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ABSTRACT

Aims. XTE J1710−281 is a transient eclipsing binary system with a period close to 3.28 h that hosts a neutron star. The average eclipse
duration is 420 s, and eclipse arrival times reported in the literature span from 1999 to 2017. A previous analysis of the eclipse arrival
times using the eclipse timing technique revealed a complex pattern of delays, indicating the presence of three orbital glitches. These
glitches correspond to sudden variations in the orbital period and allow for the identification of four distinct epochs, during which the
orbital period derivative was estimated to be −1.8×10−12 s s−1, 0.07×10−12 s s−1, −1.8×10−12 s s−1, and 0.09×10−12 s s−1, respectively.
Methods. We reanalyzed the 78 eclipse arrival times spanning 18 years utilizing the eclipse timing technique to derive the correspond-
ing delays as a function of time.
Results. We find that the observed delays align well with a fitting model that employs an eccentric sine function characterized by
an amplitude of 6.1 ± 0.5 s, an eccentricity of 0.38 ± 0.17, and a period of 17.1 ± 1.5 years. Additionally, we identified the orbital
period to be 3.28106345(13) h, with a reference epoch of T0 = 54112.83200(2) MJD. We obtained an upper limit to the orbital period
derivative of 3.6 × 10−13 s s−1.
Conclusions. From the average value of the eclipse duration, we estimate that the companion star has a mass of 0.22 M� for a neutron
star mass of 1.4 M� and that the inclination of the source is 78.1+1.5

−1.2
◦. The companion star is in thermal equilibrium. The orbital

period derivative is consistent with a conservative mass transfer scenario, where the angular momentum loss due to magnetic braking
dominates over gravitational radiation angular momentum loss if the former is present. The eccentric modulation can be explained by
a third body with a mass of 2.7 Jovian masses, orbiting with a revolution period close to 17 years and an eccentricity of 0.38.
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1. Introduction

XTE J1710−281, discovered in 1998 by the Rossi X-ray
Timing Explorer (RXTE), is a transient low-mass X-ray
binary (LMXB) likely associated with the ROSAT source
1RXS J171012.3−280754 (Markwardt et al. 1998). It exhibits
high variability, and numerous Type-I bursts have been docu-
mented (Markwardt et al. 2001; Galloway et al. 2008), indicat-
ing that the compact object is a neutron star (NS). Galloway et al.
(2008) estimated, based on the Type-I bursts, that the distance
to the source is 12 kpc, assuming accreting matter with cosmic
abundances, or 16 kpc, for accreting matter with helium only.

XTE J1710−281 has an orbital period of 3.28 h
(Markwardt et al. 2001) as inferred from analysis of the
total eclipses observed in its light curve, which also shows
regular dipping phenomena, potentially attributed to occultation
from the outer regions of the accretion disk. The presence of
dips and total eclipses suggests that the system has an inclination
angle between 75◦ and 80◦ (Frank et al. 1987). The dips in
XTE J1710−281 have been studied by Younes et al. (2009);
analyzing XMM-Newton data of the source, they observed that
the hydrogen column density is ∼4 × 1021 cm−2 during the

persistent emission, from 4 × 1021 cm−2 to 8 × 1023 cm−2 during
shallow dips, and ∼1.4 × 1023 cm−2 during deep dips. Analyzing
Chandra and Suzaku data, Raman et al. (2018) observed a broad
emission line at 0.72 keV, associated with partially ionized iron,
and an absorption line in the Fe-K region of the spectrum at
6.6 keV, interpreted as a blend of Fexix to Fexxv transitions.

An accurate study of the eclipses of XTE J1710−281 was
performed by Jain & Paul (2011) and Jain et al. (2022), who
derived 78 mid-eclipse arrival times by analyzing RXTE,
Chandra, Suzaku, XMM-Newton, and AstroSat observations of
the source spanning 18 years. The authors estimated the dura-
tion of the eclipse to be 420 s on average and, by studying the
delays with respect to the orbital cycles, they detected three
orbital glitches that current theoretical models cannot explain.

X-ray binaries undergo evolutionary processes driven by var-
ious physical mechanisms. One major factor influencing their
evolution is mass transfer. This process leads to the redistribu-
tion of angular momentum, which impacts the orbital dynam-
ics (van den Heuvel 1994). Moreover, a non-conservative mass
transfer can occur as a consequence of different processes, such
as radiative evaporation of the secondary star or the expulsion
of matter in the form of accretion disk winds, outflows, or jets
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Fig. 1. Mid-eclipse time delays for different orbital solutions in units of seconds. (a) Time delays relative to the reference time T0 =
54112.83194 MJD and the orbital period P0 = 3.2810632 h, with best-fit linear function (top panel) and O−C values in units of σ (bottom
panel). (b) Time delays based on the reference time T0 = 54112.831977 MJD and the orbital period P0 = 3.28106339 h, with best-fit curve as per
Eq. (1) and O−C values in σ units (bottom panel).

(Ruderman et al. 1989; Brookshaw & Tavani 1993; Ponti et al.
2012). These mechanisms alter the overall mass content and
momentum distribution within the system.

Furthermore, angular momentum lost in the system
occurs via two mechanisms: gravitational wave (GR) radi-
ation and magnetic braking (MB) of the tidally locked
companion star (CS; Rappaport et al. 1983; Applegate 1992;
Applegate & Shaham 1994; Verbunt 1993). These processes
directly impact the orbital parameters, contributing to the
dynamic evolution of X-ray binaries over time. Consequently,
the orbital separation in X-ray binaries can either increase or
decrease.

In this study we exploit the mid-eclipse arrival times
obtained from Jain & Paul (2011) and Jain et al. (2022) and
propose a different interpretation of the orbital residuals of
XTE J1710−281. We suggest that the eclipse arrival times are
affected by the presence of a third body orbiting the binary sys-
tem with a mass of 2.7 Jupiter masses and an orbital eccentricity
of 0.38.

2. Data analysis

We used the 78 mid-eclipse arrivals times shown by Jain & Paul
(2011) and Jain et al. (2022). We started by assuming a refer-
ence orbital period of P0 = 3.2810632 h and a reference time
of T0 = 54112.83194 modified Julian date (MJD), which cor-
responds to the mid-eclipse time observed by the RXTE obser-
vatory during observation ID 91018-01-02-00 (see Table 1 in
Jain & Paul 2011). We inferred the delays corresponding to each
eclipse time by taking the fractional part of (Tecl − T0)/P0 and
multiplying it by the value of P0 expressed in seconds. We show
the eclipse times and the corresponding delays in the top panel
of Fig. 1a.

To correct the values of P0 and T0, we fitted the delays with a
linear function y = m (t − Ts) + q. The term m = ∆P/P gives the
correction to P0, q = ∆T0 is the correction to the reference time
T0 and, finally, Ts is fixed to 54112.83194 MJD and corresponds
to a temporal shift applied to the eclipse times.

From the fit we obtained a χ2(d.o.f.) of 1298(76), m =
0.0052(3) s days−1 and q = 3.2(5) s. The errors are reported at a

68% (1σ) confidence level. We show the linear best-fit in the top
panel of Fig. 1a. The observed minus calculated (O−C) values
in units of σ displayed in the bottom panel of Fig. 1a show that
the correction is not sufficient to describe the temporal evolution
of the source as the delays deviate from the best-fit model up to
10σ. However, a sinusoidal modulation seems to be present in
the residuals.

We implemented the corrections from the linear fit by obtain-
ing P0 = 3.281063396(11) h and T0 = 54112.831977(6) MJD
and recalculated the delays corresponding to the mid-eclipse
times accordingly. We plot the delays versus time in the top panel
of Fig. 1b. To fit the delays, we adopted a linear plus sinusoidal
function (hereafter LS function) defined as

y = q + m (t − Ts) + A sin
[
2π

[(t − Ts) − t0]
Pm

]
, (1)

where the sinusoidal term takes into account the modulation
observed in the O−C values (bottom panel of Fig. 1a). By fitting
the data, we found a χ2(d.o.f.) of 253(73) that translates to an F-
test probability of chance improvement of 7.4× 10−26 compared
to the linear model. The associated errors of the best-fit parame-

ters were scaled by the factor
√
χ2

red to take into account a value

of the χ2
red of the best-fit model larger than one. We found the fol-

lowing best-fit values: q = 0.16(59) s, m = 0.00129(34) s days−1,
A = 6.2(7) s, Pm = 5851(576) days (i.e., 16.0 ± 1.6 years) and
t0 = 2285(257) days. By correcting P0 and T0 with the best-fit
values of m and q, we obtain T0 = 54112.831979(7) MJD and
P0 = 3.28106345(13) h. We show the best-fit function in red in
the top panel of Fig. 1b and the corresponding O−C values in
units of sigma in the bottom panel. We report the best-fit values
of the parameters in the second column of Table 1.

The ephemeris of the source obtained using the LS function
is

Tecl = MJD(TDB) 54112.831979(7) +
3.28106345(13)

24
N

+
6.2(7)
86400

sin
[
2π

(t − 54112.83194) − 2285(257)
5851(576)

]
,
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Table 1. Best-fit parameters.

Parameters LS function LSe function

q (s) 0.16(0.59) 1.9(1.4)
m (s days−1) 0.00129(34) [0]
A (s) 6.2(7) 6.1(5)
Pm (days) 5851(576) 6249(564)
t0 (days) 2285(257) –
Tp (days) – −1261(322)
e – 0.38(17)
ω (rad) – 2.5(4)

T0 (MJD,TBD) 54112.831979(7) 54112.83200(2)
P0 (h) 3.28106345(13) 3.28106345

χ2/d.o.f. 253/73 173/72

Notes. Errors are given at a 68% confidence level. The value in square
brackets is kept fixed during the fit.

where N indicates the orbital cycle and t is expressed in MJD.
We recalculated the delays using the best-fit LS values of T0

and P0. We then fitted the delays with the LS function, ensur-
ing that the parameters q and m had best-fit values compatible
with zero. The other fit parameters yield the same best-fit values
as reported in the second column of Table 1. In light of the sig-
nificantly high χ2/d.o.f. value, attributable to residuals that still
exhibit clear deviations from the LS model, we considered the
possible scenario in which the sinusoidal modulation may be
associated with the presence of a third body orbiting around the
binary system with eccentricity non-null in a hierarchical triple
system.

The determination of the orbital eccentricity was achieved
through the application of a numerical solution to Kepler’s equa-
tion. The utilized technique involved modeling the delay modu-
lation with an elliptical orbit. The eccentricity, e, was extracted
by employing an iterative approach to solve Kepler’s equation.
The iterative solution, known as the Newton-Raphson method,
facilitated the computation of the eccentric anomaly E = M −
e sin E (where M is the mean anomaly), providing a quantitative
measure of e. M is defined as π[(t − T0 − Ts) − Tp]/Pm, where
Tp is the periastron passage time and Pm the period of the delay
modulation.

We call the function adopted to fit the delays “LSe”, which
includes a constant term, q, a linear term, m, and an eccen-
tric sinusoidal term. We fitted the data, obtaining a χ2(d.o.f.)
of 171.8(71) and a value of the parameter m of 3.3(49) ×
10−2 s days−1 that is compatible with zero as we expect. To avoid
issues related to parameter degeneracy, we fixed the value of m
to zero, assessing later its influence on the χ2 value.

By fitting the delays with the LSe model we found a χ2(d.o.f.)
of 173(72) and ∆χ2 of 80 with respect to the best-fit obtained using
the LS function; the F-test probability of chance improvement is
1.85 × 10−7, corresponding to a significance of 5.2σ, suggests
that a non-null eccentricity is required with high statistical sig-
nificance. The associated errors of the best-fit parameters were

scaled by the factor
√
χ2

red to take into account a value of χ2
red of

the best-fit model larger than one. We obtained q = 1.9(1.4) s, A =
6.1(5) s, Pm = 6249(564) days corresponding to 17.1± 1.5 years,
Tp = −1261(322) days, e = 0.38(17) andω = 2.5(4) rad, whereω
is the argument of periastron. The delays, the best-fit function, and
the corresponding O−C values in units of σ are shown in Fig. 2a
(top and bottom panel, respectively). The best-fit values of the

parameters are shown in the third column of Table 1. Setting the
parameter m equal to zero has little influence on the fit; the F-test
probability of chance improvement, leaving the parameter free to
vary, is on the order of 0.5.

We also explored the correlation of the eccentricity with
other parameters but with the parameter m fixed to zero. This
correlation is illustrated in Fig. 3, where contour plots for 68%
(green), 90% (magenta), and 99% (red) confidence levels are
shown across all six panels. Notably, the strongest correlation
is observed between eccentricity and parameter q, as well as
between the amplitude A of the sinusoidal function and eccen-
tricity e, where e varies within the range of 0.25−0.55. The inclu-
sion of eclipse arrival times distributed over a broader temporal
baseline will serve to minimize these correlations, enhancing the
reliability of our findings.

To obtain a constraint on the derivative of the orbital period,
Ṗ, we subtracted the best-fit eccentric sinusoidal function from
the delays. We then fitted the modified delays using the quadratic
function

y = q + m (t − Ts) + c (t − Ts)2, (2)

where c = Ṗ/(2P0) in s days−2. We show the data and the best-fit
function in the top panel of Fig. 2b. We obtained the follow-
ing best-fit values: q = −0.07 ± 0.33 s, m = (−0.4 ± 2.0) ×
10−4 s days−1 and c = (2± 9)× 10−8 s days−2. Adopting the best-
fit value of c we found that Ṗ = (0.7±2.9)×10−13 s s−1. We show
the O−C residuals with respect to this model in the bottom panel
of Fig. 2b.

3. Discussion

3.1. The jittered behavior in the eclipse arrival times

In our analysis, we investigated the total eclipse arrival times
derived by Jain & Paul (2011) and Jain et al. (2022), who uti-
lized a step-and-ramp function to model the eclipse shape in the
light curves of XTE J1710−281. However, it is worth noting that
the eclipse shape may vary from one eclipse to another, leading
to changes in its ingress/egress and duration times, or solely its
ingress/egress time. The ingress, egress, and eclipse durations
show a jittered behavior on the order of 15 s in EXO 0748−676
(Wolff et al. 2002), close to 5 s in MXB 1659−298 (Iaria et al.
2018) and up to 10 s in AX J1745.6−2901 (Ponti et al. 2017).
We show in the bottom panel of Fig. 2b that the jittered behavior
is close to 5 s for XTE J1710−281.

Wolff et al. (2007) proposed that the magnetic activity
of the CS can generate extended coronal loops above the
CS’s photosphere, accounting for the observed jitters. Fur-
thermore, Ponti et al. (2017) present a different scenario for
AX J1745.6−2901, where jitters were observed in the ingress
and egress, while the eclipse duration remained relatively con-
stant. They hypothesized that matter ejected from the accretion
disk can interact with the CS’s atmosphere, causing displace-
ment and hence delays in the ingress and egress times.

Both scenarios suggest that the presence of magnetic activity
and/or the atmosphere of the CS may slightly alter the estimates
of the eclipse arrival times. This can increase the reduced chi-
square, which may be larger than 1, as obtained for our best-fit
model.

3.2. Constraints on the companion star mass

XTE J1710−281 shows total eclipse and dips; therefore, its incli-
nation angle must be between 75◦ and 80◦ (see Younes et al. 2009,
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Fig. 2. Mid-eclipse time delays for different orbital solutions in units of seconds. (a) Time delays obtained by adopting T0 = 54112.831979 MJD
for the reference time and P0 = 3.28106345 as the orbital period (top panel). The best-fit curve (red) is described in the text. O−C values are in
units of σ (bottom panel). (b) Time delays obtained by subtracting the eccentric sinusoidal modulation (top panel). The best-fit curve is described
by Eq. (2). Corresponding O−C values are in seconds (bottom panel).
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and references therein). Moreover, the duration of the eclipse
∆Tecl is on average about 420 s (Jain & Paul 2011). Using these
observational results, we can provide an estimate of the mass
ratio q = M2/M1, where M1 and M2 are the masses of the NS
and the CS.

Knowing that the eclipse duration is ∆Tecl = 420 s, we can
estimate the size of the occulted region x (see Fig. 5 in Iaria et al.
2018) by using the expression

2π
P

a =
2x

∆Tecl
, (3)

where P and a are the orbital period and the orbital separa-
tion of the system. The value of x depends on a, which is
unknown. The angle, θ, complementary to the inclination angle
i of the binary system, can be estimated using the following
relationship:

tan θ =

 R2
2 − x2

a2 − (R2
2 − x2)

1/2

, (4)

where R2 is the CS radius. In light of the system accreting via
the inner Lagrangian point, the CS fills its lobe, resulting in the
radius of the CS coinciding with the Roche lobe radius of the
CS, which is given by Eggleton (1983)

RL2 = a
0.49q2/3

0.6q2/3 + ln(1 + q1/3)
· (5)

By substituting Eqs. (3) and (5) into Eq. (4), the angle, θ, depends
only on P, which is the known orbital period, on ∆Tecl, which is
420 s, and on q, our unknown variable. We show the dependence
of the inclination angle on q in Fig. 4.

Knowing that the inclination angle of the system ranges
between 75◦ and 80◦, we deduce that the mass ratio q falls within
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the range of 0.1−0.3. Assuming a NS mass of 1.4 M�, the CS
mass ranges between 0.14 M� and 0.43 M� for an inclination
angle of 80◦ and 75◦, respectively.

We can estimate the CS mass with further precision using the
mass–radius relationship for stars in thermal equilibrium derived
from the study of cataclysmic variables in Knigge et al. (2011).
Below, we adopt the mass–radius relationship for binary systems
with an orbital period greater than 3.18 h (the orbital period of
XTE J1710−281 is close to 3.28 h). The relationship is

R2 = 0.293 ± 0.010
(

M2

Mconv

)0.69±0.03

R�, (6)

where Mconv has a value of 0.20 ± 0.02 M� and represents the
mass of the convective region of the CS. This region fills its
Roche lobe, RL2, so we can assume that R2 = RL2. Since we esti-
mated that q is between 0.1 and 0.3, we can use the expression
for the Roche lobe radius proposed by Paczyński (1971). Com-
bining the expression for the Roche lobe radius with Kepler’s
third law, we find that

RL2 = 0.233m1/3
2 P2/3

h R�, (7)

where m2 is the CS mass in units of solar masses, and Ph is
the orbital period in hours. Combining Eqs. (6) and (7), we find
M2 = 0.22 ± 0.07 M�.

Assuming a NS mass of 1.4 M�, we infer that q = 0.16±0.05
corresponds to an inclination angle of i = 78.1+1.5

−1.2
◦. For a NS

mass of 2 M� we obtain q = 0.11 ± 0.03 corresponding to an
inclination angle of i = 79.6+1.6

−1.2
◦. Using Kepler’s third law, we

estimate that the orbital separation of XTE J1710−281 is a =
9.1 × 1010 cm for an inclination angle of 78◦, M1 = 1.4 M�, and
M2 = 0.22 M�.

3.3. Self-consistence test for the thermal equilibrium of the
CS

We can use the bolometric X-ray luminosity of the source to esti-
mate whether the CS is in thermal equilibrium. To do this, we
imposed that the Kelvin-Helmholtz timescale, τKH (correspond-
ing to the characteristic time that a star takes to reach thermal
equilibrium), is equal to or less than the mass transfer timescale,
τṀ . The Kelvin-Helmholtz timescale is given by the expression

τKH = 3.1 × 107
(

M2

M�

)2 (
R�
R2

) (
L�
L2

)
year (8)

(Verbunt 1993). Adopting the mass-luminosity relation for M-
type stars proposed by Neece (1984) and given by the expression
L2/L� = 0.231(M2/M�)2.61, along with the mass–radius relation
from Eq. (6), we obtain τKH ' 1.5 × 108 m−1.3

2 year. The mass-
transfer timescale is given by

τṀ =
M2

Ṁ2
=

GM1M2

LXRNS
, (9)

where Ṁ2 is the mass transfer rate, G is the gravitational con-
stant, LX is the X-ray bolometric luminosity and RNS is the NS
radius. In the last equality of Eq. (9), we imposed that the mass
transfer rate is equal to the mass accretion rate in the scenario of
conservative mass transfer. This point is further discussed later
on. We find that τṀ ' 3.7 × 1053 m2L−1

X s for a NS radius of
10 km and a NS mass of 1.4 M�.

By imposing that τKH ≤ τṀ , we obtain m2 ≥ (1.28 ×
10−38 LX)1/2.3. The unabsorbed luminosity in the 0.2−10 keV
energy band of XTE J1710−281, during the persistent emission,
was estimated to be LX ' 2.4 × 1036 erg s−1 for a distance to
the source of 16 kpc (Younes et al. 2009). For this luminosity
value, we determine that the CS is in thermal equilibrium when
m2 ≥ 0.22, which is the CS mass determined by our calculations.

3.4. The orbital period derivative of XTE J1710–281

Drawing upon theoretical frameworks, the mass-transfer rate
Ṁ2 within the context of long-term orbital evolution can be
expressed as

ṁ−8 = 35 (3n − 1)−1m2
Ṗ−10

P5h
, (10)

where ṁ−8 is the mass transfer rate in units of 10−8 M� yr−1, n
is the mass–radius index of the CS, Ṗ−10 is the orbital period
derivative in units of 10−10 s s−1 and P5h is the orbital period in
units of 5 h (see Burderi et al. 2010, and references therein).

Assuming a conservative mass-transfer Ṁ1 = −Ṁ2 and con-
sidering a source luminosity of 2 × 1036 erg s−1, in the hypoth-
esis that the observed luminosity is a good tracer of the mass
accretion rate ṁ, we find ṁ = 1.7 × 10−10 M� yr−1 for a NS
mass of 1.4 M� and a NS radius of 10 km. Consequently, the
mass transfer rate is Ṁ2 = −1.7 × 10−10 M� yr−1. Using n =
0.69 (adopted in Eq. (6)), m2 = 0.22 and an orbital period of
3.28 h, we find Ṗ = −1.5 × 10−13 s s−1. This value is consis-
tent within 1σ with what we obtained from our analysis, that
is, Ṗ = (0.7± 2.9)× 10−13 s s−1; therefore, we should expect that
the binary system is undergoing a contraction of the orbit.

The orbital period change due to the loss of angular momen-
tum can be associated with the emission of GRs and MB. Below,
we explore both cases assuming a conservative mass-transfer
scenario. The orbital period changes due to GRs is given by the
relationship

Ṗgrav = − 1.4 × 10−12m1m2m−1/3
T P−5/3

2h

× [(n − 1/3) × (n + 5/3 − 2q)] s s−1, (11)

where m1 is the NS mass in units of M�, mT is m1 + m2 in units
of M�, P2h is the orbital period in units of two hours, and q is
the mass ratio of the binary system (see di Salvo et al. 2008, and
references therein). Using the values of m1, m2, P, and n shown
above, we estimate Ṗgrav ' −2.8 × 10−14 s s−1.

The estimated mass of the CS is less than 0.3 M�.
Rappaport et al. (1983) proposed that the MB mechanism might
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not be active, attributing this to the star being fully convective.
The lack of a radiative zone implies losing its magnetic field
dipolar structure. If this mechanism is inhibited, the only contri-
bution to the orbital period derivative is related to Ṗgrav. How-
ever, both Chen (2017) and Tailo et al. (2018) indicated that the
MB mechanism could remain active even in stars with masses
below 0.3 M�. In such a scenario, we expect the contribution of
MB to the orbital period variation to be significant.

The contribution to the orbital period variation related to MB
is given by the relation

ṖMB = ṖgravTMB, (12)

where TMB = 41.6 ( f /k0.277)−2m1/3
2 m−4/3

1 P2
5h (see Eqs. (2)

and (3) in Burderi et al. 2010, and references therein). The gyra-
tion radius k is in units of 0.277, and since the CS has a
mass of 0.22 M�, we adopt a value k = 0.45 as reported by
Wadhwa et al. (2024). The parameter f can range between 0.78
and 1.73 because it is model dependent (see the discussion in
Burderi et al. 2010), and we estimate TMB for the limit values
of f finding that TMB ranges between 5.8 and 29. The corre-
sponding orbital period derivative associated with the MB, ṖMB,
is therefore between −8.2×10−13 s s−1 and −1.6×10−13 s s−1. The
contribution of the angular momentum loss via GR and MB to
the orbital period derivative yields Ṗ between −8.5 × 10−13 s s−1

and −1.9 × 10−13 s s−1, still compatible with what is obtained
from our analysis adopting TMB = 5.8.

3.5. The hierarchical triple system scenario

From the delays fitting, we obtain that the statistically most sig-
nificant solution involves a sinusoidal modulation with an eccen-
tricity e of 0.38±0.17 and a modulation period of 17.1±1.5 years.
The delay modulation could be caused by a third body orbit-
ing around XTE J1710−281, where the modulation period cor-
responds to the revolution period of the third body around the
binary system. We can estimate the mass of the third body under
the assumption that its orbit is co-planar with that of the binary
system. We estimate the separation between the center of mass
(CM) of the binary system and that of the triple hierarchical sys-
tem to be ax sin i = Ac, where c represents the speed of light, and
A is the amplitude of the modulation; ax sin i = 1.8 × 1011 cm in
our case. The mass M3 of the third body is given by

M3 sin i
(M3 + Mbin)2/3 =

(
4π2

G

)1/3 ax sin i

P2/3
m

, (13)

where Mbin is the mass of the binary system, G the gravita-
tional constant and Pm the periodic modulation inferred from
the delays fit. For an inclination angle of 78◦ (we assume that
the third body orbit lies on the binary system orbital plane),
M1 = 1.4 M� and M2 = 0.22 M�, we infer that M3 ' 2.7 MJ,
where MJ indicates the Jupiter mass. The separation between
the third body and the CM of the hierarchical triple system is
a3 = ax sin i Mbin/M3 ' 1.1× 1014 cm, corresponding to 7.5 AU,
approximately equivalent to a distance similar to that between
the Sun and halfway between Jupiter and Saturn. Finally, at the
periastron passage, the separation between the CM and the third
body is d = ax sin i (1 − e) Mbin/M3 = 7.1 × 1013 cm, a dis-
tance significantly exceeding the orbital separation of the binary
system, represented by a = 9.1 × 1010 cm.

The existence of third celestial bodies in orbit around binary
systems, particularly those containing a compact object, is being
increasingly confirmed by recent discoveries. Notable among

these findings is the proposed detection of a third body with a
mass of approximately 45 MJ (0.043 M�) by Iaria et al. (2015,
2021) orbiting the dipping source XB 1916−053. Concurrently,
Iaria et al. (2018) have revealed a 22 MJ mass third body orbit-
ing the eclipsing source MXB 1659−298. The precedent for such
detections was arguably set by Sigurdsson (1993), who pro-
posed the existence of a sub-Jovian mass planet in orbit around
the binary system of the millisecond radio pulsar PSR 1620−26
within the globular cluster M 4. Subsequent Hubble Space Tele-
scope observations allowed this model to be refined, positing the
third body as a planet with a mass of 2.5±1.0 MJ in orbit around
a binary system of a millisecond pulsar and a white dwarf com-
panion (Sigurdsson et al. 2003).

Bailes et al. (2011) discovered a Jupiter-sized chthonian
body composed primarily of carbon and oxygen in a close orbit
around the millisecond pulsar PSR J1719−1438, at a distance of
0.004 AU. Such observations are in line with the seminal discov-
ery of planets orbiting PSR 1257+12 Wolszczan & Frail (1992),
which has spawned a multitude of hypotheses regarding plane-
tary formation in the vicinity of pulsars.

Podsiadlowski (1993) discussed that planetary bodies asso-
ciated with NSs are supposed to form during one of three
distinct periods: (i) within a protoplanetary disk during the
initial star formation (first-generation); (ii) from a fallback
disk composed of debris of the supernova explosion (second-
generation); (iii) or within an accretion disk that forms from
matter transferred to the NS from the CS (third-generation).
Planets from the first generation, if they exist, are presumed
either to have been destroyed or to have had their trajecto-
ries severely altered in the wake of a supernova event. The
existence of planets orbiting millisecond pulsars challenges the
hypothesis of second-generation formation, as the spin accel-
eration implies a proximal CS, within an orbital distance of
roughly 1 AU, and this would likely perturb planets orbits.
This is corroborated by the instance of PSR B1257+12, which
is a fully recycled pulsar, implying its companion is a low-
mass star and had experienced Roche lobe overflow during its
main-sequence life stage, necessitating an orbital proximity not
exceeding 1 AU.

Therefore, the prevailing hypothesis for the formation of
planets orbiting isolated millisecond pulsars supports the idea of
third-generation formation, where planets form from the resid-
ual matter of the CS. However, this evolutionary channel clashes
with the findings of this study, where we have an X-ray binary
system undergoing mass transfer from a main-sequence CS.
Similarly, this evolutionary path cannot easily explain the three-
body system of the millisecond pulsar PSR 1620−26, where the
main CS is a white dwarf. Therefore, one possibility is that these
planets are solitary planets that were gravitationally captured
by the binary system (Podsiadlowski et al. 1991), which is very
unlikely for Galactic field systems. Alternatively, it is possible
that these planets emerge from a circumbinary disk, formed from
material expelled by the CS during a period of non-conservative
mass transfer of the LMXB (Tavani & Brookshaw 1992).

3.6. Limitations of the Applegate mechanism in explaining
orbital period modulation in XTE J1710–281

Given that the CS is a low-mass star (0.22 M�), we expect
its magnetic activity to be intense. However, XTE J1710−281
exhibits persistent emission with mass transfer via Roche lobe
overflow, so the luminosity from the outer regions of the accre-
tion disk may overshadow that of the CS in the visible band,
hindering a detailed study of the CS Ratti et al. (2010).
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Consequently, the magnetic properties of the CS in
XTE J1710−281 are currently unknown.

Nevertheless, an alternative explanation of the modulation
of approximately 17 years observed in the orbital delays could
be given by a gravitational coupling of the orbit with variations
in the shape of the magnetically active CS. These variations
are believed to result from the torque exerted by the mag-
netic activity associated with a subsurface magnetic field in the
CS, interacting with its convective envelope. The convective
envelope initiates a periodic exchange of angular momentum
between the inner and outer regions of the CS, leading to alter-
ations in its gravitational quadrupole moment (Applegate 1992;
Applegate & Shaham 1994).

In this instance, the deduced periodicity of 6249 days and
amplitude of 6.1 s translates to an orbital period variation of
∆P/P ' 2.2×10−5. Under the reasonable assumption that the CS
fills its Roche lobe, and consequently, its radius coincides with
the Roche-lobe radius, we can calculate the angular momentum
transfer required to induce the observed orbital period change to
be approximately ∆J ' 4.8 × 1044 g cm2 s−1.

The non-synchronicity of the companion, expressed by the
ratio ∆Ω/Ω, is 6.7 × 10−5, where Ω is the orbital angular veloc-
ity of the binary system and ∆Ω represents the variation in the
orbital angular velocity required to induce the change in the
orbital period, ∆P. The value of ∆Ω/Ω is obtained assuming
that a thin shell of mass, Ms is 10% of the CS mass, where the
shell represents the limited mass in the outer part of the star that
governs the quadrupole moment. For Ms mass larger than 10%,
the angular momentum transfer mechanism ceases to function
(Applegate 1992).

The variable part of the CS luminosity necessary to fuel the
variations in the gravitational quadrupole is ∆L = 2.9 × 10−5 L�.
To estimate the required fraction of the CS luminosity to achieve
the observed modulation in the delays, we deduce the CS lumi-
nosity using the relationship L/L� = 0.231 (M2/M�)2.61, appli-
cable to low-mass stars. We find that L ' 4.4 × 10−3 L� and
∆L ' 0.007. To achieve these brightness variations, we would
need a shell mass of 0.7% of the CS mass, while the available
budget should be around 10% of the CS’s luminosity. This result
appears odd with the model, so we conclude that this is unlikely
to be the correct explanation.

4. Conclusions

We used the mid-eclipse times reported by Jain & Paul (2011)
and Jain et al. (2022) to offer a different interpretation of the
orbital residuals of XTE J1710−281. By fitting the delays, we
find a periodic modulation of close to 17 years described by an
eccentric sinusoidal modulation with an eccentricity of about
0.38 and an amplitude of 6.1 s.

The likely scenario describing the sinusoidal modulation
involves a third body orbiting the binary system with a revolu-
tion period of 17 years and an orbital eccentricity of 0.38. From
these parameters, we deduce that the mass of the third body is
2.7 MJ. The presence of a third body around a binary system has
also been discussed for the eclipsing LMXB MXB 1659−298
(Iaria et al. 2018); this third body has a mass exceeding 21 MJ.
Moreover, the presence of a third body has also been con-
sidered by Iaria et al. (2015) for the ultra-compact LMXB
XB 1916−053; in this case, the mass of the third body would
exceed 45 MJ.

It is important to emphasize that the presence of a third orbit-
ing body does not contract or expand the orbital period of a

binary system. Indeed, the motion of the third body influences
the position of the CM of the binary system, thereby affecting
the arrival times of eclipses. The derivative of the orbital period
obtained in this work is not affected at zero order by the pres-
ence of the third body; it reflects the expected evolution of an
LMXB system given by the mass transfer and the loss of angular
momentum via MB and gravitational radiation in the case of a
conservative mass transfer.

Our interpretation of the results, statistically equivalent to
that obtained by Jain et al. (2022), rules out the presence of dis-
continuities in the derivative of the orbital period, for which,
to date, there is no theoretical model for their interpretation.
Instead, our result aligns with the evolution of a binary system
in which the CS of 0.22 M� is in thermal equilibrium, and con-
servative mass transfer tends to contract the binary system.
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