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Abstract: Storage profit maximization is based on buying energy at the lowest prices and selling it

at the highest prices. The best strategy must thus be based on both accurately predicting the price

peak hours and on rightly choosing when to buy and when to sell the stored energy. In this aim,

price prediction is crucial, but choosing the prediction model by means of the usual metrics, as the

lowest mean squared error, is not an effective solution as the mean squared error computation equally

weights the prediction error of all prices, while the focus must be on the higher and lower prices. In

this paper, we propose a new metric focused on the correct forecasting of high and low prices so as to

allow for a more effective choice among price forecasting models. Results show that the new metric

outperforms the standard metrics, allowing for a more accurate estimation of the possible profit for

storage (or other trading) activities.

Keywords: electricity markets; price forecasting; forecasting accuracy metrics; energy storage

1. Introduction

The introduction of higher shares of renewable energy source (RES)-based electricity
production is the main target of the energy transition process. Currently, the main share
of RESs is not programmable and therefore not adaptable to consumption needs. Storage
technologies are one of the key points for narrowing the mismatch between RES production
and consumption curves, transferring part of the energy from the production peak hours
to the consumption peak hours.

The technical need described above is rightly coupled, in economic terms, with storage
operator profit maximization, as it can be reached by buying energy at the lowest prices
(correspondent to production peaks) and selling it at the highest prices (consumption
peaks). In this way, the storage activity can reduce the mismatch between production and
consumption timing so as to allow for a higher share of RES production.

A specific characteristic of electricity markets is that electricity consumption and
production must always be in equilibrium. Thus, the markets must fix the actual production
and consumption quantities and prices at any moment. Two basic models for power
markets were developed, one based on a day-ahead auction, where prices and generation
amounts for the 24 h of the following day are determined by an auctioning process, and real-
time markets, where continuous trading is allowed until shortly before delivery. Markets
in Australia, Canada, and Singapore are based on real-time trading, while those in the
US, Korea, India, and Russia are mainly based on day-ahead auctions Mayer and Trück
(2018). Since the years around 2000, after a comprehensive energy market deregulation, the
European Union markets have been based on day-ahead auctions, with intraday real-time
markets as a secondary trading platform. In Italy, due to the power grid structure, the
day-ahead auction market is organized by regional zones and is managed by “Gestore
Mercati Energetici” (GME), a state-managed company.

In the Italian day-ahead auction, for each hour of the next day, each producer pro-
poses its offer, specifying the requested minimum price and the power quantity for the
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supply, and each distributor proposes its offer specifying the maximum acceptable price
and the demanded quantity. The auction mechanism then identifies the clearing price,
which equilibrates demand and supply and will be paid to all accepted producers by all
accepted distributors.

Storage profit maximization is based on buying energy at the lowest prices and selling
it at the highest prices. This means that the best strategy must be based on both accurately
predicting the price peak hours and on rightly choosing when to buy and when to sell stored
energy. In a previous work Sbaraglia et al. (2024), we developed a model and software
infrastructure for simulating a storage business operator in the Italian energy market.

The optimal buy/sell strategy for the storage operator is a highly nonlinear process,
whose maximum profit can just be computed a posteriori at known prices, while the actual
best strategy must be chosen among some realistic strategies that can be implemented in
practice.

Even when assuming, in a first approximation, that the storage operator is a price taker
in that its buy/sell activity does not influence the prices, determining the best operator
strategy is not straightforward.

In this aim, price prediction is crucial, so the key point is in selecting the best price
forecasting method. If this selection is based on the usual statistical metrics, such as the
mean squared error (MSE), the outcome may not be the best solution. In fact, the profit
maximization must be based on accurately forecasting the higher and lower prices, which
is not in line with the mean squared error metric, whose aim is on equally considering
prediction errors in all prices. Thus, some other metric must be considered, and profit
maximization should be the target of the price forecasting evaluation metric.

In this paper, we introduce a new metric designed to improve the accurate forecasting
of high and low prices, enabling a more effective selection of price forecasting models. The
results demonstrate that the proposed metric outperforms standard metrics, providing a
more precise estimation of potential profits for storage or other trading activities.

The reminder of this paper is structured as follows. Section 2 presents the literature
review, Section 3 describes the optimization model, Section 4 describes the standard accu-
racy metrics and introduces our proposed new alternatives, Section 5 presents the price
forecasting methods used in the simulation, Section 6 reports the simulation results, and
Section 7 draws the conclusions.

2. Literature Review

Accurate price forecasting plays a critical role in the profitability of storage operators,
who rely on this information to make optimal trading decisions. Price forecasts directly
impact their ability to generate profits through arbitrage trading, that is, by buying/storing
during low-price periods and selling during high-price periods. This is even more true in
day-ahead electricity markets, where all participants submit their trading orders before
electricity is generated and consumed on the next day. Because of this importance, the
corresponding literature on price forecasting models is vast and constantly evolving. A
comprehensive review of these works is beyond the scope of this paper, but valuable
insights are provided by Cerjan et al. (2013), Weron (2014), Nowotarski and Weron (2018),
Acaroğlu et al. (2021), Lago (2021), Lu et al. (2021), and Zema and Sulich (2022).

In the following, we explore evolving trends in price forecasting methods, emphasizing
recent contributions relevant to the scope of this paper, particularly those tailored to day-
ahead electricity markets.

Price forecasting models can be broadly categorized into two main groups: conven-
tional models and AI-based models. The first group includes time-series statistical models
such as ARIMA and GARCH, which are extensively utilized for their ability to capture
linear patterns and rely on historical price data. In extensive evaluations of price forecast-
ing methods, Makridaki et al. (2018) and Parmezan et al. (2019) find that ARIMA is more
computationally efficient than machine learning algorithms and can outperform them in
specific scenarios despite requiring more extensive parameterization. Zou and Yang (2004)
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combine multiple econometric models to improve forecasting accuracy, updating their
weights after each observation and demonstrating better performance compared to using a
single model. Focusing on electricity price forecasting, Ghasemi et al. (2021) highlight the
effectiveness of ARIMA in short-term electricity price forecasting, while Ziel and Steinert
(2018) discuss the applicability of GARCH models for managing price volatility. Recent
contributions to intraday electricity markets include the econometric model proposed by
Kiesel and Paraschiv (2017), while Uniejewski et al. (2019) address this using the least
absolute shrinkage and selection operator (LASSO), a method for estimation in linear
models originally proposed by Tibshirani (1996).

Although statistical models have been widely and successfully applied to electricity
price modeling, they can struggle to capture complex and nonlinear patterns. To address
this limitation, AI-based models have increasingly gained prominence over the past few
decades, thanks to their ability to model complex and nonlinear relationships, especially
under volatile conditions. AI-based models can be effectively integrated with conventional
statistical models, creating hybrid approaches that leverage the strengths of both method-
ologies. By addressing the limitations of individual models, these hybrid approaches excel
in capturing both linear and nonlinear patterns, often resulting in enhanced predictive
performance. Hybrid models can also be constructed by combining different AI-based
techniques: for example, Rafiei et al. (2016) employ clonal selection, wavelet transform,
and extreme learning machines for probabilistic electricity price forecasting. Nowotarski
and Weron (2018) provide a comprehensive review on AI-based methods and their hy-
brid variants. Early models integrating ARIMA and artificial neural networks (ANNs)
are proposed by Zhang (2003) and Babu and Reddy (2014), while Panigrahi and Behera
(2017) develop a model that combines exponential smoothing with ANN for enhanced time
series forecasting. Chaâbane (2014) jointly uses ARFIMA and neural network models for
electricity price prediction. Bissing et al. (2019) and Alkawaz et al. (2022) explore hybrid
approaches for forecasting hourly day-ahead electricity prices by integrating multiple linear
regression and machine learning techniques. Kapoor and Wichitaksorn (2023) compare
statistical methods with machine learning approaches for price forecasting in the intraday
New Zealand market, concluding that statistical methods, when coupled with LASSO, can
outperform machine learning models. Jiang et al. (2025) integrate the LASSO statistical
method with neural networks and decision tree-based models for electricity price forecast-
ing; see also Shen et al. (2019). Hybrid models for electricity price forecasting, which adopt
a rolling window approach to ensure that the model is trained on the most recent data, are
proposed by Papaioannou et al. (2016), Ugurlu et al. (2018), and De Marcos et al. (2019),
while Gunduz et al. (2023) further enhance this approach by integrating neural networks
with a transfer learning framework. Fezzi and Mosetti (2020) examine the optimal length
of the rolling window, highlighting its impact on prediction accuracy.

A parallel area of research to price forecasting methods focuses on evaluating their
effectiveness in generating profits, particularly in the context of arbitrage trading strategies.
This involves not only predicting price movements accurately but also ensuring that these
predictions translate into profitable trading opportunities. This issue has been widely
discussed in the financial market literature, as described by Li and Bastos (2020). However,
it has received comparatively little attention in the electricity market literature, where
performance evaluation typically centers on minimizing forecast errors against historical
price data, relying on standard statistical accuracy metrics, as noted by Ziel and Steinert
(2018), Beigaite et al. (2018), and Belenguer et al. (2025). The common assumption is that
improving forecast accuracy will lead to better arbitrage opportunities and, consequently,
higher profits; see, for example, Yu and Foggo (2017) and Mercier et al. (2023). However,
recent research suggests that this relationship may not be straightforward, as pointed
out by Antweiler (2021), while Jędrzejewski et al. (2022) advocate for further research on
improving metrics in the electricity price forecasting literature.

Our work contributes to this emerging area by specifically addressing this gap. Build-
ing on existing research, we go beyond evaluating forecasting models solely based on
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their ability to fit historical prices. Hence, we propose a new metric that simultaneously
evaluates the statistical accuracy and economic utility of forecasting methods, particularly
for storage operators seeking to maximize arbitrage profits. This dual focus—on both
predictive accuracy and economic utility—offers a more comprehensive way of assess-
ing forecasting methods, particularly for participants in electricity markets who rely on
forecasts to guide arbitrage decisions.

3. Optimization for the Storage Operator

In Sbaraglia et al. (2024), we proposed an optimization model designed for obtaining
the maximum profit from the energy storage business, that is, buying and selling energy at
the best market conditions.
The model assumes that the energy market is perfectly liquid, meaning it is always pos-
sible to buy and sell the desired quantity of energy at any hour, up to a maximum limit.
Furthermore, the storage operator is a price taker; that is, its actions do not influence the
market price.

The model, based on the market price of energy at each hour, the maximum storage
capacity, and the maximum amount of energy that can be transferred (purchased or sold) in
a single hour and some other technical parameters, allows choosing the amount of energy
to be purchased or sold at each hour.

The resulting optimization problem consists of maximizing the sum of total revenues
from the trading activity. Solving this optimization problem consists of finding the best
decision strategy over the set of all admissible strategies, that is, all the allocation strategies
that satisfy the above constraints.

The problem is stochastic in nature, since the future evolution of the energy prices,
upon which the allocation strategy depends, is unknown. In practice, it is often appropriate
to reduce this stochastic optimization problem to a deterministic one by assuming a specific
scenario of evolution of the energy prices. In fact, the operator or practitioner can often
provide a specific prediction of how the prices will evolve, at least in the short term,
and is interested in determining the optimal strategy according to such prediction. The
deterministic optimization problem thus obtained, due to its linearity, can be efficiently
solved through well-known mixed-integer linear programming algorithms.

Since the energy market requires each operator to participate daily in auctions for
every hour of the following day, it is natural for operators to optimize their decisions
across the next 24-h period. While a day-by-day optimization approach might yield inferior
results compared to a global optimization over the entire simulation period, extensive tests
conducted by Sbaraglia et al. (2024) for the Sardinian electricity market during 2019–2023
show that the difference in profits is negligible, and this finding aligns closely with the
results of Connolly et al. (2011).

What actually makes a difference is instead price forecasting, with prediction errors
that can induce a loss of no less than 15% from the maximum theoretical income at given
prices. Thus, the selection of the best price forecasting model is a key point.

4. Price Forecasting Metrics

We intend to evaluate the accuracy of price prediction using as our ultimate benchmark
the difference between the theoretical maximum revenue (i.e., the revenue that can be
obtained if we assume perfect knowledge of the future prices) and the actual revenue
obtained by applying the optimal strategy to the forecasted energy prices.

Let P : N → [0,+∞) be the actual price function and P̂ : N → [0,+∞) be the price
function as predicted by a given price forecasting method. Furthermore, given the simula-
tion time steps t1, . . . , tN , let Pt1

, . . . , PtN
= P(t1), . . . , P(tN) be the actual prices, which we

shall shortly denote P1, . . . , PN and let P̂1, . . . , P̂N = P̂t1
, . . . , P̂tN

= P̂(t1), . . . , P̂(tN) be the
predicted price curve.

Let RN = R(P1, . . . , PN) be the final revenue obtained by applying the optimal allo-
cation strategy to the actual price curve, thus assuming perfect knowledge of the future.



J. Risk Financial Manag. 2024, 17, 538 5 of 29

Furthermore, let R̂N = R(P̂1, . . . , P̂N) be the final revenue obtained by applying the optimal
strategy to the forecasted energy prices P̂1, . . . , P̂N . Clearly, as RN is the theoretical maxi-
mum revenue, we always have RN ≥ R̂N . We shall assume as the benchmark to evaluate
the accuracy of the price prediction the quantity

∆R =
RN − R̂N

RN

Clearly, ∆R ∈ [0, 1], and the closer to 0, the better the price forecasting method. We
regard ∆R as the percentage loss of profit due to imperfect knowledge of the evolution of
the energy prices.

While ∆R represents the ultimate benchmark in evaluating the accuracy of a price
prediction, computing such a metric involves a computationally intensive optimization
to determine the final revenue for both the actual and forecasted prices. Furthermore,
following this approach does not necessarily shed more light on the characteristics of a given
forecasting method that make it more efficient than others. Thus, in this section, we aim to
develop simpler price forecasting metrics tailored to the storage optimization model. Such
tailored metrics would allow us to measure the forecasting accuracy of each forecast when
coupled with the optimal storage allocation strategy, without requiring the computation of
the final revenues. Furthermore, since the architecture of our simulation software allows for
these metrics to be fed as feedback to the price forecasting module, the latter could use them
to refine the forecast for a better fit. Finally, determining accurate price forecasting metrics
will provide a better insight in the internals of the optimal storage allocation strategy and
how this is impacted by the different characteristics of the price curve.

We shall also compare these tailored custom indicators to some well known statistical
loss functions used in the analysis of regression models. Loss functions compare the model’s
predicted values with actual values, gauging its efficacy in mapping the relationship
between P̂ (prediction) and P (target). Loss functions are then functions of the type

m : IR2N −→ IR

such that m(P1, . . . , PN , P̂1, . . . , P̂N) represents a measure of the accuracy of the prediction,
indicating the disparity between predicted and actual values.

The standard loss functions used to evaluate each forecasted time series are described
in Appendix A, while the innovative functions we propose and test in comparison to these
standard techniques are detailed below.

MaxMin Loss Function

Since the storage operator profits on the price differences, buying when the price is
lower and selling when the price is higher, the first simple idea is to approximate such
revenue with the price difference between local extrema. Thus, we compare in this metric
the approximated revenue when the extrema are identified on the actual price curve vs. the
approximated revenue when the extrema are identified on the forecasted price curve. While
we do not expect this simplistic model to accurately represent profit, it is still interesting
to understand how far such a basic strategy is from optimal before we launch into more
sophisticated loss functions.

Let xi, yi ∈ {t1, . . . , tN} such that xi and yi are points of local maximum and minimum,
respectively, for the price curve P1, . . . , PN , with i = 1, . . . , k. We further assume xi > yi,
shifting the local maxima as necessary and possibly skipping some of them if this is not
the case.

In much a similar way we define the local maxima and minima for the estimated
price curve so that x̂i, ŷi ∈ {t1, . . . , tN} such that x̂i, ŷi are points of local maximum and

minimum, respectively, for the price curve P̂1, . . . , P̂N , with i = 1, . . . , k̂ and x̂i > ŷi. We
define the MaxMin loss function as



J. Risk Financial Manag. 2024, 17, 538 6 of 29

m(P1, . . . , PN , P̂1, . . . , P̂N) =

∣∣∣∣∣∣

k

∑
i=1

(P(xi)− P(yi))−
k̂

∑
i=1

(P(x̂i)− P(ŷi))

∣∣∣∣∣∣

Clearly, the closer to zero the metric, the better the forecasted price curve.
Sort Loss Function

While the MaxMin Loss Function could provide some insight towards assessing the
accuracy of a price curve prediction, if we look more closely at the optimal allocation
strategy for a given price sequence, it is clear that the storage operator does not profit
purely on local extrema. In fact, the operator could buy energy at the beginning of the
increasing cycle and sell at the end of it, thus realizing a net income, even in absence of local
extrema. We, therefore, wish to further refine the MaxMin metric by trying to assess how
well the prediction identifies the intraday sorting of the price curve. It is worth reminding
that the operator strategy proceeds 24 h at a time, since at any given day the strategy must
be defined for the following day. We should therefore split the price curve in chunks of
24 h and compare the intraday sorting of the actual prices vs. the sorting of the predicted
prices. The closer the two, the better the forecasted curve should be. If the predicted price
curve had an identical sorting of the intraday prices, we should expect an identical optimal
strategy, irrespective of the values of the prices themselves.

Let i = 1, . . . , T be the simulation days and j = 1, . . . , 24 the daily hours. Let us also
recall that all days have been standardized to a uniform 24-h format to neutralize the
impact of Daylight Saving Time adjustments. Let N = T · 24 be the total number of time
steps. For any i = 1, . . . , T, let (n1, . . . , n24) be a sorting of the time hours (t1, . . . , t24) of
day i such that P(n1) ≥ P(n2) ≥ · · · ≥ P(n24). Now, let (n̂1, . . . , n̂24) be the corresponding
sorting of the time hours (t1, . . . , t24) of day i, determined based on the estimated price
curve: P̂(n̂1) ≥ P̂(n̂2) ≥ · · · ≥ P̂(n̂24).

Now, let ∀j = 1, . . . , 24, δj(i) = 1 if nj = n̂j and δj(i) = 0 if nj ̸= n̂j and

δ(i) =
24

∑
j=1

δj(i)

Clearly, δ(i) ∈ [0, 24] represents the number of times, in day i, that the sorting of the
forecasted price curve is in accordance with the sorting of the actual price curve. We shall
then pose

m(P1, . . . , PN , P̂1, . . . , P̂N) = 1 − 1

N

T

∑
i=1

δ(i)

as the percentage of incorrectly identified sorted times. The closer to 0 such a loss function
is, the better the forecasted price curve is at predicting the intraday sorting of the prices.

Multistep Loss Function

The sort metric described above measures the sorting of the price curve, day by day,
with the assumption that if two price curves are sorted identically the optimal strategy will
be the same whatever the values of the prices. However, if the sorting is not completely
accurate, the difference in revenue could still be low: since the optimal strategy will
basically use the sorting to decide when to buy/sell energy, if the sorting is slightly off
but the price difference is small, the difference in profit might be negligible. This is the
case, for example, if the forecasted price curve is slightly shifted with respect to the actual
prices. In such situations, the sort metric will yield a very high value which does not fully
reflect the actual difference in profit. In order to further improve upon the sort metric for a
more accurate evaluation of the price curve prediction, we have developed the multistep
loss function, which takes into account the value differences in addition to the ordering of
the prices.

Let i = 1, . . . , T be the simulation days and (t1, . . . , t24) the time steps within day i.
The optimal storage allocation strategy should maximize the intraday price differences;
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thus, let us consider a disposition without repetition of an even number 2k of time steps
(t1, . . . , t24) and let us call this disposition Di = {n1, . . . , n2k}, k ≤ 12. Let us further assume
n2j > n2j−1 for j = 1, . . . , k. The assumption here is that we shall buy at each time n2j−1

and sell at each time n2j, and thus the estimated day i profit resulting from the disposition
Di shall be

p(Di) =
k

∑
j=1

(
P(n2j)− P(n2j−1)

)

The optimal strategy must attain at least the maximum estimated revenue:

p(D∗
i ) = max

Di∈I2k

p(Di)

where I2k is the set of all dispositions {n1, . . . , n2k} of 2k elements out of the {t1, . . . , t24}
time steps of each day i, k = 1, . . . , 12, such that n2j > n2j−1 for j = 1, . . . , k. The total
estimated profit over i = 1, . . . , T is then

p =
T

∑
i=1

p(D∗
i )

Now, if P̂1, . . . , P̂N is a forecasted price curve, we can similarly define, for any disposi-
tion Di = {n1, . . . , n2k} as described

p̂(Di) =
k

∑
j=1

(
P̂(n2j)− P̂(n2j−1)

)

and then determine the disposition D̂i = {n̂1, . . . , n̂2k} that achieves the maximum over all
dispositions in I2k:

p̂(D̂i) = max
Di∈I2k

p̂(Di)

Then, we can compute the estimated profit if such disposition D̂i, optimal on the
estimated curve, were to be used on the real price curve:

p(D̂i) =
k

∑
j=1

(
P(n̂2j)− P(n̂2j−1)

)

and the resulting total estimated profit over all time steps

p̂ =
T

∑
i=1

p(D̂i)

The multistep loss function is then simply

m(P1, . . . , PN , P̂1, . . . , P̂N) = |p − p̂|

Algorithmically, the multistep loss function can be computed by sorting the price
curve within each day. Then, iteratively, the maximum sorted time step (highest price) is
labeled as “sale time” provided that there is a preceding time step with a lower price. If so,
we shall pick as “buying time” the time step preceding the “sale time” which has the lowest
price. Thus, the multistep loss function is effectively an evolution of the sort function:
where the sort function simply aims at identifying the intraday sorting of the price curve,
upon which the profit depends, without any attempt to estimate the corresponding profit,
the multistep metric similarly depends on the sorted price curve to establish a profit by
exploiting the intraday price differences but aims at estimating the resulting profit. It is
intuitive that the multistep estimate of profit is not the actual profit, since the optimal
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operator strategy might exploit the maximum energy that can be stored, which is usually
higher than the maximum that can be transferred within one hour, to implement more
efficient sequences of the type “buy–buy–sell”. We shall investigate in Section 6.2 how
effective the multistep metric is at predicting profit.

5. Price Forecasting Methods

Several models have been explored for electricity price forecasting, with comprehen-
sive summaries provided in Weron (2014) and Lu et al. (2021). In this work, our focus
is to evaluate the effectiveness and reliability of forecasting quality metrics within the
context of a storage business. To this end, we selected some of the most commonly used
time series-based methods. It is important to note that for each forecasting model, the
corresponding daily income must be calculated, making the process computationally inten-
sive. Incorporating more complex models, such as neural networks, would significantly
extend the computation time. Additional details on the price forecasting methods can be
found in Appendix B. In a previous study Sbaraglia et al. (2024), we delved deeper into
these methods and their interaction with both optimal and suboptimal operator strategies.
Exploring more advanced forecasting models, including machine learning and RNNs, is a
key focus of our ongoing research.

In our testing, we consider both heuristic methods based on intuitive guidelines
to predict future prices and econometric methods based on statistical and mathematical
models to analyze historical data, offering a more complex, data-driven approach to
price forecasting.

The heuristic price forecasting methods that we considered are described as follows.
Today model: this simple approach is straightforward and assumes day-to-day price

stability, predicting that the electricity price at any given hour will be the same as it was at
the same hour the previous day.

Todaymod model: this model is a variation of the Today method: for Saturdays,
Sundays, and Mondays, the Todaymod model predicts that electricity prices at each specific
hour will match those from the corresponding day and hour of the previous week. For
Tuesdays through Fridays, the model predicts that prices at each specific hour will be the
same as those observed at the same hour on the immediately preceding day.

Avg model: for each hour of the day over a defined market period, the forecasted
energy price at hour i is calculated by averaging the electricity prices for that same hour
across the past K days (with K assumed equal to 30 days).

Avg sameday model: similar to the Avg model, this approach averages the prices
for the same hour on the same weekday over the past K weeks (with K assumed equal to
4 weeks).

On the other hand, the econometric methods that we use for forecasting hourly
electricity prices are based on the appropriate ARIMA and SARIMA models, selected using
the Akaike Information Criterion (AIC). Specifically, we evaluate the time series data for
each hour independently, identifying the optimal model parameters (p, d, q) for ARIMA
and (p, d, q)(P, D, Q) for SARIMA by minimizing the AIC score. This process involves
testing all parameter combinations, with values ranging from zero to seven. The hourly
price data from 2018 to 2023 have been segmented into 24 distinct time series, one for each
hour of the day. For each time series, the best-fitting ARIMA/SARIMA models have been
identified for each year. Given the presence of a weekly price cycle, the seasonal period for
SARIMA is set to 7 for each hourly time series. Based on this selection process, we predict
the hourly electricity price using the following econometric methods.

ARIMA Hourly/SARIMA Hourly: Using a ‘multi-set’ strategy, we forecast hourly
prices for each year based on the best model parameters identified for each specific hour in
the preceding year. This method captures the unique price fluctuations for each hour by
using a distinct model for each one.

ARIMA Modal/SARIMA Modal: This ‘one-set’ approach uses a single set of model
parameters, consisting of the modal (most frequently optimal) parameters among the
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24 hourly models from the previous year. This approach aims for a more generalized
forecast across all hours, relying on the most common optimal parameters. In other words,
the method “modal” selects the value that appears most frequently as optimal in the dataset
consisting of the set of hours, in contrast to the hourly method, which instead favors the
specific optimal value for each individual hour.

We generate all econometric forecasts using the aforementioned methods under a
rolling-window approach, which involves retraining the model on a shifting 365-day
window of the most recent data. For example, to predict the price for a specific hour on
2 January 2019, the model utilizes data from that same hour spanning from 2 January 2018,
to 1 January 2019, with the window advancing accordingly.

Rolling window methods are commonly employed in time series forecasting due to
their adaptability and ability to incorporate recent data while discarding older information.
This makes them particularly useful in volatile environments where trends can shift quickly.
For instance, in the context of energy price forecasting, rolling windows allow for continu-
ous model updates, enhancing accuracy as they respond to real-time data changes. These
methods are particularly beneficial in cases where seasonality or cyclical trends are present,
as they allow the model to adapt to the most recent trends rather than relying on long-term
averages. See also Papaioannou et al. (2016), Ugurlu et al. (2018), De Marcos et al. (2019),
Gunduz et al. (2023), and Fezzi and Mosetti (2020). We have observed that a training set of
a rolling window of 1 year (365 observations) is enough to produce satisfactory results, as
also pointed out by Papaioannou et al. (2016) in the context of energy price forecasting.

6. Results

6.1. Profitability of Standard Price Forecasting Methods

For each price forecasting method outlined in Section 5, we computed the hourly
electricity prices from 2019 to 2023 in the Sardinian day-ahead electricity market. Utilizing
the profit optimization model detailed in Section 3, we calculated the optimal daily profits
achievable by applying each forecasting method.

The simulation setup that we adopted refers to a battery energy storage system (BESS)
consisting of a small Lithium-Ion battery plant with a total capacity of 4 MWh, capable
of charging or discharging 1 MWh per hour. The hourly maintenance costs of the BESS
have been set to EUR 0.03/MWh, with no storage losses, transaction costs, or cost of
storage. These assumptions are consistent with those adopted by Sbaraglia et al. (2024) and
Agathokleous et al. (2019), as well as with the findings of Münderlein et al. (2019) regarding
the minimum capacity required for a BESS to cover its operating costs.

The total annual profits attributable to each price forecasting method are presented in
Table 1.

Table 1. Revenue for each forecasting method (nominal values in euro).

2019 2020 2021 2022 2023

Theoretical Max 47,051.35 45,697.25 101,670.49 280,335.93 140,588.50
Avg 41,267.52 39,341.39 91,539.97 250,490.31 129,125.02
Avg Sameday 41,562.14 39,808.90 91,260.21 250,649.96 128,721.85
Today 39,837.29 36,765.43 85,308.17 236,708.05 123,092.04
TodayMod 41,353.65 38,621.73 87,912.12 248,841.86 125,186.94
Arima Hourly 41,430.39 39,094.68 88,541.69 239,737.05 121,034.97
Arima Modal 42,083.06 39,353.29 90,593.42 245,314.05 129,736.55
Sarima Hourly 41,102.41 38,811.09 89,838.86 243,885.99 121,353.14
Sarima Modal 42,219.44 39,751.13 91,858.15 241,167.36 129,736.55

Table 2 reports the percentage with respect to the maximum theoretical performance
attainable if perfect knowledge of the future prices were available. To ease the comparison,
we have colored in red performance below 80%, in orange performance between 80% and
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85%, in yellow between 85% and 90%, and in green a percentage higher than 90%. Figure 1
provides the same information in a more immediate, graphical form.

Table 2. Revenue percentage of theoretical maximum for each forecasting method.

2019 2020 2021 2022 2023

Avg 87.71% 86.09% 90.04% 89.35% 91.85%

Avg Sameday 88.33% 87.11% 89.76% 89.41% 91.56%

Today 84.67% 80.45% 83.91% 84.44% 87.55%

TodayMod 87.89% 84.52% 86.47% 88.77% 89.04%

Arima Hourly 88.05% 85.55% 87.09% 85.52% 86.09%

Arima Modal 89.44% 86.12% 89.10% 87.51% 92.28%

Sarima Hourly 87.36% 84.93% 88.36% 87.00% 86.32%

Sarima Modal 89.73% 86.99% 90.35% 86.03% 92.28%

Figure 1. Revenue percentage of theoretical maximum for each forecasting method.

We can observe how most methods yield within 85% of maximum profit, with some
methods achieving as high as 92% in some years.

Our tests reveal clear profit performance patterns across the forecasting methods
examined. Within the heuristic category, the Avg and Avg Sameday models, which derive
forecasts from average prices, mostly outperform models like Today and Todaymod, which
depend on the most recent corresponding price data. This indicates that models based on
averages are more effective at capturing and utilizing historical price trends to secure more
profitable outcomes.

A parallel trend is observed among the econometric forecasting methods, where a
preference for simplicity and a general approach is evident. The “one-set” approach,
as implemented by the ARIMA Modal and SARIMA Modal models, involves applying a
consistent set of optimal parameters across all hourly forecasts. This method consistently
yields higher profits compared to the ’multi-set’ approach of the ARIMA Hourly and
SARIMA Hourly models, which customize optimal parameters for each specific hour. The
success of the “one-set” approach in generating profits highlights the strength of a broad,
generalized modeling framework. Far from diminishing profitability, the simplicity of
this approach seems to enhance it, likely due to its robustness and wide applicability
across various times. These findings challenge the assumption that more complex, hour-
specific customization leads to better performance, suggesting instead that a streamlined,
uniform approach to parameter selection in econometric forecasting can be more effective
in maximizing profits.

When comparing the top-performing models within each category (namely, the Avg
and Avg Sameday for heuristic approaches, and the ARIMA Modal and SARIMA Modal for
econometric strategies), no single method consistently dominates in terms of profitability.
This variation suggests that the most effective model depends on the specific market
conditions at play.

Specifically, the heuristic methods of Avg and Avg Sameday show superior profitability
during years marked by significant exogenous shocks, such as the widespread effects of
the COVID-19 pandemic in 2020 and the gas price crisis triggered by the Russia–Ukraine
war in 2022. These models excel in rapidly adjusting to and capitalizing on abrupt market
changes for short-term gain.
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In contrast, the econometric models (ARIMA Modal and SARIMA Modal) demonstrate
their strength in more stable or predictable market environments, as seen in the years
2019, 2021, and 2023. Their advantage lies in incorporating long-term historical price
data, which allows them to regain and even enhance profitability once the immediate
impacts of exogenous events have been assimilated into the broader price trends. This
distinction suggests that while heuristic methods may offer immediate advantages by
quickly responding to sudden market shifts, econometric approaches provide consistent
guidance, gradually adjusting to include new data trends and thus, over time, recapturing
profitability in the aftermath of such events.

Given that no forecasting method emerges as more accurate over all years and condi-
tions, it is clearly not possible to determine in advance which will yield higher accuracy.
Thus, adaptive methods able to dynamically switch from one forecast to the other based on
the evaluation of past performance could be appealing. However, the actual implemen-
tation of such methods would require an iterative evaluation of each of many forecasting
methods over the past K days in order to determine which strategy to use for the following
K days. Such an algorithm would easily be computationally demanding since it requires
running multiple global optimization for each method and for each K step interval. Hence,
it would be quite useful to determine whether one of the proposed price forecasting metrics
were able to accurately track the profit at all times. If that was the case, we could use the
chosen metric as an approximation of the profit, thus rendering the algorithm much more
lightweight and scalable, especially since further endogenous components are expected to
render the optimization model nonlinear in the future.

6.2. Performance of Price Forecasting Metrics

In this section, we shall compare the accuracy of the price forecasting metrics. We
assessed the statistical accuracy of various standard statistical loss functions, summarized
in Appendix A, as well as the custom price forecasting metrics detailed in Section 4
against a profit indicator ∆R which reflects the profits generated by incorporating the price
forecast into a daily optimization strategy. This evaluation aims to determine the practical
effectiveness of statistical accuracy metrics in enhancing storage operation profitability.

In Table 3 and Figure 2, we show the percentage loss of profit ∆R for each of the price
forecasting methods from 2019 through 2023. Table 3 employs a coloring scheme similar to
Table 2 to ease the identification of the most promising methods.

Table 3. ∆R Percentage profit loss for each forecasting method.

2019 2020 2021 2022 2023

Avg 12.29% 13.91% 9.96% 10.65% 8.15%

Avg Sameday 11.67% 12.89% 10.24% 10.59% 8.44%

Today 15.33% 19.55% 16.09% 15.56% 12.45%

TodayMod 12.11% 15.48% 13.53% 11.23% 10.96%

Arima Hourly 11.95% 14.45% 12.91% 14.48% 13.91%

Arima Modal 10.56% 13.88% 10.90% 12.49% 7.72%

Sarima Hourly 12.64% 15.07% 11.64% 13.00% 13.68%

Sarima Modal 10.27% 13.01% 9.65% 13.97% 7.72%

Figure 2. ∆R Percentage profit loss for each forecasting method.
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Clearly, the lower ∆R, the more accurate the forecast and, as highlighted in Section 6.1,
the heuristic average-based methods yield better performance in some years, whereas the
econometric methods are better in other periods. Here, we are interested in comparing this
result with the prediction given by the standard statistical loss functions, as well as the
metrics introduced in Section 4.

Tables 4–8 detail the value of each loss function for each price forecasting method
from 2019 through 2023. Within each column, i.e., for each loss function, lower values
indicate higher accuracy; however, due to the different nature of the loss functions, a
comparison between their respective values is not immediate and will be presented in a
more comparable form right after the raw data.

Table 4. Price forecasting metrics for each method: 2019.

∆R
Standard Metrics Custom Metrics

MAE MSE RMSE NRMSE RSE RRMSE LCE MAPE MaxMin Sort Multistep

Avg 12.29% 7.29 99.98 10.00 0.19 0.56 0.19 6.63 80.59 2781.99 0.85 9847.86

Avg Sameday 11.67% 7.41 104.42 10.22 0.20 0.59 0.19 6.76 79.84 2544.03 0.84 9220.47

Today 15.33% 7.51 122.75 11.08 0.21 0.69 0.21 6.89 90.35 1466.08 0.86 11,428.65

TodayMod 12.11% 7.45 123.77 11.13 0.21 0.69 0.21 6.82 90.96 765.49 0.84 9106.13

Arima Hourly 11.95% 6.66 86.83 9.32 0.18 0.49 0.18 6.01 82.20 2769.32 0.84 8831.24

Arima Modal 10.56% 6.64 86.34 9.29 0.18 0.48 0.17 5.99 82.70 2909.04 0.84 8402.72

Sarima Hourly 12.64% 6.24 79.94 8.94 0.17 0.45 0.17 5.59 81.15 2915.95 0.84 8103.25

Sarima Modal 10.27% 6.08 75.66 8.70 0.17 0.42 0.16 5.43 81.43 2960.05 0.83 7274.33

Table 5. Price forecasting metrics for each method: 2020.

∆R
Standard Metrics Custom Metrics

MAE MSE RMSE NRMSE RSE RRMSE LCE MAPE MaxMin Sort Multistep

Avg 13.91% 7.93 130.45 11.42 0.29 0.48 0.28 7.27 39.00 2519.91 0.85 9745.36

Avg Sameday 12.89% 8.12 139.80 11.82 0.30 0.52 0.29 7.47 36.89 2588.18 0.85 9374.88

Today 19.55% 7.61 158.56 12.59 0.32 0.59 0.30 6.98 38.39 1852.10 0.85 12,368.58

TodayMod 15.48% 7.26 128.95 11.36 0.29 0.48 0.27 6.63 35.75 1201.79 0.84 10,164.62

Arima Hourly 14.45% 6.91 111.48 10.56 0.27 0.41 0.26 6.26 36.16 2092.64 0.84 9579.55

Arima Modal 13.88% 6.93 111.94 10.58 0.27 0.41 0.26 6.29 36.15 2695.13 0.84 9275.31

Sarima Hourly 15.07% 6.50 103.59 10.18 0.26 0.38 0.25 5.86 32.96 2264.60 0.84 9319.06

Sarima Modal 13.01% 6.41 101.29 10.06 0.26 0.37 0.24 5.76 31.92 2574.67 0.83 8359.87

Table 6. Price forecasting metrics for each method: 2021.

∆R
Standard Metrics Custom Metrics

MAE MSE RMSE NRMSE RSE RRMSE LCE MAPE MaxMin Sort Multistep

Avg 9.96% 21.02 1111.20 33.33 0.27 0.17 0.25 20.35 29.79 3861.67 0.85 17,463.30

Avg Sameday 10.24% 21.62 1206.80 34.74 0.28 0.18 0.26 20.95 30.02 4425.73 0.84 18,355.72

Today 16.09% 16.19 743.08 27.26 0.22 0.11 0.18 15.54 24.65 3545.88 0.85 24,263.38

TodayMod 13.53% 16.74 825.87 28.74 0.23 0.13 0.20 16.09 26.71 2176.58 0.83 19,623.25

Arima Hourly 12.91% 15.58 645.04 25.40 0.21 0.10 0.18 14.91 25.38 3596.94 0.86 16,762.69

Arima Modal 10.90% 15.87 650.54 25.51 0.21 0.10 0.18 15.20 25.73 4641.66 0.86 17,177.92

Sarima Hourly 11.64% 14.94 607.59 24.65 0.20 0.09 0.17 14.27 24.78 4689.61 0.84 16,021.62

Sarima Modal 9.65% 14.54 587.37 24.24 0.20 0.09 0.17 13.88 24.57 5011.86 0.83 13,204.64

Table 7. Price forecasting metrics for each method: 2022.

∆R
Standard Metrics Custom Metrics

MAE MSE RMSE NRMSE RSE RRMSE LCE MAPE MaxMin Sort Multistep

Avg 10.65% 69.91 9505.51 97.50 0.34 0.55 0.32 69.22 344.35 20,167.18 0.86 44,860.55

Avg Sameday 10.59% 75.71 11,100.14 105.36 0.37 0.64 0.34 75.02 333.37 19,380.65 0.83 48,026.86

Today 15.56% 47.65 6882.48 82.96 0.29 0.40 0.26 46.97 271.47 7256.09 0.83 62,833.06

TodayMod 11.23% 52.14 7654.10 87.49 0.30 0.44 0.28 51.46 329.40 6349.07 0.80 44,747.78

Arima Hourly 14.48% 45.35 5702.80 75.52 0.26 0.33 0.24 44.66 306.96 22,869.68 0.85 57,931.51

Arima Modal 12.49% 45.33 5653.88 75.19 0.26 0.32 0.24 44.65 304.12 21,521.59 0.84 54,387.98

Sarima Hourly 13.00% 42.81 5478.18 74.01 0.26 0.31 0.24 42.13 298.07 21,373.54 0.84 51,565.16

Sarima Modal 13.97% 42.81 5455.44 73.86 0.26 0.31 0.24 42.13 295.77 21,504.18 0.84 50,946.69
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Table 8. Price forecasting metrics for each method: 2023.

∆R
Standard Metrics Custom Metrics

MAE MSE RMSE NRMSE RSE RRMSE LCE MAPE MaxMin Sort Multistep

Avg 8.15% 22.87 1130.05 33.62 0.27 0.64 0.25 22.20 339.92 8092.74 0.85 15,558.33

Avg Sameday 8.44% 25.46 1403.91 37.47 0.30 0.79 0.28 24.78 255.67 8453.34 0.84 17,364.82

Today 12.45% 18.80 945.01 30.74 0.25 0.53 0.24 18.14 208.72 2817.90 0.84 23,478.80

TodayMod 10.96% 19.72 1091.89 33.04 0.27 0.62 0.25 19.06 209.63 2428.97 0.83 21,212.71

Arima Hourly 13.91% 18.28 790.36 28.11 0.23 0.45 0.21 17.61 297.49 8876.66 0.85 26,654.75

Arima Modal 7.72% 17.86 747.32 27.34 0.22 0.42 0.21 17.19 276.35 8311.45 0.83 15,509.11

Sarima Hourly 13.68% 17.71 756.92 27.51 0.22 0.43 0.21 17.04 204.35 8930.88 0.83 22,918.82

Sarima Modal 7.72% 17.86 747.32 27.34 0.22 0.42 0.21 17.19 276.35 8311.45 0.83 15,509.11

In order to ease the comparison, we further normalized these results by assigning
value 1 to the worst-performing metric within each column and rescaling the other values
as percentages. For example, if we look at Table 4, we see that according to the MAE
loss function, the best performing is the SARIMA Modal (lowest value) and the worst-
performing method is Today (highest value). Then, we assigned the value 1 to Today and
normalized all other values accordingly.

The results are in Figures 3–7, which can be interpreted as follows: for each loss
function, the price forecast corresponding to the lowest value is considered the best, and
the price forecast corresponding to the highest value (1) is the poorest.

Figure 3. Relative comparison of price forecasting metrics for each method: 2019.

Figure 4. Relative comparison of price forecasting metrics for each method: 2020.

Figure 5. Relative comparison of price forecasting metrics for each method: 2021.

Figure 6. Relative comparison of price forecasting metrics for each method: 2022.

Figure 7. Relative comparison of price forecasting metrics for each method: 2023.

While in 2019 and 2021 most standard statistical loss functions are able to predict the
profit-maximizing strategy, this is no longer true in 2020, 2022, and 2023. Furthermore,
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the comparison between the histogram of the profit indicator ∆R (Figure 2) and those
of standard accuracy metrics reveals a lack of qualitative similarity, underscoring the
inadequacy of standard metrics in accurately identifying the most profitable forecasting
methods for storage operations.

In contrast, our analysis of custom metrics yielded insightful results: the MaxMin
metric’s histogram diverges significantly from that of the profit indicator ∆R, indicating its
unreliability in forecasting the most profitable methods. This finding suggests that merely
predicting the highest and lowest price hours under the model assumptions (Section 3) is
insufficient for maximizing storage operator profits.

The sort metric’s histogram bears a qualitative resemblance to that of ∆R, especially
when examining the top-performing models within each category (i.e., Avg and Avg Sameday
for heuristic methods and ARIMA Modal and SARIMA Modal for econometric approaches).
This implies that accurately sorting hours by energy price can indeed be crucial for opti-
mizing storage operating profits under our model’s assumptions. Similarly, the multistep
metric’s histogram captures the trend of the ∆R histogram, demonstrating its effectiveness
in predicting which forecasting methods will yield higher profits for storage operators. In
years 2022 and 2023 the multistep metric is the only one able to capture the high performance
of the average-based forecasts.

In addition to the metric’s greater or lower ability to identify the best price-forecasting
method when applied to profit maximization, it is also relevant how well each metric
estimates the profit loss due to imperfect knowledge of the energy prices. This quality is
important in ranking the forecasting methods accurately with respect to profit maximization.
To clarify this aspect, for each of the standard and custom metrics (MAE, MSE, multistep,
etc.) we computed what the predicted loss of profit would be for each of the forecasting
methods (Avg, Avg Sameday, SARIMA Modal, etc.).

Namely, we defined the relative loss value as the percentage of the loss value determined
by the metric with respect to the maximum of all loss values. We then compared such
value with the percentage loss of profit when applying that forecasting method. Such
comparison highlights how well each of the metrics tracks the profit loss. To ease the
comparison, we show in Table 9 the deviation of the relative loss value from the exact profit
loss, for each metric and forecasting method. A value of 0 for a given metric on a given
forecasting method would indicate that that metric is 100% in accordance with the profit
loss, predicting it exactly.

Table 9. Error in profit loss estimation for each metric and method (2019–2023).

MStep MAE MSE RMSE NRMSE RSE RRMSE LCE MAPE

Avg 1.88% 4.94% 7.57% 6.14% 45.47% 31.29% 46.35% 4.36% 19.27%

Avg Sameday 3.54% 7.51% 3.89% 8.85% 50.19% 39.48% 50.47% 6.95% 13.70%

Today 0.15% 17.10% 26.97% 11.67% 27.75% 15.50% 26.72% 17.72% 6.12%

TodayMod 0.29% 6.37% 15.96% 1.06% 37.86% 25.68% 37.01% 6.98% 6.56%

Arima Hourly 1.08% 14.69% 25.98% 10.93% 23.38% 5.47% 23.13% 15.35% 4.26%

Arima Modal 2.05% 6.82% 18.23% 3.22% 30.93% 12.68% 30.93% 7.48% 10.82%

Sarima Hourly 2.48% 13.54% 24.18% 9.25% 23.93% 5.18% 23.64% 14.20% 0.41%

Sarima Modal 2.04% 9.20% 19.82% 5.00% 27.69% 8.57% 27.46% 9.87% 8.87%

AVERAGE 1.69% 10.02% 17.82% 7.01% 33.40% 17.98% 33.22% 10.36% 8.75%

For instance, the value 1.88% corresponding to column MStep and row Avg indicates
that the multistep metric predicts the profit lost due to the use of the Avg method (as opposed
to perfect knowledge of the future) with an error of 1.88%. Thus, the lower these values,
the more accurate a given metric is at predicting the profit that will be lost due to the use
of each forecasting method as opposed to foreseeing the future. The same results are also
shown, to enhance readability, in Figure 8, where it is obvious how the MStep error is
consistently lower.
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Figure 8. Error in profit loss estimation for each metric and method (2019–2023).

Figure 9 shows the error in predicting the profit loss for each metric, averaged over all
forecasting methods through years 2019–2023. For instance, the error made by the multistep
metric in predicting the profit loss due to imperfect knowledge of the future is only 1.69%,
as opposed to an average error of 10.02% for the MAE metric.

Figure 9. Error in profit loss estimation for each metric (2019–2023).

But, how is it that the multistep metric is able to track the profit with such accuracy?
Going back to its definition in Section 4, the multistep metric effectively simulates the profit
by exploiting price differences and realizing an expected profit whenever a higher price is
matched with a lower price at a preceding hour during the same day. This does not entirely
correspond to the optimal profit-maximizing strategy since the optimal strategy could
exploit the higher capacity of the storage system with respect to the energy transferred in a
given hour. In other words, the multistep function acts as if the operator were to transfer
the entire energy stored each time. Thus, we would expect the real profit to be higher than
what predicted by the multistep metric. What is remarkable, though, is that the error in
such an approximation is consistently low throughout 2019–2023 and irrespective of the
forecasting method employed.

To confirm this intuition, Figure 10 shows the profit loss and the multistep metric
averages through the years 2019–2023 for each forecasting method. It is apparent how the
multistep metric tracks the profit lost due to forecast with remarkable accuracy while being
slightly higher in its estimate due to the limitation highlighted above.

Figure 10. Profit loss vs. multistep metric averages (2019–2023).
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The correlation between the profit lost due to inaccuracy in forecasting energy prices
and the multistep metric is even more apparent if we plot the actual profit loss vs. the
multistep metric for all forecasting methods in a scatter diagram. Figure 11 displays such a
correlation for years 2019–2023.

Our findings indicate that traditional statistical accuracy metrics fall short in capturing
the true profit-generating capability of these forecasting methods for storage operations.
Furthermore, such standard metrics fail at forecasting the profit lost due to imperfect
knowledge of the future evolution of the energy prices. The proposed metric, multistep, on
the other hand, appears to perform equally well or better at identifying the best forecast
when applied to profit maximization, as well as providing very useful insights into the
profit lost due to the approximation.

Figure 11. Profit loss vs. multistep metric (2019–2023).

6.3. Robustness Tests

In this section, we aim to further validate the claim that the multistep metric consistently
provides an accurate estimation of the profit lost due to imperfect knowledge of future
prices while also performing equally well or better than other standard statistical metrics at
selecting the more profitable forecasting methods.

To this end, we performed robustness tests by varying the storage system parameters,
the time frame for the simulation, the selection periods of extreme stress and fluctuation in
energy prices, and the width of the rolling window used in the price forecasting models.

In regard to the storage energy system configuration, the most important factor in-
fluencing profit is the ratio between the capacity of the system, set to 4 MWh in our
simulations, and the charging or discharging capacity, which has been set to 1 MWh per
hour. These parameters are consistent with existing BESS storage systems and with the
literature, as described in Section 6.1. Our results show that increasing or decreasing both
parameters proportionally yields no different results, whereas a different ratio could change
the profit margin for the operator, since he/she would, for example, benefit from a higher
discharge capacity by buying/selling higher quantities when the market conditions are
optimal. In the BESS configuration described in Section 6.1, the entire storage systems
would need 4 h to be completely charged or discharged. If we set the charge/discharge
capacity to 2 MWh/hour, it would instead take 2 h to completely charge or discharge the
system, yielding higher profit opportunities. The maximum theoretical profits and the
profit achieved with each forecasting method by employing a system with a 2 MWh/hour
charge/discharge capacity are presented in Table 10.

If we compare this table with Table 1, we notice how the theoretical maximum profit,
as well as the profit achieved by each forecasting method, increases, as expected. However,
as further clarified by the following Table 11, the behavior of each forecasting model does
not significantly change with respect to the case with 1 MWh/hour charge and discharge
capacity (Table 2), although we do observe a slightly lower performance of most models.
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Table 10. Revenue for each forecasting method (nominal values in euro). Charge/discharge =

2 MWh/hour.

2019 2020 2021 2022 2023

Theoretical Max 58,309.24 57,270.36 125,670.18 345,280.43 177,974.75

Avg 50,756.73 48,373.05 111,304.57 305,257.65 161,905.45

Avg Sameday 50,704.70 48,098.29 111,925.68 303,149.87 159,317.96

Today 48,152.85 44,906.04 102,323.08 278,845.06 150,659.00

TodayMod 49,896.93 47,072.79 105,203.90 294,094.93 153,029.58

Arima Hourly 49,975.25 47,840.37 104,275.30 285,528.04 147,998.91

Arima Modal 51,634.00 47,800.03 108,675.87 296,601.67 159,862.49

Sarima Hourly 49,105.83 46,891.78 106,234.45 287,098.86 146,240.81

Sarima Modal 51,558.35 47,398.74 109,488.07 287,521.20 159,862.49

Table 11. Revenue percentage of theoretical maximum for each forecasting method. Charge/

discharge = 2 MWh/hour.

2019 2020 2021 2022 2023

Avg 87.05% 84.46% 88.57% 88.41% 90.97%

Avg Sameday 86.96% 83.98% 89.06% 87.80% 89.52%

Today 82.58% 78.41% 81.42% 80.76% 84.65%

TodayMod 85.57% 82.19% 83.71% 85.18% 85.98%

Arima Hourly 85.71% 83.53% 82.98% 82.69% 83.16%

Arima Modal 88.55% 83.46% 86.48% 85.90% 89.82%

Sarima Hourly 84.22% 81.88% 84.53% 83.15% 82.17%

Sarima Modal 88.42% 82.76% 87.12% 83.27% 89.82%

The capacity of the multistep metric to accurately select the more profitable forecasting
method and properly estimate the profit lost due to imperfect knowledge of the energy
prices is highlighted in Table 12 and Figure 12. Table 12 reports the error in predicting
the profit loss for each forecasting method (rows) and for each metric (columns). The first
column, corresponding to the multistep metric, has generally lower values, indicating higher
accuracy in evaluating each method with respect to its capacity to maximize profit. By
taking the average over all forecasting methods, Figure 12 provides an even more compact
representation of such higher accuracy. Such results are consistent with those presented
in Section 6.2 for a storage system with a 1 MWh/hour charge/discharge capacity, hence
suggesting that the specific configuration of the storage system does not seem to affect the
reliability of the multistep metric.

Table 12. Error in profit loss estimation for each metric and method (2019–2023). Charge/discharge =

2 MWh/hour.

MStep MAE MSE RMSE NRMSE RSE RRMSE LCE MAPE

Avg 4.86% 7.92% 4.58% 9.12% 48.45% 34.28% 49.33% 7.34% 22.26%

Avg Sameday 5.09% 9.05% 2.34% 10.40% 51.74% 41.03% 52.02% 8.50% 15.25%

Today 0.74% 16.21% 26.08% 10.78% 28.64% 16.39% 27.61% 16.83% 5.23%

TodayMod 1.31% 7.39% 16.98% 2.08% 36.84% 24.66% 35.99% 8.01% 5.54%

Arima Hourly 0.68% 14.29% 25.58% 10.53% 23.78% 5.87% 23.53% 14.95% 4.65%

Arima Modal 3.26% 5.61% 17.02% 2.01% 32.14% 13.89% 32.14% 6.27% 12.03%

Sarima Hourly 4.46% 15.52% 26.15% 11.23% 21.95% 3.20% 21.66% 16.18% 1.57%

Sarima Modal 2.38% 9.55% 20.16% 5.34% 27.35% 8.23% 27.12% 10.22% 8.52%

AVERAGE 2.85% 10.69% 17.36% 7.69% 33.86% 18.44% 33.68% 11.04% 9.38%
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Figure 12. Average error in profit loss estimation for each metric (2019–2023). Charge/discharge =

2 MWh/hour.

A different set of robustness tests involves testing the accuracy of the multistep metric
during times of stress and extreme fluctuation of the energy prices. We identified four
test periods:

• Pre-COVID-19: from 1 January 2019 through 9 March 2020
• COVID-19: from 10 March 2020 through 30 September 2020
• Post-COVID-19: from 1 October 2020 through 31 May 2021
• Gas Crisis: from 1 June 2021 through 14 May 2023

and computed the maximum theoretical profit, the profit achieved by each price forecasting
method, and the accuracy of all price metrics in each of these time periods.

The maximum theoretical profits and the profit achieved with each forecasting method
in each of these time periods are presented in Table 13.

Table 13. Revenue for each forecasting method (nominal values in euro).

Pre-COVID-19 COVID-19 Post-COVID-19 Gas Crisis

Theoretical Max 55,487.58 22,626.77 40,944.02 418,035.96
Avg 49,237.00 19,480.54 35,603.50 375,776.73
Avg Sameday 49,527.02 19,700.48 35,608.34 375,845.46
Today 47,489.87 17,429.72 33,825.61 354,970.37
TodayMod 49,235.88 18,724.89 35,131.68 369,315.04
Arima Hourly 49,285.12 19,185.55 35,197.04 358,743.96
Arima Modal 50,009.06 19,279.50 35,834.96 370,238.17
Sarima Hourly 48,682.09 19,295.08 35,400.79 362,856.23
Sarima Modal 49,998.21 19,688.07 36,184.39 369,496.80

Table 14 shows the accuracy of each forecasting model with respect to profit maxi-
mization. Results do not significantly differ from simulations in Section 6.1 (Table 2).

Table 14. Revenue percentage of theoretical maximum for each forecasting method.

Pre-COVID-19 COVID-19 Post-COVID-19 Gas Crisis

Avg 88.74% 86.10% 86.96% 89.89%

Avg Sameday 89.26% 87.07% 86.97% 89.91%

Today 85.59% 77.03% 82.61% 84.91%

TodayMod 88.73% 82.76% 85.80% 88.35%

Arima Hourly 88.82% 84.79% 85.96% 85.82%

Arima Modal 90.13% 85.21% 87.52% 88.57%

Sarima Hourly 87.74% 85.28% 86.46% 86.80%

Sarima Modal 90.11% 87.01% 88.38% 88.39%
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As to the accuracy of the multistep metric at estimating the potential for profit, results
are summarized in Tables 15–18, which report the error in predicting the profit loss for
each forecasting method (rows) and for each metric (columns) in each of the considered
stress periods.

Table 15. Pre-COVID-19: Error in profit loss estimation for each metric and method.

MStep MAE MSE RMSE NRMSE RSE RRMSE LCE MAPE

Avg 7.64% 19.26% 6.63% 13.92% 13.92% 6.63% 13.73% 18.99% 11.64%

Avg Sameday 6.28% 25.47% 14.93% 20.05% 20.05% 14.93% 19.16% 25.47% 14.61%

Today 0.00% 2.23% 0.00% 0.00% 0.00% 0.00% 0.15% 2.03% 0.16%

TodayMod 0.94% 18.04% 21.54% 21.69% 21.68% 21.54% 21.83% 18.06% 21.83%

Arima Hourly 0.05% 9.61% 6.00% 7.04% 7.09% 5.94% 7.40% 8.47% 13.30%

Arima Modal 5.21% 18.36% 2.67% 15.86% 15.86% 2.67% 16.14% 17.21% 22.92%

Sarima Hourly 12.48% 3.40% 19.78% 4.28% 4.28% 19.78% 3.83% 5.02% 4.40%

Sarima Modal 3.66% 11.17% 6.63% 10.11% 10.11% 6.63% 10.61% 9.39% 21.15%

AVERAGE 4.53% 13.44% 9.77% 11.62% 11.63% 9.76% 11.61% 13.08% 13.75%

Table 16. COVID-19: Error in profit loss estimation for each metric and method.

MStep MAE MSE RMSE NRMSE RSE RRMSE LCE MAPE

Avg 9.21% 39.46% 34.96% 37.18% 37.18% 34.96% 39.46% 39.46% 39.24%

Avg Sameday 12.44% 41.29% 37.05% 40.31% 40.31% 37.05% 41.58% 41.10% 35.24%

Today 0.00% 4.82% 0.00% 0.00% 0.00% 0.00% 3.33% 4.79% 0.00%

TodayMod 4.31% 13.86% 13.97% 19.29% 19.28% 13.97% 15.98% 13.34% 17.69%

Arima Hourly 6.15% 21.89% 9.58% 20.85% 20.85% 9.58% 20.35% 20.93% 28.09%

Arima Modal 6.79% 24.33% 12.25% 23.15% 23.15% 12.25% 22.76% 23.43% 29.79%

Sarima Hourly 4.46% 17.86% 3.23% 17.95% 17.95% 3.23% 17.31% 16.36% 20.82%

Sarima Modal 5.90% 24.31% 9.38% 24.65% 24.65% 9.38% 23.87% 22.73% 24.94%

AVERAGE 6.16% 23.48% 15.05% 22.92% 22.92% 15.05% 23.08% 22.77% 24.48%

Table 17. Post-COVID-19: Error in profit loss estimation for each metric and method.

MStep MAE MSE RMSE NRMSE RSE RRMSE LCE MAPE

Avg 6.31% 23.63% 4.78% 14.31% 14.31% 4.78% 18.95% 23.50% 24.98%

Avg Sameday 11.06% 25.04% 11.73% 18.15% 18.15% 11.73% 22.58% 25.04% 22.91%

Today 0.00% 4.33% 0.00% 0.00% 0.00% 0.00% 0.00% 4.49% 15.26%

TodayMod 5.85% 17.98% 14.74% 16.53% 16.53% 14.74% 18.32% 18.09% 11.12%

Arima Hourly 6.54% 5.03% 10.76% 2.91% 2.91% 10.76% 5.46% 4.07% 5.51%

Arima Modal 2.77% 15.28% 1.18% 12.25% 12.25% 1.18% 14.94% 14.41% 15.92%

Sarima Hourly 3.86% 3.44% 11.12% 3.83% 3.83% 11.12% 5.87% 2.18% 4.74%

Sarima Modal 3.57% 11.72% 2.85% 13.15% 13.15% 2.85% 14.92% 10.31% 14.71%

AVERAGE 5.00% 13.31% 7.15% 10.14% 10.14% 7.15% 12.63% 12.76% 14.39%

Table 18. Gas Crisis: Error in profit loss estimation for each metric and method.

MStep MAE MSE RMSE NRMSE RSE RRMSE LCE MAPE

Avg 4.46% 25.20% 18.35% 25.38% 25.38% 18.35% 26.10% 25.10% 32.99%

Avg Sameday 9.60% 33.10% 33.10% 33.10% 33.10% 33.10% 33.10% 33.10% 31.36%

Today 0.00% 35.58% 38.92% 21.85% 21.85% 38.92% 23.84% 36.00% 21.56%

TodayMod 1.79% 7.33% 8.64% 5.58% 5.58% 8.64% 3.53% 7.69% 16.40%

Arima Hourly 2.36% 32.11% 43.08% 22.65% 22.65% 43.08% 23.64% 32.59% 4.30%

Arima Modal 5.18% 14.02% 25.44% 4.83% 4.83% 25.44% 5.61% 14.49% 11.50%

Sarima Hourly 3.47% 28.42% 38.47% 17.48% 17.48% 38.47% 18.64% 28.93% 1.13%

Sarima Modal 3.20% 18.45% 28.56% 7.39% 7.39% 28.56% 8.47% 18.97% 8.18%

AVERAGE 3.76% 24.27% 29.32% 17.28% 17.28% 29.32% 17.87% 24.61% 15.93%
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Figures 13–16 summarize the accuracy of each metric by averaging its performance
over all price forecasting methods.

Figure 13. Pre-COVID-19: Average error in profit loss estimation for each metric.

Results show that, even in periods of high variability, during which standard statistical
metrics fluctuate in their ability to predict the performance of price forecasting methods,
the multistep metric is consistently superior, ranging in accuracy from roughly 94% to 97%,
whereas standard statistical metrics yield considerably less accurate predictions.

A third robustness test we conducted examines whether the width of the rolling
window used in price forecasting methods could impact the efficiency of the multistep
metric in accurately predicting profit potential.

Figure 14. COVID-19: Average error in profit loss estimation for each metric.

Figure 15. Post-COVID-19: Average error in profit loss estimation for each metric.
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Figure 16. Gas Crisis: Average error in profit loss estimation for each metric.

Although a detailed analysis of the performance of various price forecasting methods
and the optimization of their predictive capabilities is beyond the scope of this work—while
it remains a focus of our current research—the width of the rolling windows used was
heuristically optimized based on the problem’s characteristics. For instance, following
Papaioannou et al. (2016), we observed that a one-year window in ARIMA/SARIMA
models captures the seasonal price variations and performs better than narrower windows,
while further increasing the data considered does not yield significant improvements
in forecasting accuracy. To assess the robustness of the multistep metric, specifically its
independence from the chosen time window, we repeated the simulations using each
ARIMA/SARIMA model with a rolling window of six months.

Table 19 compares the average efficiency of the methods with the two rolling windows
over the period 2019–2023 and shows that results are very similar, with a slight edge of the
12-month window.

Table 19. ARIMA/SARIMA average efficiency with a 6-month and 12-month rolling window (2019–

2023).

6 Months Rolling Window 12 Months Rolling Window

Arima Hourly 86.36% 86.46%
Arima Modal 88.45% 88.89%
Sarima Hourly 86.28% 86.79%
Sarima Modal 88.30% 89.08%

Most importantly, the multistep metric remains unaffected by the width of the rolling
window in its ability to predict profit. Table 20 shows the deviation in profit loss prediction
for each method and metric, while Figure 17 provides a graphical representation of each
metric’s predictive capability. The results are consistent with those reported in Table 9 and
Figure 8 for a 12-month window.

Table 20. Error in profit loss estimation with a 6-month rolling window (2019–2023).

MStep MAE MSE RMSE NRMSE RSE RRMSE LCE MAPE

Avg 1.88% 4.94% 7.57% 6.14% 45.47% 31.29% 46.35% 4.36% 19.27%

Avg Sameday 3.54% 7.51% 3.89% 8.85% 50.19% 39.48% 50.47% 6.95% 13.70%

Today 0.15% 17.10% 26.97% 11.67% 27.75% 15.50% 26.72% 17.72% 6.12%

TodayMod 0.29% 6.37% 15.96% 1.06% 37.86% 25.68% 37.01% 6.98% 6.56%

Arima Hourly 2.31% 14.83% 26.14% 11.11% 23.45% 5.74% 23.27% 15.48% 1.31%

Arima Modal 0.88% 8.01% 19.48% 4.43% 29.95% 11.90% 29.93% 8.67% 7.75%

Sarima Hourly 3.36% 14.32% 24.95% 10.07% 23.50% 5.12% 23.24% 14.98% 1.33%

Sarima Modal 1.61% 10.41% 21.04% 6.23% 26.93% 8.22% 26.65% 11.07% 5.47%

AVERAGE 1.75% 10.43% 18.25% 7.45% 33.14% 17.87% 32.96% 10.78% 7.69%
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Figure 17. Error in Profit Loss Estimation for each Metric Using a 6-Months Rolling Window (2019–

2023).

Table 18 highlights the average error in profit prediction for each metric during the
period 2019–2023. This result, obtained using a 6-month rolling window, aligns closely
with the findings presented in Figure 9 for a 12-month window.

Figure 18. Average Error in profit loss estimation for each metric using 6-month rolling window

(2019–2023).

An analysis using rolling windows of different lengths and varying the amount of data
in the heuristic methods Avg and Avg Sameday leads to the same conclusions, demonstrating
that the accuracy of the multistep metric is independent of these factors.

7. Conclusions

Due to the evident effects of climate change, the recent evolution of energy markets
is more and more oriented towards a progressive reduction in carbon-based electricity
production and a parallel progressive substitution by renewable energy sources. As the
main part of RESs are not programmable, this substitution tends to destabilize energy
markets, determining very low prices in the central hours of sunny and windy days and
high prices after the sunset on no-wind days. These price variations do open room for a
storage-based trading business, which on the economic side would contribute to a price
stabilization and on the technical side would add another power source available when the
electric system is short of power. Thus, the storage activity will be crucial for an RES-based
electricity market, and in a free market, its economic sustainability is a key factor.

For an energy storage business activity, price prediction accuracy is a critical factor
in determining optimal storage policies, with particular emphasis on how price curves
influence operational decisions. As this influence is highly nonlinear, a metric capable of
proxying the forecasting prices quality for income maximization is a need.

To evaluate the performance of different price forecasting methods, we compared
the profits they could generate in the Sardinian electricity market from 2019 to 2023 and
assessed their relationship with each method’s statistical accuracy metrics. Interestingly,
price forecasting methods that performed better in statistical terms did not necessarily yield
higher profits in practice. This suggests that standard accuracy metrics can lack the ability
to adequately estimate potential profits.
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To address this shortcoming, we developed and tested alternative possible metrics.
Our proposed approach moves beyond traditional accuracy benchmarks by quantifying
both the predictive power of each model and its practical utility in enhancing storage
operations to maximize profitability.

The proposed metric, multistep, outperforms the standard metrics in estimating the
potential profit and in identifying the best price forecasting method for an energy stor-
age operator.

Our findings suggest that tracking the exact price curve can be less important than
capturing key market features such as price oscillations, intraday sorting, or local extrema,
since these are the elements that ultimately guide decisions about whether to buy or sell at
a given time.

These results have significant implications, as the availability of a metric specifically
suited for proxying the potential profits would greatly simplify the evaluations of the
possible profits for different storage technologies and settings and for a more specific
tailoring of public subsidy for storage or programmable RES plants. This simplification
can thus help in planning the road towards a higher share of RESs, a reduction in carbon
emissions, and more sustainable energy production.
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Appendix A. Standard Loss Functions

For the reader’s convenience, we summarize here the standard statistical loss functions
used in this paper. For further information, please refer to Jadon et al. (2024).

The Mean Absolute Error (MAE) loss functions represents the arithmetic mean of
absolute errors

m(P1, . . . , PN , P̂1, . . . , P̂N) =
1

N

N

∑
i=1

∣∣∣Pi − P̂i

∣∣∣

The Mean Squared Error (MSE) squares the difference between the predicted value and
actual value and averages it across the dataset

m(P1, . . . , PN , P̂1, . . . , P̂N) =
1

N

N

∑
i=1

(
Pi − P̂i

)2

The Root Mean Squared Error (RMSE) is defined as:

m(P1, . . . , PN , P̂1, . . . , P̂N) =

√√√√ 1

N

N

∑
i=1

(
Pi − P̂i

)2
=

√
MSE
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The Normalized Root Mean Squared Error (NRMSE) is normalized with the mean of the
correct price values

m(P1, . . . , PN , P̂1, . . . , P̂N) =

√
1
N ∑

N
i=1

(
Pi − P̂i

)2

P
=

RMSE

P

where P = ∑
N
i=0 Pi.

The Relative Squared Error (RSE) is obtained by dividing the MSE of our model by the
MSE of a model which uses the mean of the predicted value

m(P1, . . . , PN , P̂1, . . . , P̂N) =
∑

N
i=1

(
Pi − P̂i

)2

∑
N
i=1

(
Pi − P

)2

with P = ∑
N
i=0 Pi. The Relative Root Mean Squared Error (RRMSE) is a variant of Root

Mean Squared Error (RMSE), gauging predictive model accuracy relative to the target
variable range

m(P1, . . . , PN , P̂1, . . . , P̂N) =

√√√√√√
∑

N
i=1

(
Pi − P̂i

)2

∑
N
i=1

(
P̂i

)2

The Log Cosh Error (LCE) calculates the logarithm of the hyperbolic cosine of the error

m(P1, . . . , PN , P̂1, . . . , P̂N) =
1

N

N

∑
i=1

log
(

cosh
(

P̂i − Pi

))

The Mean Absolute Percentage Error (MAPE)1 is a relative error measure that uses
absolute values to keep the positive and negative errors from canceling one another out
and is defined as

m(P1, . . . , PN , P̂1, . . . , P̂N) =
1

N

N

∑
i=1

∣∣∣∣∣
Pi − P̂i

Pi

∣∣∣∣∣

Appendix B. Forecasting the Evolution of the Energy Prices

The discrete-time storage evolution model is inherently stochastic because the future
evolution of energy prices P1, . . . , PN is unknown. To evaluate any specific strategy, we
must assume a particular trajectory for the price curve. One approach involves generating
random scenarios based on a price evolution model or by introducing random variations
to a given price forecast. While these methods can yield valuable insights, it is equally
important to test forecasting strategies commonly used by industry practitioners. For
instance, energy operators often predict that short-term prices will remain relatively stable
or that their near-term behavior will resemble the average of the past K days. Accordingly,
we have incorporated several forecasting techniques, as suggested by operators, into our
simulation software. Their performance has been thoroughly studied and compared in
Sbaraglia et al. (2024).

Appendix B.1. Econometric Price Forecasting Methods

The econometric methods that we considered are based on a selection process of the
appropriate ARIMA and SARIMA models, driven by the Akaike Information Criterion
(AIC). Specifically, we independently evaluated the time series data for each hour to
determine the optimal model parameters (p, d, q) for ARIMA and (p, d, q)(P, D, Q) for
SARIMA that minimized the AIC score. This involved considering all combinations of
these parameters, with values ranging from zero to seven. This analysis segmented the
hourly price data from 2018 to 2023 into 24 distinct time series, one for each hour of the day.
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For each time series, corresponding to a specific hour, the best-fitting ARIMA/SARIMA
models were determined for each year.

The ARIMA orders (p, d, q) for the “ARIMA Hourly” method, shown in Table A1, were
selected using the Akaike Information Criterion, evaluating all possible configurations
(p, d, q ranging from 0 to 7) based on their fit to historical prices for the same hour in
the previous year. For the “ARIMA Modal” method, the modal value among these best
configurations across the 24 h was used.

Table A1. ARIMA orders (p, d, q) used for the “SARIMA Hourly” method.

Hour 2019 2020 2021 2022 2023

1 (2, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (0, 1, 2)
2 (2, 1, 1) (1, 1, 1) (1, 1, 1) (2, 1, 2) (0, 1, 1)
3 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 2)
4 (1, 1, 1) (1, 1, 1) (5, 1, 1) (1, 1, 1) (1, 1, 1)
5 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
6 (1, 1, 1) (1, 1, 1) (1, 1, 1) (3, 1, 5) (1, 1, 1)
7 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
8 (0, 1, 2) (6, 1, 5) (7, 1, 6) (2, 1, 2) (0, 1, 2)
9 (0, 1, 2) (2, 1, 1) (7, 1, 0) (6, 1, 5) (3, 1, 3)
10 (2, 1, 1) (0, 1, 2) (6, 1, 0) (5, 1, 2) (1, 1, 1)
11 (0, 1, 1) (1, 1, 1) (1, 1, 1) (3, 1, 1) (1, 1, 1)
12 (2, 1, 1) (1, 1, 1) (0, 1, 2) (3, 1, 1) (1, 0, 1)
13 (7, 1, 5) (1, 1, 1) (1, 1, 2) (1, 1, 1) (1, 0, 1)
14 (1, 1, 1) (1, 1, 1) (0, 1, 1) (1, 1, 1) (2, 0, 1)
15 (1, 1, 1) (3, 0, 1) (0, 1, 2) (1, 1, 1) (1, 0, 1)
16 (1, 1, 1) (2, 1, 1) (7, 1, 0) (1, 1, 1) (1, 0, 1)
17 (1, 1, 1) (0, 1, 2) (1, 1, 1) (1, 1, 1) (2, 1, 2)
18 (5, 1, 3) (1, 1, 1) (3, 1, 1) (1, 1, 1) (1, 1, 1)
19 (1, 1, 2) (1, 1, 1) (3, 1, 1) (1, 1, 1) (1, 1, 1)
20 (0, 1, 1) (1, 1, 1) (1, 1, 1) (2, 1, 1) (3, 1, 3)
21 (0, 1, 1) (1, 1, 1) (1, 1, 1) (3, 1, 2) (0, 1, 2)
22 (1, 1, 3) (1, 1, 1) (1, 1, 1) (1, 1, 0) (0, 1, 2)
23 (3, 1, 4) (1, 1, 2) (1, 1, 1) (0, 1, 1) (0, 1, 2)
24 (0, 1, 2) (1, 1, 1) (1, 1, 1) (1, 1, 0) (4, 1, 1)

The SARIMA orders (p, d, q)(P, D, Q)[7] for the “SARIMA Hourly” method, shown
in Table A2, were selected using the Akaike Information Criterion, evaluating all possible
configurations (p, d, q, P, D, Q ranging from 0 to 7) based on their fit to historical prices for
the same hour in the previous year, with the seasonal parameter s fixed at 7 to account for
weekly seasonality. For the “SARIMA Modal” method, the modal value among the best
feasible configurations across the 24 h was used.

Once the optimal models were identified through this process, we designed two
distinct forecasting approaches:

ARIMA Hourly / SARIMA Hourly: Employing a “multi-set” strategy, we forecasted
hourly prices for each year (from 2019 to 2023) using the best model parameters identified
for that specific hour in the preceding year. This method ensured that the unique daily
price fluctuations were appropriately captured by using distinct models for each hour.

ARIMA Modal / SARIMA Modal: This “one-set” approach involved forecasting hourly
prices using a single set of model parameters, consisting of the modal (most frequently
optimal) parameters among the 24 hourly models from the previous year. This method
aims for generality across all hours by taking advantage of the most common set of optimal
parameters.

For each of the ARIMA and SARIMA models, the parameter selection is based on the
Akaike Information Criterion (AIC), ensuring a rigorous comparison of various configu-
rations. In the AIC optimization criterion, each time series for each specific hour of the
day is considered independently and the best parameters for that specific hour forecast are
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obtained. Then we proceeded by employing these best-fit parameters in two manners: in
the ARIMA/SARIMA one-set approach a single set of parameters is chosen, as being the best
performing set of the majority of hourly time series. This single set is then used to simulate
the prices for all hours of the day. In the second, ARIMA/SARIMA multi-set approach, we
have employed the best set of parameters for each hour of the day, thus utilizing different
ARIMA/SARIMA models to predict the prices at different hours in order to take account
for specific daily variations in the price characteristics.

Table A2. SARIMA orders (p, d, q)(P, D, Q)[7] used for the “SARIMA Hourly” method.

Hour 2019 2020 2021 2022 2023

1 (2,1,1) (1,0,1) (1,1,2) (1,0,1) (1,1,1) (1,0,0) (0,1,2) (2,0,2) (0,1,2) (0,0,0)

2 (2,1,1) (2,0,0) (1,1,2) (1,0,1) (1,1,1) (0,0,0) (0,1,2) (1,0,1) (0,1,1) (0,0,0)

3 (1,1,1) (0,0,2) (1,1,2) (1,0,1) (1,1,1) (0,0,0) (0,1,1) (1,0,1) (1,1,2) (0,0,0)

4 (1,1,1) (1,0,1) (1,1,2) (1,0,1) (1,1,2) (1,0,1) (2,1,1) (1,0,1) (1,1,1) (0,0,0)

5 (1,1,1) (1,0,1) (1,1,1) (0,0,0) (1,1,1) (1,0,0) (1,1,3) (1,0,1) (1,1,1) (0,0,0)

6 (1,1,1) (1,0,0) (1,1,1) (0,0,0) (1,1,1) (1,0,0) (1,1,1) (1,0,1) (1,1,1) (0,0,0)

7 (3,1,1) (1,0,1) (1,1,1) (1,0,2) (1,1,1) (0,0,2) (4,1,0) (1,0,1) (1,1,2) (1,0,0)

8 (1,1,1) (1,0,2) (1,1,1) (0,0,2) (1,1,1) (1,0,2) (4,1,0) (1,0,1) (0,1,2) (0,0,2)

9 (1,1,3) (1,0,2) (0,1,3) (0,0,2) (1,1,2) (1,0,2) (3,1,0) (1,0,1) (1,1,2) (2,0,0)

10 (0,1,3) (0,0,2) (1,1,1) (1,0,2) (1,1,1) (1,0,1) (3,1,2) (1,0,1) (1,1,1) (0,0,2)

11 (0,1,1) (0,0,2) (2,1,1) (2,0,1) (1,1,1) (0,0,2) (2,1,1) (1,0,1) (1,1,1) (1,0,0)

12 (0,1,1) (1,0,1) (2,1,1) (2,0,2) (1,1,1) (0,0,2) (2,1,1) (1,0,1) (2,0,0) (1,0,1)

13 (1,1,2) (2,0,2) (2,1,1) (2,0,2) (1,1,1) (1,0,0) (1,1,2) (1,0,1) (1,0,1) (2,0,1)

14 (2,1,1) (1,0,2) (1,1,1) (2,0,2) (0,1,1) (0,0,0) (1,1,2) (1,0,1) (2,0,0) (1,0,1)

15 (4,1,1) (2,0,1) (2,0,0) (1,0,2) (1,1,1) (0,0,2) (1,1,2) (1,0,1) (2,0,0) (1,0,1)

16 (1,1,1) (2,0,1) (1,1,1) (1,0,1) (1,1,1) (1,0,2) (2,1,1) (1,0,1) (1,0,1) (1,0,1)

17 (1,1,1) (0,0,2) (1,1,2) (2,0,1) (1,1,1) (0,0,2) (1,1,2) (1,0,2) (1,1,1) (1,0,0)

18 (2,1,1) (1,0,1) (1,1,3) (2,0,1) (1,1,1) (1,0,1) (1,1,2) (1,0,1) (1,1,1) (0,0,0)

19 (2,1,1) (1,0,1) (1,1,2) (1,0,1) (1,1,1) (1,0,1) (2,1,1) (1,0,1) (1,1,1) (1,0,0)

20 (0,1,1) (2,0,1) (1,1,1) (1,0,0) (1,1,1) (1,0,1) (1,1,2) (1,0,1) (3,1,2) (1,0,1)

21 (0,1,1) (2,0,0) (1,1,2) (0,0,1) (1,1,1) (1,0,1) (3,1,2) (2,0,0) (0,1,2) (0,0,0)

22 (1,1,3) (0,0,0) (1,1,1) (2,0,1) (1,1,1) (1,0,1) (1,1,0) (1,0,1) (0,1,2) (0,0,0)

23 (1,1,2) (2,0,2) (1,1,2) (0,0,1) (2,1,1) (1,0,1) (0,1,1) (0,0,0) (0,1,2) (0,0,0)

24 (1,1,1) (1,0,1) (1,1,1) (0,0,1) (1,1,1) (1,0,1) (1,1,0) (0,0,0) (4,1,1) (0,0,0)

The ARIMA and SARIMA models were applied using a rolling window approach, a
technique particularly effective for time series forecasting in dynamic environments like
electricity pricing. This method involves continuously updating the dataset used for model
training, ensuring that the most recent data is always included. Specifically, for each new
forecast, the model is retrained on a shifted dataset window that encompasses the latest
30 days of data, effectively ‘rolling’ the window forward with each new prediction. For
example, to forecast the electricity price at a given hour of 2 January 2019, the model uses
data of prices (for the same hour) from 3 December 2018, to 1 January 2019. As we move to
January 3, the window shifts to include data from 4 December 2018, to 2 January 2019, and
so on.
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Appendix B.2. Heuristic Price Forecasting Methods

The following four additional forecasting models have been adopted in order to offer an
alternative simple, heuristic, and operator-driven approach to predicting electricity prices:

1. Today Model: This model is straightforward, predicting that the electricity price at any
given hour will be the same as it was at the same hour the previous day. It is a simple
approach that assumes day-to-day price stability.

2. Today_mod Model: This model adds a layer of specificity to the Today model by partially
accounting for weekly patterns. For Saturdays, Sundays, and Mondays, the “To-
day_mod” model predicts that electricity prices at each specific hour will be the same
as those observed at the same specific hour on the preceding week’s corresponding
day (Saturday, Sunday, or Monday). For Tuesdays, Wednesdays, Thursdays, and
Fridays, the model predicts that electricity prices at each specific hour will be the same
as those observed at the same hour on the immediately preceding day. This approach
combines the simplicity of the “Today” model with a more nuanced understanding of
potential weekly patterns, particularly for weekends and the start of the week.

3. Average Model: By averaging the electricity prices of the same hour over the past
30 days, this model seeks to smooth out short-term fluctuations and capture a more
stable, long-term trend. This method could be effective in dampening the impact of
anomalous price spikes or drops.

4. Average_same_day Model: This model focuses on the weekly cycle, averaging the prices
of the same hour on the same weekday over the past four weeks. It is a nuanced
approach that recognizes potential weekly cycles, similar to the Today_mod model but
with a broader historical perspective.

A more in-depth treatment of the price forecasting methods, as well as a rigorous study of
the best coupling of each price forecasting method with the optimal operator strategy, can
be found in Sbaraglia et al. (2024).

Note

1 Although MAPE is a widespread and generally insightful loss function, it is worth noting that it might become undefined or

excessively skewed when dealing with zero or near-zero values, as the percentage error calculation involves division by the

actual value. This characteristic makes MAPE less reliable in the context of energy markets where price fluctuations can include

such scenarios, as it is the one considered in our paper.
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