∣ ρ e
c2

e
c2 ρθ0,2

∣∣∣∣−1 ∣∣∣∣ ρ p
e
c2

1
3 ρc

2 θ1,2

∣∣∣∣ hαδ ∂αλEδ .
(15)

It is interesting to note that hαµ ∂αλEµ = 1
T h

αµ ∂αUµ =− 1
T ∂αU

α. The equation (14)2, con-

tracted with hβδ , allows us to determine

hαθ ∂αλ
E =− 2

3
ρ

p
c2 θ1,2 h

θ(αUδ) ∂αλ
E
δ . (16)

Now we consider (13)3, with use of (2b), (1)2 and taking into account that qγ =

Uβ (Tγβ − TEγβ); jointly with Vα−VαE = 0, UαUβ
(
Tαβ −TαβE

)
= 0 we obtain the system

N∑
m=0

Uα

(
Aαα1···αnβ1···βm
E +

3
c4ρθ1,2

g
γδUβ A

αγα1···αn
E A

δββ1···βm
E

)(
λβ1···βm − λEβ1···βm

)
=−c2τ

(
Aαα1···αn
E ∂αλ

E + Aαα1···αnµ
E ∂αλ

E
µ

)MI
=−c2τ

(
Aαα1···αn
E ∂αλ

E + Aαα1···αnµ
E ∂(αλ

E
µ)

)
, for n= 2 , · · · ,N ,

N∑
m=0

Aαβ1···βm
E

(
λβ1···βm − λEβ1···βm

)MI
= 0 ,

N∑
m=0

UαUβ A
αββ1···βm
E

(
λβ1···βm − λEβ1···βm

)MI
= 0 . (17)

7
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From this system we can obtain (λβ1···βm − λEβ1···βm)
MI as a linear and homogeneous com-

bination of ∂αλ
E, ∂(αλEµ). By using (15) and (16), (λβ1···βm − λEβ1···βm)

MI will be a lin-

ear and homogeneous combination of hαµ ∂αλEµ, h
δαUµ ∂(αλEµ) and hα<δ hβ>3µ ∂(αλ

E
µ) =

hαδ hβµ ∂<αλEµ>3
. By substituting these (λβ1···βm − λEβ1···βm)

MI in

(
Tαβ −TαβE

)MI
=− m

kB

N∑
m=0

Aαββ1···βm
E

(
λβ1···βm − λEβ1···βm

)MI
, (18)

we obtain that hαβ(Tαβ −TαβE )MI is a scalar function which is linear and homogeneous in
the independent variables hαµ ∂αλEµ (a scalar variable), hδαUµ ∂(αλEµ) (a 3-dimensional vec-

tor variable) and hαδ hβµ ∂<αλEµ>3
(a variable which is a 3-dimensional second order tensor).

For the representation theorems (see [15] for more details on the representation theorems)
the quantity hαβ(Tαβ −TαβE )MI must be proportional to hαµ ∂αλEµ = −1

T ∂αUα. In this way,

(12)1 is obtained with νNMI instead of ν. Similarly, hαδ(Tαβ −TαβE )MI is a 3-dimensional vec-
tor function which is linear and homogeneous in the same independent variables. So, by
the representation theorems, hαδ(Tαβ −TαβE )MI must be proportional to 2hδαUµ ∂(αλEµ) =
−c2

T2 hδα
(
∂αT − T

c2 U
µ ∂µUα

)
. In this way, (12)2 is obtained with χNMI instead of χ.

Finally, h<βµ hγ>ν (Tµν −TµνE )
MI is a 3-dimensional traceless second order tensorial function

which is linear and homogeneous in the same independent variables. By the representation
theorems h<βµ hγ>ν (Tµν −TµνE )

MI must be proportional to hαβ h
µ
γ ∂<αUµ>. In this way, (12)3 is

obtained with µNMI instead of µ.
As examples of this procedure, we will consider the particular cases with N= 3 and N= 2

in the next sections.

2.2. The Maxwellian iteration in the case N=3

We begin with the case N= 3 because the calculations developed in this case allow us also
to treat the case with N= 2 which will be considered in the next subsection. By comparing
the results obtained in the case N= 3 with those obtained in the case N= 2, it is easy to see
that the expressions of the coefficients of bulk viscosity, heat conductivity and shear stress are
different. This argument allows us to prove that the expressions of ν,χ and µ obtained with the
MI depend on N. So far in literature, this fact has been proved only comparing the case N= 2
with two of its subsystems.

The equations (17) and (18) for N= 3 are:

Uα

(
Aαα1···αn
E +

3
c4ρθ1,2

gγδUβ Aαγα1···αn
E AδβE

)(
λ − λE

)MI
+ Uα

(
Aαα1···αnβ1
E +

3
c4ρθ1,2

g
γδUβ A

αγα1···αn
E A

δββ1
E

)(
λβ1 − λEβ1

)MI
+

N∑
m=0

Uα

(
Aαα1···αnβ1β2
E +

3
c4ρθ1,2

g
γδUβ A

αγα1···αn
E A

δββ1β2
E

)
(λβ1β2)

MI

+ Uα

(
Aαα1···αnβ1β2β3
E +

3
c4ρθ1,2

g
γδUβ A

αγα1···αn
E A

δββ1β2β3
E

)
(λβ1β2β3)

MI

=−c2τ
(
Aαα1···αn
E ∂αλ

E + Aαα1···αnµ
E ∂(αλ

E
µ)

)
, for n= 2 , . . . ,3 , (19)

8
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AαE
(
λ − λE

)MI
+ Aαβ1

E

(
λβ1 − λEβ1

)MI
+ Aαβ1β2

E (λβ1β2)
MI

+Aαβ1β2β3
E (λβ1β2β3)

MI
= 0 ,

UαUβ
[
AαβE

(
λ − λE

)MI
+ Aαββ1

E

(
λβ1 − λEβ1

)MI
+ Aαββ1β2

E (λβ1β2)
MI

+ Aαββ1β2β3
E (λβ1β2β3)

MI
]
= 0 .

(
Tαβ −TαβE

)MI
=− m

kB

[
AαβE

(
λ − λE

)MI
+ Aαββ1

E

(
λβ1 − λEβ1

)MI
+ Aαββ1β2

E (λβ1β2)
MI

+ Aαββ1β2β3
E (λβ1β2β3)

MI
]
.

We note that in the caseN= 2we have to consider (19)1 only for n= 2 and to put (λβ1β2β3)
MI

=
0; so the calculations in this section allow us to consider also the caseN= 2 which is the object
of the next section.

Determination of the bulk viscosity ν. Here we consider equations (19)1 with n= 2 con-
tracted by

Uα1Uα2
ρc6 , (19)1 with n= 3 contracted by

Uα1Uα2Uα3
ρc8 , (19)1 with n= 2 contracted by

hα1α2
ρc4 , (19)1 with n= 3 contracted by

hα1α2Uα3
ρc6 , (19)2 contracted by Uα

ρc2 , (19)3 divided by ρc6

and (19)4 contracted by −kB hαβ
mρc2 .

So we obtain a system
∑6

j=1 aijX
j = bi constituted by 7 equations in the 6 unknowns X1 =(

λ − λE
)MI

, X2 = Uβ1(λβ1 − λEβ1
)MI, X3 = Uβ1Uβ2 (λβ1β2)

MI, X4 = Uβ1Uβ2Uβ3 (λβ1β2β3)
MI,

X5 = c2hβ1β2 (λβ1β2)
MI, X6 = c2hβ1β2Uβ3 (λβ1β2β3)

MI where

a1k = θ0,k+1 + 3
θ0,3
θ1,2

θ0,k , for k= 1,2,3,4. ; a15 =
1
10

θ1,4 +
1
2
θ0,3 θ1,3
θ1,2

;

a16 =
1
5
θ1,5 +

9
10

θ0,3 θ1,4
θ1,2

;

b1 =−τ

[
θ0,2U

α∂αλ
E +

(
θ0,3U

αUµ +
1
6
c2 θ1,3 h

αµ

)
∂(αλ

E
µ)

]
;

(20)

a2k = θ0,k+2 + 3
θ0,4
θ1,2

θ0,k , for k= 1,2,3,4. ; a25 =
1
15

θ1,5 +
1
2
θ0,4 θ1,3
θ1,2

;

a26 =
1
7
θ1,6 +

9
10

θ0,4 θ1,4
θ1,2

;

b2 =−τ

[
θ0,3U

α∂αλ
E +

(
θ0,4U

αUµ +
3
10

c2 θ1,4 h
αµ

)
∂(αλ

E
µ)

]
;

9
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a31 = θ1,1 +
3
2
θ0,1 θ1,3
θ1,2

; a32 =
1
3
θ1,3 +

3
2
θ0,2 θ1,3
θ1,2

; a33 =
3
10

θ1,4 +
3
2
θ0,3 θ1,3
θ1,2

;

a34 =
4
15

θ1,5 +
3
2
θ0,4 θ1,3
θ1,2

; a35 =
1
3
θ2,4 +

1
4
(θ1,3)

2

θ1,2
;

a36 =
1
3
θ2,5 +

9
20

θ1,4 θ1,3
θ1,2

;

b3 =−τ

[
θ1,2U

α∂αλ
E +

(
1
2
θ1,3U

αUµ +
5
3
c2 θ2,3 h

αµ

)
∂(αλ

E
µ)

]
;

a41 =
1
2
θ1,3 +

9
10

θ0,1 θ0,4
θ1,2

; a42 =
3
10

θ1,4 +
9
10

θ0,2 θ0,4
θ1,2

; a43 =
1
5
θ1,5 +

9
10

θ0,3 θ1,4
θ1,2

;

a44 =
1
7
θ1,6 +

9
10

θ0,4 θ1,4
θ1,2

; a45 =
1
9
θ2,5 +

3
20

θ1,3 θ1,4
θ1,2

;

a46 =
1
7
θ2,6 +

27
100

(θ1,4)
2

θ1,2
;

b4 =−τ

[
1
2
θ1,3U

α∂αλ
E +

(
3
10

θ1,4U
αUµ +

1
3
c2 θ2,4 h

αµ

)
∂(αλ

E
µ)

]
;

a51 = θ0,0 ; a52 = θ0,1 ; a53 = θ0,2 ; a54 = θ0,3 ; a55 =
1
3
θ1,2 ; a56 =

1
2
θ1,3 ; b5 = 0 ;

a61 = θ0,1 ; a62 = θ0,2 ; a63 = θ0,3 ; a64 = θ0,4 ; a65 =
1
6
θ1,3 ; a66 =

3
10

θ1,4 ; b6 = 0 ;

a71 = 3θ1,1 ; a72 = θ1,2 ; a73 =
1
2
θ1,3 ; a74 =

3
10

θ1,4 ; a75 =
5
3
θ2,5 ; a76 = θ2,4 ;

b7 =− kB
mρc2

(
Tαβ −TαβE

)MI
hαβ ;

where the expression of θk,j has been introduced in (9). By applying the Rouché–Capelli
theorem, we see that the determinant of the augmented matrix must be zero; so, from this
condition, by calling Dj the algebraic complement on the line i, column 7 of this matrix,
we find

hαβ
(
Tαβ −TαβE

)MI
=− c2mρτ

kB
·

·
{
D1

D7

[
θ0,2U

α∂αλ
E +

(
θ0,3U

αUµ +
1
6
c2 θ1,3 h

αµ

)
∂(αλ

E
µ)

]
+
D2

D7

[
θ0,3U

α∂αλ
E +

(
θ0,4U

αUµ +
3
10

c2 θ1,4 h
αµ

)
∂(αλ

E
µ)

]
+
D3

D7

[
θ1,2U

α∂αλ
E +

(
1
2
θ1,3U

αUµ +
5
3
c2 θ2,3 h

αµ

)
∂(αλ

E
µ)

]
+
D4

D7

[
1
2
θ1,3U

α∂αλ
E +

(
3
10

θ1,4U
αUµ +

1
3
c2 θ2,4 h

αµ

)
∂(αλ

E
µ)

]}
,

10
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i.e. by using (15),

hαβ
(
Tαβ −TαβE

)MI
=−3νMI ∂αU

α , with

νMI =
c2mρτ
3kBT


(
D1

D7
θ0,2 +

D2

D7
θ0,3 +

D3

D7
θ1,2 +

1
2
θ1,3

) ∣∣∣∣ p
ρ

e
ρc2

c2θ1,2 θ0,2

∣∣∣∣∣∣∣∣ 1 e
ρc2

e
ρc2 θ0,2

∣∣∣∣
+

(
D1

D7

1
6
c2 θ1,3 +

D2

D7

3
10

c2 θ1,4 +
D3

D7

5
3
c2 θ2,3 +

D4

D7

1
3
c2 θ2,4

)

+

(
D1

D7
θ0,3 +

D2

D7
θ0,4 +

D4

D7

3
10

θ1,4

) ∣∣∣∣ 1 p
ρ

e
ρc2 c2 θ1,2

∣∣∣∣∣∣∣∣ 1 e
ρc2

e
ρc2 θ0,2

∣∣∣∣

 .

(21)

Determination of the heat conductivity χ. We consider now equations (19)1 with n= 2

contracted by
hθα1

Uα2

ρc6 , (19)1 with n= 3 contracted by
hθα1

Uα2Uα3

ρc8 , (19)1 with n= 3 contracted

by
hα1α2h

θ
α3

ρc6 , (19)2 contracted by hθα
−ρc2 and (19)4 contracted by kB

hθαUβ
ρc4 .

So we obtain a system
∑4

j=1 bijX
jθ = bθi constituted by 5 equations in the 4 unknowns

X1θ = hθβ1(λβ1 − λEβ1
)MI, X2θ = hθβ1Uβ2 (λβ1β2)

MI, X3θ = hθβ1Uβ2Uβ3 (λβ1β2β3)
MI, X4θ =

c2hθβ1hβ2β3 (λβ1β2β3)
MI with coefficients

b11 =− 1
3
θ1,3 ; b12 =− 1

5
θ1,4 +

1
6
(θ1,3)

2

θ1,2
;

b13 =− 1
5
θ1,5 +

3
20

θ1,3 θ1,4
θ1,2

; b14 =− 1
15

θ2,5 +
1
10

θ1,3 θ2,4
θ1,2

;

bθ1 = τ

(
1
3
θ1,2 h

θα∂αλ
E +

1
3
θ1,3 h

θαUµ ∂(αλ
E
µ)

)
;

(22)

b21 =− 1
5
θ1,4 ; b22 =− 2

15
θ1,5 +

1
10

θ1,4 θ1,3
θ1,2

;

b23 =− 1
7
θ1,6 +

9
100

(θ1,4)
2

θ1,2
; b24 =− 1

35
θ2,6 +

3
50

θ1,4 θ2,4
θ1,2

;

bθ2 = τ

(
1
6
θ1,3 h

θα∂αλ
E +

1
5
θ1,4 h

θαUµ ∂(αλ
E
µ)

)
;

b31 =− 2
3
θ2,4 ; b32 =− 4

15
θ2,5 +

1
3
θ2,4 θ1,3
θ1,2

;

b33 =− 1
7
θ2,6 +

3
10

θ1,4 θ2,4
θ1,2

; b34 =− 1
5
θ3,6 +

1
5
(θ2,4)

2

θ1,2
;

bθ3 = τ

(
θ2,3 h

θα∂αλ
E +

2
3
θ2,4 h

θαUµ ∂(αλ
E
µ)

)
;

11
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b41 = θ1,1 ; b42 =
2
3
θ1,2 ; b43 =

1
2
θ1,3 ; b44 = θ2,3 ; bθ4 = 0 ;

b51 =
1
3
θ1,2 ; b52 =

1
3
θ1,3 ; b53 =

3
10

θ1,4 ; b54 =
1
5
θ2,4 ;

bθ5 =
kB

mρc4
hθαUβ

(
Tαβ − TαβE

)MI
.

By applying the Rouché–Capelli theorem, we see that the determinant of the augmentedmatrix
must be zero; so, from this condition by calling Mj the algebraic complement on the line i,
column 5 of this matrix, we find

hθαUβ
(
Tαβ − TαβE

)MI
=− c4mρτ

kB
·

·
[
M1

M5

(
1
3
θ1,2 h

θα∂αλ
E +

1
3
θ1,3 h

θαUµ ∂(αλ
E
µ)

)
+
M2

M5

(
1
6
θ1,3 h

θα∂αλ
E +

1
5
θ1,4 h

θαUµ ∂(αλ
E
µ)

)
+
M3

M5

(
θ2,3 h

θα∂αλ
E +

2
3
θ2,4 h

θαUµ ∂(αλ
E
µ)

)]
,

i.e. by using (15),

qθ =−χMI hαθ
(
∂αT − T

c2
Uµ ∂µUα

)
,with

χMI =
c6mρτ
2kBT2

[
M1

M5

(
− 2

3
ρc2

p
(θ1,2)

2
+

1
3
θ1,3

)
+
M2

M5

(
− 1

3
ρc2

p
θ1,2 θ1,3 +

1
5
θ1,4

)
+
M3

M5

(
−2

ρc2

p
θ1,2 θ2,3 +

2
3
θ2,4

)]
.

(23)

Determination of the shear viscosity µ. Let us consider now equations (19)1 with n= 2
contracted by

hα1<θhψ>α2
ρc6 , (19)1 with n= 3 contracted by

hα1<θhψ>α2Uα3
ρc8 and (19)4 contracted

by hα<θhψ>β
ρc4 .

So we obtain a system
∑2

j=1 cijX
j
<θψ> = bi<θψ> constituted by 3 equations in the

2 unknowns X1
<θψ> = hβ1

<θh
β2
ψ> (λβ1β2)

MI, X2
<θψ> = hβ1

<θh
β2
ψ>U

β3 (λβ1β2β3)
MI, with coeffi-

cients

c11 =
2
15

θ2,4 ; c12 =
2
15

θ2,5 ; b1<θψ> =− 2
3
τ θ2,3 ∂<θ λ

E
ψ>3

; (24)

c21 =
2
45

θ2,5 ; c22 =
1
35

θ2,6 ; b2<θψ> =− 2
15

τ θ2,4 ∂<θ λ
E
ψ>3

;

c31 =
2
3
θ2,3 ; c32 =

2
5
θ2,4 ; b3<θψ> =− kB

mc4ρ
hα<θhψ>β

(
Tαβ − TαβE

)MI
.

12
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From this system we obtain

t<θψ> = 2µMI ∂<θUψ> ,with

µMI =− c4mρτ

2kBT

∣∣∣∣∣∣
2
15 θ2,4

2
15 θ2,5 − 2

3 θ2,3
2
45 θ2,5

1
35 θ2,6 − 2

15 θ2,4
2
3 θ2,3

2
5 θ2,4 0

∣∣∣∣∣∣∣∣∣∣ 2
15 θ2,4

2
15 θ2,5

2
45 θ2,5

1
35 θ2,6

∣∣∣∣ .

(25)

Finally, to complete our analysis, we have also to consider equation (19)1 with n= 3 con-
tracted by h<θα1

hψα2
hθ>α3

. But this step will give only λ<β1β2β3>3 which does not appear in

(Tαβ − TαβE )MI.

2.3. The Maxwellian iteration in the case N=2.

For this case we have to consider (19)1 only for n= 2 and put (λβ1β2β3)
MI

= 0 in all the
equations. For example, let us see what happens for the determination of the bulk viscosity.

Determination of the bulk viscosity ν. We consider here equations (19)1 with n= 2 con-
tracted by

Uα1Uα2
ρc6 , (19)1 with n= 2 contracted by

hα1α2
ρc4 , (19)2 contracted by Uα

ρc2 , (19)3 divided

by ρc6 and (19)4 contracted by −kB hαβ
mρc2 .

So we obtain a system composed by 5 equations in the 6 unknowns X1 =
(
λ − λE

)MI
, X2 =

Uβ1(λβ1 − λEβ1
)MI,X3 = Uβ1Uβ2 (λβ1β2)

MI,X4 = c2hβ1β2 (λβ1β2)
MI. The augmentedmatrix can

be obtained by cutting the rows 2 and 4 and columns 4 and 6 from the augmented matrix
introduced in section 4.1 and its determinant is given by:∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a15 b1
a31 a32 a33 a35 b3
a51 a52 a53 a55 b5
a61 a62 a63 a65 b6
a71 a72 a73 a75 b7

∣∣∣∣∣∣∣∣∣∣
= 0 ,

where the expressions of aij and bi are the same of the case N= 3.
By calling Dj the algebraic complements of the row i, column 5 of the preceding matrix,

we find

(
Tαβ −TαβE

)MI
hαβ =− mρc2 τ

kB

(
θ0,2D1 + θ1,2D2

D5
Uα∂αλ

E

+
θ0,3D1 +

1
2 θ1,3D2

D5
UαUµ ∂(αλ

E
µ)

+ c2
1
6 θ1,3D1 +

5
3 θ2,3D2

D5
hαµ∂(αλ

E
µ)

)
,

13
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i.e. by using (15),

(
Tαβ −TαβE

)MI
hαβ =−3ν2MI ∂αU

α , where

ν2MI =
c2mρτ

3kBT

θ0,2D1 + θ1,2D2

D5

∣∣∣∣ p
ρ

e
ρc2

c2θ1,2 θ0,2

∣∣∣∣∣∣∣∣ 1 e
ρc2

e
ρc2 θ0,2

∣∣∣∣
+ c2

1
6 θ1,3D1 +

5
3 θ2,3D2

D5
+

θ0,3D1 +
1
2 θ1,3D2

D5

∣∣∣∣ 1 p
ρ

e
ρc2 c2 θ1,2

∣∣∣∣∣∣∣∣ 1 e
ρc2

e
ρc2 θ0,2

∣∣∣∣

 .

(26)

It is evident that this value of ν is different from that found in (21) when N= 3.
Determination of the heat conductivity χ. We consider now equations (19)1 with n= 2

contracted by
hθα1

Uα2

ρc6 , (19)2 contracted by hθα
−ρc2 and (19)4 contracted by kB

hθαUβ
ρc4 . We obtain

a system
∑2

j=1 bijX
jθ = bθi constituted by 3 equations in the 2 unknowns X1θ = hθβ1(λβ1 −

λEβ1
)MI and X2θ = hθβ1Uβ2(λβ1β2)

MI. The augmented matrix can be obtained by eliminating
the rows 2 and 3 and the columns 3 and 4 from the augmented matrix introduced in section
4.2, so its determinant is given by:∣∣∣∣∣∣

b11 b12 bθ1
b41 b42 bθ4
b51 b52 bθ5

∣∣∣∣∣∣= 0 ,

where bij and bθi are the same of the case N= 3. By calling Dj the algebraic complements of
the line i, column 3 of the preceding matrix, we find

kB
mρc4

hθαUβ
(
Tαβ − TαβE

)MI
=−

τ
(

1
3 θ1,2 h

θα∂αλ
E + 1

3 θ1,3 h
θαUµ ∂(αλEµ)

)
D1

D3
,

i.e. by using (15),

qθ =−χ2MI hαθ
(
∂αT − T

c2
Uµ ∂µUα

)
,where

χ2MI =
mρc6τ
2kBT2

D1

D3

(
− 2

3
ρc2

(θ1,2)
2

p
+

1
3
θ1,3

)
.

(27)

It is evident that this value of χ is different from the value obtained by using the expression of
χ found in (23) in the case N= 3.

Determination of the shear viscosity µ. Let us consider now equations (19)1 with
n= 2 contracted by

hα1<θhψ>α2
ρc6 and (19)4 contracted by hα<θhψ>β

ρc4 . We obtain a sys-

tem
∑1

j=1 cijX
j
<θψ> = bi<θψ> constituted by 2 equations in the 1 unknown X1

<θψ> =

14
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hβ1
<θh

β2
ψ> (λβ1β2)

MI. The augmented matrix can be obtained by eliminating row 2 and column
2 from the augmented matrix introduced in section 4.3 and its determinant is given by:∣∣∣∣c11 b1<θψ>

c31 b3<θψ>

∣∣∣∣= 0 ,

where cij and bi<θψ> are the same of the case N= 3. From this equation we find

t<θψ> = 2µMI ∂<θUψ> , with (28)

µMI =
1
3
mc4ρτ
kBT

c31
c11

θ2,3 =
5
3
mc4ρτ
kBT

θ2,3
θ2,4

θ2,3 . (29)

It is evident that this value of µ is different from the value of µ furnished by (25) when N= 3.
These transport coefficients are the same ones of [9] if we take into account that in [9] the

authors callω = e
ρc2 (see also equation (12)2) and the quantities Bq, Bπ2 , B

t present in [9] whose
expressions are reported in equation (44) in terms also of C5 which is described in equation
(34)2, the matrices Nπ and D4 which are given in the equation before equation (30) and the
matrices N3 and D3 which are given in the equation after (32)).

3. The Chapman–Enskog method

This method can be found in the articles [16, 17] and has been further explained in [13]. We
describe how this method works by enclosing the full expression of the production term which
was found in [18] and modified in [9]. In particular, the method starts by considering the
following equations

pα ∂α f = Q , ∂αV
α = 0 , ∂αT

αβ = 0 , (30)

i.e. the Boltzmann equation and the conservation laws of mass and momentum-energy.
Then the following steps have to be followed:

• The equations (30) are considered, but with their left hand sides calculated at equilibrium
and their right hand sides at first order with respect to equilibrium, i.e.

pα ∂α fE = Q(OT) =
Uµpµ
c2τ

[
( fE− f)OT− fE p

γqOTγ
3

mc4ρθ1,2

(
1+

I
mc2

)]
.

∂αV
α
E = 0 , ∂αT

αβ
E = 0 ,

(31)

where the superscript OT denotes that these quantities are the first iterates defined with this
approach.

• The deviation of the distribution function from its value at equilibrium is calculated in terms
of ∂αλE and ∂αλEµ from (31)1 and used in equations (2b)1,2 with n= 0 and n= 1. Obviously,
in this way I= 0, Iα1 = 0 are obtained, thus respecting the conservation laws of mass and of
momentum–energy.

• The quantities ∂αλ
E and UαUµ∂αλEµ are calculated from (31)2,3 and substituted in the

expression of Aα − AαE , T
αβ − TαβE obtained in the previous step.

15
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Wenote that in the expression ofQ in [13] there are 6 unknown scalars ai with i = 0, · · ·5which
have to be determined. From the third line on page 116 of [13], by imposing Vα−VαE = 0, e −
eE =

UαUβ
c2 (Tαβ −TαβE ) = 0 the authors find a0, a1, a3. By imposing Vα−VαE = 0, e − eE =

UαUβ
c2 (Tαβ −TαβE ) = 0 we find simply that qγ is constrained by qγUγ = 0. So, qγ replaces the

remaining part of Cercignani–Kremer’s unknown scalars a2, a4, a5. It is interesting that in a
model with 14 or more moments, qγ becomes exactly the heat flux density. In a model with
six moments, there is no heat flux; in this case qγ remains a mathematical tool as the scalars
a2, a4, a5 of the Cercignani–Kremer method. But it cannot be eliminated, otherwise the zero
deviation of Vα from its value at equilibrium would be lost.

3.1. ROT recovered with the Chapman–Enskog method

In this subsection we apply the CEM to the equations of polyatomic gases with an arbitrary
number N. In this way we will find (12) of ROT, with particular expressions νOT , χOT , µOT of
the bulk viscosity ν, the heat conductivity χ and the shear viscosity µ and we will show that
all these coefficients do not depend on N.

We have to consider the equations

f − fE =
c2τ

kBUµpµ
fE p

δ

[
m∂δ λ

E +

(
1+

I
mc2

)
pν ∂δ λ

E
ν

]
− 3 fE p

µqµ
1+ I

mc2

mc4ρθ1,2
,

Vα − VαE = 0 , UαUβ
(
Tαβ − TαβE

)
= 0 , ∂αV

α
E = 0 , ∂αT

αβ
E = 0 .

(32)

The equations (32)4 and (32)5 are exactly the equations (14) of the MI approach and so the
solution of these equations is given by (15) and (16).

Let us now consider equation (32)2 contracted with Uα
c2 . By using (32)1 contracted with

mcφ(I) Uαc2 p
α and integrated in dI dP⃗ it becomes

0=
Uα
c2

(Vα − VαE ) =
mτ

kB

(
VαE ∂αλ

E + TαδE ∂αλ
E
δ

)
− 3

ρc6 θ1,2
Uα qµT

αµ
E ,

which is an identity for equations (15) (see also the first equation after (32)).
To impose equation (32)2 contracted with hθα, we need the tensors (49) and their represent-

ations (50) of the appendix. By using (32)1 contracted with mcφ(I)hθα pα and integrated in
dI dP⃗ we find

0= hθα (V
α − VαE ) =

mτ

kB

(
hθαA

∗αδ ∂δλ
E + hθαA

∗αδν ∂δλ
E
ν

)
− 3

ρc4 θ1,2
hθα qµT

αµ
E ,

from which we desume

qθ =− mτc6

3kB

ρ2

p
θ1,2

(
θ∗1,1 h

αθ ∂αλ
E+

2
3
θ∗1,2 h

θ(δUν) ∂δλ
E
ν

)
=−χ hθα

(
∂αT − T

c2
Uµ ∂µUα

)
,

with χ =− mτc8

9kBT2

ρ2

p
θ1,2

(
θ∗1,2 −

ρc2

p
θ1,2θ

∗
1,1

)
, (33)
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where in the last passage we have used (16) and λEν =
Uν
T . We see here that qθ, replaces the

Cercignani–Kremer’s scalars which did not have a clear physical meaning. They cannot simply
be put equal to zero (as in [19]), otherwise the physical requirement Vα−VαE = 0 would be
violated.

We now impose equation (32)3, by using (32)1 contractedwithUαUβ cpαpβ
(
1+ I

mc2
)
φ(I)

and integrated in dI dP⃗; we find

0=
mc2τ
kB

(
UβT

βδ
E ∂δλ

E+UβA
βδν
E ∂δλ

E
ν

)
− 3
c4ρθ1,2

AµαβE qµUαUβ .

This is an identity for equations (15) (see also the second equation after (32)).
We now proceed evaluating the other components of Tαβ − TαβE . We use (32)1 contracted

with hθαUβ cp
αpβ

(
1+ I

mc2
)
φ(I) and integrate in dI dP⃗ to find

(
Tαβ − TαβE

)
hθαUβ =

mc2τ
kB

(
hθαT

αδ
E ∂δλ

E+ hθαA
αδν
E ∂δλ

E
ν

)
− 3
c4ρθ1,2

AµαβE qµ h
θ
αUβ

=− mc2τ
kB

(
phθδE ∂δλ

E+
2
3
ρc2 θ1,2 h

θ(δUν) ∂δλ
E
ν

)
− qθ =−qθ ,

(34)

where, in the last passage, we have used (16). The result is an identity. We note that, in the 6
moments model, the left hand side of (34) is zero, so that the right hand side is −qθ must be
zero; but we have said, after equation (33) that in this case the physical requirement Vα−VαE =
0 would be violated. This means that this approach cannot be applied to the case of 6 moments.
This is not surprising because it has been shown in equation (19) of [20] (see also [8]) that the
optimal choices of moments are N= 0 (trivial case with only the conservation law of mass),
N= 1 (only the 5 Euler’s Equations where there is no production term),N= 2 (the 15moments
model), N= 3 (the 35 moments model) and so on. The 6 moments model is not present in this
hierarchy, but it can be considered a subsystem of the 15 moments model by putting qθ = 0
(forgetting the role it played in building themodel and simply eliminating equation (33)). From
this perspective the article [19] can be considered correct.

Finally, we multiply equation (32)1 by hθα h
ψ
β cp

αpβ
(
1+ I

mc2
)
φ(I) and integrate in dI dP⃗;

so we obtain

hθα h
ψ
β

(
Tαβ − TαβE

)
= hθα h

ψ
β

[
mτ

kB

(
A∗δαβ∂δ λ

E+ A∗δαβν ∂δ λ
E
ν

)
− 3
c4 ρθ1,2

qµA
µαβ
E

]
=
mτ

kB

[
1
3
ρc2 θ∗1,2 h

θψUδ∂δ λ
E

+

(
1
6
ρc2 θ∗1,3 h

θψUδUν + ρc4 θ∗2,3 h
(θψ hδν)

)
∂δ λ

E
ν

]
.
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This equation, contracted with hθψ gives

Π =
mτ

kB

[
1
3
ρc2 θ∗1,2U

δ∂δ λ
E+

(
1
6
ρc2 θ∗1,3U

δUν +
5
9
ρc4 θ∗2,3 h

δν

)
∂δ λ

E
ν

]
=−ν ∂αU

α ,

(35)

with ν =− mτ

kB

[∣∣∣∣ ρ e
c2

e
c2 ρθ0,2

∣∣∣∣−1 (1
3
ρc2 θ∗1,2

∣∣∣∣ p e
c2

1
3 ρc

2 θ1,2 ρθ0,2

∣∣∣∣
+

1
6
ρc2 θ∗1,3

∣∣∣∣ ρ p
e
c2

1
3 ρc

2 θ1,2

∣∣∣∣) − 5
9
ρc4 θ∗2,3

]
, (36)

where equations (15) have been used. Moreover, contracting equation (34) with h<γθ hϕ>ψ =

hγθ h
ϕ
ψ − 1

3 hθψh
γϕ it gives us

t<γϕ> = 2µhα<β h
µ
γ> ∂αUµ , with µ=

1
3
mτ

kBT
ρc4 θ∗2,3 . (37)

The equations (33), (35) and (37)1 are those of ROT.
In conclusion, with this approach we have obtained the equations of ROT with heat con-

ductivity, bulk viscosity and shear viscosity given respectively by (33)2, (35)2 and (37)2.
It is evident from these expressions that they do not depend on the number of moments of

the extended model from which they are derivated.

4. The non relativistic approach

In this case the balance equation found in equations (19) and (20) of [8] are

∂tH
i1···ih
s + ∂kH

ki1···ih
s = Ji1···ihs with s= 0, · · · ,N,and h= 0, · · · ,N− s. (38)

In particular, H0 = ρ is the mass density, Hi1
0 = ρvi1 where vi1 is the velocity and H1 = 2ρϵ +

ρv2 where ϵ is the energy density. All the variables are expressed in integral form as

Hi1···ih
s = m

ˆ
R3

ˆ +∞

0
f ξi1 · · · ξih

(
2I
m

+ ξ2
)s

φ (I) dI d ξ⃗ . (39)

The expression of Hki1···ih
s is the same of equation (39) but with a further factor ξk inside the

integral; the expression of Ji1···ihs is the same of (39) but with the production densityQ=− f−fE
τ

instead of the distribution function f. This distribution function has the form

f = e−1− m
kB
χ
, χ =

N∑
h=0

N−h∑
s=0

λsi1···ihξ
i1 · · · ξih

(
2I
m

+ ξ2
)s

. (40)

We prove now that the CEM and the MI method give the same result for polyatomic gases and
with whatever number of moments. This was already proved in [14] but only for monoatomic
gases with 14 moments.
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Let us start with the CEMwhere the Boltzamnn equation and the conservation laws of mass,
momentum and energy are considered:

∂t f + ξk∂k f =− f− fE
τ

, ∂tH0 + ∂kH
k
0 = 0 , ∂tH

i
0 + ∂kH

ki
0 = 0 , ∂tH1 + ∂kH

k
1 = 0 . (41)

After that, the following steps are followed:

1. The left hand sides of (41) are calculated at equilibrium, while the right hand sides at first
order with respect to equilibrium

∂t fE+ ξk∂k fE =
f− fE
τ

,

∂tH0 + ∂kH
k
0 = 0 , ∂tH

i
0 + ∂kH

ki
0E = 0 , ∂tH1 + ∂kH

k
1E = 0 . (42)

2. The derivatives with respect to time of the independent variables ρ, vi, T are obtained
from (42)2−4 and substituted in (42)1 which, after that, depends only on the independent
variables and on their derivatives with respect to xk.

3. The new equation (42)1 is multiplied bymξi1 ξi2 φ(I) and integrated with respect to dI d ξ⃗.

As a result of the above figurewe get theNavier–Stokes equationswith a precise expression
of the bulk viscosity and of the shear viscosity (in the above figure the overline denotes
the fact that, after derivating with respect to time, the above found time derivatives of the
independent variables have been substituted).

Similarly, multiplication of the new equation (42)1 bymξi1
(
2I
m + ξ2

)s
φ(I) and integ-

ration with respect to dI d ξ⃗ gives

from which the Fourier equation with a precise expression of the heat conductivity. The
expressions found for the bulk viscosity, the shear viscosity and the heat conductivity do
not depend on the number N because they use equation which are present in every model
with N⩾ 1.
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Now, mathematically speaking, nothing changes if we swap the order of the steps 2 and 3;
but in this way we obtain the steps of the MI. So we can say that, in the non relativistic case,
the CEM and the MI give the same result.

So it is natural to ask why in the relativistic case the two methods give different results. To
understand it, let us repeat the same steps in the relativistic case.

With theChapman-EnskogMethod the Boltzamnn equation and the conservation laws of
mass, momentum-energy, with the left hand sides calculated at equilibrium, are considered:

pα ∂α fE =
Uµ
c2τ

[
( fE− f) pµ− fE qγ

3
mc4ρθ1,2

pµpγ
(
1+

I
mc2

)]
.

∂αV
α = 0 , ∂αT

αβ = 0 .

(43)

After that, the following steps are followed:

1. The deviation of the distribution function from its value at equilibrium is calculated in
terms of ∂αλE and ∂αλ

µ
E from (43)1 and used in the definition of Tαβ which now becomes

Tαβ −TαβE =−c3τ
ˆ
R3

ˆ +∞

0

pα∂αfE
pµUµ

pαpβ
(
1+

I
mc2

)
φ (I) dI dp⃗− 3

qγ
c4θ1,2

AγαβE .

(44)

2. The quantities ∂αλE and UαUµ∂αλ
µ
E are calculated from (43)2,3 and substituted in (44).

From the resulting expression, the bulk viscosity, the shear viscosity and the heat conduct-
ivity can be obtained and they do not depend on the number N because they use equation
which are present in every model with N⩾ 1.

There is also the opportunity to modify a little the procedure, by taking the last term in (43)1
to the left hand side before calculating the left hand sides at equilibrium; in this case it will
disappear and, consequently, also the last term in (44) will be no more present.

Instead of this, with the Maxwellian Iteration

1. The conservation laws of mass, momentum-energy, and the balance equation for the triple
tensor with the left hand sides calculated at equilibrium, are considered:

∂αV
α
E = 0 , ∂αT

αβ
E = 0 . (45)

2. Some derivatives of the independent variables are obtained from (45)1,2 and substituted
in (45)3.

3. The new equation (45)3 is used to obtain Π, qα, t<βγ> and, consequently, the bulk
viscosity, the shear viscosity and the heat conductivity. This fact could give rise to
some doubts because these coefficients should be obtained from Tβγ − TβγE , not from
Uµ(Aµβγ − AµβγE ). Moreover, Uµ(Aµβγ − AµβγE ) depends not only on Π, qα, t<βγ> but
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also on other variables whose number increases for increasing values ofN. SoΠ, qα, t<βγ>

must be isolated from the other variables and this means solving some algebraic linear
systems depending on N. It is therefore not surprising that the solution also depends on N.
Obviously, this is consequence of the form of the production term in the right hand side
of (43). It remains open the problem to find another expression which respect the require-
ments of zero production of mass and of momentum-energy, and whose consequent MI
does not depend on N. We can say that another possible expression is

Q=− UαL p
α

c2τ
(f− fE) , (46)

where UαL is the 4-velocity in the Landau-Liftschiz frame as reported in [21, 22]. But in
[23] it was proved that, up to first order with respect to equilibrium, the expression (46)
is equivalent to the right hand side of the present equation (43). So nothing changes by
adopting the production term (46).

In any case, the two procedures have to give the same result at the non relativistic limit. In
fact, from UαUα = c2, pαpα = m2c2 we have the following decompositions:

Uα = Γ(v)
(
c ,vi

)
, pα = mΓ

( p
m

)(
c ,
pi

m

)
, with Γ(v) =

(
1− v2

c2

)−1/2

. (47)

Consequently, the limit for c → +∞ of (43) is

m
(
∂t f + ξk∂k f

)
=−m

τ
(f− fE) , (48)

as in equation (41)1. It follows that both the results of the CEM and the MI have the same non
relativistic limit. In the next section we compute the non relativistic limit.

4.1. The non relativistic limit of χ, µ and ν

In this section we prove the convergence in the non relativistic limit of the heat conductivity
χ, the shear viscosity µ, and the bulk viscosity ν.

In the previous sections we have introduced the new variables θ∗1,1, θ
∗
1,2, θ

∗
1,3, θ

∗
2,3 which

have not studied so far in literature. In order to compute the non relativistic limit of χ, µ and
ν it is necessary to analyze the non relativistic limit of these new quantities.

Taking into account (52), we have

θ∗1,2 = 3θ1,1 , θ
∗
1,3 = 2θ1,2 .

So we need only the non relativistic limit of θ∗1,1, θ
∗
2,3 given by (54). To evaluate them, let us

consider the expression of J4,−1, i.e.,

J4,−1 =

ˆ +∞

0
e−γ cosh s sinh

4 s
cosh s

ds=
ˆ +∞

0
e−x e−γ

[(
x
γ + 1

)2
− 1

] 3
2

x
γ + 1

dx
γ

=
e−γ

γ

ˆ +∞

0
e−x

(
x
γ + 2

) 3
2

x
γ + 1

(
x
γ

) 3
2

dx ,
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where in the first passage we have changed the integration variable according to the law
cosh s= x

γ + 1 → sinh sds= dx
γ . Now the Mac-Laurin expansion of the function g(y) =

(y+2)
3
2

y+1 around y= 0 is

g(y) = 2
√
2

(
1 − 1

4
y

)
+ y2 (· · ·) → γ

5
2 eγ J4,−1

= 2
√
2
ˆ +∞

0
e−x

(
1 − 1

4
x
γ
+

1
γ2

(· · ·)
)
x

3
2 dx

= 2
√
2

[
Γ

(
5
2

)
− 1

4
Γ

(
7
2

)
1
γ
+

1
γ2

(· · ·)
]

= 2
√
2π

[
3
4
− 15

32
1
γ
+

1
γ2

(· · ·)
]

where in the last passage we have used the Gamma function

Γ(s) =
ˆ +∞

0
e−x xs−1 dx

defined for s> 0 and satisfying the relations Γ(s+ 1) = sΓ(s), Γ
(
1
2

)
=
√
π. In a similar way

we can obtain the expansion of J2,1 or we can read it on page 21 of [5] and it is

J2,1 = 2
√
2π e−γ γ−1/2

[
1
4γ

+
15
32

1
γ2

+
105
512

1
γ3

− 315
32 · 128

1
γ4

+ · · ·
]
.

It follows that
´ +∞
0 J∗4,−1φ(I) dI´ +∞
0 J∗2,1φ(I) dI

=

´ +∞
0 γ

5
2 eγ J∗4,−1φ(I) dI

γ
´ +∞
0 γ

3
2 eγ J∗2,1φ(I) dI

=

´ +∞
0

(
γ
γ∗

) 5
2
eγ−γ

∗
eγ

∗
γ∗ 5

2 J∗4,−1φ(I) dI

γ
´ +∞
0

(
γ
γ∗

) 3
2
eγ−γ∗ eγ∗ γ∗ 3

2 J∗2,1φ(I) dI

=

´ +∞
0

(
γ
γ∗

) 5
2
eγ−γ

∗
2
√
2π
[
3
4 − 15

32
1
γ∗ + 1

γ∗2 (· · ·)
]
φ(I) dI

γ
´ +∞
0

(
γ
γ∗

) 3
2
eγ−γ∗ 2

√
2π
[
1
4 + 15

32
1
γ∗ + 1

γ∗2 (· · ·)
]
φ(I) dI

,

and, consequently,

γ

(
γ

´ +∞
0 J∗4,−1φ(I) dI´ +∞
0 J∗2,1φ(I) dI

− 3

)

=

´ +∞
0

(
γ
γ∗

) 3
2
eγ−γ

∗
[

3
4γ
(
γ
γ∗ − 1

)
− 15

32

(
γ
γ∗

)2
− 45

32
γ
γ∗ + 1

γ∗ (· · ·)
]
φ(I) dI

´ +∞
0

(
γ
γ∗

) 3
2
eγ−γ∗

[
1
4 + 1

γ∗ (· · ·)
]
φ(I) dI

.
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Since we have

eγ−γ
∗
= e−

I
kBT , γ

(
γ

γ∗ − 1

)
=

γ

γ∗ (γ− γ∗) =− γ

γ∗
I
kBT

,

we can write

lim
γ→+∞

γ

(
γ

´ +∞
0 J∗4,−1φ(I) dI´ +∞
0 J∗2,1φ(I) dI

− 3

)
=−3

´ +∞
0 e−

I
kBT

I
kBT

φ(I) dI´ +∞
0 e−

I
kBT φ(I) dI

− 15
2
.

Consequently, we get

´ +∞
0 J∗4,−1φ(I) dI´ +∞
0 J∗2,1φ(I) dI

= 3
1
γ
+

−3

´ +∞
0 e−

I
kBT

I
kBT

φ(I) dI´ +∞
0 e−

I
kBT φ(I) dI

− 15
2

 1
γ2

+
1
γ3

(· · ·) ,

θ∗1,1 =
1
γ
+

−
´ +∞
0 e−

I
kBT

I
kBT

φ(I) dI´ +∞
0 e−

I
kBT φ(I) dI

− 5
2

 1
γ2

+
1
γ3

(· · ·)

=
p
ρc2

+

−
´ +∞
0 e−

I
kBT

I
kBT

φ(I) dI´ +∞
0 e−

I
kBT φ(I) dI

− 5
2

 1
γ2

+
1
γ3

(· · ·) .

We can apply this result in (33)2, jointly with θ∗1,2 = 3θ1,1 , and have that the heat conductivity
has the form

χ =− mτc8

9kBT2

ρ2

p
θ1,2

3θ1,1 − θ1,2 +
ρc2

p
θ1,2

´ +∞
0 e−

I
kBT

I
kBT

φ(I) dI´ +∞
0 e−

I
kBT φ(I) dI

+
5
2

 1
γ2

−ρc2

p
θ1,2

1
γ3

(· · ·)
]
.

Moreover, from equation (11) of [24], we have that the exact expressions

θ1,1 =
p
ρ

1
c2

, θ1,2 = 3
p
ρ

1
c2

+ 3
p
ρ
g1

1
c4

with g1 =
e− ρc2 + p

ρ
,

so that we find

χ =− mτc2

kBT2
ρ

− p
ρ
g1 +

´ +∞
0 e−

I
kBT

I
kBT

φ(I) dI´ +∞
0 e−

I
kBT φ(I) dI

+
5
2

(p
ρ

)2

− p3

ρ3c2
(· · ·)

 .

By performing similar calculations, we find that

g1 =

´ +∞
0 e−

I
kBT

I
kBT

φ(I) dI´ +∞
0 e−

I
kBT φ(I) dI

+
5
2

 p
ρ
+

1
γ
(· · ·) ,

so that the above expression of the heat conductivity χ has a finite non relativistic limit.
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To evaluate the non relativistic limit of the shear viscosity µ in (37)2, we need the expression
of θ∗2,3 and of J6,−1. With similar computations we obtain that c4 θ∗2,3 and µ have a finite limit

lim
c→+∞

c4 θ∗2,3 = 3

(
p
ρ

)2

and lim
c→+∞

µ= τ p .

Moreover, with similar computations we obtain that ν is convergent in the non relativistic limit.

5. Summary

In this article we have described how it is possible to reconstruct, as a first iteration, the laws of
the ROT starting from the laws of the RET of polyatomic gases by using two different iteration
methods. In literature, two procedures are used which are the so-called MI and the CEM. Both
of these methods lead to the relativistic version of the Navier–Stokes and Fourier laws, i.e, the
so-called Eckart equations as a first iteration. It is well known that the relativistic version of
the Navier–Stokes and Fourier laws are two fundamental laws of ROT and in these equations
the following remarkable physical quantities appear as coefficients: the heat conductivity χ,
the shear viscosity µ, and the bulk viscosity ν. We have proved that the expressions of χ, µ,
and ν obtained via the CEM do not depend on N, whereas these expressions obtained through
the MI depend on N. In order to make clear this difference we describe our main results giving
more details.

First of all, we observe that we have found the following expressions for the shear viscosity
µ by using the MI method in the case N= 3 (see equation (25)) and in the case N= 2 (see
equation (28))

µ=
5
3
mc4ρτ
kBT

θ2,3
θ2,4

θ2,3 , caseN= 2

µ=− c4mρτ

2kBT

∣∣∣∣∣∣
2
15 θ2,4

2
15 θ2,5 − 2

3 θ2,3
2
45 θ2,5

1
35 θ2,6 − 2

15 θ2,4
2
3 θ2,3

2
5 θ2,4 0

∣∣∣∣∣∣∣∣∣∣ 2
15 θ2,4

2
15 θ2,5

2
45 θ2,5

1
35 θ2,6

∣∣∣∣ , caseN= 3.

It is immediate to realize that these two expressions of µ are, in general, different each other
and then we can conclude that the MI give us in the relativistic case a result depending, in
general, on the number of moments N. Analogous conclusions can be reached by observing
the different expressions ofχ (compare equations (23) and (27)) and ν (compare equations (21)
and (26)) when one uses the MI method in the relativistic cases for polyatomic gases in the
cases N= 3 and N= 2, respectively.

Let us now look at the expressions obtained for χ, ν and µ by using the CEM in the relativ-
istic case for a polyatomic gas with an arbitrary value of N (which are written below for the
convenience of the reader)

ν =−mτ

kB

[∣∣∣∣ ρ e
c2

e
c2 ρθ0,2

∣∣∣∣−1 (1
3
ρc2 θ∗1,2

∣∣∣∣ p e
c2

1
3 ρc

2 θ1,2 ρθ0,2

∣∣∣∣
+

1
6
ρc2 θ∗1,3

∣∣∣∣ ρ p
e
c2

1
3 ρc

2 θ1,2

∣∣∣∣) − 5
9
ρc4 θ∗2,3

]
,
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χ =− mτc8

9kBT2

ρ2

p
θ1,2

(
θ∗1,2 −

ρc2

p
θ1,2θ

∗
1,1

)
,

µ=
1
3
mτ

kBT
ρc4 θ∗2,3 ,

where θk,j and θ∗k,j are introduced in equations (9) and (51), respectively. Since these expres-
sions of χ, ν and µ do not depend on N we can conclude that the CEM furnishes results which
do not depend on the number of the moments N in the relativistic case. The convergence of
ν,µ,χ in the non relativistic limit have been proved in section 4.1.

Moreover, in section 4 it has been proved that the MI and the CEM lead at the same results
in nonrelativistic case.

Finally, we want to conclude this section with an important observation. Of course, if one
uses the MI method for polyatomic gas in the relativistic case the results depend on the choice
of the production termQ defined in equation (1). So a natural problem (still open) is the determ-
ination of a specific function Q such that the requirements of zero production of mass and of
momentum-energy are satisfied and whose consequent MI does not depend on the number of
the moments N. This remains an open problem.
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Appendix. Some integrals necessary for recovering OT with the
Chapman–Enskog method

We define

A∗α1···αn+1 =
c3

mn−2

ˆ
ℜ3

ˆ +∞

0

fE
Uµpµ

pα1 · · ·pαn+1

(
1 +

I
mc2

)n−1

φ(I) dI dP⃗ . (49)

We see that A∗α1···αn+1

E is like Aα1···αn+1

E but with the function to be integrated which is now
divided by cosh s

(
1 + I

mc2
)
. Consequently, we find the expressions corresponding to (8), (9),

i.e.

A∗α1···αn+1

E =

[ n+1
2 ]∑

k=0

ρc2kθ∗k,n h
(α1α2 · · ·kα2k−1α2kUα2k+1 · · ·Uαn+1) . (50)
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where the scalar coefficients θ∗k,n are

θ∗k,n =
1

2k+ 1

(
n+ 1
2k

) ´ +∞
0 J∗2k+2,n−2k

(
1+ I

mc2
)n−1

ϕ(I) dI´ +∞
0 J∗2,1ϕ(I) dI

, (51)

where Jm,n(γ) =
´∞
0 e−γ cosh s coshn ssinhm sds, γ = mc2

kBT
, J∗m,n = Jm,n

[
γ
(
1+ I

mc2
)]
.

By comparing this last equation with (9), we find that

θ∗k,n =
n+ 1

n+ 1− 2k
θk,n−1 , for every k such that n+ 1> 2k . (52)

From this last equation it follows that only the expressions for n+ 1= 2k are present (which
means that only the case n odd has to be considered), and for these cases, equation (51) gives

θ∗k,2k−1 =
1

2k+ 1

´ +∞
0 J∗2k+2,−1

(
1+ I

mc2
)2k−2

ϕ(I) dI´ +∞
0 J∗2,1ϕ(I) dI

. (53)

The expressions are necessary with k= 1 and with k= 2, i.e.,

θ∗1,1 =
1
3

´ +∞
0 J∗4,−1ϕ(I) dI´ +∞
0 J∗2,1ϕ(I) dI

, θ∗2,3 =
1
5

´ +∞
0 J∗6,−1

(
1+ I

mc2
)2

ϕ(I) dI´ +∞
0 J∗2,1ϕ(I) dI

. (54)

The derivative of (54)1 with respect to γ gives

∂ θ∗1,1
∂ γ

=
−1
3

´ +∞
0 J∗4,0

(
1+ I

mc2
)
ϕ(I) dI´ +∞

0 J∗2,1ϕ(I) dI
+ θ∗1,1

e
ρc2

=− 1
γ
+ θ∗1,1

e
ρc2

.

From this result it follows

e
ρc2

=
1

γ θ∗1,1
+

∂

∂ γ
lnθ∗1,1 . (55)

Since in literature everything has been expressed in terms of e
ρc2 and its derivatives, we see

that now everything is expressed in terms of θ∗1,1, its derivative and of θ∗2,3.
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