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Abstract

We consider two possible ways, i.e. the Maxwellian iteration (MI) and the
Chapman-Enskog method (CEM), to recover relativistic ordinary thermody-
namics from relativistic extended thermodynamics of Polyatomic gases with
N moments. Both of these methods give the Eckart equations which are the
relativistic version of the Navier—Stokes and Fourier laws as a first iteration.
However, these methods do not lead to the same expressions of the heat con-
ductivity y, the shear viscosity u, and the bulk viscosity v which appear as
coefficients in the Eckart equations. In particular, we prove that the expres-
sions of , u, and v obtained via the CEM do not depend on N, while those
obtained through the MI depend on N. Moreover, we also prove that these two
methods lead to the same results in the nonrelativistic limit.

Keywords: ordinary thermodynamics, Maxwellian iteration,
Chapman-Enskog method, rational extended thermodynamics

1. Introduction

Rational extended thermodynamics (RET) is an elegant theory appreciated by mathematicians
and physicist. This theory was developed in a systematic way by Liu and Miiller in [1] for the
classical case, while the relativistic case was considered by Liu et al in [2]. Both articles [1] and
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[2] are based on few natural assumptions, in fact only universal principles' are imposed and, as
a consequence of these principles, the hyperbolicity of the field equations is established. This
is an important achievement because in this way in the relativistic case the paradox of infinity
velocity of the propagating waves is automatically eliminated. These and other related results
can also be found in the book [3] but they concern only the case of a monoatomic gas. The
extension to the case of polyatomic gases was done in [4] for the classical case and in [5] for
the relativistic case. More details on these generalizations to the polyatomic case can also be
found in the book [6]. However, a physical observation by Pennisi recently published in [7] has
caused a revision of the previous models both for the classical and relativistic cases leading to
new results that can be found in [8] and [9]. In particular, in the article [9] a satisfactory model
for the relativistic extended thermodynamics of polyatomic gases with N moments (ET") has
been proposed.

However, so far, ordinary thermodynamics (OT) has been succesfully used in practical
applications, so a good test for establishing the validity of RET consists of finding proced-
ures of approximation which allow us to get the equations of OT as a first step.

On this regard, we address the readers to two recent articles [10, 11] where the authors
consider the case N =2. In particular, in these papers a constraint between the coefficients
of a triple tensor has been found so that the system converges to the Eckart equations in the
Maxwellian iteration’s first step. Moreover, it is also proved that this constraint is surely sat-
isfied if the system can be put in the symmetric form.

So, in this paper, differently from what is studied in [10, 11], we analyze the results for
different values of N.

In the literature two procedures have been proposed which realize the transition to OT: the
Maxwellian iteration (MI) and the Chapman—Enskog method (CEM).

We will prove that the application of both in the relativistic case of these procedures leads,
as a first iteration, to the Eckart equations [12], which in [2] are called the relativistic version
of the Navier—Stokes and Fourier laws and are two fundamental laws of relativistic OT (ROT).
From now on we refer to the Eckart equations as the Navier—Stokes and Fourier laws. It is
important to remark that in the Navier—Stokes and Fourier equations the following important
quantities appear as coefficients: the heat conductivity y, the shear viscosity u, and the bulk
viscosity v. The aim of this paper is to show that the expressions of y, i, and v obtained via
the CEM do not depend on N, whereas these expressions obtained through the MI depend on
N. In order to get this result, let us recall the basic facts on the field equation of Relativistic
Extended Thermodynamics of Polyatomic gases and ROT.

Let us start by considering the balance equations of ETV [9]. They are obtained starting
from the Boltzmann equation

. U+ 3 T
pns=omit 0= Uy g2 (10 1)),
mc p9|72

T mc?
N n
1o x - 1 i T
f=e %, X—ZOWM.WP“‘WP‘” <1+mc2) ; (1)
—
U
»1)\E+Tp'p“(l+ Iz) 3
-] - — N  mc=/ p
fe=e iz , 91,2=w(9+17)'

! The universal principles used to develop the RET are: (1) the entropy principle, (2) the causality principle and (3)
the Galileian principle in the classical case or the relativity principle in the relativistic case.
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Here, f is the distribution function, kg the Boltzmann constant, m the relativistic particle mass,
Aoy o, are Lagrange multipliers, c the light speed, p* the 4-momentum of the particle (from
now on the greek indexes take the values 0, 1,2,3) such that p,p® = m?c?, T is the internal
energy of the particle due to rotational and vibrational modes, T a relaxatlon time, g the first
Lagrange multiplier calculated at equilibrium, U* the 4-velocity such that U, U® = ¢?, Q the
production term in the Boltzmann equation, T the absolute temperature, p the mass density,
p the pressure, e the energy, and ¢“ the heat flux such that U,g® = 0. The name ‘Lagrange
multipliers’ has been used in literature [1-3] and this terminology is due to the fact that the
distribution function f can be obtained through a variational principle called the maximum
entropy principle [5] with constrained variables. In the case with six moments, the heat flux
is zero and g replaces the scalar anonimous quantities which are present in [13] and ¢©
an unknown function to be determined by imposing that the production of mass and energy—
momentum are Zero.

After that, the function ¢(Z) is introduced which measures ‘how much’ the gas is
polyatomic.

Finally, by multiplying (1); by —<p® ---p® (1 + -L;)" (Z) and integrating the result
with respect to dZ d P one obtains the balance equatlons

aaAa = 07 aaA(m" == O,
Op A O = for n=2,---N, (2a)

where

~+o0 I n -
ATt 07 / fpor .. poutt (1 + 2) w(Z)dZdP,
% Jo me

mnl

c

400 T n .
e = _/ Qpa1~'-pa’l(1+2) ©(T)dIdP.  (2b)
R3Jo mc

mnl

Obviously, equations (2a); » are particular cases of (2a)3 withn = 0, 1 but it is better to write
them separately because they are the mass and energy-momentum conservation laws, respect-
ively; their productions I and I*' are zero as a consequence of the definition of Q (see (1),).
Moreover, we sometimes denote A® with V* and A**" with 7!,

Then, the Lagrange multipliers Aq,...q, are obtained in terms of the physical variables but
in a linear departure from equilibrium (here denoted with the suffix E) which is defined as the
status where \y,..., =0 forn=2,--- N and \E = U—T“ The calculations for the case N =2
can be found in [9]. These calculations are based on the expression of the following tensor

+ oo T n .
Agl = T o 1/3;3/ fep™ po! (1+ mc2> SO(I) dZdP. (3)

This tensor is only determined in terms of the energy e which is given by

e L Th (14 55) e dT
pe? Jo T e (T)dT

; “

where Jy,(7) = [;° €77 cosh” ssinh” sds, v = s Imn = I av(1+:5)] . Here we
report a new short proof of this result because we need to use Ag‘ "4 In fact, from (3) it

follows that

dAg]...an+| _ _% (Ag] Otn+ld)\E +Al)él Oén+2d)\i +2) . (5)



J. Phys. A: Math. Theor. 57 (2024) 015207 F Demontis and S Pennisi

This equation, written for n =0, is

U~y
d(on“):—% {on”d)\E-i- (e = +ph“'“2)d)\§2} ,

whose contraction with U“! allows us to determine
ANF=—"E gy Zyeant
- P 2 ap*

By substituting this in equation (5), we find

dAg]"'a»H»l :Ag|"~an+1 ( > kﬂAg oz,,+7d/\E
B

Qpt2 *

If we take p and /\5 as independent variables, the coefficient of dp shows that Az is

linear and homogeneous in the variable p, while the coefficient of d /\5 allows us to determine

kg OAR" ! € oo
== o T yade Ut ©)

Qp42

Qe Qg
AE

Taking into account this result, all the tensors A, """ are determined in terms of the previous

ones. Obviously, we must be careful and express everything in terms of p and )\5 . Regarding
)\g, we note that

U c pc
M= L = oy =— S . oa— =L\
T BB T ARE v TP VAENES

As a test, let us consider equation (6) for n =0, i.e.

o ks OAD e
™ = m ONE, A U
= 7kiB pC Qo p(,‘ )\(Xl )\az )\(Xl )\av
\/)\g)\‘%g (AEAES)Y/2TE /\E)\E5
k

= B prpeee 4 S unye,
c
So we have obtained the expression for the coefficient of U*' U2, while the other term gives
p=nkgT. )

Note: In the above calculations we have used the property

9 1 4
NENE = gtV NEXE oA (ATAL) =20 XF =2 0%
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We note also that (6) does not allow us to obtain the expression for the energy e; so to find
it we must go back to the definitions (3) for n =0 and n=1 and contract them by U,, and
Uy, U,,, respectively. The results are

drm*c® __mE [T
2 1—
pe-=——7+c¢ 5 v(I)dT,
= ; 2,1
47 m*c’ mAE /+C° ( )
2 1 *
ecT = —— J 1+ »(Z)dT,
/—g 2,2 2

the second one of these expressions, divided by the first one gives the formula (4) reported
above.

From these considerations it is possible to derive the expression for Az reported in
equations (29) and (30) of [7] and rewritten in equations (14)—(16) of [9]. For the convenience
of the reader we write this expression below:

4
A(EM RS/ E S R pCZketh(alaz R e T e SR I Uoéi+l) , (8)
k=0

where the round brackets appearing in A(®192 ... po2%-102% Jo%+1 ... [J%+1) denote the symmet-
ric part of this tensor, while the scalar coefficients 6 ; are defined as follows:

1 <j+ 1) f()+oo‘]>2kk+2,i+1—2k (1+ %)] ¢(Z) dI- ©

Opj=5—
T 2k+1\ a5, 0(T) dz

. . . . 2
Moreover, 6 ; can be determined by the recurrence relations which use the quantity v = %:

[+ 2 j+3—2h

j+1 (10)
J o 9/;-1,,‘) , forh=1,---, {2] 7

012 .

1 .
B2 = §9%7j, for j even.

Regarding the production terms in the balance equations (2b), we see that, by means of (3), it
becomes

U,
cir

where ¢ =U, (TYB — Tgﬁ) .

. Ua Aaﬁalma,,
,06‘67'91,2 964k (11)

Ial...a’. _

(Aozal---ai _ A(EXOLI"'OL,-)

So far we have described the results of Extended Thermodynamics of polyatomic gases, as
obtained in [9] following the new ideas of [7].

On the other hand, Relativistic Ordinary Thermodynamics (ROT) uses only the
equations (2a) with the following definitions
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2
A = T = C%U“U“‘ + (p+m)h* + CiU(aqa‘) + 159> where

T
T =—v0, U, ¢° =—x h*P (aaT— S U 0, Ua> tegys =20h§H 0cq Uys,  (12)

where the angular brackets appearing in f.~> denote the traceless symmetric part of the
tensor.

Here (12),_4 are the Eckart equations [12]; in particular, following [2] equation (12)3 cor-
responds to relativistic version of the Fourier law while equations (12), and (12)4 correspond
to the relativistic version of the Navier—Stokes law. The coefficients v, x, i are called the bulk
viscosity, the heat conductivity and the shear viscosity, respectively.

These equations have the drawback that they are not hyperbolic but parabolic. As we have
already said, this was the reason for the birth of Extended Thermodynamics whose equations
are hyperbolic.

The paper is organized as follows: In section 2 we briefly recall how the MI procedures
works and show how it is possible to reconstruct the laws of ROT by using this procedure.
Moreover, in section 2 we derive the expressions of the heat conductivity y, the shear viscosity
1, and the bulk viscosity v in the particular cases N =3 and N =2 putting in evidence that,
if one uses the MI procedure, these expressions depend on the number of moments N. In
section 3 we explain how the CEM procedure works and derive the laws of the ROT by using
this procedure. In section 4, generalizing a well-known result of [14] for monoatomic case,
we prove that in the non-relativistic case the MI and the CEM procedures lead to the same
results. The convergence of v, x,  in the non relativistic limit is proved in section 4.1. Then,
the results obtained are summarized in section 5. Finally, an appendix is devoted to some
particular integrals used to develop the computations of this paper.

2. The Maxwellian iteration

The MI method was applied to recover OT from Extended Thermodynamics of monoatomic
gases in [1] for the non relativistic case and in [2] for the relativistic framework. The relativistic
case for polyatomic gases with N =2, and for its subsystems with fourteen and six moments,
has been treated in [9]. In the next section MI will be implemented in the case of an arbitrary
number N. It works in the following way:

e The equations (2a) are considered, but with their left hand sides calculated at equilibrium
and their right hand sides at first order with respect to equilibrium, i.e.

OaA2 =0, 0,A0 =0,

13
804Agal"'an :I[?lll.”an7 for n:27 ...N’ ( )

where the meaning of the subscript MI will be introduced in the next item.
e The deviations of the independent variables from equilibrium are calculated in terms of 9, \E
and O, )\ﬁ from (13)3; they are called ‘first iterates’ and we will denote them with a suffix

MI. After that, they are substituted in 7% — T%7 with 7% given by (12),.
e The quantities O, A* and U*U"d, AL, are calculated from (13);, and substituted in the

expression of T%° — 7?13 obtained in the previous step.

In this way one obtains (12) of ROT, with particular expressions v/},, xA7;, 1y, of the bulk
viscosity v, the heat conductivity x and the shear viscosity .

6
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However, these expressions depend on the number N of the extended model from which
they come from. For example, in [9] it was found that, for the subsystem with 14 moments,
the values of 1 and x remain the same as for the model with 15 moments (i.e. N =2) while
v changes. This expression for v changes again for its further subsystem with six moments
(In this subsystem with six moments p and x do not play a role). This is not fully satisfactory
because there is only one OT and it is strange that its equations depend on the number N of the
extended model from which they are derived. In the next subsection this MI will be described
in more detail for an arbitrary number N; furthermore, we will see what is the difference of the
expressions of i, x and v in the cases N =3 and N =2 in the sections 2.2 and 2.3, respectively.

2.1. ROT recovered with the Maxwellian iteration

It is easy to prove that equations (13); » can be written as (see [5] for more details)
VE O XE + Tp" 0u XE =0, T3 0, XE + AgPF 0, NE = 0. (14)

The first one of these equations and the second one contracted with Ug give a system whose
solution is:

—1

e e
Ue 8@>\E — P 2 p 2 haé 8a/\E,
=z pbo o 7%1,0 201, p0o 2 ° (15)
U UPONE = — | P & p D R g AE .
& pbop| |&  ptbin 0
It is interesting to note that A“* J,, )\ﬁ = lTho‘“ 0 Uy =— lT(')a U®. The equation (14),, con-
tracted with hf , allows us to determine
af o \E 2p, 0(arrs) o \E
h7 O\ = —gfc 01207 U O A - (16)
p

Now we consider (13);, with use of (2b), (1), and taking into account that g, =
UP (T3 — Tg~p); jointly with V& — V& =0, U, Ug (T“B — T?B) = 0 we obtain the system

N
aq "'anB Bm 3 E
Z()Ua (AE ' : + C4p912875UBAfEmal-“anAgBﬁr“ﬁm) ()‘51---5"1 - )‘51~--Bm)
o ,
= — 7 (AR 9, NE 4 Agerentt g AEYM
=7 (AT OLNE £ AR A ) for m=2,- N,

N
ZAgﬂ]ﬁm (Aﬂl"'ﬁ’” - )\gl"‘ﬂnx)MI = 0’

m=0

N
ZUQUBAgﬂﬁI“.ﬁm ()\ﬁ]"‘Bm _ )‘gl---ﬁm

m=0

M =o. (17)
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From this system we can obtain ()\51..‘ B — )\El,,_ ﬁm)MI as a linear and homogeneous com-
bination of dy ¥, J(q )\ﬁ). By using (15) and (16), (Ag,...5, — AEA.ﬂm)M' will be a lin-
ear and homogeneous combination of A% d, AL, he Ut 9, )\ﬁ) and h*<% hP>1 9, /\ﬁ) =

S hPr o, A£>3. By substituting these (Ag,...5, — Ag].,,BM)MI in
s rap\M M afi s E M
(ya e ) = —QZAE " (Ngrepn — X5 5) (18)
m=0

we obtain that h,s (T — 73’3 YMI'is a scalar function which is linear and homogeneous in
the independent variables A% 0, )\ﬁ (a scalar variable), h%® U 8(a /\ﬁ) (a 3-dimensional vec-

tor variable) and A% hP* 9, )\E>3 (a variable which is a 3-dimensional second order tensor).
For the representation theorems (see [15] for more details on the representation theorems)
the quantity hqs(T° — T97)M! must be proportional to h** 9, AE = =18, U In this way,
(12); is obtained with v/}, instead of v. Similarly, A,s(T*? — Tgﬁ YMI'is a 3-dimensional vec-
tor function which is linear and homogeneous in the same independent variables. So, by
the representation theorems, hqs (T — T¢7)M! must be proportional to 2% UM e )\ﬁ) =

%‘2 o« (Ba T — le U* 0, Ua). In this way, (12), is obtained with Y}, instead of x.

Finally, hsP h)> (T — 7\ is a 3-dimensional traceless second order tensorial function
which is linear and homogeneous in the same independent variables. By the representation
theorems hiﬁhz> (M — Tg”)MI must be proportional to hi ht O<a Uy . In this way, (12)3 is
obtained with p;, instead of .

As examples of this procedure, we will consider the particular cases with N=3 and N =2
in the next sections.

2.2. The Maxwellian iteration in the case N=3

We begin with the case N =3 because the calculations developed in this case allow us also
to treat the case with N =2 which will be considered in the next subsection. By comparing
the results obtained in the case N =3 with those obtained in the case N =2, it is easy to see
that the expressions of the coefficients of bulk viscosity, heat conductivity and shear stress are
different. This argument allows us to prove that the expressions of v, y and p obtained with the
MI depend on N. So far in literature, this fact has been proved only comparing the case N =2
with two of its subsystems.
The equations (17) and (18) for N =3 are:

ooy 3 E\MI
Un (457 4 i gy mgs ) (4 X)

3 il
-+ i
+ U(x (AE 1 1 —+ CApelﬂg,yéUﬁA:'yal..,aylAzﬂﬂ) ()\5] — )\ I)

N
aoy a1 B2 3 MI
+ Z Ua (AE + Apb, g«,(sugAgw’“'“”Ag‘”"lf"2> (Asi6.)

m=0

aoy o f18283 3 i
+ Ua (AE + c4p9172 g,Y&UBAZt’ml...a,lAiﬁ51/32/33) ()\515263)

= =7 (AR OLNE £ AR A ) for n=2,..3, (19)
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o M1 MI MI MI
Ag (/\ - )‘E) + AgBl ()‘/31 - )\El) + Agﬁlﬁz ()‘5132) J'_Agﬁlﬂz,& ()‘5152,33) =0,

UaUs { ASP (N = XYM A9PP (ng, — NN AGPPP (N g 5 )M

+ Agﬁﬁlﬂm} ()‘513253) } =0.

(=) = A 0 A (2"
B

N MI a MI
+ AEﬁﬂlﬁz ()\ﬂlﬁz) 4 AEﬂﬁ13253 ()\ﬂlﬁzﬁ3) ] .

We note that in the case N =2 we have to consider (19), only for n =2 and to put (\g, g, 3, M=
0; so the calculations in this section allow us to consider also the case N = 2 which is the object
of the next section.

Determination of the bulk viscosity v. Here we consider equations (19); with n =2 con-

tracted by “‘ az , (19); with n =13 contracted by %, (19); with n =2 contracted by

haya, (19), W1th n=73 contracted by fa 0y Uay , (19), contracted by %, (19); divided by pc®

C4 > C(1

and (19)4 contracted by — kg

mpc2

So we obtain a system Z 1 a;iX’ = b; constituted by 7 equations in the 6 unknowns X I =
(A =AY 2 = UP (Mg, — NE M, X° = U Uﬂz M), Xt = UPLUP U (Ag,5,8.)"
X3 = 2hhP (/\Blﬁz)MI’ X = CthlBZ U (/\Blﬁzﬁs) where

9 1 1903913
=0 33— 9 fi k=1,2,3,4.; = —0
0,k+1 1 91’2 0k, TOr ,2,3,4.5  ais 10 4+2 02 ;
1 9 03014
=—0i5
a1 =3 +10 0 ; (20)
1
by=—7 {90,2 U8 X + (90,3UQU“ + 60291,3hw> o )‘ﬁ)} ;
9 1 1904913
=0 33— 9 fi k=1,2,3,4.; =—0;s
Qg 0,k+2 1 9’2 0k, Ior y2,3,4.5  ass 5 5 012 ;
1 9 Ooabi4
) = 7Y B
aze 7 1,6-1-10 0, °

3
by=—r7 |:9013 U®o, \E + (90’4UQUN + 1()620174/’1(1”) 8(a>\ ):|
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3 00,1013 1 3002013 3 3003013
:9 — 2 = . :—9 — 2 = . :—9 — 2 = .
asg L1+ 2 01, ;asn 3013 + 2 0, ;as3 0 14 1 270,
4 3 6040 3 1 1 (65)
:—9 —_ 2 > . :—9 —_ 7
as =505 + 5 0 135 = 3 bha t o by
1 9 014613
ase = 3 0 o 3

375730 7g,,

1 5
by=—7 {91,2 U0 \F + <291}3UQU“ + 5c2 92,3ha“) e Aﬁ)] ;

1 9 6p,16004 3 9 602004 1 9 63014
Ly 2abos 3, 9 Bo2bos Ly 9 B03bia
aqy ) 1,3+10 02 ;aq 10 1,4+]O 02 ;a43 5 1,5+10 02
1 9 04614 1 3 0136014
:79 —_— 2 2 : :70 _
ags 7 1,6+10 012 ; a4s 9 2,5+2O 02
1 27 (61.4)
:79 — 2 N
w6 =7%6 % 150 g,

1 E 3 1 2 @ E .
by=—71 59173 U0y \* + <10 91’4UCEU“ + gC Or.40 “) B(Q )\#):| ;

1 1
asy =00,0;asy =00,1;as3 =003 as4 = 0p3; ass = 591,2;6156 = 591,3;]95 =0;

1 3
a61:90,1;062:90,2§a63:90,331164:00,45065:691,3;066:E9],4§b6:0§
360 0 19 3 0 59 0
ap = san =010 a3 ==013;a14=-—014;a75==015;a76 =004;
7 Lisan =bip3as =5 0135a74 = 750145075 = 20255 a76 = 02,45

kg 5 s\ M
b7:7mpcz (Ta ~ Tk ) hag

where the expression of 6 ; has been introduced in (9). By applying the Rouché—Capelli
theorem, we see that the determinant of the augmented matrix must be zero; so, from this
condition, by calling D; the algebraic complement on the line i, column 7 of this matrix,
we find

2
hap (T ngB)MI: _empT,
kg
AP 00 U200 AE + (BosUPUP + L 20, 3100 ) 9, \E
D, 0,2 o 0,3 g¢ 3 (@ Ap)
+&_9 U0, NE + ( 6 UaUﬂ+ic29 hOH ) i AE
D | 0,3 o 0,4 10 1,4 (a )
D3 « E 1 « 5 2 [ E
+H7 |:0172U Oa A +(29173U U* + gC 9273h ”) (3'((¥)\M)
Dy [1 3 1
— |2 013U NE + | =0, 43U U" + =20, 4h™ ) 9o \E
+D7 2 1,3 +(10 14 +3C 2,4 > (@] (>
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i.e. by using (15),

M
g(Tx'Bng> =-3M9,U", with

P e
2 2 pe
M= C;Z:); <§; 0o+ %90,3 + %391,2 + ;91,3) < ?172 ?Lj’z
Y 0o,
+(11 2913+D23C2914+35C2923+D41€2924) @D
D; 6 ’ D; 10 ’ D; 3 ’ D; 3 ’
e
e 2
+ (gl 003 + ZDTj 0,4 + ZD): 1% 1,4) pczl 622
P 50,2

Determination of the heat conductivity xy. We consider now equations (19); with n =2

"8 Uaq, . B8 UgyUay, .
contracted by gcé , (19); with n =3 contracted by W, (19); with n =73 contracted
hevs oy h? 0 0
by %, (19); contracted by —o and (19)4 contracted by kg h;zﬁ .

So we obtain a system 2?21 byX 9 = b? constituted by 5 equations in the 4 unknowns
MI MI
X'0 = ph (Aﬂl - )‘g] )M[’ X0 = pohryt: (/\,3152) > X0 =phrutus ()‘31,3253) > X =
chOPinP2Bs (\g, 6, /33)M1 with coefficients

1 1 1(6:3)
bii=—=013; bop=——04+ -2,
11 30135 b 5 14 + 6 01,
1 3 013014 1 013624
biz=—-0 —_ =——940 —_— 22
13 5 1,5+2O 0, 14 5925+ 1 0, (22)
1 1
0 _ o E Oa g E Y.
bl =T <391’2h YO N+ §91,3]’l ayt (’)m)\ﬂ)),
1 2 1 01403
b :_*0 N b :—79 ’ 2.
21 5Uas b 15 1,5+ 0 6, '
1 9 (014) 1 3 014604
b :_,9 . ’ . b — _ 9 ) 4
23 7 1,6 T 100 0, 24 35 2,6+f50 79172 ;
1 1
0 _ O E O E .
by=r1 <60173h Oa \° + 591,4}1 U“a(a/\u)> ;
2 4 16,4013
byy=—=04; bypy=——0 224713
31 30245 b 5025 T3 0,
1 3 04054 1 1 (64)°
byz=—=0 — =20 py=——0 224
33 7 26 10 6, ° 34 3 3,6+5 6,

2
bg =T (9273 he‘l@a )\E + g 92,4 hGaU,u 8(a /\ﬁ)) N

1
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2 1
bar =011; b42:§91,2; b43=§91,3; bu=03; b =0;

1 1 3 1
bsy —591,27 bsz—*9137 b53—591,4, b54—§92747
= s (1 - 1)

mpc4 haU

By applying the Rouché—Capelli theorem, we see that the determinant of the augmented matrix
must be zero; so, from this condition by calling M; the algebraic complement on the line i,
column 5 of this matrix, we find
cHtmpr
kg

1 1
— (3 91’2}19&6& A\E + 59173]’16’0‘[]'“8(@ )\E)

h,Us (Tw - 7§ﬁ>}w

M 1 1
+ —2 (6 91,3h90‘6a A\E + 56174h9°‘U"8(a /\fb)
2
(92,3 heaaa \E + 59274]’16(1 U* a(a A/EL)>:| s
i.e. by using (15),

T
g’ = —x"h (%T — S U, Ua>  with

6
w cmpT [ M 2pc 1
= — - 2
X T Dk [M5< 3, O )+ 36 @3
M, lpc M3 pc‘2 2
— —779 0 0 —2—0,,0 -0 .
+M5< 3 12013+ ¢ 14> 5( 7 1,2 2,3+32,4

Determination of the shear viscosity p. Let us consider now equations (19); with n =2
hoy<ohy >a . hay<ohy >a,Ua
contracted by %, (19), with n =3 contracted by % and (19)4 contracted

by ha<9hw >B
pct 5 .
So we obtain a system Z lcin]<9w> = b;<gy> constituted by 3 equations in the
2 unknowns X', = h<9h§f> g™ Xepys = h@9h52> U (\g, 3,8,)"", with coeffi-
cients

2 2

2
011—159247 = 15925, b1<9w>=—5792738<9)\i>3; (24)

1 2
c1 = 592,5; 0= 35 =06 brcoyp>=— 3792,43@ Aoy

2 k MI
Or3; = 5'92,45 bicoy> = — Wipha<9hw>ﬁ (Y{Xﬁ - Tgﬁ) .
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From this system we obtain

t<oyp> = 2uM g Uw> , with

2 0,4 Ebas —20,;
o Iy _29
2,5 35 V2,6 15 72,4
. : (25)
i C'mpT *92,3 s6ha 0
ZkBT 15 02,4 ll 02,5
=025 35026

Finally, to complete our analysis, we have also to consider equation (19); with n =3 con-
tracted by h<9hw h?>. But this step will give only A 818,5,>, Which does not appear in

arfas
U“ﬂ—YﬁﬁM{

2.3. The Maxwellian iteration in the case N =2.

For this case we have to consider (19); only for n=2 and put (Ag, 5253)}”] =0 in all the
equations. For example, let us see what happens for the determination of the bulk viscosity.
Determination of the bulk viscosity . We consider here equations (19)1 with n =2 con-

tracted by “‘ “2 , (19); with n =2 contracted by “'0“ , (19), contracted by % (19);5 divided

a[—}
mpct®

by pc and ( 19)4 contracted by —kp

So we obtain a system composed by 5 equations in the 6 unknowns X' = ()\ — \E )MI
UP (Ag, — NE ML X3 = UPLUP> (Mg, 5,)" . X* = W% (A, ,)™". The augmented matrix can
be obtained by cutting the rows 2 and 4 and columns 4 and 6 from the augmented matrix
introduced in section 4.1 and its determinant is given by:

air app a3z ajs by
az1 azyp as azs b
asy asy asy ass bs| =0,
as1 a2 a3 des be
a;r ap azpy apis by

where the expressions of a;; and b; are the same of the case N = 3.

By calling D; the algebraic complements of the row i, column 5 of the preceding matrix,
we find

U9, \F

(Taﬁ _ Ygﬁ)M’ hag = — mpc’T (90,2D1 + 012D,

kp Ds
N 003D1 + 16,3D
Ds

1 5
1013D1 + 623D
P 2hauakxig>

2UCUR 9o ML,

Ds



J. Phys. A: Math. Theor. 57 (2024) 015207 F Demontis and S Pennisi

i.e. by using (15),

M
(TO"B — T?B) hos = -39, U™, where

T
oMI szpT 90)2D1 + 91)21)2 C29172 9072
3kgT Ds 1 ﬁ
& b (26)
1 P
p
L 10,3D) + 360,3D, n 0o3D1 + 3013D; |52 012
Ds Ds 1 ﬁ
sz bop

It is evident that this value of v is different from that found in (21) when N = 3.
Determination of the heat conductivity x We consider now equations (19)1 with n=2
n? Um

“‘1

contracted by , (19)2 contracted by —2 and (19)4 contracted by kB haUS B . We obtain

a system Z 1 bUXJ 9 = b? constituted by 3 equatlons in the 2 unknowns Xw hoB: (Mg, —

A5 )M and X29 h9P UP2(\g, ,)M!. The augmented matrix can be obtained by eliminating
the rows 2 and 3 and the columns 3 and 4 from the augmented matrix introduced in section
4.2, so its determinant is given by:

by b bY
by by b =0,
bsi bsy bY

where b;; and b? are the same of the case N = 3. By calling D; the algebraic complements of
the line 7, column 3 of the preceding matrix, we find

T (%9172}10&8& AE 4 %0],3//16&U“8(a )\ﬁ)) D,
D; ’

kg WU (Taﬂ _ 7<EJ¢/3)M1 _

mpc* oU
i.e. by using (15),

T
¢’ = —x*Mh? (aa T — e Uu*o, Ua) , where

27
2Ml_mpC6TD1< 2 o2 (912) 4= 9 >

T 2kgT2 D3 \ 3

It is evident that this value of x is different from the value obtained by using the expression of
x found in (23) in the case N =3.
Determination of the shear viscosity p. Let us consider now equations (19); with

how) <0 > N .
n=2 contracted by “ii% and (19); contracted by %. We obtain a sys-

tem Z}:lCUXj<9¢> = bj<py> constituted by 2 equations in the 1 unknown X1<(9w> =

14



J. Phys. A: Math. Theor. 57 (2024) 015207 F Demontis and S Pennisi

hi‘ehﬁz> (Mg, BZ)MI. The augmented matrix can be obtained by eliminating row 2 and column
2 from the augmented matrix introduced in section 4.3 and its determinant is given by:

e bicoy>

31 bicoy>

where ¢; and b; <9~ are the same of the case N = 3. From this equation we find

tcop> =209 Uy, with (28)

mr_ 1 mctpT c3

5mctpt 053
=-—r == 229, 5. 29
3 kBT C11 23 3 kBT 0274 23 ( )

It is evident that this value of p is different from the value of y furnished by (25) when N = 3.

These transport coefficients are the same ones of [9] if we take into account that in [9] the
authors call w = ﬁ (see also equation (12),) and the quantities B,, BY, B present in [9] whose
expressions are reported in equation (44) in terms also of Cs which is described in equation
(34),, the matrices N™ and D, which are given in the equation before equation (30) and the
matrices N3 and D3 which are given in the equation after (32)).

3. The Chapman—-Enskog method

This method can be found in the articles [16, 17] and has been further explained in [13]. We
describe how this method works by enclosing the full expression of the production term which
was found in [18] and modified in [9]. In particular, the method starts by considering the
following equations

PYO0uf=0, 0,V¥=0, 08,7 =0, (30)

i.e. the Boltzmann equation and the conservation laws of mass and momentum-energy.
Then the following steps have to be followed:

e The equations (30) are considered, but with their left hand sides calculated at equilibrium
and their right hand sides at first order with respect to equilibrium, i.e.

o Utp
P 0afe =00 = = I(
c°T

B VE=0, 8,727 =0,

3 T
_ OT_ vy or - 1 el
fe =D fer e e, ( +mcz)] ' 31)

where the superscript OT denotes that these quantities are the first iterates defined with this
approach.

e The deviation of the distribution function from its value at equilibrium is calculated in terms
of 9, \F and 9, /\ﬁ from (31); and used in equations (2b); » withn =0 and n = 1. Obviously,
in this way I =0, I*' = 0 are obtained, thus respecting the conservation laws of mass and of
momentum—energy.

e The quantities O, A" and U*U"0,\l; are calculated from (31),3 and substituted in the

expression of A% — A%, T — 7‘;6 obtained in the previous step.

15
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We note that in the expression of Q in [13] there are 6 unknown scalars a; withi = 0, - - - 5 which
have to be determined. From the third line on page 116 of [13], by imposing V* — Vi =0, e —
ep = %(T‘"ﬁ - Tgﬁ) = 0 the authors find ay, a;, a3. By imposing V* — V& =0, ¢ — e =
% (T8 — Y‘E’“ﬁ ) = 0 we find simply that g, is constrained by ¢., U” = 0. So, g replaces the
remaining part of Cercignani—Kremer’s unknown scalars a,, a4, as. It is interesting that in a
model with 14 or more moments, g, becomes exactly the heat flux density. In a model with
six moments, there is no heat flux; in this case ¢, remains a mathematical tool as the scalars
ay, ay, as of the Cercignani—Kremer method. But it cannot be eliminated, otherwise the zero
deviation of V from its value at equilibrium would be lost.

3.1. ROT recovered with the Chapman-Enskog method

In this subsection we apply the CEM to the equations of polyatomic gases with an arbitrary
number N. In this way we will find (12) of ROT, with particular expressions 197, 97, 10T of
the bulk viscosity v, the heat conductivity x and the shear viscosity p and we will show that
all these coefficients do not depend on N.

We have to consider the equations

z

T 1+ =
fop® [mag A (1 + mcz) P 05 AE} — 3fupg

f 7f mc4p91’2 (32)

kBUu
Ve - V2 =0, UaUs (7“5 - 7‘;") =0,0,V2 =0, 0,75° = 0.

The equations (32), and (32)s5 are exactly the equations (14) of the MI approach and so the
solution of these equations is given by (15) and (16).
Let us now consider equation (32), contracted with Y &. By using (32); contracted with

mep(T)Y =5 p® and integrated in dZd P it becomes

T (V2 OLNE + T30 9, 0E) —

:T anuYg“a
B

3
PC691,2

which is an identity for equations (15) (see also the first equation after (32)).

To impose equation (32), contracted with hg, we need the tensors (49) and their represent-
ations (50) of the appendix. By using (32); contracted with mc ¢ (Z) hf; p® and integrated in
dTdP we find

3
0= R (Ve — Vi) = 5 (8 A0 950 4 W A" 9s0E) — —= Wl q, Te",
kg pctbn
from which we desume
¢ =- mre® p* 012 (07, h 0 NF + = 0 L hPOU) 9 AE
3kg p

T
=—yh’® (aaT &U“auua)

. mrcd . c? .
with X:_9kBT2 L 912( 12— /;91,29171>, (33)
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where in the last passage we have used (16) and \E = U—T” . We see here that ¢%, replaces the
Cercignani—Kremer’s scalars which did not have a clear physical meaning. They cannot simply
be put equal to zero (as in [19]), otherwise the physical requirement V* — Vi = 0 would be
violated.

We now impose equation (32)3, by using (32); contracted with U, Ug ¢ pep® (1 + %) v ()
and integrated indZ d 13; we find

m€27'

AbeBy U Ug.
kg

0=

UsT 95;0F + UsAL" )\E)f
( BLE Us + BAE 3y C4p91’2

This is an identity for equations (15) (see also the second equation after (32)).
We now proceed evaluating the other components of 7%7 — Tgﬁ . We use (32); contracted
with 7% Ug cp®p® (1+ L) ¢ (Z) and integrate in dZdP to find

mc?

mczT

(RS Tg? OsME + O AR O5NE) — AbeBy hlUg

78 — 7‘*5) WUs =

( E a¥B C4p9172
2 2

_ m]:‘BT (ph§585>\E+ gﬁ)c'29172}10(<5l]z/) (95)\5) _ qG _ _6107

(34)

where, in the last passage, we have used (16). The result is an identity. We note that, in the 6
moments model, the left hand side of (34) is zero, so that the right hand side is —¢? must be
zero; but we have said, after equation (33) that in this case the physical requirement V* — Vi =
0 would be violated. This means that this approach cannot be applied to the case of 6 moments.
This is not surprising because it has been shown in equation (19) of [20] (see also [8]) that the
optimal choices of moments are N = 0 (trivial case with only the conservation law of mass),
N =1 (only the 5 Euler’s Equations where there is no production term), N =2 (the 15 moments
model), N =3 (the 35 moments model) and so on. The 6 moments model is not present in this
hierarchy, but it can be considered a subsystem of the 15 moments model by putting g = 0
(forgetting the role it played in building the model and simply eliminating equation (33)). From
this perspective the article [19] can be considered correct.

Finally, we multiply equation (32); by h? hg ep®p” (1+ L) ¢ (Z) and integrate in dZ d P;
S0 we obtain

3
ho ne (Yaﬂ _ Taﬁ) —pp? mT7 AFOaBY NE 4 APy 9 \E) _ A/Jaﬁ
allg E s | G ( s AT+ 5 u) 4C4p91’2 quAiEg

1
=T 20, WP U9 AE
kg |3 ’

1
+ (6 pc? 01 3 YUt + pet 03 3 A h‘s”)> Os /\5] .



J. Phys. A: Math. Theor. 57 (2024) 015207 F Demontis and S Pennisi

This equation, contracted with Ay, gives

1 1 5
=T —pc 0 UPOs NE+ [ — p? 07 ;U UY + Z pc*035h% | 05 0E| = —v 0, U,
kg |3 ’ 6 ’ 9 ”
(35)
mTt ||p e |7 /1 p <
with v=—— ||} s —pc?or o
kg [@ pbo2 3P Y2 1pctoi, pbo2
L P p 5 4 }
+ —pc b7 — —pc'O5.], 36
rAE < ;pc29112> 9P s (36)

where equations (15) have been used. Moreover, contracting equation (34) with h9<7 hi> =
hy hS, — % hoyh7? it gives us

. 1 mr ”
teyg> = 2phZghs 0o Uy, with Mzgmpc492,3~ (37

The equations (33), (35) and (37), are those of ROT.

In conclusion, with this approach we have obtained the equations of ROT with heat con-
ductivity, bulk viscosity and shear viscosity given respectively by (33),, (35), and (37),.

It is evident from these expressions that they do not depend on the number of moments of
the extended model from which they are derivated.

4. The non relativistic approach
In this case the balance equation found in equations (19) and (20) of [8] are

O H i g HR i = gl with 5 =0,--- ,Nyand h=0,--- ,N—s. (38)

In partlcular Hy = p is the mass density, H ' = pv! where V"' is the velocity and H; =2pe +
pv? where e is the energy density. All the Varlables are expressed in integral form as

+ o0 §
iein _ g (22 e T)dTdE. 3
H ’"/R/ fé ( +£> o (T) dTdé (39)

The expression of H1"/i is the same of equation (39) but with a further factor ¥ inside the
integral; the expression of Jil "/ is the same of (39) but with the production density Q = — @
instead of the distribution function f. This distribution function has the form

N N—h

f=e TR =D N N e <ZI+£2)‘ (40)

h=0 s=0

We prove now that the CEM and the MI method give the same result for polyatomic gases and
with whatever number of moments. This was already proved in [14] but only for monoatomic
gases with 14 moments.
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Let us start with the CEM where the Boltzamnn equation and the conservation laws of mass,
momentum and energy are considered:

Of + o f = —@ ,OHy+OcHl =0, 0,H) + 0y Hy =0, 0,H, + O H: =0. 41)

After that, the following steps are followed:

1. The left hand sides of (41) are calculated at equilibrium, while the right hand sides at first
order with respect to equilibrium

Onfe + EOfr = f;fE ;
O Ho+ O HS =0, 0,Hy + O Hte = 0, 0,Hy + O Hyp = 0. (42)

2. The derivatives with respect to time of the independent variables p, v/, T are obtained
from (42),_4 and substituted in (42); which, after that, depends only on the independent
variables and on their derivatives with respect to x*.

3. The new equation (42); is multiplied by m & €2 o (Z) and integrated with respect to dZ d 5

Y A OF

same variable

As aresult of the above figure we get the Navier—Stokes equations with a precise expression
of the bulk viscosity and of the shear viscosity (in the above figure the overline denotes
the fact that, after derivating with respect to time, the above found time derivatives of the
independent variables have been substituted).

Similarly, multiplication of the new equation (42); by m &' (% + & 2) * ©(Z) and integ-

ration with respect to dZd 5 gives

O Hily + 0 Y = — (HI' = Hp) 4

same variable

from which the Fourier equation with a precise expression of the heat conductivity. The
expressions found for the bulk viscosity, the shear viscosity and the heat conductivity do
not depend on the number N because they use equation which are present in every model
with N > 1.
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Now, mathematically speaking, nothing changes if we swap the order of the steps 2 and 3;
but in this way we obtain the steps of the MI. So we can say that, in the non relativistic case,
the CEM and the MI give the same result.

So it is natural to ask why in the relativistic case the two methods give different results. To
understand it, let us repeat the same steps in the relativistic case.

With the Chapman-Enskog Method the Boltzamnn equation and the conservation laws of
mass, momentum-energy, with the left hand sides calculated at equilibrium, are considered:

3 z
0‘ _7 MY
Oafe= 5 | =NP" ~feay PN (Hch)]'

(43)
AV =0, aarlﬁ =0

After that, the following steps are followed:

1. The deviation of the distribution function from its value at equilibrium is calculated in
terms of 9, Ag and O, /\’g from (43), and used in the definition of 7®? which now becomes

oo p*O0ufE 7z q
popt 1+ = T)dTdp—3—2—A)".
o [ [T (140 ) ¢ @) azap -3

(44)

2. The quantities O, A and U*U* 9, \;; are calculated from (43), 3 and substituted in (44).
From the resulting expression, the bulk viscosity, the shear viscosity and the heat conduct-
ivity can be obtained and they do not depend on the number N because they use equation
which are present in every model with N > 1.

There is also the opportunity to modify a little the procedure, by taking the last term in (43),
to the left hand side before calculating the left hand sides at equilibrium; in this case it will
disappear and, consequently, also the last term in (44) will be no more present.

Instead of this, with the Maxwellian Iteration

1. The conservation laws of mass, momentum-energy, and the balance equation for the triple
tensor with the left hand sides calculated at equilibrium, are considered:

D VE=0, 8,72 =0. (45)
afy 8\ U 53
DA = (0 ) e o
Same variable but different from 7%7.  Variable different from Tg'y and from A‘ijﬂ 7,

2. Some derivatives of the independent variables are obtained from (45);, and substituted
in (45)s.

3. The new equation (45)3 is used to obtain II, ¢, +<P7> and, consequently, the bulk
viscosity, the shear viscosity and the heat conductivity. This fact could give rise to
some doubts because these coefficients should be obtained from 777 — Tg'y, not from

U, (A*PY — AlPYY Moreover, U, (A*#7 — A7) depends not only on IT, ¢, r<#7> but

20
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also on other variables whose number increases for increasing values of N. So IT, ¢, t<#7>
must be isolated from the other variables and this means solving some algebraic linear
systems depending on N. It is therefore not surprising that the solution also depends on N.
Obviously, this is consequence of the form of the production term in the right hand side
of (43). It remains open the problem to find another expression which respect the require-
ments of zero production of mass and of momentum-energy, and whose consequent MI
does not depend on N. We can say that another possible expression is

0=—"LP (1 £y, (46)

cr

where Uy is the 4-velocity in the Landau-Liftschiz frame as reported in [21, 22]. But in
[23] it was proved that, up to first order with respect to equilibrium, the expression (46)
is equivalent to the right hand side of the present equation (43). So nothing changes by
adopting the production term (46).

In any case, the two procedures have to give the same result at the non relativistic limit. In
fact, from U U,, = c?, p®p = m*>c? we have the following decompositions:

i 2\ —1/2
U":F(v)(c,vi), po‘:mF<%) (c,i), with F(v):(l—‘cjz) . @7

Consequently, the limit for ¢ — +o0 of (43) is

m (Of +E0f) = —g (F—fe) (48)

as in equation (41);. It follows that both the results of the CEM and the MI have the same non
relativistic limit. In the next section we compute the non relativistic limit.

4.1. The non relativistic limit of x, u and v

In this section we prove the convergence in the non relativistic limit of the heat conductivity
X, the shear viscosity u, and the bulk viscosity v.

In the previous sections we have introduced the new variables 67 |, 07 5, 0] 5, 65 ; which
have not studied so far in literature. In order to compute the non relativistic limit of y,  and
v it is necessary to analyze the non relativistic limit of these new quantities.

Taking into account (52), we have

01‘:2 - 39]7] 5 9?73 - 20]72.

So we need only the non relativistic limit of 67 ;, 65 ; given by (54). To evaluate them, let us
consider the expression of J4 _i, i.e.,

cosh s

e /+<>o B (%—&—2)E (x)i
= — et~ | =] dx,
v Jo S+ A\

21

[ 2 3

+oo ! +oo (£ + 1) - 1}

Ja,—1 2/ e"’cosmwds / e Fe | dx
0 0
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where in the first passage we have changed the integration variable according to the law
coshs=2+1 — sinhsds= %. Now the Mac-Laurin expansion of the function g(y) =
0+2)}
y+1

around y=0is

Q) 1))

30151 1
=2\V2r |2 - =24 — (...
ﬂ[4 327+v2( )]

where in the last passage we have used the Gamma function

+oo
T (s) :/ e xldx
0

defined for s > 0 and satisfying the relations I'(s 4+ 1) = sT'(s), I' () = /7. In a similar way
we can obtain the expansion of J, | or we can read it on page 21 of [5] and it is

1 151 105 1 315 1
o1 =2V 2me YA~V | L = 4 T .
21 e iy Tme sy T st T

It follows that

QO Foo 5 *
f (DAL [T e (T) dT

OO px +oo 3 *
fo+ 12,1‘P(I)dz ’7fo 739712,190(1)071—

5
+o00 2 A LS .
b (vl) et I (1) dT

= 3
V() ey i e @ar
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and, consequently,
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Since we have
T =Ry (7 - 1) Ty =
v*

we can write
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Consequently, we get
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We can apply this result in (33),, jointly with 67 , = 36, 1 , and have that the heat conductivity
has the form

mrc® p pc? erooe_kB%l(P( I)dI
X =— 01 3911*912+ 0,5 | =2 T +
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9kBTQ 14 fo ‘BT I) dZ 2]y
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Moreover, from equation (11) of [24], we have that the exact expressions

1 1 2
01’]:77791,2:337%-38&7 with g1:w7

pc p C p C p

so that we find
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By performing similar calculations, we find that

+o0 _WZTL dT
' 5
f() kT ( ) + %+

g1 = 5
fO kBT ) dz 2

so that the above expression of the heat conductivity x has a finite non relativistic limit.
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To evaluate the non relativistic limit of the shear viscosity p in (37),, we need the expression
of 65 5 and of Js, ;. With similar computations we obtain that ¢t 03 5 and p have a finite limit

c—+o00 c— +0o0

2
lim ¢*6;,=3 (p) and lim p=7p.

' P
Moreover, with similar computations we obtain that v is convergent in the non relativistic limit.

5. Summary

In this article we have described how it is possible to reconstruct, as a first iteration, the laws of
the ROT starting from the laws of the RET of polyatomic gases by using two different iteration
methods. In literature, two procedures are used which are the so-called MI and the CEM. Both
of these methods lead to the relativistic version of the Navier—Stokes and Fourier laws, i.e, the
so-called Eckart equations as a first iteration. It is well known that the relativistic version of
the Navier—Stokes and Fourier laws are two fundamental laws of ROT and in these equations
the following remarkable physical quantities appear as coefficients: the heat conductivity Y,
the shear viscosity u, and the bulk viscosity v. We have proved that the expressions of x, p,
and v obtained via the CEM do not depend on N, whereas these expressions obtained through
the MI depend on N. In order to make clear this difference we describe our main results giving
more details.

First of all, we observe that we have found the following expressions for the shear viscosity
u by using the MI method in the case N =3 (see equation (25)) and in the case N =2 (see
equation (28))

5mctpr 0
:*Mﬁezﬁ, caseN =2

3 kel Ona
2624 % 0,5 023
=05 st 02,4
4 4259 s 3259 3 15() B
_ c*mpt 5625 s b4 i | caseN=3,
2kgT 5024 5025

5 i
5t 35 026

It is immediate to realize that these two expressions of y are, in general, different each other
and then we can conclude that the MI give us in the relativistic case a result depending, in
general, on the number of moments N. Analogous conclusions can be reached by observing
the different expressions of y (compare equations (23) and (27)) and v (compare equations (21)
and (26)) when one uses the MI method in the relativistic cases for polyatomic gases in the
cases N =3 and N =2, respectively.

Let us now look at the expressions obtained for x, v and p by using the CEM in the relativ-
istic case for a polyatomic gas with an arbitrary value of N (which are written below for the
convenience of the reader)

-1
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Il mr 4.
p= 3 kBTpC 02’37
where 0 ; and 0} j are introduced in equations (9) and (51), respectively. Since these expres-
sions of x, v and y do not depend on N we can conclude that the CEM furnishes results which
do not depend on the number of the moments N in the relativistic case. The convergence of
v, i, x in the non relativistic limit have been proved in section 4.1.

Moreover, in section 4 it has been proved that the MI and the CEM lead at the same results
in nonrelativistic case.

Finally, we want to conclude this section with an important observation. Of course, if one
uses the MI method for polyatomic gas in the relativistic case the results depend on the choice
of the production term Q defined in equation (1). So a natural problem (still open) is the determ-
ination of a specific function Q such that the requirements of zero production of mass and of
momentum-energy are satisfied and whose consequent MI does not depend on the number of
the moments N. This remains an open problem.
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Appendix. Some integrals necessary for recovering OT with the
Chapman-Enskog method

We define

A*Oél Qe

3 +oo f 7 \"! -
_ ar o (14 L T)dTdp. 49
m”_z/w/o e ( +mc2> () (49)

We see that A7""" "' is like Ay'"“"*' but with the function to be integrated which is now
divided by cosh s (l + m%z) Consequently, we find the expressions corresponding to (8), (9),
ie.
=]
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where the scalar coefficients 6}, are

+ « n—1
o — 1 (iH— 1) Jo " B (14 ) 0(T)dT 51)
k, — AL 1 “+ o0 * ?
T2k K Jo 12,1¢<I> dT
where J,,.,(7) = fooo e~ 7S cosh” ssinh™ sds, v = k T =Jmn [fy (1 + %)]
By comparing this last equation with (9), we find that
0;, = ol 0 for every k such that n+1 > 2k (52)
k’n_l’l—|—1—2k k,n—1 > y .

From this last equation it follows that only the expressions for n + 1 = 2k are present (which
means that only the case n odd has to be considered), and for these cases, equation (51) gives

00 1 2%—2
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The expressions are necessary with k=1 and with k=2, i.e.,
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The derivative of (54); with respect to ~y gives
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From this result it follows
1 0
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that now everything is expressed in terms of 6] ,, its derivative and of 63 5.
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