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A B S T R A C T

With the integration of virtualization technologies, the Internet of Things (IoT) is expanding its capabilities
and quickly becoming a complex ecosystem of networked devices. The Social Internet of Things (SIoT), where
intelligent things include social properties that improve functioning and user engagement, is the result of
this progress. The SIoT still has issues with scalability, data management, and user-centric operations, despite
tremendous progress. In order to overcome these obstacles, a strong architecture is needed that can handle
the enormous number of IoT devices while simultaneously streamlining the user interface.

This study provides a unique architecture for the IoT that uses containerization to efficiently deploy
and manage services while integrating Virtual Users (VUs) and Social Virtual Objects (SVOs) into a scalable
Cloud/Edge infrastructure. These innovative aspects collectively advance previous works presented in literature
and focused on novel SIoT architectures and implementations, by addressing key challenges in scalability,
efficiency, and automation within the SIoT. The proposed method presents an extensible, modular architecture
that lets VUs self-manage IoT services, making user administration easier and improving system security and
scalability. Important parts of the design include a host controller for container orchestration, a deployer for
automated service deployment, and user clusters for aggregating VUs, SVOs, and apps to provide secured
and efficient data sharing. We show through experimental assessment that the architecture can manage high-
volume installations and operating needs, exceeding the conventional platform based on Google App Engine
in terms of system overhead and deployment timeframes. The obtained results highlight how our suggested
architecture, which provides an easy-to-use, scalable, and secure foundation for IoT deployments, has the
potential to advance the SIoT landscape.
1. Introduction

The Internet of Things (IoT) [1] represents a transformative techno-
logical paradigm where everyday objects are connected to the internet,
enabling them to send and receive data. These devices, integral to
the IoT, are context-sensitive and can be recognized, detected, and
remotely controlled. A key aspect in this domain is the integration of
virtualization technologies [2], which enable sensing, communicating,

✩ This work has received financial support under the National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.1, Call for tender
No. 1409 published on 14.9.2022 by the Italian Ministry of University and Research (MUR), funded by the European Union – NextGenerationEU– Project Title
‘‘METATwin - Metaverse & Human Digital Twin: digital identity, Biometrics and Privacy in the future virtual worlds’’, – CUP J53D23015030001- Grant Assignment
Decree No. 0001382 adopted on 01/09/2023 by the Italian Ministry of University and Research (MUR).
∗ Corresponding author.
E-mail address: roberto.girau@unibo.it (R. Girau).

acting, interacting, and exchanging knowledge in the Cloud, reflecting
the informational content from their real-world counterparts.

This integration allows Internet-connected devices to collect infor-
mation about the physical world and transfer it to the virtual realm,
facilitating a wide range of applications and services. However, the
rapidly growing number of Internet-connected objects and the conse-
quent surge in data volume necessitate a redesign of future systems to
effectively process and store this burgeoning information.
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While virtualization provides essential scalability and flexibility for
numerous IoT services, recent developments indicate that this approach
alone is insufficient. Incorporating social networking concepts into IoT
offers new strategies to address the challenges of the IoT ecosystem [3].
This has led to the emergence of the Social Internet of Things (SIoT), a
network of intelligent objects and services with social characteristics.

SIoT, akin to human social networks, enhances the functionali-
ties of smart devices with relational capabilities, presenting a viable
solution for managing and exploiting the anticipated multitude of
heterogeneous devices. As our interactions with these devices increase,
it becomes crucial to alleviate the management burden on users. This is
where the concept of the VU [4] comes into play, autonomously inte-
grating the user into the digital world and assuming most of their oper-
ational responsibilities, based on continuous learning of user behavior
and automated processes.

Despite the potential of the VU concept within the SIoT paradigm,
there is a lack of robust implementations. This work aims to present,
describe, and test an architecture that aligns with the VU requirements
and offers a modular, extendable Cloud infrastructure for robust, rapid,
and secure communication at all levels.

This research is characterized by several innovative aspects:

1. Cloud Infrastructure for VU Concept: This research intro-
duces the first cloud infrastructure solution that fully meets
the fundamental requirements of the Virtual User (VU) concept.
This entails designing a robust, scalable, and efficient cloud-
based system capable of supporting the extensive and dynamic
interactions typical within a VU, thereby facilitating seamless
connectivity and resource management.

2. Containerization-based Virtualization in SIoT: The research
leverages advanced virtualization technologies through a
containerization-based approach. Containers offer lightweight,
efficient, and portable execution environments that enhance the
deployment and management of IoT applications. This method
ensures better resource utilization, faster startup times, and
improved scalability compared to traditional virtualization tech-
niques.

3. Automated Service Setup Processes: A key innovative aspect
is the automation of service setup processes within the SIoT.
This is achieved by the functional elements of the architecture,
which manage and streamline the configuration, deployment,
and maintenance of services. Automation reduces the manual ef-
fort required, minimizes errors, and accelerates the deployment
of IoT services, thus enhancing operational efficiency.

How can we improve the SIoT for user-centric applications so that users
do not need to continuously update their profiles, considering the wide
variety of existing devices? What specific benefits would implementing
an HDT (Hypermedia-Driven Thing) solution in conjunction with SIoT
bring? The main scientific aspect of this research lies in the integra-
tion and novel application of cloud infrastructure and virtualization
technologies within the SIoT framework. These innovative aspects col-
lectively advance the field by addressing key challenges in scalability,
efficiency, and automation within the SIoT, paving the way for more
effective and manageable IoT ecosystems. The paper is structured as
follows: The first section reviews the state of the art, introducing and
analyzing the concepts of VU and SIoT. The second section details the
proposed Cloud infrastructure, addressing the needs and gaps identified
in the literature. This includes the functional modules, communication
interfaces, and key operational processes like Cloud service distri-
bution. The third section evaluates the infrastructure’s effectiveness
through experimental results, demonstrating its performance capabil-
ities and potential for future developments. The paper concludes with
2

a summary of findings and implications.
2. Background and key concepts

In the ‘‘always connected’’ paradigm, society increasingly relies
on numerous internet-accessible objects, generating vast data requir-
ing efficient storage, processing, and interpretation. Cloud computing
emerges as a key technology, offering solutions for managing sen-
sors, data storage devices, analytical tools, artificial intelligence, and
management platforms, particularly through device virtualization.

The Virtual Objects (VOs) [5] represent digital counterparts of phys-
ical devices in the Cloud, introducing functionalities beyond real-world
objects’ capabilities, such as service discovery, complex application
creation, energy management efficiency, and support for multilingual
object communications.

These VOs serve as abstractions, acting as an intermediary layer
between physical devices and the applications or services interacting
with them. By dynamically updating to reflect changes in the state,
configuration, or location of their physical counterparts, VOs enable
real-time adaptation and seamless integration. Standardized protocols
promote interoperability, ensuring effective communication and col-
laboration between diverse IoT devices and platforms. Integrated into
cloud and edge computing environments, VOs facilitate efficient pro-
cessing, storage, and management of data within the IoT ecosystem.
They also enhance user experience by allowing users, applications, or
other devices to interact with VOs as if directly engaging with the
physical devices. This concept supports scalability, enabling the virtual
representation of the IoT environment to adapt to an increasing number
of connected devices. In essence, VOs play a pivotal role in simplifying
complexity, providing a standardized interface, and streamlining data
management and analysis within the evolving landscape of the Internet
of Things.

Recent studies [6] suggest applying social networking concepts
to manage heterogeneous devices effectively. The SIoT concept [7],
formalized in [8], envisions a social network where nodes (objects)
autonomously establish social relationships based on owner-defined
rules. This model promises scalability and reliability by correlating
informational data with social relationships, enhancing service search,
selection, and composition within IoT communities.

Pioneering architectures like Atzori et al.’s three-tier model [9] com-
prise Object, Component, and Application Layers. This logic is echoed
in subsequent proposals [10,11], adapting SIoT to various domains
like IoV [12] and E-health [13]. Lysis, a Cloud platform based on [9],
is particularly relevant, integrating Virtual Objects (VOs) into Social
Virtual Objects (SVOs) [14].

Lysis is a cloud platform utilizing the PaaS model, enabling easy pro-
gramming and reusability. It implements VOs and SVOs, with SVOs be-
ing central, equipped with interfaces for secure connections with Real
World Objects (RWOs) and standardized communication procedures.

SVOs, detailed in [14,15], possess functionalities influenced by
their associated RWOs. They include a Social Enabler (SE) module
for managing social relationships, forming friendships based on static
owner information, location, and encounter frequency. Types of so-
cial relationships include Social Object Relationship (SOR), Ownership
Object Relationship (OOR), Parental Object Relationship (POR), Co-
location Object Relationship (CLOR), and Co-work Object Relation-
ship (CWOR). SVOs interact autonomously with community members,
enhancing system scalability.

Girau et al. [4] introduced the VU concept, a distributed agent in
the Cloud representing IoT users’ virtual counterparts. The VU aims
to relieve users from tedious IoT service management tasks, acting
on their behalf and fully exploiting IoT potential aligned with user
profiles and interests. The VU provides a unified interface, maintains
an updated user context, builds user profiles, manages credentials, and
creates personalized Quality of Experience (QoE) models. It supports in-
telligent mobility in edge-computing environments. Key components in-
clude Profile, Owner Control, ID&A Management, QoE, Social Network

(SN) Management, Context Management, and Migration Management.
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These components enable the VU to autonomously manage interactions
with IoT services and applications, representing user interests and
preferences in the Cloud.

In summary, the integration of Cloud computing, SIoT, and virtu-
alization technologies like VOs and SVOs, along with the concept of
VU, represents a significant advancement in managing the increasing
complexity and potential of IoT environments.

3. State of the art

This section briefly describes the initial implementation proposals
that have utilized the concept of the VU in recent years.

Girau et al. [4] propose a three-level implementation scheme to
integrate the VU into an IoT–cloud system. The base level involves
a database for storing context descriptors and the user’s DNA, a nu-
merical matrix containing unique user characteristics. The component
level includes tools for profiling, owner control, ID and authorization
management, Social Network management, context management, and
migration management. The top layer comprises the user interface and
interfaces with other IoT components: VO, CVO, and apps.

Functionally, the VU profiles are created and updated based on user
monitoring by ICT objects, which convert physical characteristics into
digital descriptors. This process relieves users from manual interven-
tion, as the knowledge obtained is stored and processed for each user
by their respective VU, ensuring flexibility and privacy.

As key processes in VU Implementation we can mention:

1. Continuous data collection at a certain sampling frequency.
2. Calculation of profile portions associated with classifier clusters

after sufficient data collection.
3. Detection of preferred settings related to clusters and storage in

the DNA.
4. Transmission of settings to the user’s VOs.
5. Daily definition of information to add to the profile based on

collected data.

Another work integrates the VU with Social IoT, using a new Chat-
ot integrated with Telegram [16] and compliant to the Lysis platform.
his aims to improve user experience and platform efficiency by simpli-
ying interaction through text messages. The VU in this setup interacts
ith all architecture modules, including Lysis, creating a social network
mong virtual objects to facilitate interaction. The chatbot system acts
s a back-end service for communication between users and the VU.
equests are generated by web apps or messaging services, processed
y an AI-based module, and then directed to the necessary function.
his architecture simplifies user-platform-SVO interaction, especially
or challenging actions like setup and configuration.

However, these initial models and implementations do not yet
rovide a comprehensive architectural and functional solution for the
U and its associated modules. The development and experimentation
rocess, which will be the subject of the following sections, aims to
ddress these gaps.

.1. Digital Twin in the IoT

The concept of the Digital Twin (DT) has its roots in the manu-
acturing sector [17], where it is defined as a virtual representation
hat encompasses the entire lifecycle of a product. This includes de-
ign, prototyping, testing, and production phases. The physical and
igital/virtual counterparts are closely linked, allowing for comprehen-
ive design, experimentation, and analysis of the real object’s physical
haracteristics at any stage of its lifecycle. The goal is to obtain any
nformation from the DT that could be obtained from inspecting the
hysical product [18].

Minerva et al. [19], building on the definition from [20], describe
he DT as: ‘‘A complete software representation of a single physical object,
3

including its properties, conditions, and behavior in real life, through models
and data. A DT is a set of realistic models that can simulate the behavior
of an object in a distributed environment, representing and reflecting its
physical twin throughout its entire lifecycle’’.

This definition implies that a DT is intricately connected to its
physical counterpart, containing all necessary information to complete,
characterize, and document its history. The concept of DT has evolved,
with its definition and applications expanding significantly [19].

In large systems, a DT should represent and behave like the real
object, adapting to changing conditions over time. The connection
between the real object and its virtual twin becomes crucial, especially
post-production, where physical data must be continuously fed to the
DT. The advent of advanced communication capabilities has enabled
DTs to connect with their physical counterparts via the Internet or other
protocols, facilitating the creation of specific networks. Additionally,
the DT can store and analyze the history of the object’s behavior,
aiding in the improvement of design, production, and operation for
future iterations [21]. For large systems, distributing virtual systems
across different computing environments (edge, fog, cloud computing)
is essential for simulation, stress testing, and error detection [22].

Given these characteristics and advantages, the DT concept has
garnered significant interest in IoT, Industrial IoT, and Cyber–Physical
Systems (CPSs). There is a strong demand for adaptive system solutions,
and DTs could play a key role in developing products and controlling
processes [23–25]. [26] illustrates a general framework that incor-
porates many capabilities and functions identified in academic and
industrial proposals.

[27] proposes a DT-assisted resource allocation framework for Ve-
hicular Edge Computing (VEC) to enhance network performance by
enabling collaborative computing among edge nodes. It integrates DT
technology to create virtual replicas of network nodes, improving real-
time condition monitoring and resource allocation. The framework em-
ploys Deep Reinforcement Learning (DRL) for decision-making, specif-
ically using an Advantage Actor–Critic (A2C) algorithm to solve the
optimization problem. Simulation results demonstrate the framework’s
effectiveness in reducing task completion delay and increasing VEC
system computation rates compared to benchmark approaches.

The authors in [28] discuss the integration of Adaptive Digital Twins
(ADT) with Vehicular Edge Computing (VEC) to address challenges like
high mobility and dynamic environments in vehicular networks. It pro-
poses a three-layer ADT-VEC framework, utilizing Deep Reinforcement
Learning (DRL) for efficient resource allocation and task offloading,
aiming to minimize latency. The framework demonstrates effective-
ness through simulations, offering a novel approach to enhancing VEC
networks with adaptive and intelligent management capabilities.

SOL, a service offloading method using deep reinforcement learning,
for Digital Twinning-Empowered Internet of Vehicles (IoV) in Edge
Computing has been introduced in [29]. The aim is to enhance the qual-
ity of service (QoS) in the IoV by efficiently managing service offloading
in edge computing environments. SOL employs Deep Q-Network (DQN)
to make optimized offloading decisions, addressing the challenge of
excessive service requests that could potentially overload edge com-
puting devices (ECDs). Through real-world datasets, the effectiveness
and adaptability of SOL in various environments are demonstrated,
showcasing its potential to improve IoV services by leveraging edge
computing.

Zhang et al. [30] introduce an innovative framework that inte-
grates DT technology and Artificial Intelligence to enhance vehicu-
lar edge computing networks. This approach aims to optimize edge
service management by revealing potential service matches among
vehicles and simplifying management complexities. The framework
employs a gravity model for vehicle aggregation in the DT environment
and a multi-agent learning algorithm for efficient resource scheduling
in physical networks. The performance of these schemes, validated
through real traffic datasets, demonstrates improved efficiency and

lower costs compared to traditional methods.
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[31] introduces a novel framework for reducing offloading latency
in Digital Twin Edge Networks (DITEN) within 6G environments. It
leverages DTs of edge servers to improve mobile offloading decisions,
minimizing latency while considering service migration costs due to
user mobility. The framework employs Deep Reinforcement Learning,
specifically an Actor–Critic approach, to dynamically optimize offload-
ing decisions. Simulation results demonstrate the effectiveness of this
approach in reducing offloading latency, failure rates, and service
migration rates, enhancing overall network performance.

Wang et al. [32] present a cooperative computing framework for
DT enabled 6G Industrial IoT, focusing on End–Edge–Cloud (EEC)
collaborative computing. It proposes a DT-assisted scheme for optimiz-
ing device association, offloading modes, bandwidth allocation, and
task split ratio to minimize system costs, considering task latency and
energy consumption. A Multi-Agent Deep Deterministic Policy Gradi-
ent (MADDPG) algorithm is employed for collaborative computation
and resource allocation, demonstrating significant improvements in
task success rates, reduced latency, and energy consumption through
simulations.

In [33], the authors investigate the strategic positioning of social
digital twins (SDTs) within edge computing environments to leverage
the advancements in Beyond 5G (B5G) IoT networks. This research
introduces the concept of SDTs, which are sophisticated digital replicas
that not only mimic the physical and operational characteristics of
devices or entities but also incorporate social interactions and behav-
iors, enhancing the IoT ecosystem’s intelligence and responsiveness.
By deploying these SDTs at the network edge, the study addresses
critical challenges in B5G networks, such as latency, data congestion,
and privacy concerns, by enabling more localized and context-aware
data processing and decision-making.

In case of DT of a person, namely Human Digital Twin(HDT), it
consists of the replication of the individual human body, in its entirety
or in a subset, in virtual space, simultaneously reflecting its physical
and psychological state in real-time [34].

To the best of our knowledge, there are currently no existing works
specifically addressing HDT in the context of the SIoT. To address the
gaps in the current state of the art, we have critically analyzed recent
advancements in the HDT within IoT.

A HDT can be employed to monitor the health status and well-being
of a person, provide personalized support for health and well-being,
and to monitor and improve people’s safety, for example, by prevent-
ing dangerous situations, such as a driving accident, or in case of
emergency, the HDT can automatically send an emergency call to the
relevant emergency services [35].

In [36], the authors delve into the sophisticated utilization of DT
technology to encapsulate human components within the scheduling
processes of cyber–physical production systems. This study presents
an approach where DTs serve as dynamic human representations,
facilitating more informed and adaptive scheduling decisions. By em-
bedding human factors into the DT, the research highlights how the
intricate interactions between human operators and the production en-
vironment can significantly influence scheduling efficiency and system
adaptability.

The study [37] explores an innovative integration of DT technology
with deep reinforcement learning to enhance human activity recogni-
tion systems in the context of mobile edge computing. The research
introduces a cost-effective framework that employs DTs as virtual
replicas of physical entities, enabling simulations and predictions of
human activities. By leveraging the computational capabilities of edge
devices, this approach not only addresses the latency and privacy
concerns inherent in cloud-based systems but also significantly reduces
the system’s overall expenses. The employment of deep reinforcement
learning further refines the activity recognition process, adapting dy-
namically to new data and environments, thus ensuring high fidelity in
4

the recognition outcomes.
3.2. Virtual User and Human Digital Twin: A comparison

The Virtual User (VU) foreseen in [4] is more like a virtual assistant,
a copilot that interact with multiple IoT devices, applications and the
user herself. In this view, we can highlight their main differences:

• Purpose and Functionality:

– HDTs: These are complex simulations that represent a vir-
tual counterpart of a human being, integrating multidimen-
sional data to replicate and predict the physical, biological,
and behavioral aspects of the individual. They are primarily
used in healthcare, personalized medicine, and performance
optimization, among other fields.

– VUs: These are AI-powered software agents designed to
assist users in tasks, typically through voice or text interac-
tions. Their functions include setting reminders, answering
questions, controlling smart devices, and facilitating user
interaction with technology.

• Data and Complexity:

– HDTs: They require comprehensive, high-fidelity data en-
compassing genetic information, medical history, lifestyle,
environmental factors, and possibly real-time physiological
data. The complexity of a HDT is substantial, as it aims
to accurately model and predict human physiology and
behavior.

– VUs: While they may personalize responses based on user
data and preferences, the depth and scope of data integra-
tion are generally less complex than that of HDTs. Virtual
assistants primarily rely on user input, preferences, and
interaction history.

• Interactivity:

– HDTs: The interaction with HDTs is usually more analytical
and data-driven, often used by healthcare professionals,
researchers, or the individuals themselves to make informed
decisions about health, training, or lifestyle adjustments.

– VUs: These are designed for interactive, user-friendly ex-
periences, allowing lay users to easily communicate with
digital devices and services. The interaction is more about
facilitating everyday tasks and accessing information.

• Application Areas:

– HDTs: Their applications are highly specialized, focusing on
areas like personalized healthcare, biomechanics, pharma-
ceuticals, and complex system simulations in which indi-
vidual-specific outcomes are crucial.

– VUs: They have a broad range of applications in consumer
electronics, smart homes, customer service, and general
productivity tools, aimed at a wide consumer base.

• Development and Implementation:

– HDTs: The development involves interdisciplinary expertise,
including medicine, biotechnology, data science, and com-
putational modeling, to achieve a high degree of accuracy
and predictive capability.

– VUs: : Development focuses on natural language process-
ing, user experience design, and integration with various
platforms and services, aiming for accessibility and ease of
use.

In summary, while both HDTs and VUs are innovative digital tech-
nologies, they differ significantly in their purpose, complexity, inter-
activity, application areas, and development focus. For these reasons,

even if tempted by considering a VU as a HDT, in this work we consider
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them distinct concepts. Nonetheless, a VU should exploit a HDT in
order to predict the human behavior and preferences in the different
scenarios of application. To this, the VU will involve a HDT as a
building part of its architecture.

3.3. Considerations

The analysis of the state of the art reveals that virtualization tech-
nologies are extensively used in the ICT sector [38]. Their ability to
simplify the management of numerous physical entities connected to
the Internet and participating in the IoT community is invaluable.
These technologies facilitate the handling of the continuous stream of
data and information produced and several solutions can be found in
literature.

[39] proposed an architecture for virtual objects management in
hyperconnected things network to facilitate the management tasks.
In [40], the authors had the objective to bring cloud-computing services
much closer to the end-users replacing physical devices with their
Virtual counterparts.

However, it has become evident that the benefits derived from
using virtual counterparts, often consisting of simple digital represen-
tations, are becoming insufficient. This necessitates an extension of the
functionalities offered so far.

Among the solutions proposed in the literature, the application
of human social networking processes and rules to the network of
intelligent devices, used in everyday life and various contexts like
industrial and medical, is particularly intriguing. The introduction of
the SIoT lays the groundwork for developing key elements for the
proposed architectural solution: the SVO, the Lysis platform, and the
VU. While the VU emerges as a general concept, it seamlessly integrates
into the SIoT paradigm.

In [41], the authors proposed a framework for SIoT objects to enable
virtual representation of real world objects analyzing their relationship
semantically to compose new services by combining VOs and named
composite VOs. Compared with Lysis, the architectural scheme is not
complete but limited to SVO definition.

The ability to virtualize the user, replacing them in most configu-
ration and data/device manipulation activities, and activating learning
processes based on past decisions and actions, is significantly enhanced
when extended through varied relationships with other VUs and ob-
jects. This approach optimizes service search, leveraging the knowledge
of the owner’s VU, the VUs of connected friends, and the information
collected by SVOs.

Implementing the VU requires innovative technologies and tech-
niques such as user profiling, artificial intelligence, machine learn-
ing, and classification algorithms. This presents a challenge, especially
within the SIoT context. An architecture that includes the VU must pro-
vide a distributed, scalable environment that is modular and versatile,
capable of managing additional elements and protocols.

Security is another critical aspect. The modules constituting the
functional parts in the Cloud exchange sensitive information and are
vulnerable to cyber attacks. As system complexity and functionalities
increase, so does the risk of security breaches. This opens avenues for
new research proposals, including risk analysis specifically applied to
the VU and SVOs, and the development of encryption algorithms for
securing communications within the VU network.

Further advancements could include defining a complete semantics
specific to the VU, enabling clear and immediate understanding of
exchanged information within its network. Additionally, legislative
gaps regarding the governance of VU communities need addressing.
The autonomous nature of the VU, its ability to react and adapt,
while maintaining its identity and interacting with other agents, raises
important legal questions about the responsibility for the activities of
the VU.

In Table 1, a comparison with the state of the art concerning the
SIoT is provided. This table highlights the main innovative contri-
5

butions of the present work in comparison to existing studies. The
Table 1
Related Works — Comparison.

References Topic SIoT SotA Improvements

[4,5] Infrastructure Cloud/Edge Enhanced robustness,
[8,10] -based scalability, and efficiency
[14,15] of cloud-based system

[4,5] Virtualization VM Advanced virtualization
[10,14] Technologies Based technologies through
[15,16] a containerization
[40] based approach

[4,11] VU concept N/A Fully integration
[16] with VU concept

[3,16] Automation N/A Automation of service
setup processes

comparison was conducted by selecting several works from the liter-
ature that address SIoT, offering insights into possible architectures
and implementations. The table is structured to illustrate how the
present work advances beyond existing research by focusing on key
aspects such as virtualization technologies adopted, cloud/edge based
architecture, scalability, automation and the integration with VU. Each
selected work is analyzed based on these criteria to demonstrate the
novel contributions of the current study. Table 1 provides a clear,
comparative overview, showcasing the innovative contributions and
contextualizing them within the broader landscape of SIoT research.

3.4. Strategic requirements

When developing and deploying the VU in the SIoT, several strategic
requirements must be considered.

A key requirement is a versatile infrastructure that supports the
migration of functional modules within the architecture, particularly
with an eye towards edge computing [42–44]. Edge computing aims
to bring services closer to the data source (the customer), offering low
latencies.

Research on container migration strategies in edge computing is
gaining momentum, which is crucial for the VU concept realized
through virtualizations and containers [45–47].

In the analysis of the current implementations of the SIoT we faced
some challenges:

• The first version of Lysis [14] utilized Google App Engine (GAE)
PaaS for container deployment. While GAE offers a user-friendly
environment and key APIs, it has limitations, such as restricted
language support, limited control over the infrastructure, and
poor performance for high computational demand applications
[48].

• Alternatives like AppScale, while not limited to Google’s propri-
etary Cloud, present similar limitations and are not economically
feasible for applications requiring substantial resources.

Past works present significant shortcomings from the point of view
of structural requirements and the choices made for the distribution of
the infrastructure itself. In particular, some strategies have been iden-
tified to overcome the gaps found in the scientific literature, focusing
on the use of:

• lightweight, easily extendable virtualization technology, using an
architectural logic centered on the use of containers [49,50];

• automated processes for the distribution, configuration, and po-
tentially migration of services [51].

Defining an infrastructure based on containerization offers significant
advantages, especially in view of future developments; such a choice
allows for continuous extension of the infrastructure through the ad-
dition of further functional modules, such as Artificial Intelligence,
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Machine Learning, and User Profiling modules. Moreover, there are
various techniques for migrating containers in edge and fog comput-
ing [52,53], which is a fundamental characteristic for a comprehensive
implementation of the VU concept. Furthermore, it offers versatility
in design, as it guarantees total management of the structure and its
architectural properties, which translates into the ability to provide the
developer with almost complete control over the Cloud architecture
and the technologies it uses. The necessity to fully exploit the potential
of containerization-based virtualization motivates the choice to propose
a microservices architecture, which, unlike a monolithic architecture,
breaks down the total application into a collection of smaller indepen-
dent units [54]. Each of the units within the architecture processes
its own services separately, meaning that each service has its own
functional logic and direct access to the database, where necessary.
Such a choice [55] responds to the needs developed from the state of
the art and brings a series of benefits that, in this implementation, are
fundamental:

• the deployment and updating of the individual service can be
performed individually;

• an error within a single block or module will not affect any other
construct within the overall application. Moreover, integrating
new projects into a microservices architecture is not complicated;

• simpler understanding: by reducing the design to smaller, easily
understandable blocks, the management of the entire structure
becomes simpler;

• scalability: the microservices approach allows for independent
scaling of each block or module, unlike a monolithic system
where the entire application must be scaled even where it is not
necessary;

• flexibility: the choice is not limited to specific development tech-
nologies or programming languages. The developer is free to
make different choices depending on the needs of each service;

• agility: fault tolerance is generally guaranteed in microservices, as
errors concern individual components and do not affect the entire
process.

Since, one of the main purposes of the introduction of the VU is to
uild efficient user centric SIoT application, grouping VUs and SVOs by
wner into a ‘‘User Cluster’’ of microservices offers several advantages
n terms of implementation and management in SIoT environments.
ere are some benefits of this approach:

• Isolation and Security: By grouping VUs and SVOs belonging to
the same owner into a User Cluster, it allows for better isolation
of data and services. This isolation enhances security by reducing
the attack surface and limiting the potential impact of security
breaches or vulnerabilities.

• Efficient Resource Allocation: User Clusters enable more efficient
resource allocation by consolidating the microservices that serve
a particular user. This consolidation reduces overhead and im-
proves resource utilization, leading to better performance and
scalability of the SIoT infrastructure.

• Simplified Management: Managing a User Cluster as a single
entity simplifies administration tasks such as deployment, mon-
itoring, and maintenance. System administrators can apply poli-
cies, updates, and optimizations uniformly across all microser-
vices within the cluster, streamlining operations and reducing
management overhead.

• Improved Interoperability: Grouping VUs and SVOs by owner
promotes interoperability and seamless communication between
related microservices. This coherence enables smoother interac-
tions and data exchange within the SIoT ecosystem, enhancing
user experience and system functionality.

• Scalability and Flexibility: User Clusters facilitate scalable and
flexible deployment architectures, allowing for dynamic scaling
6

of resources based on user demand and workload fluctuations.
This elasticity ensures that the SIoT infrastructure can adapt to
changing user requirements and accommodate growth without
sacrificing performance or reliability.

• Customization and Personalization: User Clusters provide a plat-
form for implementing customizations and personalizations tai-
lored to individual users’ preferences and needs. By grouping VUs
and SVOs together, developers can design and deploy specialized
functionalities and services that cater to specific user require-
ments, enhancing the overall user experience. Customization and
Personalization: User Clusters provide a platform for implement-
ing customizations and personalizations tailored to individual
users’ preferences and needs. By grouping VUs and SVOs together,
developers can design and deploy specialized functionalities and
services that cater to specific user requirements, enhancing the
overall user experience.

• Data Aggregation and Analysis: Aggregating data within User
Clusters enables comprehensive analysis and insights generation
for user-centric SIoT applications. By consolidating data from VUs
and SVOs associated with the same owner, it facilitates holistic
understanding and utilization of user context information, driving
intelligent decision-making and action within the system.

Overall, grouping VUs and SVOs by owner into User Clusters of mi-
croservices offers numerous advantages in terms of security, efficiency,
manageability, interoperability, scalability, customization, and data
utilization. This approach enables the development and deployment of
user-centric SIoT solutions that are robust, scalable, and responsive to
individual user needs and preferences. In the following sections, these
choices are translated into the actual structures and functional modules
designed. Furthermore, some fundamentally important processes for
the overall operation of the Cloud/Edge infrastructure will be charac-
terized, namely: the deployment of services, the configuration of the
SVOs, and the migration mechanism that can be applied to the latter.

4. Proposed edge/cloud infrastructure

The term ‘‘edge/cloud infrastructure’’ refers to a virtual infrastruc-
ture accessible via a network or the Internet. It comprises components
like servers, storage systems, edge devices, networks, virtualization
software, services, and management tools, supporting the computing
requirements of a edge/cloud computing model.

This research proposes a Edge/Cloud architecture for the efficient
integration of the VU into the SIoT, divided into the following struc-
tures:

• Platform: The VU is proposed as one or more microservices in-
teracting with Lysis platform [14]. Lysis, as a PaaS service, offers
functionalities for managing IoT resources using the concept of
SVO. However, Lysis has limitations that can be addressed by
integrating an intelligent distributed agent, the VU, into the SIoT
architecture. Lysis platform exploits an inner module in order to
deploy the SVOs into a cloud space from a repository. This module
will need the ability of deploying VUs as well.

• Virtualization: Virtualization technologies are crucial in the So-
cial IoT paradigm and the proposed Edge/Cloud infrastructure.
The group of virtual entities like SVOs and the VU, the User
Cluster, is a key element in the virtualization structure.

• Host: The hosting environment distributes the virtualization in-
frastructure. Different environments can host one or more groups,
with each host management module responsible for controlling
and orchestrating container management, migration, and execu-
tion within the group of virtual entities.

To extend Lysis for the VU and the User Cluster, the platform must
integrate new functional elements. This includes defining an interface
for information exchange between the platform and the VU, and ex-

tending the platform with a enhanced Deployer module. The Deployer
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Fig. 1. Cloud/Edge Infrastructure.
manages service deployment requests from the users (through Lysis’s
web UI or VUs) and forwards them to the HC, which translates these
requests into actual edge/cloud microservices.

The proposed Edge/Cloud infrastructure utilizes containers, identi-
fied as a lightweight and suitable solution for a distributed environment
that allows for easy scalability. The Host Controller integrates logic for
service deployment and migration. The platform can provide users with
dedicated Cloud space, but users may also choose different machines,
instances or edge devices to integrate into their personal execution and
data storage space.

Thus, users have total control over the infrastructure, aligning with
the identified requirements for the VU and its architecture. The detailed
functional elements of the proposed infrastructure are schematized in
Fig. 1.

The proposed solution adheres to the Lysis model and serves as an
extension of the platform. A key aspect of this integration is establish-
ing a communication channel between the VU and the management
platform (i.e. Lysis platform).

4.1. Deployer

A critical step in making the infrastructure implementation effective
is defining the elements necessary for an intelligent and automated
deployment of services. This involves developing the steps, processes,
and activities required to make the software system available to users.
A key module in this process is the Deployer (Fig. 2(a)), an application
integrated into Lysis that orchestrates deploy requests for new VUs,
SVOs, and other services.

New VUs are deployed in the Cloud following a request from the
Lysis platform, triggered by the registration of a new user. Once active,
these VUs can request the deployment of SVOs and apps through the
dedicated web interface. The Deployer manages these communications
asynchronously. When a service deployment request is made, the De-
ployer translates it into a unique identifying string (a query) and adds
it to the queue in the Query Management module. This string is sent
7

back as an immediate response to the requesting module.
Since deployment can take a significant amount of time, the system
is designed to initially send only the identifier of the request. The
complete response, containing details like the URL of the new instance,
is sent after the process is completed. This approach prevents the VU or
Lysis platform from being unnecessarily occupied and avoids potential
communication protocol exceptions due to response latency.

Each requesting module is responsible for tracking the information
of the requested service until the deployment process concludes. The
Deployer maintains information about each instantiated User Cluster,
including its real-time status (active or inactive). This is achieved
through specific data processing, which defines the attributes necessary
to start the cluster in the hosting environment, including database
access credentials and controls for future communications with the
distribution module.

During communications with both upper and lower levels, the
Deployer does not exchange any sensitive information, thereby main-
taining user privacy and ensuring security in terms of interface.

4.2. Host Controller

The Host Controller (HC) is a service on the physical/virtual ma-
chine responsible for managing the deployment process in the hosting
environment. It configures containers and interacts with the host sys-
tem. The functional components of the HC are described below, as
shown in Fig. 2(b).

The YAML Operator is a key component that handles reading, writ-
ing, and updating configuration files in YAML format. These files define
services, networks, and volumes for multi-container applications. The
YAML operator creates a directory for each user on the virtual machine,
where it generates a configuration file based on a reference model.
This model includes containers for user interface web applications and
databases. Notably, the storage system is always associated with a
volume to ensure data persistence.

The Host Management Interface manages operations processed di-
rectly on the machine, such as executing Shell commands, adding

background processes, and searching for available ports. It monitors
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Fig. 2. Main components for the deployment of SVOs and VUs in the edge/cloud architecture.
the execution of configurations contained in YAML files and identi-
fies free ports for new services. This is crucial for deploying services
like the User Interface, which need to expose a port for external
communications.

The Deployer Communication interface plays a vital role in handling
deployment requests from the Deployer. If recognized by the interface,
the HC processes the request and adds the related background process.
This communication is asynchronous, using a query queue system. The
HC informs the Deployer when it starts the operation and then releases
it from communication until the process is completed.

Migration Management is responsible for managing the migration
process of the user’s SVOs in edge computing environments. This
module enables the VU to bring resources closer to the user, enhancing
performance in terms of latency. HCs running on different machines or
instances can communicate to facilitate the movement of services upon
a migration request. The key activity here is transferring the persistent
data collected by the SVO from the current environment to the new
one, primarily involving the database transfer.

4.3. The User Cluster

The User Cluster is a collection of containers connected to the same
network, providing a secure communication environment by avoiding
the use of public IP for internal communications. This cluster is a key
innovation in the proposed Cloud infrastructure, as it consolidates all
the IoT services of a Lysis user in the virtual world, mirroring their
management of devices and applications in the real world.

The services encompassed within the User Cluster include:

• The VU: The trusted virtual counterpart of the user, integrating
them into the digital world by encompassing the HDT of the user.

• SVOs: Virtualizations of objects endowed with relational capabil-
ities.

• The User Interface: Connects the virtualization level with the
human user.

• Applications: IoT services that the user manages on Lysis, along
with their shared back-end.

• Storage Systems: Databases for storing persistent data collected by
the VU and SVOs.

This cluster configuration not only enhances the security of com-
munications between different components but also facilitates efficient
management and integration of various IoT services within the Lysis
platform.
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4.3.1. Virtual user
The VU concept has been realized as an application within a mi-

croservices architecture, compliant with the Lysis platform. It aims
to extend the platform’s functionalities and enhance the automation
level of its overall operation. The VU replaces the user in burden-
some operations, maintains an updated user context, and is based on
past choices. Novel models are useful as they use analysis of context
histories to improve applications and services, to provide proactive
management of the interactions with the physical environment or to
prevent risks [56,57]. Users can access IoT services and applications
in real-time and historical data are exploited at different contextual
levels [58].

For initial prototyping and modeling, the focus was on develop-
ing the VU’s communication functionalities and defining structures
for an automated deployment process in the Cloud. A prototype has
been developed with the potential for easy extension, allowing the
integration of additional modules necessary for the VU’s operation.
The choice of a container-based distributed microservices architecture
ensures scalability, making it suitable for artificial intelligence applica-
tions and offering a customized environment with good portability and
low overhead [59].

As depicted in Fig. 3, the VU develops vertically in the architecture,
communicating with applications and SVOs within its domain. A shared
back-end at the application level intelligently makes available the
resources collected by the VU, reducing redundant service requests. The
user interface, located in the VU domain, connects the virtual world
managed by the VU with the real world of the human user.

4.3.2. User interface
The VU needs to interface directly with the human user to ensure

the set of operations that characterize its functioning. During the learn-
ing process, the VU can directly ask the user for static data or formulate
specific questions to study their habits and preferences. Statistical and
machine learning methodologies have proved their predictive power
in real-world context being able to extract important relationships and
information [60]. Modeling context as additional feature similar to
users and services is an effective approach to predict and define inter-
actions [61]. Moreover, AI is a promising technology for the profiling
of users and devices exploiting historical data [62]. As part of our
previous work, a chatbot-based virtual assistant to further enhance user
interaction with the IoT platform was developed [16]. This chatbot
leverages a serverless architecture and AI tools, and it is integrated
with Telegram to enable natural language communication. The chat-
bot assists users in various tasks, including setting device parameters,
requesting data, and managing services, significantly simplifying the
interaction process. We developed a simplified web interface designed
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Fig. 3. Microservices involved in the User Cluster.
to perform the basic tasks required for our tests in order to keep a
low complexity of the system and to focus on the architecture-related
actions. This interface allows users to manage and control SVOs effec-
tively within the Lysis platform. Users can perform essential operations
such as deploying SVOs, updating configurations, and monitoring the
status of their devices. The web interface ensures that even users with
minimal technical expertise can interact with the system efficiently.

During the initialization phase, i.e., when the user wants to add
SVOs and/or apps, it needs a dedicated system that can forward re-
quests directly to the VU. Once registered on Lysis, the user is directly
redirected to the dedicated web interface, offered and controlled by the
VU. From here, each user can monitor their services and profile (see
Fig. 4). The major functionality, in the current design, is offered on the
page dedicated to adding a new SVO, graphically consistent with the
Lysis theme. The QR code, associated with the device to be virtualized,
can be easily scanned at this stage, through the camera of smartphones
and PCs, or alternatively, by uploading an image containing the two-
dimensional barcode. It will no longer be necessary to fill out many
other fields except the basic ones, such as the name the user wants
to give to the service and possibly its geographic location; everything
needed is contained in the QR code. When the user proceeds with
the creation, the web page forwards the relevant request to the VU,
which starts the initialization of a new SVO in the Cloud. It should
be specified that the user interface is a simple and lightweight web
application, whose main use is to provide an easily viewable page for
the user to monitor their IoT resources, along with the addition of new
services. Consequently, it does not use any storage system, but requests
the VU, whenever necessary, information related to the SVOs, apps,
and the profile to be displayed, or forwards to the same VU the data
related to the service for which initialization is requested. To keep the
user updated on the outcome of the operations they perform on the
platform, WebSocket technology [63] was used, which allows opening
a bidirectional interactive communication session between the user’s
browser and a server. With this API, the web interface can receive
messages from the VU’s server and display them on the page as a simple
notification for the user .
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4.3.3. Social virtual object
The SVO plays a crucial role in the proposed architecture by re-

sponding to the application layer’s requests. The VU communicates
directly with active SVOs, maintaining an updated user context, indi-
rectly communicating with physical objects, and leveraging the social
network created by the objects for dedicated service definitions. The
SVO, as defined in [64], extends the functionalities of the VU to objects.

The structure of the SVO includes:

• Configuration Handlers: These enable initialization, registration,
and deletion of devices. Initially, these operations are performed
by the physical object and the human user. However, with the
VU’s introduction, it takes over most configuration tasks.

• Northbound Handlers: These facilitate resource exchange with the
higher level, managing events related to sensor scheduling, trig-
ger addition, sensor management, and actuator control.

• Social Enabler (SE) (Fig. 5): This module implements the so-
cial functionalities of the object, managing owner and parental
relationships, and enabling geographical and encounter-based re-
lationships. The SE publishes its URL via MQTT for visibility and
interacts with the Cache memory and Database for social sharing
between virtualized objects.

To integrate this prototype into the new architecture, function-
alities for SVO management operated by the VU have been added.
This includes initial logic for setting controls and sending commands
by the VU. Context-aware computing is a new approach to allow
understanding context, environment, or status using data from devices
to react accordingly in autonomous ways, requiring both sensing and
increasingly learning, as IoT systems get more data and better learning
from this big data [65]. Context-aware computing connects a variety
of information found in the real world turning real situations into
information, and providing human-oriented decision making through
the application of a variety of machine learning techniques, such as
feature extraction, learning, and inference [66]. The VU performs intel-
ligent context analysis through data collection, extending pre-existing
functionalities with a VU-SVO interface.

In the configuration phase, the VU interacts with the social object
through APIs previously used between SVO and RWO. The initialization
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Fig. 4. Registration of a new SVO on the VU’s web user interface.
Fig. 5. Social Enabler.
and deletion of a new SVO are now operated by the VU, while regis-
tration, though automated, remains the task of the physical object. A
listener has been implemented to receive responses from SVOs based
on controls set by the VU or related commands.

These functionalities, combined with the Social Enabler’s ability
to build a social graph, are crucial for continuously studying and
updating the user context. A first logic for recognizing devices worn
by the user has been implemented through the VU-SVO interface. This
includes a control that the VU can set on sensors to recognize their
location or state. Any change in state is promptly communicated to
the VU, exemplifying the intelligent functioning of the VU in context
analysis. These capabilities are essential for efficiently responding at
the application level, with future development of these functionalities
being of significant interest.

4.3.4. Applications
In the Lysis platform, personal IoT applications of the user can

directly access SVOs through Northbound handlers. These handlers
enable applications to configure sensor data scheduling or set triggers
10
for specific conditions on the transmitted data, whether numerical or
related to the physical object’s state. SVOs can also communicate via
a dedicated Publish/Subscribe channel for transmitting information
based on the set triggers.

The integration of the VU into Lysis introduces an alternative ap-
proach for the application layer. As depicted in Fig. 3, the VU provides
a shared back-end to the user’s IoT applications. This shared environ-
ment makes available resources that have been previously requested
or recent information collected through continuous analysis of the user
context. For instance, the updated list of devices currently worn by the
user can be ‘‘published’’ through the shared back-end interface.

This approach allows an application to acquire necessary informa-
tion for its service without further consulting the VU or the SVOs.
Concurrently, the VU can keep applications updated without needing
to establish a private connection each time. To manage the back-end
securely, a logic based on authorization or the use of access keys is
required.

However, this aspect of implementation has not been fully explored
in the current research work and is left for future development.
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4.4. Implementation technologies overview

The cloud/edge infrastructure employs HTTP and MQTT protocols
for robust connection handling and lightweight communication [67–
69]. Key technologies include:

• FastAPI: A high-performance web framework for developing
various components, chosen for its asynchronous support and
developer-friendly nature, based on Starlette and Pydantic for
asynchronous services and data validation [70–72].

• Flask: A Python micro-web framework utilized for developing
the SVO, offering functionalities like header parsing and cookie
handling [73,74].

• MongoDB: A NoSQL database selected for its scalability and
flexibility in handling large data volumes, used for managing
information of the VU [75,76].

• SQLite: Employed for SVOs, providing an ideal solution for indi-
vidual object data management due to its object-like nature [77].

• Docker: Used for deploying the infrastructure, offering efficient
server utilization and enhanced security, supported by Docker
Hub for image distribution and Docker Compose for multi-con-
tainer applications [78,79].

.5. Configuration of a social virtual object

The components and interfaces described in Section 4 facilitate the
utomated management of configuration processes. This is particularly
vident when a user, already registered on the platform, adds a new
VO from their personal console.

The process begins with the user scanning the QR code in the
eb interface, providing a name for the new SVO, and, if applicable,

ocation information for fixed objects. The QR code content is processed
y the User Interface application’s back-end and sent, along with other
ata, to the VU via an HTTP POST request.

The VU then searches its memory for a matching template. Upon
inding a match, it tracks the object’s information obtained through
he interface and sends a deployment request for the service to the
eployer. These temporary data are stored in the VU’s memory pending

he completion of the deployment process.
The VU initializes the SVO using a configuration script (Initialize

Handler), providing necessary values such as access keys. The subse-
quent registration step is executed by the physical device itself through
the Register Handler script.

In previous Lysis implementations, data required for registration of
the device had to be manually entered by the user. In contrast, the
proposed application contains predefined information specific to the
device type in the corresponding template. Thus, the VU sends most
of the registration information directly to the physical device, which
registers based on the received package. This communication utilizes
the MQTT protocol, with the device listening on a topic contained
in the QR code. The topic’s encrypted string, decrypted using a key
associated with the Lysis template, ensures that the device does not
receive unauthorized messages, enhancing the user’s security.

4.6. Deployment

Deployment involves the activities of installation, configuration,
and enabling that make a software system available for use. Once
deployed in the hosting environment, an application becomes an ac-
cessible resource at a specific URL. Typically, the host is a virtual
machine capable of supporting the deployment process and offering the
necessary performance for the proper operation of the deployed service.
In this case, particular attention has been given to the deployment
procedures of VUs and SVOs, with the process for IoT applications being
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analogous.
As previously mentioned, the architecture’s services, in terms of
deployment operations, rely on a specific module: the Deployer. This
innovative web application acts as an intermediary between the virtu-
alization layer and the virtual machines where the architecture is dis-
tributed. The Deployer exposes an interface for receiving deployment
requests from both VUs and the Lysis platform, of which it is a part.
It also implements communication with the lower-level deployment
environment.

To fully automate the process, another crucial service, the Host
Controller (HC), was introduced. While the Deployer handles commu-
nications, orchestrating the reception of new requests and the sending
and manipulation of results, the HC executes the actual configuration
and execution of Docker containers on the machine. For the HC to
process requests and recognize the Deployer as a reliable source, it
authenticates using a Bearer Token, a type of Access Token used for
authorization in compliance with the OAuth2 standard [80].

The overall operation involves the Deployer collecting requests
from the upper level through its interfaces (Fig. 2(a)). It generates a
query associated with each request, processes the data for the service
to be distributed, and initiates communication with the host level.
Once the host level provides the outcome of the distribution process,
the Deployer processes the data again, manipulating the database in
preparation for forwarding the host level response to Lysis or the VU.

4.6.1. Virtual User deployment
Upon a new user’s registration on Lysis, the platform initiates com-

munication with the Deployer’s dedicated interface, as shown in Fig. 6.
Lysis assigns the user a cloud space for the Docker infrastructure, which
is essential for hosting the VU. Each assigned machine must run the
Host Controller (HC) application. The Deployer receives details about
the Docker images for the VU and its web interface, including version
tags, and static user data like personal information and email address.

The Deployer constructs a set of attributes necessary for the HC,
such as the request identifier (query), user ID, and database access cre-
dentials. After authentication and data validation using Pydantic mod-
els, the HC starts the deployment process and sends an acknowledgment
signal (‘‘ACK’’) to the Deployer. The user ID serves as a directory name
for the Compose file and to identify the network associated with the
VU’s cluster, ensuring uniqueness.

The HC finds available ports for the services, specified in the YAML
file. Although all services in the same cloud space share the same IP,
they are available on different ports. The final URL is sent upon deploy-
ment completion. If the deployment process is unsuccessful, indicated
by a non-zero system response code, the Deployer either maintains
or removes the associated data from the database. For successful de-
ployments, the Deployer generates a key for securing communications
between the new VU and Lysis, sent to both parties. Additionally,
the Deployer creates another key for future communications with the
initialized VU.

This deployment process ensures that each VU is uniquely associ-
ated with a user and securely integrated into the cloud infrastructure,
with the Deployer and HC playing critical roles in orchestrating and
executing the deployment.

4.6.2. Social Virtual Object deployment
The configuration process for a new SVO involves several architec-

tural elements, with the Deployer playing a crucial role in ensuring that
the SVO is distributed and accessible in the cloud.

To add an SVO to the architecture, the human user scans the
associated QR code and creates it through the web interface. This
action triggers a request to the VU, which then constructs the necessary
information for service deployment, including the Docker image and
tag. The data is associated with the template identifier provided during
scanning, which the VU has previously stored and kept updated through
the Lysis platform interface. If there is no match between the provided
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Fig. 6. Deployment process for the Virtual User.
Fig. 7. Deployment process for the Social Virtual Object.
,

information and the VU’s semantic models, the operation is rejected,
and the user is alerted.

Fig. 7 illustrates the deployment process for a mobile object, but it
is noted that the process is similar for fixed objects, with additional
location information provided during creation. The VU supplies the
MQTT broker address and the MQTT protocol port number for the SVO
to interface with the physical object.

The deployment process then evolves similarly to that of the VU.
A key difference is that the directory containing the cluster’s basic
elements, such as the compose file and volumes, already exists. The
YAML operator only needs to add the new content. The correct folder
is identified using the user ID, as multiple VUs can be instantiated on
the same machine.

After modifying the configuration file, Docker-Compose is invoked
via Shell. Existing containers remain unchanged, while new ones are
instantiated in the same network. The SVO application and SQLite3
database containers are executed using their respective images. When
the HC sends the outcome to the Deployer, it forwards it to the VU via
an HTTP POST request.

The VU then handles the configuration operations, communicating
directly with both the SVO and the real object.

4.7. Migration of a Social Virtual Object

The capability of the VU to migrate services, especially those of the
SVOs, is a crucial feature for its integration into Lysis. This functionality
ensures improved performance in terms of latency and connection
speed.

As discussed in Section 4.2, a specific interface has been developed
to handle requests for migrating an SVO from a cloud environment
to an edge environment. As shown in Fig. 8, when the VU identifies
the need to migrate a service, it first verifies the availability of spaces
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in the new area or the addition of new virtual machines by the user.
The migration request, including the service URL and the IP address of
the new Host Controller (HC), is then forwarded to the HC currently
hosting the SVO. Notably, only the IP address is required, as the HC
applications are available at the same port on each machine.

This process employs asynchronous communication based on queries
generated by the VU. Upon receiving authorization from the current
HC, confirmed through an access key, the HC sends an acknowledg-
ment signal (ACK) and initiates the migration’s first phase. This phase
involves locating the database file of the requested service within the
VU’s directory and transmitting the SQLite file content to the recipient.

The new HC, upon receiving the SVO data, starts the second phase
of the migration in the background and sends an ACK signal associated
with the query to the sender. This phase includes instantiating a new
container for the SQLite file and another container for the specific SVO
template application, i.e., its Docker image.

If the migration is successful, the initiating HC receives confirma-
tion, deletes the corresponding query and the migrated service data
file, and removes the associated containers. The response, containing
the new address of the SVO, is transmitted to the requesting VU on
the route associated with the query identifying the entire migration
process.

4.8. Security and privacy in the proposed architecture

Although security is not the primary focus of this paper, it is
essential to address the main security challenges and best practices
in microservices-based IoT architectures, especially when integrating
social features that handle personal user data [81,82].

Our architecture employs HTTPS and TLS for encrypting commu-
nication between various components, including the deployer, Host
Controller (HC), Virtual Users (VUs), and Social Virtual Objects (SVOs).
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Fig. 8. Migration process of an SVO.
This ensures data confidentiality and integrity during transmission. For
authentication, the VU interface uses user passwords, though OAuth 2.0
could also be implemented for enhanced security.

Access to SVOs is controlled through multiple layers of API keys,
which are generated by VUs and regularly updated to maintain security.
The HC must be added to a whitelist by the deployer to operate within
Lysis, and authorization is managed through rotating keys, providing a
robust authentication mechanism.

Network insulation is implemented for communications between
VUs and their owned SVOs, using a proxy for connections to other
clusters or IoT applications. This setup ensures secure and isolated com-
munication channels. Furthermore, MQTT communications are secured
with TLS, adding an additional layer of security for data transmitted
over this protocol.

Security in IoT environments also involves evaluating the trustwor-
thiness of objects, as misbehaving nodes can exploit social relationships
to launch attacks or monopolize services. Nodes with strong social
ties can collaborate to dominate specific service classes, impacting
the fairness and efficiency of resource distribution. Given that trust
evaluation is deeply integrated with IoT service discovery, the concept
of Trust Management (TM) is crucial. Research by Nitti et al. [83] has
demonstrated the effectiveness of a social approach in evaluating trust
within the SIoT paradigm. They proposed a subjective algorithm that
SVOs can use to generate a trust-ordered list of resources for upper
layers. However, these algorithms often require significant commu-
nication between nodes to maintain updated trust values, which can
be resource-intensive. In Lysis, the use of a distributed SVO approach
and edge/cloud technologies helps to mitigate these challenges. Data
ownership is a critical aspect of our architecture. Users can maintain
ownership of their data by choosing to store it on their edge devices or
in their own cloud space, providing flexibility and control over personal
data.

Compliance with relevant standards is a cornerstone of our security
strategy [84]. We adhere to the General Data Protection Regulation
(GDPR), ensuring that personal data is handled with the utmost care
and in accordance with legal requirements. Additionally, we follow
the guidelines of ISO/IEC 27001 for information security management,
and implement recommended security controls and practices from the
National Institute of Standards and Technology (NIST).

By integrating these security measures and best practices, our pro-
posed architecture provides robust protection against potential security
threats. This enhances the overall reliability and trustworthiness of the
system, making it well-suited for real-world applications where security
and privacy are paramount.
13
5. Experimental evaluation

In the SIoT, the proliferation of connected devices often necessi-
tates continuous updates to user profiles to maintain consistency and
personalization of services. This process can be both burdensome and
inefficient. Therefore, it is crucial to develop solutions that minimize or
eliminate the need for manual profile updates while enhancing the user
experience in user-centric applications. The first objective is to analyze
the current challenges related to user profile management in SIoT.
This includes examining the issues arising from the need for frequent
updates due to the vast array of devices and their dynamic interactions.
Understanding these challenges is essential for devising effective solu-
tions. Next, the goal is to propose a solution that integrates VU with
SIoT. This approach involves defining how an HDT-based solution can
automate user profile management. The HDT method creates a digital
representation of the user that can dynamically interact with devices
and systems, facilitating more autonomous and adaptive management
of information. This integration aims to streamline the process of
keeping user profiles updated without manual intervention. Finally, it
is important to evaluate the specific benefits that the implementation
of a VU + SIoT solution would bring to user-centric applications. These
benefits include reducing the need for manual updates, increasing auto-
matic personalization, and improving interoperability among devices.
By addressing these areas, the combined HDT and SIoT approach can
significantly enhance the efficiency and user-friendliness of managing
user profiles in a highly connected environment. As outlined in Sec-
tion 4, the proposed architectural solution integrates the concept of
the VU into the Lysis platform. This integration focuses on defining in-
frastructural properties, developing interfaces, and functional processes
such as service deployment, configuration, and migration of SVOs/VUs.

To assess the effectiveness of the overall Cloud infrastructure, it
is crucial to create a prototype that simulates the actual functionality
intended for real-world application. This prototype should emulate the
use of the VU, SVOs, Deployer, and Host Controller within Lysis, as
described in previous sections.

To provide a comprehensive analysis, we conducted scenario-based
testing that reflects different real-world applications. These scenarios
include varying the number of connected devices, the frequency of
interactions, and the complexity of tasks performed by the SVOs. The
testing scenarios are as follows:

• High Device Density: This scenario simulates an environment with
a high number of IoT devices, assessing the system’s ability to
manage numerous simultaneous connections and data exchanges.
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Table 2
Performance-Optimized of Deployer and Hosting Environment Configuration.

Deployer Host controller

Instance type t2.micro t2.large
Virtual CPU 1 vCPU 2 vCPUs
Memory 1 GB 8 GB
Storage 8 GB EBS root volume 8 GB EBS root volume

• Variable Load Patterns: We tested the system under fluctuating
operational loads, mimicking real-world conditions where device
interactions and data transmission rates vary throughout the day.

• Complex Interaction Patterns: This scenario evaluates the system’s
performance with complex interaction patterns, such as those
found in smart cities or industrial IoT applications, where devices
must frequently communicate and coordinate actions.

The experimental evaluation of the architecture involved a set of
etrics to study specific fundamental architectural properties. Quan-

itative results are obtained through a series of executions SVOs/VUs.
hese executions stressed the system by simulating various deployment
rocesses with different parallel workloads. Additionally, a functional
imulation of the system was conducted, progressively populating it
ith an increasing number of instances of SVOs.

The experiments primarily focused on the response of CPU, Mem-
ry, data traffic, and connectivity, following the overhead produced
y running various processes or receiving considerable data traffic
nput for both the VU and SVO services. While no deployment or
imulation was conducted for the applications, the procedure for them
s analogous to that for an SVO. Therefore, it is expected that the results
or applications would be similar, on average, to those obtained for
irtual objects.

.1. Testbed

The instance simulating the operation of the Deployer and Host
ontroller were configured with the specifications summarized in Ta-
le 2. For the experimental evaluation, two EC2 (Elastic Compute
loud) instances provided by Amazon Web Service [85] were utilized.
WS offers a range of processors, storage systems, networks, and
perating systems to suit the specific needs of the infrastructure being
mplemented.

Each vCPU corresponds to a thread of either an Intel Xeon or AMD
PYC core. An Amazon EBS volume is a durable block-level storage
evice attachable to instances. Ubuntu was installed as the operating
ystem on both virtual instances.

For the hosting environment where the Host Controller applica-
ion was executed, a higher-performance instance was selected. This
hoice was made considering a configuration that demands greater
erformance capabilities. The table details various aspects such as
PU processing power, memory capacity, storage capabilities, and

nstance type, all of which are essential for ensuring optimal func-
ioning and efficiency of the Host Controller application. By opting
or a higher-performance instance, the hosting environment can better
ccommodate the application’s requirements, thereby enhancing its
verall performance and responsiveness.

The following section details the tools used for measurement during
he experimental evaluation.

.2. Tests on the deployment of the virtual user and social virtual object

The first series of experiments focused on executing deployment
rocesses for the VU application and the corresponding User Cluster
UC). Initially, the UC does not contain active containers for SVOs
nd applications. Each process is initiated by the Host Controller (HC),
14

ollowing a request from the Deployer, which in turn receives it from
the Lysis platform. In the experimental setup, JMeter simulates the
behavior of Lysis following the registration of a new user.

Two types of time intervals were evaluated:

• Time A: the interval between the HC receiving the request and
executing the containers for the requested application.

• Time B: the interval between the HC receiving the request and
sending the response to the Deployer (and consequently, to the
requesting module).

Fig. 9 shows the results obtained during various service deployment
processes, characterized by progressively increasing workloads for the
hosting instance.

The first deployment process for a single VU occurs in an envi-
ronment with no other running containers or Docker images in the
instance’s cache memory. The deployment time (Time A) is relatively
high due to the need to download Docker images from Docker Hub. The
HC constructs the response containing the new service URL and waits
seven seconds (an empirically established interval) before transmitting
it to ensure all containers are operational. These results represent the
consistent difference between Time A and Time B.

Subsequent experiments involved deploying multiple VUs and their
clusters:

• three VUs over three seconds (one request per second).
• five VUs over three seconds (one request every six-tenths of a

second).
• ten VUs over three seconds (one request every three-tenths of a

second).

The average values of the time intervals for these deployments were
calculated. The system showed increasing stress with more parallel
requests, impacting the deployment times. Graphically, it can be ob-
served that processing periods for three and five VUs are handled quite
swiftly and successfully, despite an increase between experiments. Both
Time A and Time B values further escalate when deploying ten VUs,
corresponding to ten User Clusters, which are progressively requested
at intervals of one unit every three seconds. The instance struggles
more with deploying a significant number of VUs within a relatively
narrow timeframe. It is important to consider that the infrastructure
must already support other clusters, meaning resources are partially
utilized, resulting in greater challenges in managing parallel processes
and corresponding HTTP communication for transmitting responses
to the higher level. This translates to longer deployment intervals.
However, the average recorded value remains below the one-minute
threshold, which is deemed acceptable and rather performing when
compared to other deployment strategies.

The experimental evaluation conducted for VUs was similarly ap-
plied to SVOs. In these experiments, the JMeter tool simulates the
functionality of the user interface module. The results are presented
through graphs, accompanied by a brief analysis.

Also, Fig. 9 illustrates the variation in Deployment times (Time
A and B) during the deployment processes of an increasing number
of SVOs, with requests transmitted within a three-second interval.
Similar to the VU deployment, the first SVO deployment on the instance
shows higher deployment time due to the requirement for downloading
Docker images. Subsequent deployments are faster as fewer containers
are instantiated per request.

The CPU and RAM usage during these deployments are shown in
Fig. 10 and Table 3, respectively.

The experimental results presented in Fig. 10 provide a compre-
hensive overview of the performance of our proposed architecture in
terms of deployment time and CPU usage for different numbers of
SVOs and VUs. The figure illustrates both the average deployment time
and CPU usage, with error bars representing the standard deviation.
The deployment time data indicates a clear trend where the time

required for deployment increases with the number of SVOs and VUs.
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Fig. 9. Comparison of Deployment Times for VU and SVO under Two Different Setups. Error bars represent standard deviation.
Table 3
Average Percentage of RAM in
the deployment processes for SVO
expressed in seconds.

RAM % usage

1 SVO 12
3 SVO 14
5 SVO 18
10 SVO 23

For instance, deploying 1 SVO takes an average of 10 s, whereas
deploying 10 SVOs takes significantly longer, averaging 40 s. Similarly,
deploying 1 VU takes an average of 15 s, while deploying 10 VUs
takes 50 s. This increase in deployment time is expected due to the
additional resources and coordination required to deploy multiple SVOs
and VUs simultaneously. However, the relatively moderate increase
in deployment time suggests that the proposed architecture manages
scaling efficiently. The CPU usage data shows a similar trend, with
CPU load increasing as the number of SVOs and VUs grows. The CPU
usage peaks at 90% for the deployment of 10 SVOs and 95% for the
deployment of 10 VUs, compared to 20% for 1 SVO and 25% for 1 VU.
This substantial increase highlights the higher computational demand
required to handle more SVOs and VUs. The data also indicates that the
CPU usage stabilizes relatively quickly after the peak, demonstrating
the system’s ability to handle peak loads and return to normal operating
conditions efficiently. The relatively low standard deviation values
indicate consistent performance across multiple trials, reinforcing the
robustness of the proposed architecture.

The system handles the distribution of ten SVOs with less stress
compared to the VU, indicating that fewer resources are necessary for
SVO deployment. However, in real-world applications with multiple
clusters, higher computational capabilities might be required.

Fig. 11 presents the HTTP performance metrics, specifically focus-
ing on latency and connection time, for up to 19 concurrent HTTP
POST requests generated during the test. The connection time remains
practically constant throughout the test. The minimum connection time
observed is 120 ms, while the maximum is 134 ms. This stability
indicates a consistent and reliable network connection, irrespective
15
of the increasing number of requests or the type of communication,
whether VU or SVO.

Latency tends to increase with the number of transmitted requests.
For VU communications, the latency peaks significantly, with the last
two requests recording high values of approximately 36,069 ms and
35,938 ms. Similarly, for SVO communications, latency also increases,
displaying notable peaks under high load conditions. These high la-
tency values were obtained by disabling HTTP timeouts in the FastAPI
applications involved. Without this adjustment, connections would
have dropped, and while the processes would have completed, the
results would not have been correctly transmitted. Therefore, these
high latency values are not desirable in practical applications.

The tests were conducted under stress conditions, with HTTP time-
outs disabled to capture the maximum latency values, which would
otherwise result in dropped connections. These high latency values
are not typical and represent extreme stress scenarios, indicating the
system’s performance limits. The testbed used had limited performance
capabilities, with the Deployer’s virtual RAM size being only 1 GB.
Additionally, the geographical distance between the local machine in
Italy and the EC2 instances in Northern Virginia contributed to the
latency, as the physical separation added to the delay.

For SVO communications, the observed behavior is similar to that
of VU, albeit more pronounced. This is due to the request originating
from the user interface, passing through the HC, VU, and Deployer,
and then reversing the path. As the number of requests transmitted
increases within the same time frame (three seconds), the commu-
nication latency for transmitting a request to the HC and receiving
a QueryACK becomes progressively higher. In the SVO experiments,
JMeter simulates the connections received and established by the user
interface. Users request the addition of a new SVO service through
the interface, which is translated into a deployment request by the
Virtual User. This process generates nested HTTP POST requests from
the interface to the host, introducing delays in the connection path.
Additionally, the Deployer, given the technical specifications of the
chosen instance, is not suitable for handling overload conditions caused
by receiving numerous parallel requests. The HC also takes longer each
time it needs to add a background process to those already running.

To mitigate high latency and avoid HTTP connection drops, sev-
eral approaches can be considered. Optimizing resource allocation
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Fig. 10. Average Deployment Time and CPU Usage for Different Numbers of SVOs and VUs. Error bars represent standard deviation.
y defining an appropriate logic for migration processes can ensure
esources are as close as possible to the client or platform, reducing
loud distances. Using instances or virtual machines with better perfor-
ance capabilities can handle higher workloads and manage numerous
arallel requests more efficiently.

Overall, the results indicate that while the system maintains sta-
le network connectivity, there are areas for improvement in opti-
izing server resources to reduce latency spikes. Implementing load

alancing techniques, dynamic scaling, and continuous monitoring can
elp address these issues, ensuring better performance under stress
onditions.

.3. Cloud infrastructure in operational conditions

The development of the Cloud infrastructure involved defining func-
ional modules and interfaces, which, during operation, facilitate a
ense exchange of information and execute critical processes such as
eployment. This section focuses on analyzing the Cloud system’s in-
rastructural characteristics under operational conditions, particularly
PU usage and data traffic.

A Python demo application was developed to simulate the func-
ioning of real objects associated with SVOs in User Clusters. This
pplication mimics the registration process and continuous data trans-
ission by the objects, including numerical data and mac-addresses,

kin to a Raspberry device. The SVOs schedule scans of wireless in-
erfaces to identify their location or find other SVOs for establishing
elationships. This data is forwarded to the owner VU for context
nalysis.

The following scenarios were simulated to produce significant in-
oming traffic on the virtual instance:
16
• One VU and one SVO in a single User Cluster.
• One VU and three SVOs in a single User Cluster.
• One VU and five SVOs in a single User Cluster.
• Two VUs and two SVOs in two User Clusters (one SVO per user).
• Two VUs and six SVOs in two User Clusters (three SVOs per user).
• Two VUs and ten SVOs in two User Clusters (five SVOs per user).

5.3.1. Data traffic analysis
Fig. 12 presents the incoming network traffic generated during the

functional simulations.
The simulations reveal that even a single User Cluster can generate

considerable traffic. In real-world applications, this traffic is expected
to increase significantly as the VU processes information and interacts
with other modules, leading to an increase in HTTP requests and overall
traffic. Considering the operation of a single VU managing a single SVO,
a throughput value of approximately 5 kbps is already achieved. This
value tends to increase almost linearly when two additional services
of the same type are added to the same User Cluster simultaneously.
It is evident that even the services related to a single User Cluster
alone can generate significant traffic even when simulating simple data
transmission. In an actual real-world application, not only does the VU
receive information of interest, but it also processes decisions based
on them and transmits commands and specifications to the functional
modules within its domain, which in turn transmit the corresponding
responses through additional HTTP requests that contribute to the
overall traffic. Communication is anticipated to experience substantial
growth. This prediction finds support in the examination of data traffic
in scenarios marked by the creation and subsequent functioning of
two User Clusters, each linked to a growing array of services. In
typical operational settings, the average incoming data bit rate easily
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Fig. 11. HTTP Performance Metrics: Latency and Connect Time for Each HTTP POST Request for VU and SVO. Error bars represent standard deviation for latency. Testing was
performed under stress conditions with a limited performance testbed.
Fig. 12. Throughput for different configurations of Virtual Users (VU) and Social Virtual Objects (SVO) measured in kbps.
surpasses 25 kbps. In this regard, it is interesting to assess how the
instance responds to the computational complexity required as a result
of managing the modules during operation and due to the generation
of data traffic on the network associated with the operation of these
services.
17
5.3.2. CPU usage analysis
Fig. 13 shows the CPU usage during the operation of the Cloud

infrastructure under different simulated scenarios.
The data is illustrated as vertical bars representing the average
CPU usage percentage, with error bars indicating standard deviation
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Fig. 13. CPU usage for different configurations of Virtual Users (VU) and Social Virtual Objects (SVO). Error bars represent typical standard deviation in IoT scenarios.
n typical IoT scenarios. The configurations range from minimal in-
eraction (1 VU - 1 SVO) to more complex setups (2 VU - 10 SVO),
roviding a comprehensive view of the system’s performance under
arying loads. The simplest configuration (1 VU - 1 SVO) has the lowest
PU usage, as expected, due to the minimal processing load. As the
umber of SVOs increases for a single VU, there is a moderate rise
n CPU usage, demonstrating the incremental processing requirements.

hen the number of VUs is increased, even with a relatively smaller
umber of SVOs, the CPU usage jumps significantly. This suggests
hat the system’s overhead grows considerably with additional user
anagement tasks. The highest CPU usage is observed in scenarios with
ultiple VUs and a larger number of SVOs, highlighting the system’s
eed to balance multiple concurrent interactions.

These observations provide valuable insights into the scalability
nd efficiency of the proposed architecture. The system maintains
easonable CPU usage across various configurations, indicating robust
erformance and efficient resource utilization. Error bars reflecting the
tandard deviation in typical IoT scenarios illustrate that while there is
ariability, the system consistently manages CPU resources effectively.

.4. Comparison with Google App Engine

The Cloud infrastructure developed in this research, as experi-
entally evaluated, presents significant differences from previous Ly-

is platform integrations, particularly those using Google App Engine
GAE) [86]. While GAE was a convenient solution in the initial phase,
t proved limiting for large-scale distributed environments. In contrast,
he containerization-based virtualization adopted in this research aligns
etter with the strategic requirements and allows for easy scalability,
rucial for ongoing VU research. The original version of Lysis GAE to
un the SVOs. The deployment process involves the deployer connect-
ng to GAE through SSH and executing a series of commands: creating
18
Table 4
Comparison of average deployment time (in seconds).

GAE Docker (Best case) Docker (Worst case)

Virtual User 179 s 2 s 58 s
Social Virtual Object 168 s 1 s 18 s

a new project, uploading the source code, and running the service. This
traditional approach necessitates uploading the entire source code each
time an SVO is created or updated.

In contrast, the proposed model optimizes this process significantly.
The HC downloads the source code only once. For the creation of
similar SVOs, re-uploading the entire source code is unnecessary. The
layered structure of containers further enhances this efficiency by
requiring only the different layers of images to be downloaded.

For the reference setup of GAE, we used the GAE standard en-
vironment, configured with automatic scaling, warmup calls, shared
memcache, and Firestore.

A critical aspect of performance comparison is the average deploy-
ment time of applications. Table 4 presents a comparison of average de-
ployment times for VU and SVO applications on GAE and the proposed
Docker-based infrastructure.

The data in Table 4 were obtained by distributing code packages
for VU and SVO applications on GAE and Docker. The Docker-based
infrastructure, even in its worst-case scenario, significantly outperforms
GAE, with deployment times well under one minute for both VU and
SVO services.

One of the key improvements in the Docker-based infrastructure is
the automation of service deployment, a feature lacking in the GAE in-
tegration. GAE does not support parallel deployment processes, requir-
ing manual file uploads for each service deployment. This limitation
always places GAE deployments in a ‘‘worst-case’’ scenario.
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Table 5
Summary of Scalability Experimental Results.

Scenario Metric Result

High Device Density Response Time Stable (250 ms)

System Overhead Low

Variable Load Patterns Performance Stability High

Resource Utilization Optimized

Complex Interaction Patterns Coordination Efficiency Seamless

Scalability High [8,14]

In contrast, the Docker-based infrastructure, with the integration
f the Host Controller and the new Deployer prototype, automates
ervice distribution in response to user requests. This automation,
ombined with the use of Docker containers, significantly enhances the
perational efficiency of the Lysis platform.

.5. Scalability analysis

Scalability is a critical aspect of the SIoT, ensuring that the system
an handle a large number of devices and maintain performance under
arying operational loads and interaction patterns. The SIoT guarantees
calability through its underlying social network structure, where each
VO operates independently and can be deployed in various locations
cross the cloud or edge environments. This decentralization results in
peer-to-peer (P2P) social network that inherently supports scalable

perations.
The proposed model supports vertical scalability by enhancing the

apabilities of host machines and horizontal scalability by increasing
he number of replicas across different hosts. Vertical scalability is
chieved by upgrading the resources (CPU, memory, etc.) of the host
achines, allowing them to handle more significant loads. Horizontal

calability involves adding more instances of hosts, distributing the
oad, and ensuring that no single point becomes a bottleneck.

The experimental results demonstrate the system’s scalability. Un-
er high device density, the system maintained consistent performance,
ith negligible increases in response time and system overhead. In

cenarios with variable load patterns, the system dynamically adjusted
esources, ensuring stable performance without significant delays. Com-
lex interaction patterns were handled efficiently, with the decentral-
zed nature of the SIoT allowing for seamless coordination between
VOs (see Table 5).

The results support our assertion that the SIoT architecture provides
obust scalability, capable of handling diverse and demanding IoT en-
ironments. By leveraging the social network structure and the flexible
eployment options of cloud and edge computing, the system can scale
oth vertically and horizontally, accommodating increasing numbers of
evices and varying interaction complexities.

. Conclusion and future works

As the Internet of Things (IoT) grows, including millions of de-
ices into a globally linked network, maintaining this huge and varied
cosystem becomes increasingly difficult. The notion of the Social
nternet of Things (SIoT) has arisen as a viable solution to this problem,
ncorporating social dynamics into IoT to improve interoperability and
ser participation. Within this environment, our study aimed to address
he crucial need for a scalable, user-centric architecture capable of
eeting the SIoT’s growing needs.

Our suggested architecture is a huge step forward in this sector,
ombining Virtual Users (VUs) and Social Virtual Objects (SVOs) with a
owerful Cloud infrastructure that is designed for scalability, security,
nd ease of use. We created a system that allows for quick, secure
ommunication across a wide range of IoT installations, including
19

hose at the network’s edge, using containerization and a modular
architecture. The results of our experimental studies demonstrate the
usefulness of our strategy, with significant gains in deployment times
and operating efficiency when compared to standard platforms such as
Google App Engine.

The results of our findings are significant, providing a new struc-
ture for SIoT deployments that prioritize user engagement and system
scalability. The automation of IoT service administration via VUs, in
particular, stands out as a crucial breakthrough that reduces complexity
for end users while also democratizing access to IoT technology. This
user-centric approach improves the accessibility of IoT systems while
also paving the way for more customized, adaptive services that can
learn and change in response to user behaviors and preferences.

Experiments were conducted considering different real-world appli-
cation scenarios which included variable number of connected devices,
frequency of interactions, and complexity of tasks performed by the
SVOs. The results indicated as deployment time and CPU usage increase
with the numbers of SVOs and VUs. This increase is expected due to the
additional resources and coordination required to deploy multiple SVOs
and VUs simultaneously. However, the relatively moderate increase
in deployment time suggests that the proposed architecture manages
scaling efficiently. The CPU usage data highlights the higher computa-
tional demand required to handle more SVOs and VUs. The relatively
low standard deviation values indicate consistent performance across
multiple trials, reinforcing the robustness of the proposed architecture.

Latency and connection time for up to 19 concurrent HTTP POST
requests generated during the test showed how the connection time
remains practically constant throughout the entire duration indicating
a consistent and reliable network connection, irrespective of the in-
creasing number of requests or the type of communication, whether
VU or SVO. Instead, latency increases with the number of transmitted
requests, suggesting that while the system maintains stable network
connectivity, there are areas for improvement in optimizing server
resources to reduce latency spikes. Implementing load balancing tech-
niques, dynamic scaling, and continuous monitoring can help address
these issues, ensuring better performance under stress conditions.

Finally, experimental results demonstrate as under high device den-
sity, the system maintained consistent performance, with negligible
increases in response time and system overhead. In scenarios with vari-
able load patterns, the system dynamically adjusted resources, ensuring
stable performance without significant delays.

Notwithstanding these encouraging findings, there are some lim-
its to our research. Our controlled experimental setting might not
adequately capture the complexities and unpredictabilities inherent
in real-world deployments. Therefore, to confirm the architecture’s
efficacy in a variety of real-world contexts, further study needs go
beyond laboratory settings. Novel context-aware computing methods
will be considered to improve learning collected big amount of data
together with the use of machine learning techniques, with the main
objective of reacting in the most effective way to the context and
environment in which users and devices are immersed. Developing dis-
tributed user learning models could facilitate automated control of SVO
rules, enhancing the efficiency and responsiveness of SIoT systems by
allowing dynamic adaptation to user preferences. Additionally, creating
heuristics for controlling access to sensitive information within the SIoT
framework can lead to more secure systems that protect user privacy
while enabling seamless interactions between devices.

Investigating the learning of complex user profile data structures
offers the potential to improve user integration into the complex world
of SIoT and IoT in general, resulting in more personalized and context-
aware IoT applications. Furthermore, developing migration heuristics
for managing the continuum between edge and cloud computing can
optimize resource allocation, enhancing the performance and scala-
bility of SIoT systems. Exploring advanced user interfaces with the
integration of Large Language Models (LLMs) can provide more intu-
itive and efficient ways for users to interact with their SIoT devices,

improving overall user experience.
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