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a b s t r a c t 

Artifacts documentation is an important aspect of archaeological studies, not only to preserve these ob- 

jects but also to learn from them the culture of ancient populations. Hence, the necessity to digitally 

document and archive artifacts that come from our ancestors. This work can be done with more ease 

for artifacts as vases, potsherds, or little handmade objects, that can be brought in a laboratory. It is 

more complicate for rock art carvings, that can not be moved from their original location. The photomet- 

ric stereo technique allows to obtain the three-dimensional digital reconstruction of an object starting 

from a set of pictures taken with different lighting conditions. When the method is applied to some ex- 

perimental datasets, computational problems may occur, due to the fact that some assumptions of the 

model are not verified: rocks are not Lambertian surfaces in general, and the light sources may not be 

positioned at a sufficient distance from the object. We deal with these issues by introducing numerical 

indicators of ideality that allow to figure out if a given dataset is reliable and which images should be 

selected to better reproduce the object. In this paper, we will show the application of this method to the 

3D reconstruction of some engravings found in two Domus de Janas , ancient tombs located in Sardinia, 

Italy. 

© 2024 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC 

BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Knowledge of traditions and rituals of ancient populations goes 

hrough the study of archaeological artifacts, whose documentation 

urns out to be of primary interest for archaeologists. In classical 

ataloguing, artifacts are removed from their original location and 

laced in protected environments to reduce their deterioration. For 

rchitectural findings, the conservation is different: they can not 

e removed, so the archaeological intervention is done with the 

erspective of in-site maintenance. In this case, the main issue is 

hat they suffer the action of weather elements, such as wind or 

ain, which lead to a continuous deterioration. 

Our area of interest is connected with burial rituals of the pre- 

uragic period in Sardinia. Funerary rituals had a profound signif- 

cance for ancient civilizations. They are representative of the cul- 

ure and their studies allow to learn the history of populations. 

n Sardinia, the dead cult in the Neolithic period found its rep- 

esentation in Domus de Janas , funerary hypogea that have been 
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he central location of these rituals [1] . They are formed by rooms, 

arved into the rock, many of which are decorated with art motifs. 

n this culture, art motifs are an important aspect of the funerary 

ustoms, as a part of propitiation rites of the souls of the deceased 

nd their divinities. They are executed with different techniques 

sculpture, painting, and engravings) and their location inside the 

nvironments has varied over the time. There are many types of 

otifs, representing horn-shape, anthropomorphic, and geometric 

gures, as in Fig. 1 . 

Due to the fact that these sites are not safeguarded, atmo- 

pheric agents are slowly deteriorating the engravings. This is a 

uge problem for the preservation of this heritage and it is desir- 

ble to be able to digitally document these artifacts with accuracy, 

oth to secure at least a digital copy for future generations and to 

e able to examine the carved surfaces on a graphic workstation 

ithout further contact with the original artifacts. 

Photometric stereo (PS) [2] is a computer vision technique that 

rovides a digital reconstruction of an object, extracting shape and 

olor information from digital pictures obtained under different 

ighting conditions. It has been repeatedly applied in the past to 

he documentation of rock art; see [3,4] for a previous application 

o the Domus de Janas sites. 
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Fig. 1. Two examples of geometric and anthropomorphic figures, found in Domus 

de Janas di Corongiu , Pimentel (top picture) and Domus de Janas di Tomba Branca , 

Cheremule (bottom picture), both in Sardinia, Italy. 
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Many other related works can be found in the literature. In [5] , 

 software that combine PS and photogrammetry has been devel- 

ped for the 3D digitization of cultural heritage, while in [6] a 

tudy of rock art carvings of two Iberian stelae has been carried 

ut by a RTI approach. A novel PS method has been applied in 

7] to reconstruct a cultural asset called Segonko Tumulus, whose 

alls are carved and painted. Finally, in [8] a digitalization of dec- 

rative tumuli in Kyushu (Japan), which present mural paintings, 

as been studied using photometric approaches. 

In the standard configuration of the PS model, the camera is 

ositioned in front of the observed surface and a light source is 

laced at different positions with respect to it, so that each im- 

ge of the dataset corresponds to different illumination conditions. 

he mathematical model assumes that the camera is placed “at in- 

nite distance” from the object (orthographic projection) as well 

s the light sources, i.e., the light rays can be considered parallel. 

oreover, the surface is assumed to be a Lambertian reflector: it 

iffuses the light in the same way in each direction, that is, the 

eflected light intensity is the same from any point of view. 

While in our experimentation a simple flashlight was used as 

 light source, different choice for the light source can be made: 

n [9] an experimental dataset was obtained using the sun as a 

ight source, to ensure parallel light rays; in [10] diods as point 

ight sources illumination have been used to present a LED-based 

S method. 

In the original setting, the lights position are considered known 

efore data processing. This condition is a strong limitation in real 

pplications, in particular in archaeological ones. Indeed, it is gen- 

rally impossible to exactly measure the position of light sources 

uring the acquisition of the images. The uncalibrated PS has been 

ddressed in different ways: in [11] a patch-based approach has 

een considered, while in [12] and [13] two networks have been 

eveloped to treat the problem. A different approach has been pro- 

osed by Hayakawa, who introduced in [14] a method to estimate 
321
ight position information directly from the data, with the assump- 

ion that the dataset is composed of at least six images. 

Although the method performs efficiently on synthetic datasets, 

ts application to experimental datasets leads to numerous com- 

utational problems. Indeed, data processing clearly shows that 

any datasets lack “ideality”, in the sense that, due to the fact 

hat some of the assumptions of the model are not met, the results 

ay be inaccurate or algorithmic breakdowns verify unexpectedly. 

his happens because the structure of the sites and the materials 

f which the artifacts are made, often do not permit to completely 

atisfy the model assumptions. For example, given the small scale 

f Domus de Janas , it is usual impossible to place the light source 

t a sufficient distance from the surface, to produce approximately 

arallel light rays. Moreover, rock is generally far from being an 

deal Lambertian reflector; for a preprocessing approach to par- 

ially recover lack of Lambertianity, see [15] . 

Different studies have been devoted to the non Lambertian case. 

n [16] , using a Bayesian approach, a statistical method based on 

he resolution of a sparse regression problem was solved to de- 

ermine an approximation of the normal vector field and the ex- 

erimental errors. Various learning-based algorithms were used to 

olve the non Lambertian PS problem, see, e.g., [17,18] . The ap- 

roach presented in [19] , starting from the observation that non 

ambertian surfaces are subject to shadows and specular reflec- 

ions, considers a solution method based on a low-rank matrix 

actorization affected by sparse errors. In general, various methods 

ave been considered to remove outliers from a dataset, as it hap- 

ens in the case of specular reflections, like Lp -norm regularization 

ith p < 2 , robust SVD, etc. Such methods are not applicable in our

ase since the lack of ideality present in the dataset we consider is 

ot due to the presence of outliers. 

A solution explored in [20] , which assumes that the surface is 

nly approximately Lambertian, is to extract from a dataset a sub- 

et of images that produces the best possible reconstruction of the 

bservation, trying to approximately satisfy as much as possible 

he strict assumptions of the model. Two indicators were proposed 

o allow the identification of a subset that produces an accurate 

hree-dimensional shape reconstruction, and were tested on syn- 

hetic datasets, showing their effectiveness. 

In this paper, we describe an approach for dealing with color 

atasets and apply it to the reconstruction of various engravings 

ound in Sardinian Domus de Janas . Initially, we briefly review the 

ain steps of the photometric stereo method, debating also the 

roblems connected with real shooting conditions, and then we 

onsider its application to experimental datasets of rock art carv- 

ngs. 

Various papers has been devoted to photometric stereo with 

olor images. One of the first to appear was [21] . In [22] , the au-

hors propose a method to estimate shape and color information 

sing three colored images, which are the best with respect to a 

east-squares approach. An iterative procedure based on the Jabobi 

ethod was presented in [23] . In the interesting procedure ana- 

yzed in [24] , the observed surface is illuminated by differently col- 

red light sources. 

. Research aim 

Elaboration of color datasets are of crucial importance in pho- 

ometric stereo. Indeed, most cameras capture by default color im- 

ges, which are often converted to grayscale images after data 

cquisition. Each color image is actually composed of three im- 

ges, each one containing the contribution of each primary color, 

amely, red, green, and blue. Hence, the acronym RGB used for this 

ind of images. 

Theoretically, each color channel should be able to reconstruct 

he shape of the observed object by applying the photometric 



E. Crabu, F. Pes, G. Rodriguez et al. Journal of Cultural Heritage 71 (2025) 320–327

Fig. 2. Configuration of the system. 

s

c

o

a  

t

a

s

t

t

3

n

3

e

d

i

c

I

s

p

b

d

f

r

c

 

a

p

t  

i  

a

u

u

s

L

ρ  

w

[

s

t  

s  

i

e

t

b

e

a

t

p

b

i

d

D

w

e

m

q

d

t

s

t

H

s  

s

n

t

m

b

w

i

o

t

q

k

m

a

i  

s

v

p

M

W  

g

s

m

‖
T

e

d

t

a  

C

u

tereo technique. In practice, it may happen that one of the color 

hannels contains degraded information, due to chromatic features 

f the observation or to malfunctioning of the camera sensor. This 

spect is discussed in Section 4 , where a numerical test on a syn-

hetic dataset is illustrated. 

Our main concern in this paper is to determine a procedure to 

utomatically select in a dataset the color channel which is more 

uitable to obtain a faithful shape reconstruction of the observa- 

ion, and then complete the chromatic information by using the 

wo remaining channels. 

. Methods 

Here, we briefly describe the mathematical tools used in the 

umerical experiments. 

.1. Photometric stereo with unknown lighting 

Photometric stereo [2] is a Shape from Shading technique that 

xtracts from a set of images of the target enough information to 

igitally reconstruct its shape. The model has been much studied 

n the past, in this section we will recap its application. 

The configuration of the system, illustrated in Fig. 2 , places the 

amera at a fixed position in front of the object to be recovered. 

mages are collected by placing the light source at different po- 

itions around the target, so that the dataset consists of a set of 

ictures obtained under distinct lighting directions. Theoretically, 

oth the camera and the light source should be placed at infinite 

istance from the target. In practice, they are both positioned as 

ar as possible from it. 

The object is assumed to be at the origin of an orthonormal 

eference system in R
3 , and the camera is such that its optical axis 

oincides with z-axis of the system. 

Let z = u (x, y ) , (x, y ) ∈ � (the observed domain), be the bivari-

te function that represents the surface of the target, with ux , uy its 

artial derivatives, and let n (x, y ) be the normalized normal vector. 

The finite resolution of a digital camera induces a discretiza- 

ion of the domain �, i.e., a grid of points with coordinates (xi , y j ) ,

 = 0 , . . . , r + 1 , j = 0 , . . . , s + 1 . By evaluating functions on the grid

nd lexicographically ordering the points, that is, column by col- 

mn, we indifferently indicate the value of u on a grid point by 

 (xi , y j ) , ui, j , or uk , where k = (i − 1) s + j, for k = 1 , . . . , p, 

The standard model for photometric stereo assumes that the 

urface of the target is a Lambertian reflector, that is, it satisfies 

ambert’s cosine law : 

(x, y ) 〈 n (x, y ) , � t 〉 = It (x, y ) , t = 1 , . . . , q, (1)
322
here 〈·, ·〉 denotes the usual scalar product in R
3 and � t = 

 �1 t , �2 t , �3 t ]
T is the vector oriented from the target to the light 

ource, whose norm is proportional to the light intensity. The func- 

ion ρ(x, y ) is the albedo , which takes into account the partial ab-

orption of the light from the surface, and It (x, y ) is the radiation

ntensity of the tth image, that is, the value measured by the cam- 

ra sensor. Here, we assume to deal with a grayscale image or with 

he contribution of a single color channel. 

In this paper we consider the length of the light vectors � t to 

e constant, that is, the illumination has the same intensity in 

ach frame. This assumption is approximately verified in practice, 

s during shooting we try to keep the flashlight approximately at 

he same distance from the observed surface. Whenever this is not 

ossible, one may estimate the relative length of the light vectors 

y taking incident light metering measures at shooting time. This 

s allowed by any professional light meter. 

By discretizing formula (1) and applying the lexicographic or- 

ering, we obtain the matrix equation 

NT L = M, (2) 

here D = diag(ρ1 , . . . , ρp ) contains the values of the albedo at 

ach of the p grid points, N = [ n1 , . . . , np ] the corresponding nor- 

al vectors, and L = [� 1 , . . . , � q ] the light directions adopted in the 

 available images. The matrix M = [ m1 , . . . , mq ] represents the 

ataset: each column contains a vectorized digital image. 

Under the assumption of known light source positions, the ma- 

rix L is available. In this case the problem can be easily solved; 

ee [9] . Once the discretized field of normal vectors is determined, 

he object surface can be obtained by integrating a system of 

amilton-Jacobi partial differential equations or by solving a Pois- 

on problem �u (x, y ) = f (x, y ) ; see, e.g., [9,25] . In the examples

hown in this paper, for simplicity, we employed the Poisson tech- 

ique by a classical 5 point integrations scheme. Since solving par- 

ial differential equations implies smoothness of the solution, such 

ethods poorly handle discontinuities. Slightly better results might 

e obtained by resorting to bilateral integration techniques [26] , 

hich only require piecewise differentiability. 

The request of known lighting is a huge limitation, especially 

n the archaeological application, where data are often acquired 

n field under uneasy conditions which may make it impossible 

o measure the exact positions of a light source during image ac- 

uisition. Hayakawa [14] determined a procedure to deal with un- 

nown light source position, and proved that at least six images 

ust be available to compute a reconstruction. Since this method 

ssumes the Lambertianity of the observed surface, its applicabil- 

ty was used in [20] to assess the ideality of a dataset. To describe

uch ideality indicator, whose use is crucial in this paper, we re- 

iew here the main steps of Hayakawa’s method to estimate the 

osition of light sources. 

From the singular value decomposition [27] of the data matrix 

 = U�V T , an initial factorization M = W T Z is obtained by setting 

 = [ σ1 u1 , σ2 u2 , σ3 u3 ]
T and Z = [ v1 , v2 , v3 ]

T , where σi are the sin-

ular values of M and ui , vi its left and right singular vectors, re- 

pectively. 

The second step of Hayakawa’s procedure consists of seeking a 

atrix B that simultaneously normalizes the columns of Z, that is, 

 B zt ‖ = 1 , t = 1 , . . . , q. (3) 

his leads to the resolution of a system of q linear equations, 

ach corresponding to an image in the dataset, whose 6 unknowns 

etermine the positive definite matrix G = BT B . The solution of 

he linear system is unique only if the system is overdetermined 

nd full-rank, i.e., q ≥ 6 . The matrix B is computed from G by its

holesky factorization [27] . 

To solve the so-called bas-relief ambiguity [28] , caused by the 

ncertainty in the reference rotation, we adopt a method described 
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Fig. 3. An inaccurate reconstruction. 
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n [9] , where a software implementation of Hayakawa procedure is 

lso presented. This determines a rotation matrix Q . Since this part 

f the process is not relevant for this paper, we refer to [9] for

urther details. Once B and Q are known, the final factorization is 

btained by setting ˜ N := ND = QB−T W and L = QBZ. 

.2. Ideal data 

Hayakawa’s method produces accurate reconstructions when 

he assumptions of model (1) are valid. Nevertheless, its applica- 

ion to experimental data often exhibits the occurrence of compu- 

ational problems. In particular, the computed reconstruction may 

e inaccurate, or Hayakawa’s algorithm may even interrupt with a 

un-time error. 

In the first scenario, the reconstruction appears different from 

he real object because of an evident deformation, as in Fig. 3 . 

hen a breakdown of the algorithm occurs a reconstruction of the 

bserved surface cannot even be computed. This happens when 

he matrix G , obtained by the Hayakawa procedure, turns out to be 

on-positive definite, contrarily to theoretical assumptions. Indeed, 

or some experimental datasets it may happen that the smallest 

igenvalue of G is negative, leading to a breakdown in the compu- 

ation of its Cholesky factor, which provides the matrix B . 

These issues are attributable to distortion in available infor- 

ation, due to non-ideality of data. For particular experimental 

atasets, some theoretical conditions imposed by the model may 

ot be satisfied. For example, Domus de Janas present engravings 

ocated inside small and narrow rooms, so neither the camera nor 

he light source can be placed far enough from the observed sur- 

ace. Furthermore, the rock is not an ideal Lambertian reflector, and 

his makes the experimental environment further less compliant 

ith the model. When Hayakawa’s procedure is applied, this lack 

f ideality often leads to a non-positive definite matrix G . 

In [20] , two “ideality indicators” for a dataset were proposed. 

n the same paper, a method based on such indicators was intro- 

uced to extract from a non-ideal dataset a subset of images that 

pproximately satisfies the assumption of the model. 

The first approach consists of considering the success of 

ayakawa’s procedure as an ideality indicator for a collection of 

mages. Since a bad dataset leads to a non-positive definite matrix 

 (see Section 3.1 ), the smallest eigenvalue of G is taken as a qual-

ty index. We denote this indicator by ρ1 (M) , where M is the im- 

ge collection for which it is computed. If it is positive, the dataset 

s accepted, otherwise one image at a time is removed from the 

ollection, choosing the configuration for which ρ1 (M) takes the 

argest value. If the indicator for the reduced dataset is positive, it 

s accepted, otherwise the process is iterated until either the con- 

ition is verified or less than 6 images are left. This is considered 

 failure, since Hayakawa’s method requires the availability of at 

east 6 images. 
323
In [20] , a new method for determining the lights position, al- 

ernative to Hayakawa’s one, was proposed. It is based on the idea 

f solving (3) as a nonlinear least-squares problem 

in 

b ∈ R6 
‖ F (b ) ‖2 , (4) 

here 

 (b ) = [ f1 (b ) , . . . , fq (b )]T , ft (b ) = ‖ B zt ‖2 − 1 , 

nd the vector b contains the six nonzero entries of the upper 

riangular matrix B . Since the Jacobian matrix J(b ) is analytically 

nown, we minimize (4) by the Gauss–Newton algorithm [29] , as 

mplemented in [30,31] . For explicit expressions of F (b ) and its Ja-

obian, or other details about the implementation, see [20] . 

The second indicator ρ2 (M) is connected to the use of the 

auss–Newton method to solve problem (4) . It has been observed 

hat the above method diverges in the presence of non-ideal im- 

ges. Indeed, in such situation, the Jacobian matrix becomes rank 

eficient during iteration. Since J(b ) is a q × 6 matrix, with q ≥ 6 ,

he indicator ρ2 (M) has been defined as the ratio between its sixth 

nd fifth singular values, so as to detect rank deficiency. Similarly 

o the previous approach, the initial dataset is accepted if ρ2 (M) 

s significantly larger than zero. If this does not happen, an iter- 

tive method is constructed to remove images from the available 

ollection in order to make the ratio ρ2 (M) larger than a chosen 

hreshold. The Matlab implementation of both indicators is avail- 

ble from the authors. 

.3. Color channels processing 

A digital RGB color picture is composed of three matrices, one 

or each color channel. Let us denote the data matrices in (2) cor- 

esponding to red, green, and blue by Mr , Mg , and Mb , respectively. 

his leads to three matrix equations 

τ NT 
τ Lτ = Mτ , τ = r, g, b. (5) 

pplying Hayakawa’s method to (5) produces three sets of solu- 

ions, each composed of a diagonal albedo matrix Dτ , and matrices 

τ and Lτ containing the normal vectors and the light directions, 

espectively. 

Theoretically, the triplets (Dτ , Nτ , Lτ ) containing the solution of 

5) should differ only in the albedo matrix Dτ , while Nτ and Lτ

hould be independent of τ . In practice, the triplets are sensibly 

ifferent also for good datasets, and can be dramatically different 

or non-ideal datasets, leading to inaccurate reconstructions. 

Using grayscale images for reconstructing the shape of the sur- 

ace, and the three Eq. (5) for obtaining its color, may be a solution 

ut, when a particular color channel produces inaccurate data, the 

ata inaccuracy propagates to the grayscale image. In this case it 

ould be preferable to use the best color channel to reconstruct 

he shape, and the other two channels to complete the color infor- 

ation for the albedo. 

Our approach, in this paper, is to apply either of our ideality 

ndicators ρ1 and ρ2 to independently reduce the datasets for the 

hree color channels, and then produce a ranking for the three 

hannels based on the same indicator. To exemplify, we fix k = 1 , 2

nd consider the values 

k (Mr ) , ρk (Mg ) , ρk (Mb ) , 

nd select the color channel with the more favorable indicator 

alue. This means the smallest value for ρ1 , the largest one for ρ2 . 

If, for example, the blue channel is selected, then (5) is first 

olved for τ = b and the normals Nb are used to reconstruct the 

hape of the observed surface, while Db represents the blue contri- 

ution to the color of the object. Then, the same problem is solved 

or τ = r, g and the obtained albedos Dr and Dg complete the color 

nformation. 
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Fig. 4. The effect of noisy data channels: top left, model surface; top right, syn- 

thetic dataset with three images presenting noise in the green and blue channels; 

bottom left, shape reconstructed from the red channel; bottom right, reconstruction 

produced by the green channel. 
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Fig. 5. The top rows displays the first six images of two grayscale datasets pro- 

duced by the rgb2gray function of Matlab (left) and by the rgb2lightness 
function (right) starting from a RGB white surface. The bottom rows shows the er- 

ror surfaces corresponding to the PS reconstructions of the two datasets. 
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An alternative approach, which is more time demanding, con- 

ists of converting the color images to grayscale and solve (2) to 

btain the matrix N. Then, we select the color channel for which 

he value ‖ N − Nτ‖1 is the smallest. 

. Results 

In this section, we present color reconstructions obtained by 

pplying the approach described in Section 3.3 . Starting from a col- 

ection of RGB images, we compute for each color matrix Mr , Mg , 

nd Mb , one of the ideality indicator, either ρ1 or ρ2 . Based on the 

alues of the chosen indicator, we take the decision of selecting 

he color layer to be processed. 

Before discussing the two experimental datasets which consti- 

ute the case study considered in this paper, we show the effect 

f the presence of data channels containing inaccurate data. We 

roduced a synthetic dataset of 12 images from a model smooth 

urface, using the package described in [32] ; see Fig. 4 . The RGB

lbedo of the surface has been set to white, that is, each of the 

hree color layer contains the same value. Then, Gaussian noise 

as added to the green and blue channels of three images in the 

ataset, and the surface was reconstructed by the Hayakawa pro- 

edure as implemented in [9] , using a dataset restricted to each 

f the color channels. The reconstruction produced by the green 

hannel is highly deformed with respect to the good approxima- 

ion produced by the red one, as Fig. 4 shows. The reconstruction 

btained by processing the blue channel is similar to the green 

ne. 

These results were obtained with 30% noise. In this case the 

ndicator ρ1 was able to identify the “clean” red color layer and 

o recognize the three noisy images in the dataset. Reducing the 

ataset according to this information does not produce accurate re- 

ults, as the figure shows, but furnishes some information on the 

hape. The red layer was classified as the best one also by ρ2 , but

his indicator was not able to select the three images to be re- 

oved. From the point of view of producing an accurate shape re- 

onstruction, both indicators were successful, as their suggestion 

n the layer to be processed is correct. 

If the noise level is lowered to 10% , the situation changes. In- 

eed, in this case ρ1 is not able to recognize the noise-free red 

ayer and leads to an inaccurate (even if acceptable) reconstruc- 
324
ion. On the contrary, ρ2 correctly identifies the red color plane 

nd produces the best results. This shows that the two proposed 

ndicators do not yield an automated procedure to select an ideal 

et of images from an available dataset, but they are both useful 

ools in a supervised selection process, especially because it is not 

ossible to visually identify a subset of images which allows an ef- 

ective PS processing. 

As we already observed in Section 3.3 , reconstruction from 

rayscale images is not always a good choice, since a bad color 

hannel may distort the shape information in the converted 

mages. We also remark that different grayscale conversion al- 

orithms may produce sensibly different results. Indeed, even 

hen the content of all the color channels is acceptable, not all 

GB to grayscale conversion algorithms produce images suitable 

or photometric stereo. For example, Matlab provides two func- 

ions to perform this task. According to the manual, rgb2gray 
orks by eliminating the hue and saturation information from 

he input image, retaining only the luminance. On the contrary, 

gb2lightness converts RGB color values to lightness val- 

es, excluding the color components. We generated two grayscale 

atasets for the model surface displayed in Fig. 4 , using the two 

bove conversion functions. The graphs in the top row of Fig. 5 

how that the two datasets are visually indistinguishable, but 

he reconstruction errors visualized in the bottom row demon- 

trate that the surface obtained from the dataset generated by 

gb2gray is more accurate than the one corresponding to the 

gb2lightness dataset. 

We now illustrate this selection process on two experimental 

atasets concerning engravings found in two different Domus de 

anas . The first one (see top picture in Fig. 1 ) is found in Domus de

anas di Corongiu (Pimentel, Italy). We collected 13 color pictures 

f it under different lighting conditions, 4 of them are displayed in 

ig. 6 . 

The datasets corresponding to the three color channels are first 

educed according to the technique introduced in [20] , based on 

he ideality measure ρ2 . The values of the indicator ρ2 for the re- 

uced datasets are the following: 

ρ2 (Mr ) = 0 . 9609 , 

2 (Mg ) = 0 . 9646 , 

2 (Mb ) = 0 . 9918 . 

Since the blue channel corresponds to the largest value, we 

ake the decision to employ the matrix Mb to compute the shape 

f the surface and the blue component of the albedo. The other 
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Fig. 6. Four of the 13 images from the first dataset, each obtained under different 

lighting conditions. 

Fig. 7. Reconstruction of the first engraving obtained by the blue channel of the 

dataset: complete color reconstruction (top picture), normal map (center picture), 

and pure shape without the albedo (bottom picture). 
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Fig. 8. Perspective view of the reconstruction of the first engraving obtained by the 

red channel of the dataset (top picture), compared to the one produced by the blue 

channel (center picture); the bottom picture is the normal map corresponding to 

the red channel. 

Fig. 9. Engraving found in Domus de Janas di Tomba Branca , Cheremule, Italy. 
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wo matrices are used to obtain the remaining color information. 

he resulting reconstruction, coupling the surface and the albedo, 

s displayed in the top picture of Fig. 7 . The other two pictures

xhibit the normal map, and the shape information obtained by 

emoving the albedo. 

To highlight the importance of the choice of the color channel, 

e display in the top picture of Fig. 8 the shape reconstruction ob- 

ained by processing the red channel, instead of the blue one. The 

eformation of the surface is evident, especially when compared to 

he blue one, reported in the center picture. The inaccuracy of the 

econstruction is also highlighted by the normal map, displayed in 

he bottom picture. We do not display the colored surface because 

he computed albedo is completely wrong. We remark that the use 

f the first indicator ρ1 leads to a failure, as it selects the red color

ayer, leading to the distorted reconstruction shown in Fig. 8 . 
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The second engraving is found in the Domus de Janas di Tomba 

ranca , Cheremule, Italy; see Fig. 9 . The dataset is composed of 13 

mages, 4 of them reported in Fig. 10 . To determine the color ma- 

rix to be used for reconstructing the shape, this time we use the 

rst indicator ρ1 . After dataset reduction, we obtain the following 

esults: 

ρ1 (Mr ) = 1 . 9799 , 

1 (Mg ) = 2 . 0147 , 

1 (M ) = 2 . 0327 . 
b 
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Fig. 10. Four of the 13 images from the second dataset, each obtained under differ- 

ent lighting conditions. 
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Fig. 11. Reconstruction of the second engraving obtained by the red channel of the 

dataset: complete color reconstruction (top picture), normal map (center picture), 

and pure shape without the albedo (bottom picture). 
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n this case, the red channel turns out to be the best choice. The 

econstructed 3D surface is reported in Fig. 11 , where the com- 

lete reconstruction, including shape and albedo, is displayed at 

he top, followed by the normal map and the pure shape without 

he albedo. Adopting the indicator ρ2 leads in this case to accept- 

ble but slightly less accurate results. 

. Discussion and conclusions 

A comparison of the 3D color reconstructions reported in 

igs. 7 and 11 to the original pictures of the engravings in 

igs. 1 and 9 , demonstrates that the digital models are very good 

epresentations of the observations. 

Such digital surfaces have the obvious advantage that they pro- 

ide geometric information about the engravings, as it is clear from 

he shape views in Figs. 7 and 11 , obtained by removing the albedo

nformation. They can be easily manipulated using mesh visualiza- 

ion software, which allows to rotate or enlarge them, and modify 

he lighting to enhance details. They can be converted to files suit- 

ble for 3D printing and be the starting point for further process- 

ng, for example for automatic extraction of glyphs. 

It is also remarkable to notice that when the albedo is removed 

rom the model in Fig. 11 , one can clearly observe the carvings 

resent on the rock surface, which are almost invisible in the orig- 

nal picture and are hardly observable in situ too. So the simple 

lbedo removal is a powerful tool to visualize engravings which 

ay not be easily studied at the excavation site. 

In principle, a geometric reconstruction of rock art can be ob- 

ained by a laser scanner, but these devices are usually much more 

xpensive than a good digital camera, and require trained person- 

el for their use. Moreover, for the moment, only few laser scan- 

ers provide color information for the observed object, and they 

re very expensive. 

Photometric stereo involves a simple data collection technique, 

ut has the inconvenience to heavily rely on the mathematical 

echniques adopted for data processing, thus providing a challeng- 

ng environment for research in applied mathematics. 

The technique for processing color pictures of engravings pre- 

ented in this paper is promising, but it requires further develop- 

ent. Firstly, the method is not fully autonomous, as the two ide- 

lity measures ρ1 and ρ2 often produce different results. The ex- 

erimental results presented here were produced by selecting the 

ndex ρk to be used on the basis of a visual inspection of the re-

ults. So, for the moment they do not lead to a fully automatic 

rocedure and only constitute a support for supervised research 
326
ctivity. An integration of the two quality measures to obtain an 

ffective algorithm is one of our aim. 

Another interesting point is that here we are processing each 

olor independently of the others, while it would be preferable 

o determine the shape and the color components of the albedo 

olving a single integrated problem. Unfortunately, this approach 

eems to lead to a nonlinear large-scale problem, which we are 

urrently studying. 
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