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Abstract

Opacity is an important information security property. Given a discrete event system, a set of secret states, and an intruder
who observes the system evolution through an observation mask, the system is said to be K-step opaque if the intruder is not
able to ascertain that the system is or was in a secret state at some time within K steps, namely within the observation of
K events. If the intruder is never able to ascertain that the system is or was in a secret state at any time, the system is said
to be infinite-step opaque. This work aims at verifying the two opacity properties when the discrete event system is modeled
as a bounded labeled Petri net. Using the notion of basis reachability graph, new approaches are proposed to check K-step
opacity and infinite-step opacity. The proposed approaches are shown to be more efficient than the standard methods based

on the reachability graph.
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1 Introduction

Motivated by the concern about security and privacy in
cyber-physical systems, opacity has been extensively in-
vestigated in the past years (Jacob et al., 2016). Opaci-
ty describes the ability of a system to hide a secret be-
havior to external intruders. Different notions of opaci-
ty have been defined for discrete event systems (DESs),
including language-based opacity, current-state opacity,
initial-state opacity, K-step opacity, infinite-step opac-
ity, etc. In this paper, we focus on K-step opacity and
infinite-step opacity. Given a set of secret states, a sys-
tem is said to be K-step opaque if the intruder is not
able to infer that the system is or was in a secret state
for any instant within K steps, namely within the obser-
vation of K events. Analogously, a system is said to be
infinite-step opaque if the intruder is not able, and will
never be able, to infer if the system is in a secret state,
or if it was in a secret state at any time instant.

The notion of K-step opacity was first defined by Saboori
and Hadjicostis (2007) in the nondeterministic finite au-
tomaton (NFA) framework assuming that the events
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are partially observable. Then Saboori and Hadjicostis
(2009) characterized the notion of infinite-step opacity
as an extension of K-step opacity. In Saboori and Hadji-
costis (2011), it is shown that given an NFA, its infinite-
step opacity can be verified by constructing an observer
of the system and a bank of estimators whose elements
are the pairs of possible initial state and current state,
and the verification of infinite-step opacity is proved
to be PSPACE-hard. In Yin and Lafortune (2017), ap-
proaches are proposed to check both K-step opacity and
infinite-step opacity. Such approaches are based on the
construction of a new structure, called two-way observ-
er (TW-observer) built through the synchronization of
two observers: the observer of the given automaton and
the observer of its reversed automaton, called the initial-
state estimator. Yin and Lafortune (2017) show that the
complexity of verifying K-step opacity and infinite-step
opacity is exponential in the number of states of the sys-
tem. In our recent work Lan et al. (2020a), we prove
that the two opacity properties can be verified more effi-
ciently by only analyzing the states of the observer and
the initial-state estimator, rather than constructing the
TW-observer.

Petri nets have been extensively used to model and check
different types of opacity, e.g., initial-state opacity (Tong
et al., 2017), current-state opacity (Tong et al., 2017;
Cong et al., 2018), and language-based opacity (Tong
et al., 2016). Moreover, these problems can be solved in
the framework of bounded Petri nets using structural
analysis and algebraic techniques. However, to the best



of our knowledge, K-step opacity and infinite-step opac-
ity have never been studied in the framework of Petri
nets.

In this paper, we focus on the formalization and ver-
ification of K-step opacity and infinite-step opacity in
bounded labeled Petri net systems. The secret is defined
as a subset of the reachable markings. The proposed
verification approaches are based on the notion of basis
reachability graph (BRG) that summarizes in a compact
form the information contained in the reachability graph
(RG). Each node in the BRG represents not only the
marking associated with it, but also the markings that
can be reached from such marking through unobserv-
able transitions. In addition, only markings (called ba-
sis markings) reachable through observable transitions
and the unobservable transition sequences whose firing
is necessary to enable them, are enumerated. As a conse-
quence, the size of the BRG is usually smaller than that
of the RG, thus the BRG has been efficiently used to ver-
ify some opacity properties (Tong et al., 2017). In this
paper, under appropriate assumptions, necessary and
sufficient conditions for K-step opacity and infinite-step
opacity based on the BRG are presented. More precise-
ly, if for any basis marking in the secret, the markings
reachable from it through unobservable transitions are
also contained in the secret, then the BRG can be used
to verify K-step opacity and infinite-step opacity. If such
an assumption does not hold, an extended BRG (EBRG)
is proposed to verify the two opacity properties. Based
on the BRG/EBRG of the LPN system, we prove that
K-step opacity and infinite-step opacity can be verified
by checking the intersections of the states in the observer
and the initial-state estimator of the BRG/EBRG. The
contributions of the paper can be summarized as follows.

e We investigate the advantages of Petri nets over au-
tomata in the verification of K-step and infinite-step
opacity. It is shown that under appropriate assump-
tions, instead of using the RG (i.e., enumerating the
whole state space of the system), the BRG can be used
to verifying both K-step and infinite-step opacity.

e [f the assumptions are not satisfied, a few markings
besides the basis markings need to be enumerated.
A new structure, called extended BRG (EBRG), is
proposed to verify the two opacity properties in the
most general case.

e K-step opacity and infinite-step opacity can be
checked by analyzing the states in the observer and
the initial-state estimator of the BRG/EBRG.

Note that in Lan et al. (2020b) we presented some pre-
liminary results on the formalization and verification of
infinite-step opacity in labeled Petri nets, but using a
different approach based on language containment.

2 Preliminaries and Background

In this section, we recall the formalisms used in the paper
and some results on state estimation in labeled Petri
nets.

2.1 Automata

A nondeterministic finite (state) automaton (NFA) is
a 4-tuple A = (X, E, f, Xy), where X is a finite set of
states, E is a finite set of events, f : X x E — 2% is
a (partial) transition relation, and Xy C X is a set of
initial states. The transition relation f can be extended
to f: X x E* — 2% in a standard manner. Given an
initial state g € Xy and an event sequence w € E*, if
f(zo,w) # 0, then we say that w is defined at zo and
it is denoted as f(xq,w)!. The generated language of A
is L(A) = {w € E*|3xz € Xy : f(z,w)!}. The reversed
automaton A, = (X, E, f.,X) of A is the automaton
obtained by reversing all arcs in A and taking all the
states in A as initial states.

Given an NFA | its equivalent DFA| called observer, can
be constructed following the procedure in Section 2.3.4
of Cassandras and Lafortune (2008). Each state of the
observer is a subset of X in which the NFA may be after
a certain event sequence has occurred. The complexity of
computing the observer is O(2"), where n is the number
of states of the NFA A. The observer of the reversed
automaton A, is also called the initial-state estimator
of A (Wu and Lafortune, 2013).

2.2 Petri nets

A Petri net is a structure N = (P, T, Pre, Post), where
P is a set of m places, T is a set of n transitions, Pre :
PxT — Nand Post : PxT — N are the pre- and
post-incidence functions that specify the arcs directed
from places to transitions, and from transitions to places,
respectively. The incidence matriz of a net is denoted
by C = Post — Pre. A Petri net is acyclic if there are
no oriented cycles.

A marking is a vector M : P — N that assigns to
each place a non-negative integer number of tokens. The
marking of place p is denoted by M (p). A Petri net sys-
tem (N, My) is a net N with initial marking M.

A transition t is enabled at marking M if M > Pre(-,t)
and may fire yielding a new marking M’ = M + C(-, t).
We write M[o) to denote that the sequence of transitions
o = tj1---tji is enabled at M, and M[o)M' to denote
that the firing of o yields M’. The set of all enabled
transition sequences in N from marking M is L(N, M) =
{c € T*|M[o)}. Given a transition sequence o € T™, the
function 7 : T* — N™ associates with o the firing vector
y = 7(o) € N, ie., y(t) = k if transition ¢ appears k
times in o. The length of o is denoted by |o|.

A marking M is reachable in (N, M) if there exists a
transition sequence o such that My[o)M. The set of all
markings reachable from M, defines the reachability set
R(N, My) of (N, Mp). A Petri net system is bounded
if there exists a non-negative integer k& € N such that
for any place p € P and any reachable marking M €
R(N, My), M(p) < k holds.

A labeled Petri net (LPN) system is a 4-tuple G =
(N, My, E, ¢), where (N, My) is a Petri net system, E is



the alphabet (a set of labels) and ¢ : T — E' U {e} is the
labeling function that assigns to each transition t € T
either a symbol from E or the empty word e. There-
fore, the set of transitions can be partitioned into two
disjoint sets T = T,UT,,, where T, = {t € T|{(t) € E}
is the set of observable transitions and T, = T\ T, =
{t € T|l(t) = e} is the set of unobservable transition-
s. We denote n, = |T,| (resp. n, = |Ty|) the number
of observable (resp. unobservable) transitions. Given a
marking M € R(N,M;), we define U(M) = {M' €
N™|Mloy)M', 0, € T} its unobservable reach, name-
ly, the set of markings reachable from M through un-
observable transitions. Given a subset of markings Y C
R(N, M), U(Y) = UMey U(M).

The labeling function can be extended to transition se-
quences ¢ : T* — E* as l(ot) = {(0)l(t) with o € T*
and t € T. The language generated by G is L(G) =
{w € E*|30 € L(N,My) : w = £(0)}. It is the set
of words that can be observed by the intruder. A word
w € L(G) is called an observation. We denote C(w) =
{M € N™|3o € L(N, M) : My[o)M,£(c) = w} the set
of markings consistent with the observation w.

Given an LPN system G = (N, My, E, £), the T, -induced
subnet N, = (P,T,, Pre,, Post,) of N, is the net that
results by removing all transitions in 7'\ T;, from N,
where Pre, and Post, are the restrictions of Pre,
Post to T, respectively. The incidence matrix of the
Ty-induced subnet is denoted by C,, = Post, — Pre,,.

2.8 Basis markings

In this subsection, we recall the definitions of basis mark-
ings and basis reachability graph. For more details we
refer to Ma et al. (2017).

Definition 1 Given a marking M and an observable
transition t € T, we define

Y(M,t)={c e T Mlo)M',M' > Pre(-,t)}

the set of explanations of t at M, i.e., the set of unob-
servable transition sequences whose firing at M makes t
enabled, and

Y (M,t) = {y, € N™|3o € (M, 1) : yo, = w(0)}

the corresponding set of e-vectors, i.e., the set of firing
vectors associated with unobservable transition sequences
in (M, t). o

After firing any unobservable transition sequence in
Y(M,t) at M, the transition ¢ is enabled. To provide
a compact representation of the reachability set, we
are interested in finding the explanations whose firing
vector is minimal.

Definition 2 Given a marking M and an observable
transition t € T,, we define

Smin(M,t) = {0 € S(M, t)|fo’ € X(M,t) : n(0’) S 7(0)}

the set of minimal explanations of t at M, and
szn(M7 t) = {yu S Nnu|30 S Emzn(M7 t) CYu = 7T(0>}
the corresponding set of minimal e-vectors. o

Under different assumptions, there are different ap-
proaches to calculate Yp,in(M,t) (e.g., Jiroveanu and

Boel (2004), and Boel and Jiroveanu (2004)). In par-
ticular, Cabasino et al. (2011) present an approach
that only requires algebraic manipulations when the
T,-induced subnet is acyclic.

Definition 3 Given an LPN system G = (N, My, E, {),
its basis marking set My, is defined as follows:

L4 MO S Mb;
o if M € My, thenVt € Ty, yy € YVinin(M,1t),
A marking My € My is called a basis marking of G.  ©

The set of basis markings contains the initial marking
and all other markings that are reachable from a basis
marking M by firing a transition sequence o,t, where
t € T, and o, € X,,in(M,t). By Definition 3, basis
markings can be recursively computed from the initial
marking if the Ty-induced subnet is acyclic. Note that
since ¥y, € Yinin(M,t), t is enabled at some marking in
U(M). Clearly, My, C R(N, Mp) and in practical cases
the number of basis markings is smaller than the number
of reachable markings (Tong et al., 2017; Ma et al., 2017;
Cabasino et al., 2011). The number of basis markings is
finite if the LPN system is bounded.

Given an LPN system G, its set of basis markings My,
and an observation w € L(G), in Ma et al. (2017) it is
shown that

C(w) = UMy NC(w)). 1)

3 K-step opacity and infinite-step opacity

K-step opacity and infinite-step opacity have been de-
fined in the framework of automata. In this section we
extend these two opacity properties to labeled Petri net
systems.

In the framework of LPNs, the secret is a subset of reach-
able makings S C R(N, My). A marking M € S is called
a secret marking.

Definition 4 [K-Step Opacity] Let G = (N, My, E,
¢) be an LPN system, K € N an integer and S C
R(N,My) a secret. System G is K-step opaque w.r.t.
S if Voyoq € L(N, My) with Mylo1)My, My € S and
[¢(02)| < K, there exists ojol, € L(N,My) such that
Molot)M{, M| ¢ S, £(o1) = {(o]) and £(o2) = £(0h). ©

In words, an LPN system is K-step opaque if for any
transition sequence o leading to a secret marking M;
there exists another transition sequence o that leads to
a non-secret marking M] and produces the same obser-
vation. Meanwhile, identical observations no longer than
K can be generated both from M; and M;. Namely, af-
ter observing ¢(o1), the intruder cannot infer that the
system reached a secret marking at some time instant
within the observation of K further events. Note that if
K = 0, K-step opacity reduces to current-state opaci-
ty. When K converges to +00, K-step opacity becomes
infinite-step opacity that is formally defined as follows.

Definition 5 [Infinite-Step Opacity] Let G =
(N, My, E, ) be an LPN system and S C R(N, M)
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Fig. 1. The LPN system in Example 1 (a), and its RG
(b), where the generic marking M is denoted in a com-
pact form by M = 7 _,M(p) - p. As an example,

My=[1000000000]" is denoted by Mo = p1.

a secret. System G is infinite-step opaque w.r.t. S if
Vo109 € L(N, My) with My[o1)My and My € S, there
exists ojol, € L(N, My) such that Mylo})M{, M| ¢ S,
£(o1) = £(0]) and £(o2) = £(0)). o

Infinite-step opacity implies that based on its observa-
tion the intruder can never infer that a secret marking
was reached at any time instant.

Example 1 Let us consider the LPN system in Fig. 1(a)
where the set of observable transitions is T, = {ta,t3, 7,
ts,to} and the set of unobservable transitions (colored
in blue) is T, = {t1,t4,ts5,t6,t10,t11}. Transitions ta,
ts, t7 and tg are labeled a, and transition tg is labeled
b. The reachability graph (RG) of the LPN system is
shown in Fig. 1(b). Let the secret be S = {Ms, M5}
and K = 1. Transition sequences leading to secret mark-
ings are t1ts and t1tsts. Let o1 = t1t3 (or o1 = titsts).
There exists o) = tytatats such that My[o]) Mg, Mg ¢ S,
f(t1t2t4t6) = f(tltg) = E(t1t3t5), and fO?“ any oo with
o102 € L(GQ) and |(o2)] < 1 (e.g. o2 = t7) there ex-
ists ol such that ooy € L(G) and £(c}) = £(o2) (e.g.
oy = tg). Therefore, the LPN system is 1-step opaque.
Note that the LPN system in Fig. 1(a) is not 2-step
opaque. Indeed, for o1 = titsts and oo = trtg, there
exist no o} and ol such that Molo})M, M ¢ S and
U(choh) = l(o102). This also implies that the LPN sys-
tem is not infinite-step opaque.

Suppose transition tg is labeled a instead of b. The LPN
system is infinite-step opaque w.r.t. S since the intrud-
er will never be able to establish if markings M3 and Ms
have been visited when observing aa™. o

Let us now provide necessary and sufficient conditions
for the two opacity properties. To formalize them, given
w1y, wy € E*, let us denote

M(w1|w2) = {M S R(N, MQ)BO'lO'Q S L(]V7 Mo) :
Moo1) M, £(o1) = w1, £(02) = w2} (2)

the set of markings consistent with w; from which ws can
be generated in G = (N, My, E, £). Clearly, M (w1 |ws) C
C(’LU]_ ) .

By Definitions 4 and 5, it follows that

(1) G is K-step opaque w.r.t S iff Vwywy € L(G) with
lwa| < K, M(wi|ws) € S;

(2) G is infinite-step opaque w.r.t S iff Vwiws € L(G),
M(wl\wQ) )¢_ S

Therefore, K-step opacity and infinite-step opacity in
LPN systems can be verified by analyzing the marking
set M (w1 |ws) for all wiwy € L£(G). In Lan et al. (2020a),
it is proven that in the automaton framework all such
sets of states are identical to the intersection of the states
of the observer of the system and the states of its initial-
state estimator. In other words, to calculate M (wq|w2)
and to verify K-step and infinite-step opacity, one can
construct the RG of the LPN system first and then the
observer and the initial-state estimator of the RG. How-
ever, it is known that the size of RG is exponential with
respect to the size of the net system while the number
of states of the observer and of the initial-state estima-
tor are both exponential with respect to the number of
reachable markings. Therefore, for RG-based methods
state explosion is unavoidable. In the following section-
s, we propose methods based on the basis reachability
graph, whose size is usually smaller than the RG.

4 Verification Using Basis Reachability Graph

In this section, we present preliminary results on verifi-
cation of the two opacity properties using BRG, which
are the basis for the general solutions in Section 5. The
usage of BRG requires the satisfaction of the following
two assumptions, which are common to all the litera-
ture in this area (e.g., Cabasino et al. (2011); Tong et al.
(2017); Ma et al. (2017)):

A1) the LPN system is bounded,

A2) its Ty,-induced subnet is acyclic.

In the rest of the paper, we always assume that the two
assumptions are satisfied.

Given an LPN system G = (N, My, E, /), its BRG is
an NFA, where each state is a basis marking, the set of
events is the alphabet of the LPN system, and there is
no transition labeled with the empty word. We denote it
as B = (My, E, f, Mp). It is proven that L(B) = L(G).
To avoid repeating material already presented in other
papers, we refer the reader to Tong et al. (2017) for the
algorithm to construct the BRG.

Given a BRG B = (My, E, f, M), we denote:
- Bo = (X5, E, fo, Xo,0) the observer of B, and
- Be = (Xe, E, fe, Xe,0) the initial-state estimator of B.

Example 2 Let us consider again the bounded LPN sys-
tem in Fig. 1(a), whose Ty, -induced subnet is acyclic. The
BRG of the system is shown in Fig. 2, where there are
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Fig. 2. The BRG B of the LPN system in Fig. 1.

only five basis markings My = { My, My, M3, Mg, M7}. o

Given an LPN system G and observations wiws €
L(G) = L(B), we denote

Mp(wi|we) = {M € My|Fwiws € L(B) :
M e f(M(),’LUl) N f(M7 U}Q)'}

the set of basis markings consistent with w; from which
ws can be generated in the BRG (and thus in the system
G). Clearly, My(w1|wz) € M(wq|ws).

Sufficient conditions for K-step opacity and infinite-step
opacity can be derived as follows.

Proposition 1 Let G be an LPN system and S a secret.

1. System G is K-step opaque w.r.t. S if Vwrwy € L(G)
with |we| < K, My(wi|wa) € S.

2. System G is infinite-step opaque w.r.t. S if Vwiwy €
L:(G), Mb(’w1|’U)2) g S

Proof. For any wiwe € L(G) with |ws| < K,
Mb(w1|w2) Q M(wl\wg)Ibe(wﬂwg) {@ S,M(wl\wg)
¢ S. Therefore, G is K-step opaque w.r.t. S. When

K = +00, G is infinite-step opaque w.r.t .S. o

Conditions in Proposition 1 are not necessary because
My (w1 |wy) € S does not imply M(wq|ws) C S. How-
ever, necessary and sufficient conditions can be derived
under the additional assumption:

A3) MbGS:>U(Mb)QS.

Namely, if a basis marking Mj, is a secret marking, then
any marking reachable from M, firing unobservable tran-
sitions is also a secret marking.

Under the additional Assumption A3, the conditions in
Proposition 1 become necessary and sufficient.

Proposition 2 Let G be an LPN system, and S a secret
satisfying Assumption AS.

1. System G is K-step opaque w.r.t. S, if and only if
Vwiwy € L(G) with |wa| < K, My(wi|ws) € S.

2. System G is infinite-step opaque w.r.t. S, if and only
iwalwg S E(G),Mb(w1|w2) g_ S.

Proof. The If part has been proven in Proposition 1.
Now we prove the necessity of the conditions.

Assume that system G is K-step opaque, and this implies
that for any wywse € L£(G) with |ws| < K, M(wq|ws) €
S. Thus, there exists a marking M € M (w;|ws)\ S. By
Eq. (1), there exists a basis marking M, € M; N C(w;)
such that M € U(M,). Clearly, My € Mj(w1|ws). Since
M ¢ S, under Assumption A3, it holds that M, ¢ S.
Therefore, My, (w;|w2) € S.

When K = +oo, then G is infinite-step opaque, and this
implies that for any wiws € L(G), My(wi|we) € S. O

Proposition 2 reduces the necessary and sufficient con-
ditions on reachable markings to conditions on basis
markings. Therefore, the BRG may be used to check K-
step opacity and infinite-step opacity of an LPN system.
Analogously, based on the results in Lan et al. (2020a),
the two conditions can be verified by checking the inter-
sections between pairs of states in the observer and in
the initial-state estimator of the BRG.

Theorem 3 Let G be an LPN system, S a secret satis-
fying Assumption A3, B the BRG of G, B, the observer
of B, and B, the initial-state estimator of B.

1. System G is K-step opaque w.r.t. S if and only if
3X, € X, and $X. € XK such that ) # (X,NX,) C
S, where XX = {X, € X.|3w € L(B.),|w| < K :
Xe = fe(Xeo,w)}.

2. System G is infinite-step opaque w.r.t. S if and only if
3X, € X, and3X, € X, suchthat() # (X,NX.) C S.

Proof. Statement 1 follows from Theorem 4 in Lan et al.
(2020a) and Proposition 2. Statement 2 follows from
Theorem 2 in Lan et al. (2020a) and Proposition 2. O

Under Assumptions A1, A2 and A3, K-step opacity and
infinite-step opacity of an LPN system can be verified by
constructing the observer and the initial-state estimator
of the BRG, which usually has less states compared with
the RG. Therefore, the proposed BRG-based method is
more efficient than the RG-based method.

5 Verification Using Extended Basis Reachabil-
ity Graph

In order to provide a more general solution to K /infinite-
step opacity verification in Petri nets, we relax Assump-
tion A3 and look for solutions that are still BRG-based.

First, we show that Assumption A3 can be relaxed pro-
vided that the notion of basis marking is appropriately
extended.

In Section 3, we have shown that K-step opacity
and infinite-step opacity can be checked by analyzing
whether M(w1|ws) ¢ S. According to Proposition 2,
if Assumption A3 is satisfied, we only need to check
whether My (wy|we) € S. If Assumption A3 does not
hold, in addition to the markings in My(ws|ws), an
appropriate set of markings should be explicitly con-
sidered, as explained in the following, which in general
results in a strict subset of M (w1 |wz), with consequent
advantages in terms of complexity.

Let us now introduce three sets that depend on the se-
crete S:

e S = R(N, M) \ S is the set of markings that are
reachable and do not belong to the secret. It is called
the set of exposable markings.
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Fig. 3. Reachability graph R(N’, M>).

e S, = {Mb € Mb|Mb S S,U(Mb) g_ S} is the set of
basis markings that do not satisfy Assumption A3,
namely the set of secret basis markings whose unob-
servable reach is not contained in the secret. It is called
the set of weakly exposable basis markings.

® Qmin = Un,es,{M € U(M,) \ S|BM" € U(M,) \
S:MeUM)NM # M} is the set of exposable
markings in the unobservable reach of S, that cannot
be reached from other such markings. Clearly, Qmin C

S.

Example 3 Consider again the LPN system in Fig. 1(a)
whose BRG is shown in Fig. 2. Let S = {May, Ms}.
Thus, Sy, = {Ms}. To make it more clear, we construct
the reachability graph (see Fig. 8) of the Petri net sys-
tem (N, Ms), and denote it as the automaton R =
(U(M3),T,, 0, M3), where the set of states is identical to
the unobservable reach of Mo, T, is the set of events, §
is the transition function and My is the initial state. S-
mce U(Mg) \S = {M4, Mg, Mg} and Mg, Mg € U(M4),
Qmin = {Ma}. o
We now prove that the condition M(w;|ws) € S for
an arbitrary sequence wijws € L(G) is equivalent to
at least one of the two conditions: M (wi|ws) € S or
M(w1|w2) N szn 7é @

Proposition 4 Let G be an LPN system, and S a secret.
Given wiwy € L(G), it holds that M(wy|ws) € S if and
only if at least one of the two conditions holds:

o My(wi|ws) £ S;
o M(wilwz) N Qmin # 0.

Proof. (If) Assume that M,(wi|we) ¢ S. Since
Mb(w1|w2) - M(wl\wg), M(wﬂwg) 7¢_ S.

Assume that My (wq|wy) C S and M(w1|wz) N Qmin #
0. Since Qmin C S, M(wijws) NS # O. Thus,
M(w1|w2) 7,@ S.

(Only if) Assume that M (wq|w2) € S. This implies that
there exists a marking M € M (wq|ws) N'S. By Eq. (1),
there exists a basis marking M, € M N C(wy) such
that M € U(M,). Clearly, M, € M;(w1|ws). Case 1:
if M, € S, then My(wi|we) ¢ S. Case 2: if M}, € S,
then M, € Sy since M € U(M,) \ S. By definition of
Qumin, there must exist a marking M’ € U(M,) \ S such
that M € U(M') and M’ € Qumin (Note that M’ may
be equal to M). Clearly, M’ € M(w;|wsz). Therefore,
M(wi|w2) N Quin # 0. O

Proposition 4 shows that not only the markings in
My (w1 |ws), but also the markings in @i, "M (w1 |w2),

& a
a M, = M; D
s D s

Fig. 4. The EBRG B’ of the LPN system in Fig. 1.

Algorithm 1 Computation of the EBRG

Require: An LPN system G = (N, My, E, ¢) and a se-
cret S, which satisfy Assumptions Al and A2.
Ensure: The EBRG B’ = (M}, E, f', My).
1: Counstruct the BRG B = (M,, E, f, My);
2: M;; = My, f/ = fa Qmin = 0.

3: Compute S, the set of weakly exposable basis mark-

ings,
4: for all basis markings M} € S, do
5: Q:=U(M)\ S,
6: for all M € @, do
7: if AM" € Q: M cU(M')NM # M' then,
8: fl(Mbvg) = f,(Mbve)U{M};
9: Qmin = Qumin U {M}7
10: end if
11: end for
12: end for

13: ;7 = Mg U Qmina Qnew = Qmina
14: for all markings M € Qpeq, do
15: for all t s.t. £(t) € E and Yy5, (M, t) # 0, do

16: for all y,, € Yiin(M,t), do

17: M :=M+C, - yy + C(-,t);

18 P/, €)= £/(M,0(8)) U{M");
19: if M’ ¢ M, then

20: p = Myu{M'};

21: Qnew = Qnew U {M/}a

22: end if

23: end for

24: end for

25: Qnew = Qnew \ {M}7
26: end for

need to be enumerated. In the rest of the section, we pro-
pose a new structure, called extended basis reachability
graph (EBRG), which includes some new markings to
the BRG. Furthermore, we show that the EBRG can be
used to verify the conditions for all wywse € L(G), thus
making it an appropriate tool for the verification of the
two opacity properties of interest when Assumption A3
does not hold.

The construction of the EBRG is summarized in Algo-
rithm 1. First, we construct the BRG B, initialize M as
My and Q,nin = 0, and copy the transitions in BRG to
EBRG (Steps 1 to 2). Then compute set Qpnin (Steps 3
to 12) and transitions from basis markings to markings
in Qmin (Step 8). Then add all the markings in @,y to
M, (Step 13). Next, for all markings M in Qun, if there
exists an observable transition ¢ for which a minimal ex-
planation exists, we compute the markings reached fir-



ing ¢ and its minimal explanations (Steps 14 to 17). Let
M’ be one of such markings. We add an edge from M
to M’ labeled £(t) (Step 18). If such a node does not
exist in the EBRG, then we add it to M, (Steps 19 to
22). This procedure runs iteratively until all markings in
Qnew have been explored. Although the EBRG is larg-
er than the BRG, it is still smaller than the RG. Note
that the EBRG contains all the basis markings in the
BRG, all the markings in @i, and possibly some non
basis markings that can be reached from the markings
in Qqn firing some observable transitions and the cor-
responding minimal explanations.

Example 4 Consider again the LPN system in Fig. 1(a)
whose BRG is shown in Fig. 2. Let S = {Ma, Ms5}.
As shown in Ezample 3, Sy = {Ms}. For My, Q
{My, Mg, Ms}. By Steps 6 to 11 of Algorithm 1, Qmin
{M4} and My € f'(Mas,e). By Steps 14 to 26, Mg
' (My, a). Finally, we compute the EBRG in Fig. 4.

Although the EBRG contains more markings than the
BRG, their generated languages are identical.

Proposition 5 Let B’ be the EBRG of the LPN system
G. It holds that L(B') = L(G).

om Il

Proof. By Steps 1 and 2 of Algorithm 1, the structure
of the BRG is included in the EBRG. In Steps 4 to 12, for
each marking M € @Q,n, there exists a basis marking
M, € M, such that M € U(M,) and M is connected
with M}, by the empty word. Then in Steps 13 to 26, the
transitions from M to M’ are computed following the
same procedure used to compute the transition between
basis markings (ref. Tong et al. (2017)). Namely, any
observation generated from M can be generated from M,
in the BRG. Meanwhile, M is reachable from M} through
the empty word. Therefore, L(B') = L(B) = L(G). O

Consider the EBRG B’ = (M;, E, f', My). We denote
M (wi|we) = {M € M}|Fwiws € L(B) :
M e f'(Mg,w1) A f'(M,w2)!}
the set of markings consistent with w; from which ws

can be generated in the EBRG. Clearly, Mp(w;|ws) C
M;)(’wl |w2) Q ./\/l(w1 ‘IlUQ)

Proposition 6 Let G be an LPN system, wiws € L(G),
and S a secret. It holds that M(w1|ws) € S if and only

Proof. (If) Assume that Mj(wi|ws) ¢ S. Since
M (wiwz) € M(wilwz), M(wi|wz) € S.

(Only if) Assume that M (wq|wz) € S. By Proposition 4,
My(wy|wa) € S or M(wi|wz) N Quin # 0. Case 1:
if My(wi|we) € S, since My(wi|ws) C Mj(wi|ws),
then M) (wq|ws) € S. Case 2: if My(wi|wz) C S and
M(w1|we) NQuin # 0, then there exists a marking M €
M(w1|wz) N'S. By Eq. (1), there exists a basis marking
M, € MyNC(w;) such that M € U(M,). Clearly, M, €
My (w1 |ws). Since M € U(My)\ S, My, € Sy,. By Steps 4

Mo Mo M My MM} | X

X, aq b
(MMM MM (M) |
a a
UMMM M| [ M3y X,
a XE,} a

Xes

(b)

Fig. 5. The observer B, (a) and the initial-state estimator
B, (b) of the EBRG B’ in Fig. 4.

to 9 of Algorithm 1, there must exist a marking M; €
U(My) \ S such that M € U(M;) and M; € f'(My,e).
Clearly, M; € C(wy). Since M € U(M;), f'(M;,ws).
Thus, M' € M (w;|ws). Therefore, M} (w1 |ws) € S. O

Propositions 5 and 6 lead to the conclusion that the E-
BRG can be used to check K-step opacity and infinite-
step opacity of an LPN system. In the following, we show
that the two opacity properties can be verified by check-
ing the intersections between pairs of states in the ob-
server and the initial-state estimator of the EBRG.

Theorem 7 Let G be an LPN system, B’ the EBRG of

an LPN system G, B, = (X, E, f,, X], o) the observer of

B, B, = (X/,E, fl,X] ) the initial-state estimator of

B, and S a secret.

1. System G is K-step opaque w.r.t. S if and only if
X! € X! and BX! € XK' such that

04 (X,NX.)CS. (3)

where XK' = {X! € X!|3w € L(B)),|w] < K : X! =

fe(X g, w)}
2. System G is infinite-step opaque w.r.t. S if and only
if BX! € X! and BX! € X! such that

0#(X.NX)CS.

Proof. Since the EBRG is an automaton, the set
M (w1|ws) can be calculated using the same method in
Yin and Lafortune (2017). Based on this, we prove the
statement by providing a series of iff conditions.
G is K-step opaque under Al and A2
< Ywiwg € [,(G) with ‘U}2| < K,M(wl\wg) ,@ S.
& Ywywy € L(B') with |wa| < K, Mj(w|ws) € S.
(by Propositions 5 and 6)
& LAX e X, 3X e XX 04 (X NX)CS
(by Theorem 4 in Lan et al. (2020a)).
23X e X AX. e X 0 #(X.NX)CS
(by Theorem 2 in Lan et al. (2020a)). O



Example 5 Consider again the LPN system in
Fig. 1(a). Consider secret S = {May, M5} that does
not satisfy Assumption A3. The EBRG of the LP-
N system is constructed by Algorithm 1, as shown in
Fig. 4 Now, M;} = {Mo,MQ,Mg,M47M6,M7}. The
corresponding observer and initial-state estimator are
shown in Fig. 5(a) and 5(b), respectively. It holds
that for any state X, € X, and any state X, € X/,
X! NX. ¢ Sor X, N X, = 0. Therefore, system G is
infinite-step opaque w.r.t. S. o

Now, let us discuss the complexity of the above verifi-
cation approaches. First, the complexity of constructing
the EBRG is exponential with respect to the size of the
net system (number of places, transitions, and the ini-
tial marking) because in the worst case the EBRG co-
incides with the RG. However, as extensively discussed,
in practice |Mj| is smaller than |R(N, My)|. Given a s-
tate X! € X! and a state X € X, the complexity of
testing condition (3) is O(|Mj}]). In the worst case, there
are 2Mel states in B, and 2/Ms! states in B.. Thus, the
complexity of verifying infinite-step opacity using the
proposed approach is O(|JM}] x MG % 2|M/b|). More-
over, in the worst case, the number of states in XX "is
bounded by min{|E|*, 2™}, Thus, the complexity of
verifying K-step opacity using the proposed approach is
O(min{|E|%, 2Ml} x 2lMul s | M ).

In summary, since |[Mj}| < |R(N,My)|, the proposed
EBRG-based approaches have advantages over the RG-
based approaches in some cases. Two benchmarks are
provided in Tong (2021) to show the efficiency of using
BRG and EBRG.

Remark: In Tong et al. (2017), a structure called modi-
fied basis reachability graph (MBRG) is proposed to relax
Assumption A3, so that initial-state opacity can be veri-
fied by constructing the initial-state estimator of the M-
BRG. Although MBRG and EBRG are both proposed in
order to relax Assumption A3, the two structures are d-
ifferent as the sets i, are different. Therefore, MBRG
can not be used to check K-step opacity and infinite-
step opacity.

6 Conclusions

In this paper, we first prove that both K-step and
infinite-step opacity of bounded labeled Petri net sys-
tems can be verified by constructing the observer and
the initial-state estimator of the basis reachability graph
if the unobservable subnet is acyclic and the unobserv-
able reach of secret basis markings is still in the secret.
To relax the assumption on the unobservable reach of
secret basis markings, the extended basis reachability
graph is introduced to verify the two opacity proper-
ties. The proposed approaches present advantages in
terms of complexity over the reachability graph based
approaches in the literature, since the enumeration of
the whole state space of the system is avoided.
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