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Developmental exposure to cannabis compromises
dopamine system function and behavior )
Marcello Solinas'** and Miriam Melis®* oy

With the expanding legalization and decriminalization, cannabis
price has decreased, and its use increased along with the
content of its main ingredient, THC. Although prevalence rates
for its consumption during adolescence appear unchanged, the
use of more potent cannabis and the availability of powerful
synthetic cannabinoids have enhanced the health risks
associated with its use. The prevalence of cannabis
consumption during pregnancy has also risen because of its
availability/acceptability and the misconception that cannabis is
safe. Evidence shows that cannabis use during development is
associated with cognitive deficits and increased risks of mental
illnesses. Particularly, exposure to cannabis in utero or during
adolescence derails the normal development of the dopamine
system and produces aberrant behaviors. In this review, we
discuss the long-term impact of THC exposure during
development on behaviors related to mesolimbic dopamine
system function, and we highlight areas of research that
deserve more investigation in the future.
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Introduction

Prevalence rates of mental illness have increased over the
years, with the peak age of onset being decreased and up
to 35% of psychiatric disorders being diagnosed before

the age of 14 years [1]. The interplay between biological
and environmental factors may contribute to this alarming
rise of mental illness in children and adolescents. Parti-
cularly, as conceptualized in the theory of developmental
origins of health and disease [2], the interaction between
inherited predispositions and insults from the environ-
ment derail the normal maturation of brain circuits
leading to long-lasting psychiatric vulnerability. There-
fore, preventive and early intervention strategies in chil-
dren, adolescents, and women at childbearing age may be
key in reducing the burden of mental disorders.

A large body of research suggests that cannabis exposure
is likely one of the environmental factors that sig-
nificantly compromise neurodevelopment. Notably,
changes in sociopolitical attitudes toward cannabis have
led to its legalization and decriminalization in several
countries. This is associated with a reduction of the
stigma about cannabis use and the misperception that,
being natural, cannabis is safe [3] and does not produce
persistent adverse effects on the brain. Importantly,
while the use of alcohol and tobacco during pregnancy
has decreased, largely due to the increased public
awareness of their negative consequences on the fetus,
cannabis use has increased over the past decade [4,5].
Accordingly, cannabis is sometimes considered a ther-
apeutic option for pregnant women to alleviate nausea or
anxiety that often characterize this period [6,7]. One
might, therefore, speculate that cannabis use in adoles-
cents and women at childbearing ages might contribute
to the increases in the prevalence of mental disorders.

Both psychotropic and detrimental effects of cannabis vary
among individuals, and, within the same subject, they may
differ depending on the fluctuations of hormonal and en-
docannabinoid states [8—10]. In addition, extensive clinical
resecarch underscores that certain developmental stages,
such as adolescence, are time windows of high suscept-
ibility to cannabis adverse effects on brain function and
behavior [11-13]. For example, cannabis use by adoles-
cents results in persistent alterations in the functioning of
neuromodulatory systems, thereby contributing to an in-
creased risk of developing mental disorders at some point
during their lifetime [14]. Particularly, there is clear evi-
dence that adolescent cannabis use is associated with a
greater risk of schizophrenia [15] and that this risk is pro-
portional to THC concentrations [16].

Dopamine plays a pivotal role in the regulation of nu-
merous behavioral processes such as attention,
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2 Dopamine

aggressiveness, reward-motivated behaviors, cognition,
and mood. During neurodevelopment, dopamine parti-
cipates in a wide range of processes, especially those
related to the differentiation and maturation of forebrain
structures [17,18]. Importantly, the dopamine system
strongly interacts with the endogenous cannabinoid
system in the basal ganglia in both physiological and
pathological conditions [19]. Therefore, studying the
impact of prenatal and adolescent exposure to cannabis
on these systems is critical to understanding how these
insults can increase the vulnerability to developing
psychiatric disorders.

The aim of this review is to discuss how cannabis use
may alter the developmental trajectory of the dopamine
system, thereby contributing to the early onset of neu-
ropsychiatric disorders in life (i.e. differential suscept-
ibility). We also explore how cannabis exposure, by
interfering with endocannabinoid regulation of dopa-
mine signaling, might promote maladaptive behaviors
and influence individual vulnerability to different psy-
chopathological conditions, from infancy to adulthood.

Dopamine and endocannabinoid interaction
during neurodevelopment: it takes two to
tango

Dopamine and endocannabinoids are ancient evolu-
tionary conserved signaling molecules serving as funda-
mental and basic regulators of physiological functions
and needs [20] already operating at early stages of
mammalian development [21,22]. A detailed description
of their composition and regulation is beyond the scope
of this review and could be found elsewhere [23,24].
Dopamine neurons are highly heterogeneous based on
the expression of their specific molecular markers, wiring
patterns, and functions [23]. Different programs instruct
the time-specific development of dopamine neuron di-
versity in terms of their anatomical location, projection
area, electrophysiological properties, and molecular pro-
files [23]. Thus, environmental stimuli and experiences
may alter dopamine developmental trajectories (e.g.
mesocorticolimbic pathway across adolescence) [18,25],
thereby producing inappropriate wiring and functional
consequences later in life.

Endocannabinoids are involved in developmental pro-
cesses, spanning from fate determination to axonal
pathfinding and the establishment of appropriate con-
nectivity, and they continue to influence neurodeve-
lopment throughout adolescence [21,22,24]. Of note, the
endocannabinoid system exhibits sexual dimorphism
mirroring bidirectional interactions between these lipids
and gonadal hormones [26], which could contribute to
the increased male vulnerability to neuropsychiatric
disorders [27]. Endocannabinoid levels are abundant in
the midbrain, where they regulate dopamine cell activity

in homo- or heterosynaptic fashions [28], and contribute
to the rewarding/teaching signal encoded by these
neurons [29]. Of note, our current knowledge on en-
docannabinoid actions on dopamine cell activity and
plasticity might be biased by the evidence mainly col-
lected in males (but see Ref. [30]). Importantly, whereas
sex hormones transiently regulate the density of type 1
cannabinoid receptors (CB1R) in many brain regions, no
sex dichotomy is found in CB1R expression and function
in the ventral tegmental area (VTA) [31]. Metaplastic
changes in the molecular architecture of the en-
docannabinoid system at inhibitory synapses on dopa-
mine cells already take place before puberty onset in
rodent models of neuropsychiatric disorders [20,32], thus
suggesting that the interactions between these two sys-
tems during development can produce complex con-
sequences requiring further mechanistic studies.

Prenatal cannabis exposure and impairments
of dopamine system functions

Several longitudinal studies in humans demonstrate that
prenatal cannabis exposure (PCE) is a predictive risk
factor for adverse outcomes [33,34], such as attention/
impulsivity deficits, psychotic-like experiences, and/or
externalizing/internalizing traits. A general consensus ex-
ists about the long-term detrimental effects of PCE on
the progeny, although some authors question the re-
levance of cognitive effects on overall mental well-being
[35]. Importantly, the data on which Torres and collea-
gues drew their conclusions [35] are likely influenced by
the inherent variability of human studies, including ge-
netic, cultural, economic, environmental, and drug-related
factors (e.g. mild vs heavy consumption). In addition, one
could argue [36,37] that the lack of evidence for an as-
sociation between PCE and cognitive deficits should not
be considered evidence of the absence of deleterious
PCE effects, and, therefore, it cannot the be used to
support the notion that cannabis use is safe during preg-
nancy. Finally, the clinical significance of PCE in-
dividuals displaying minor cognitive deficits might result
in major health problems and societal burden when the
population exposed to prenatal cannabis is large.

PCE animal models have complemented epidemiolo-
gical studies and provided insights into potential un-
derpinnings and the range of aberrant offspring
outcomes following different types of PCE [38]. In ad-
dition, preclinical studies have provided evidence for sex
differences in physiology and behavior throughout de-
velopment and across the lifespan [21]. Different ex-
perimental PCE designs have also helped evaluate the
effects of the timing of exposure in the animal model
and the comparable time in humans. In fact, in rodents,
the human equivalent of the first trimester — in terms of
brain development — extends until the end of the
second embryonic week, while the third-trimester
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equivalent occurs during the first postnatal week [39].
Hence, specific PCE experimental designs can allow
distinguishing  the effects of perturbing en-
docannabinoid signaling during these discrete develop-
mental stages.

Different animal models have consistently demonstrated
the negative and long-lasting impact of PCE on the
dopamine system. Aberrant dopamine signaling and
dysregulation of cortical functions might explain many of
the effects observed in human studies. In the VTA,
PCE-dependent alterations in excitation-to-inhibition
balance, dopamine neuronal activity, and dopamine D2
receptor sensitivity have been described along with
changes in expression of the genes encoding these re-
ceptors in the target regions [40-42]. These findings
might help explain the deficits in cognition, attention,
and impulsivity observed in the progeny of mothers who
consumed cannabis during pregnancy [33,34]. Perinatal
exposure to THC or other cannabinoid agonists has also
been associated with detrimental changes in plasticity,
excitability, and function in target regions such as the
prefrontal cortex (PFC) [43,44]. In addition, PCE pro-
duces alterations in synaptic plasticity and in gene
transcription and epigenetic regulation in another dopa-
mine target region that is the nucleus accumbens, which
can underpin its lasting effects on behavior [40]. Im-
portantly, PCE impact is often limited to the male pro-
geny: only PCE males exhibit increased sensitivity and
motivation for natural rewards, altered stress reactivity,
and a decreased hedonic state in adulthood. Hurd and
colleagues [45] have shown that the upregulation of
Kmt2a mRNA levels associated with a decreased he-
donic state and increased stress reactivity partially
overlap with those obtained in patients diagnosed with
major depressive disorder. This study suggests that PCE
can produce effects such as repressive transcriptional
processes within the striatum that may predispose to
major depression. Other preclinical evidence corrobo-
rates this study and shows that PCE induces sex-de-
pendent behavioral and neurobiological deficits in the
offspring [41]. In particular, male offspring appear par-
ticularly sensitive to the harmful effects of PCE, whereas
females do not significantly differ from controls in be-
havior and/or in cellular and synaptic function. Although
the underlying mechanisms ‘protecting’ females from
PCE detrimental effects remain elusive, this sex speci-
ficity aligns with other preclinical studies showing that
female sex may be a protective factor against intrauterine
environmental insults and, therefore, against neu-
ropsychiatric disorders of developmental origin [46].
Importantly, gender differences in the deleterious ef-
fects of PCE have also been shown in humans [47,48].
Particularly, a recent linkage-cohort study involving
more than 200 000 mother—offspring pairs has shown that
PCE increases the risks of autism spectrum disorder,
with this effect being stronger in the male progeny [48].

Adolescent cannabis exposure and
impairments of dopamine system functions
and behaviors

Adolescence is a period during which several structural
and functional changes occur in the brain and, conse-
quently, is a time window of high vulnerability to can-
nabis actions. For example, a study comparing
adolescents (18-20 years old) and adults (3040 years old),
who were not frequent cannabis users, found that beha-
vioral and cognitive effects of oral cannabis, but not the
intoxicating effects, were more pronounced in adolescents
compared to adults [49]. In addition, cannabis use during
adolescence has long been associated with long-lasting
impairments in a broad spectrum of cognitive and ex-
ecutive functions (e.g. sustained attention, working
memory, problem-solving, and decision-making), and its
use early in adolescence escalates the risk of developing
diverse severe mental disorders (e.g. depression and
psychosis) as well as cannabis use disorder (CUD) [14].

Animal models have helped shed light on the mechan-
isms underlying the effects of adolescent cannabis ex-
posure on brain and behavior [50]. This has led to the
discovery of the important role played by the endogenous
cannabinoid system during brain maturation [21] and to
the evidence that exogenous cannabinoids such as THC
interfere with the endogenous cannabinoid system and
contribute to derail neurotransmitter signaling, including
the dopamine system [51,52]. In particular, both systems
exhibit spatially and temporally dynamic changes
throughout development, especially during the transition
from adolescence to adulthood. This might help explain
the heightened susceptibility of the adolescent brain to
insults (‘hits’) such as exposure to cannabis [21]. Among
the brain regions undergoing major refinement during
adolescence, the PFC is pivotal for modulating higher
cognitive abilities, emotional processes, social skills, and
adaptive behaviors [53]. Because both dopamine and
endocannabinoid systems actively participate in PFC
functional maturation [54], it is expected that any inter-
ference with this signaling might result in psychopatho-
logical phenotypes later in life. In fact, in rodents,
adolescent exposure to cannabinoids disinhibits PFC
network function [55] with consequent hyperactivity of
subcortical dopaminergic activity accompanying a range
of cognitive and affective phenotypes resembling those
observed in psychiatric diseases, such as schizophrenia
[56]. These effects are associated with changes in sub-
cortical regions, namely a hyperdopaminergic activity
within the VTA, where dopamine neurons originate [56].

Alongside the emergence of psychotic episodes [57,58],
clinical studies also strongly indicate the association
between chronic or acute high-dose consumption of
cannabis derivatives during adolescence and the devel-
opment of adverse psychosocial outcomes (e.g. major
depression, suicidal ideation, and aggression), as well as
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IQ scores and cognitive function [59,60]. In addition,
cannabis use during adolescence is associated with an
increased risk of developing addiction to cannabis itself
and most drugs of abuse [61,62]. Of note, mental health
outcomes have been shown to deteriorate in the US and
Canada with cannabis legalization [63,64]. Preclinical
studies have confirmed these negative effects of ex-
posure to cannabis during adolescence on emotionality,
cognition, and risks of addiction and have helped elu-
cidate the wunderlying neurobiological mechanisms
[61,62,65]. Recently, a translational study has provided
important new insights into the neurobiological and
behavioral consequences of adolescent cannabis ex-
posure [66]. Ferland and coworkers found that exposure
to high dose of THC during adolescence produced long-
lasting similar deficits in decision-making, which were
finely analyzed by computational modeling techniques,
in both the rat and human version of the lowa Gambling
Task. Notably, THC produced long-lasting impairments
in decision-making, impulse control, and cognitive re-
sponses that were attributed to cell-specific and laminar-
specific alterations in type 1 cannabinoid (CB1) receptor
density, astrocyte transcripts, and morphology within the
PFC-basolateral amygdala circuit [66]. Not only this
type of translational study might provide critical in-
formation about cannabis-induced behavioral and neu-
robiological dysfunctions but also insights into potential
therapeutic strategies.

Concluding remarks and future directions
Cannabis use has deleterious effects on brain develop-
ment that may increase future risks of developing
mental illnesses. While the results from an analysis of
the literature appear consistent, several aspects deserve
further investigation and, therefore, considered for fu-
ture research.

An important neglected aspect in preclinical studies is
the effect of cannabis exposure on sleep. Although sleep
is key for neurodevelopment and mental health [67], and
human studies demonstrate an association between
cannabis use during adolescence and poor sleep out-
comes [68], animal studies are surprisingly lacking. Do-
pamine neurons, especially those originating within the
VTA, have been shown to be involved in sleep regula-
tion [69], with their malfunction being associated with
and predictive of future mental illness [70]. Hence, one
might speculate that PCE by disturbing sleep in a long-
lasting manner [46] may as well contribute to increasing
the risk of mental illnesses [71].

While several longitudinal studies have provided critical
information about the effects of both prenatal and ado-
lescent exposure to cannabis, a better identification of
the dynamic interplay between the exposure to cannabis

and social determinants of health is needed. Detailed
information, and possibly toxicological measures of the
frequency of cannabis use by adolescents, will be critical
to better quantify and interpret the specific effects of
cannabis exposure.

Preclinical studies investigating and comparing the ef-
fects of different routes of cannabis administration are
also warranted to deepen our understanding on mani-
festations of cannabinoid-mediated effects during ado-
lescence and on pregnancy outcomes. Importantly,
cannabis is mostly smoked or ingested by humans, and
more preclinical investigations are required to qualita-
tively and quantitatively determine the effects of these
routes of administration on developmental and beha-
vioral trajectories on these segments of population (i.e.
adolescents and PCE progeny). The development of
new models to allow studying the specific consequence
of cannabis administration by these routes [72] and [73]
is critical to address these questions.

Notably and worrisomely, THC concentrations in can-
nabis derivatives have steadily risen over the past few
decades, thus increasing the likelihood of fetal exposure
to higher doses of THC and of more marked detrimental
effects on the progeny. This concern extends to animal
studies investigating the effects of different doses of
cannabis during adolescence to determine the specific
risks associated with these uses. Additionally, preclinical
studies should inform about the effects of cannabidiol,
another major phytocannabinoid marketed as a dietary
supplement and apparently devoid of psychotropic ac-
tions. This is relevant since cannabidiol could also con-
tribute to neurodevelopmental sequelae of cannabis use,
and it is considered for use during pregnancy. In this
regard, the first toxicological preclinical studies show
sex-specific detrimental effects at early developmental
ages, which might be predictive of adult psycho-
pathology [74]. Given the popularity of synthetic can-
nabinoids (‘spice drugs’), which are often more potent
than natural cannabinoids, animal models should also be
developed to investigate on the effects of these novel
psychoactive substances.

Lastly, more translational studies [45,66], investigating
human and rodent behavior with similar behavioral tasks
aided by computational modeling, are needed to deci-
pher molecular mechanisms underlying the long-lasting
deleterious effects of cannabis during vulnerable neu-
rodevelopmental periods. Collectively, this knowledge
will be critical to inform the general public, health pro-
viders, and decision-makers of the risks associated with
cannabis exposure during developmental periods of
vulnerability to help reduce the risks of developing
mental health problems.
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