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A B S T R A C T   

The present research focuses on investigating deep neural networks techniques for predicting plasma disruptions 
in tokamaks. For this purpose, various deep-learning predictive models and several plasma diagnostics will be 
analyzed, using data gathered during the experimental campaigns conducted at the JET nuclear fusion tokamak 
between 2011 and 2020. The primary objective of this study is to show that the contribution of the MHD 
spectrograms increases the disruption predictor performance. The final deep-learning prediction model leverages 
the capability of Convolutional Neural Networks to directly learn important spatiotemporal information from 1D 
plasma profiles of temperature, density and power radiation, obtained from High Resolution Thomson Scattering 
and Bolometer diagnostics, as well as from spectrograms generated by a set of fast magnetic pick-up coils known 
as Mirnov coils. The Convolutional Neural Network eliminates the need for manual feature extraction methods 
that characterize the majority of machine learning methods. Using plasma profiles information allows to 
distinguish between core radiation caused by impurity accumulations and outboard radiation phenomena. 
Likewise, the decision to incorporate spectrograms from Mirnov coils is based on the diagnostic’s ability to 
measure magnetic fluctuations originating from MHD instabilities, which can lead to disruptions. In order to 
address phenomena characterized by fast temporal dynamics, the inclusion of the locked mode signal was 
chosen. This signal is commonly employed at JET to trigger mitigation actions. It is integrated into an alarm 
scheme that employs both AND/OR logic and optimized thresholds, ensuring its effectiveness. The proposed 
predictor exhibits significant performance, with only one missed alarm out of 92 disrupted discharges and three 
false alarms out of 131 regularly terminated discharges in the test set.   

1. Introduction 

Disruptions pose a significant challenge in the realm of tokamak- 
based fusion reactors [1,2,3]. The disruptions involve a sudden and 
extensive loss of plasma stability and confinement within the tokamak 
device, leading to potential harm to the reactor components and safety 
concerns [1,2,3]. 

Extensive efforts are currently underway to develop techniques and 
strategies for mitigating disruptions and minimizing their impact. These 
efforts encompass active control methods that involve the injection of 
gas or impurities to mitigate plasma instabilities. Additionally, 
improved plasma control algorithms and advanced diagnostic systems 
are being developed to detect and avoid disruptions in real-time [4]. 

In recent decades, there has been a comprehensive pursuit to develop 
models capable of accurately predicting disruptions in tokamaks. This 
pursuit primarily revolves around utilizing machine learning techniques 
that leverage big data obtained from various plasma diagnostics during 
numerous experimental campaigns as shortly referenced in the 
following. Cannas [5] uses support vector machines (SVM) to predict 
disruptions and also includes a novelty detection method to assess the 
reliability of the predictor output. In [6] and [7] SVM is the core of a 
disruption predictor installed in the JET real-time network and pro-
gressively improved. Furthermore, Zheng et al. [8] describe a hybrid 
neural network structure that significantly enhances the prediction 
performance of density limit disruptions on the J-TEXT tokamak. 
Churchill et al. [9] discuss the utilization of deep convolutional neural 
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networks for multi-scale time-series classification, applied specifically to 
disruption prediction in the DIII-D tokamak using raw, high temporal 
resolution, diagnostic data. In 2019 the authors of [10] provide an 
overview of machine learning algorithms employed for disruption pre-
diction and classification at JET. Also references [11,12,13,14,15] delve 
into the application of deep learning for disruption prediction in several 
machines. In [11], the authors use a Long-Short Term Memory (LSTM) 
network to predict disruptions by inputting plasma radiation profiles. In 
[12] the authors applied Convolutional Neural Network (CNN) and 
LSTM to HL-2A tokamak, whereas LSTMs have been employed in both 
the ADITYA tokamak [14] and EAST [13,15] for the purpose of gener-
ating disruption alert outputs. 

Some predictive models have also been proposed that extend beyond 
single-machine approaches, encompassing cross-machine approaches. 
Rea et al. [16] establish the foundation for comparing data-driven 
disruption prediction algorithms across DIII-D and JET. Zhu et al. [17] 
introduce a novel deep-learning disruption prediction algorithm that 
achieves high accuracy across multiple tokamaks with limited hyper-
parameter tuning. In [18], the authors employ a hybrid architecture, 
blending convolutional components with LSTM network, for 
cross-machine disruption prediction using JET and DIII-D data. The CNN 
extracts features from electron temperature and density profiles, and 
after combining output signals, the LSTM predicts the disruption risk, 
considering factors such as locked mode amplitude. 

All these papers have aimed their efforts towards enhancing the 
performance of data-driven predictive models, from rudimentary single 
layer neural network-based approaches to advanced and high- 
performing deep learning methods, while also keeping pace with the 
advancements in available computing power. 

The findings of all these studies suggest that machine learning al-
gorithms hold significant promise as powerful tools for predicting and 
mitigating disruptions across various tokamaks. 

However, incorporating physics-based disruption markers into data- 
driven algorithms shows promise in establishing a unified framework for 
disruption prediction and interpretation across different tokamaks. In 
fact, in a complex field like fusion plasma control, extracting valuable 
and reliable information from physics quantities, which either represent 
or have a direct connection to observable variables that can be manip-
ulated to influence the plasma state, can significantly enhance any 
predictive model. Consequently, the breakthrough in performance 
occurred when the invaluable insights from physics were utilized to 
construct the predictive models. In [19], 1D diagnostics have been 
considered, such as plasma temperature, density, and radiation, to 
extend the time interval before the disruption, the so-called warning 
time, in which reliable avoidance actions can be made. While 
profile-based indicators are just one aspect contributing to plasma per-
formance and stability, they appear to align with the objective of 
obtaining useful and robust physics-based information to be used as 
input to the disruption prediction models. 

Recent studies have shown that the prediction performance is 
significantly influenced by both the suitable selection of appropriate 
diagnostics and careful feature extraction methods [20,21]. The method 
proposed in [20] introduces a novel approach by employing CNN to 
process the spatiotemporal information extracted from 1D plasma pro-
files. This technique involves converting the profiles into images, which 
are better suited for processing by the CNN. Additionally, it incorporates 
automatic detection of the pre-disruptive phase of disruptions for 
selecting the training data. 

This research has prompted the exploration of additional diagnostic 
information that may hold insights into potential precursors of disrup-
tions. By appropriately processing this information, it can be trans-
formed into image representations and subsequently utilized as inputs to 
CNN models. 

Among these diagnostics, magnetic ones are crucial in compre-
hending plasma physics, ensuring control, and enabling safe operation 
within a tokamak device. For example, within JET plasmas, a wide range 

of MHD (Magnetohydrodynamic) instabilities result in magnetic fluc-
tuations and the device is indeed equipped with fast magnetic Mirnov 
coils for spectral and mode number analysis. In fact, the use of the 
Mirnov coils [22] allows us to detect the amplitude fluctuations in the 
magnetic field while the plasma rotates within the torus, providing 
valuable information about the oscillation modes of the plasma [23]. 
The frequency of these fluctuations is particularly significant as it helps 
determine the specific modes of oscillation [24,25]. Certain modes have 
been identified as harmful to plasma confinement and can potentially 
lead to severe disruptions [25,26,27]. 

In the present paper, the effectiveness of MHD analysis for disruption 
prediction is assessed. Specifically, a model that incorporates the MHD 
spectrograms, as in [28], together with other 0D and 1D plasma pa-
rameters, is proposed. More specifically, the proposal involves using 
CNNs to extract spatiotemporal features from Mirnov spectrograms as in 
[29] and appropriately preprocessed images of plasma profiles, 
including temperature, density, and radiated power. A straightforward 
alarm system combines the output of the CNN disruption prediction 
model with the locked mode diagnostic signal, which is commonly 
employed in plasma mitigation procedures [27,30,31,32]. 

In order to facilitate the comparison with recent literature, the CNN 
predictor was trained using data from experimental campaigns con-
ducted at JET from 2011 to 2013. To assess its predictive capabilities, its 
performance was evaluated on disrupted and regularly terminated dis-
charges spanning a decade of JET experimental campaigns, from 2011 to 
2020, as in [20]. This evaluation not only validates the algorithm’s 
robustness, even in the presence of substantial operational condition 
variations across different campaigns, but also highlights the favorable 
contribution of the MHD spectrograms. 

This paper is organized as follows. Section 2 provides a description of 
the high-resolution array of Mirnov coils and outlines the steps taken to 
construct the spectrograms. In Section 3, the procedure employed to 
transform 1D plasma profiles of temperature, density, and radiation into 
2D images is detailed. Section 4 provides a comprehensive explanation 
of the database utilized for training, optimizing, and validating the 
proposed deep-learning disruption predictor. In Section 5, the indicators 
utilized to evaluate the performance of predictive models are intro-
duced. Section 6 presents the fundamental principles of the CNN pre-
diction models, while Section 7 introduces the architecture of the 
proposed disruption predictor. Section 8 presents a comprehensive 
analysis of the predictor’s output, including a comparison with recent 
literature using the same test set. Finally, Section 9 offers concluding 
remarks. 

2. High-resolution Array Coils (Mirnov coils) 

JET utilizes multiple diagnostics to monitor the MHD activity of the 
plasma and to detect possible anomalies [25]. The locked mode signal, 
which is one of the most commonly used precursors for disruption 
detection, is acquired using diagnostics like pickup coils, Mirnov coils, 
or other magnetic field sensors [27,32]. Following an analysis of the 
locked mode signal and its impact on plasma stability, a decision is made 
to initiate appropriate mitigation measures. Typically, the response to a 
disruption involves the application of a threshold to the amplitude of the 
locked mode. The measurement of the locked mode amplitude on JET is 
carried out using a set of 2 × 4 saddle flux loops. The locked mode 
amplitude, which represents the dominant odd n = 1 mode, is deter-
mined by analyzing the signals from these flux loops through various 
processes [33]. The resulting signal is expressed in Tesla units. The 
warning time provided by thresholding this signal is frequently insuf-
ficient for avoiding the disruption and, when a locked mode occurs and 
becomes detrimental to plasma stability, only mitigation action can be 
performed. 

By measuring fluctuations in the magnetic field, researchers can 
obtain valuable information about plasma dynamics and explore the 
influence of various plasma parameters and experimental conditions. 
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Magnetic fluctuations coming from MHD instabilities can be analyzed 
also using the data from a set of fast magnetic pickup coils, the so called 
Mirnov coils, designed for high frequency MHD activity study (up to 500 
kHz) [34,35,36]. They consist of a set of 18 coils, distributed at different 
poloidal and toroidal location. Among them, 8 High-Resolution Array 
Coils (HRACs) are basically used for high toroidal (n) and poloidal (m)

mode analysis, they are located outboard of the plasma, distributed 
toroidally and poloidally at Octant 3 [34], as shown in Fig. 1. 

Among the HRACs, the coil H302 has been considered here, having a 
sampling rate of 0.5 µs. When the signal from H302 was unavailable, coil 
H305 was considered due to its closeness to H302 and having the same 
sampling rate. In order to restrict the frequency analysis to the kilohertz 
range, the signal from the Mirnov coil has been resampled at a rate of 
8µs. The spectrogram for each pulse was generated using a Short-Time 
Fourier Transform (STFT) [37], employing a time window of 2.048ms 
with a 48μs overlap. The potential of the information derived from the 
analysis of MHD activity is depicted in Fig. 2. The upper plot displays the 
plasma current (red line) and the locked mode signal (blue line) of the 
JET pulse #96471, the middle plot shows the time trace of the H302 coil 
signal, while the bottom plot presents the corresponding spectrogram 
obtained using the previously described method. 

In the bottom plot, the spectrogram of H302 signal for the JET pulse 
#96471 is depicted, which exhibits a disruption at time t = 12.4 s. It can 
be observed that at time t = 11.6, the plasma begins to decelerate, 
displaying progressively lower frequencies. This phenomenon coincides 
with the moment when the external heating systems, responsible for 
maintaining the plasma at extremely high temperatures, were turned 
off. The shutdown of these systems resulted in a loss of momentum 
within the plasma, causing it to rotate at an increasingly slower pace, 
leading to a sudden cessation of oscillation modes at time t = 12.1 s and 
subsequent disruption. Hence, before locking, the H302 signal increases 
in amplitude, and a decrease in frequency can be easily observed by the 
spectrogram until the oscillation ends, resulting in the definitive locking 

of the mode. The Mirnov coil measures embed both the information 
about the rotation frequency and the amplitude of the MHD modes 
present in the plasma, thereby detecting the formation of islands during 
the discharge. Comparing the plots in Fig. 2, it is noticeable that at time 
t = 12.1s, there is an increase also in the amplitude of the locked mode 
signal, which corresponds to the moment when the rotation of the 
plasma, analyzed in the spectrogram of the same Fig. 2, ceased. How-
ever, the warning time obtainable by thresholding the amplitude of the 
locked mode signal is limited to 300ms, while the spectrogram allows to 
detect the slowing down of the mode before its locking. Hence, the 
spectrogram serves as an informative input for predictive models, of-
fering valuable insights. Additionally, its representation as a 2D image 
makes it particularly compatible with CNNs, which excel at extracting 
meaningful details from images. 

3. Plasma profiles 

Although it has been proven that there is a strong correlation be-
tween locked modes and plasma disruptions, not all disruptions are 
caused by intense MHD activity or the locked mode itself [3]. Hence, to 
construct a disruption predictor, incorporating additional diagnostics 
associated with plasma parameters becomes imperative. Among the 
most commonly used diagnostics in the literature [11,20], temperature, 
density, and radiation profiles contain valuable information for early 
identification of events that could lead to plasma disruptions. 

At JET, High-Resolution Thompson Scattering (HRTS) diagnostics 
have been used to obtain profiles of electron temperature (Te) and 
electron density (ne) by up to 63 lines of sight along the outer radius of 
the plasma (2.9–3.9 m) at 20 Hz. Data regarding the profile of radiated 
power is obtained from bolometer cameras. In JET, there are two cam-
eras, one vertical and one horizontal. These cameras, through lines of 
sight, cover the entire analysed plasma section, allowing for the calcu-
lation of electromagnetic radiation at each point. In the present work, 

Fig. 1. Toroidal and poloidal location of the High-Resolution Array Coils at JET, named H30X, where X range from 1 to 8 [35].  
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for the sake of comparison with literature results [19,20,38] only the 
lines of sight from the horizontal camera (KB5H diagnostic) are taken 
into account. 

HRTS and bolometer generate one-dimensional (1D) signals that 
require proper processing to be utilized as inputs for the predictive 
machine learning model. In fact, even though the time scale of the 

thermal quench preceding the disruption is in the order of ms, the 
alteration of the plasma profiles may occur even seconds before the 
disruption [25], allowing an early detection and the adoption of 
avoidance actions. 

A significant number of machine learning models in the disruptor 
prediction literature [5,16,19,39] necessitate input in the format of 

Fig. 2. From the top to the bottom: locked mode amplitude (blue) and Plasma Current (red), signal from the H302 Mirnov coil, and MHD spectrogram of the JET 
pulse #96471. 

Fig. 3. JET pulse #96741: Left: The Resampled Electron Temperature and Electron Density from HRTS (upper and middle plots), and the Radiated Power from 
bolometer horizontal camera (bottom plot); Right: the corresponding images. 
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samples derived from 0D temporal signals. These signals, the so-called 
peaking factors, have been employed as features to investigate the 
interplay of their temporal evolution throughout the chain of events 
leading to disruption [7,16,19,25,38,40,41,42]. As an alternative, for 
each plasma profile, it is possible to construct a spatiotemporal matrix 
where each element represents the measurement value at a specific line 
of sight and at a specific time sample [20]. Fig. 3 illustrates, on the left 
side, the raw data obtained from the HRTS (top and middle subplots) 
and the bolometer (bottom subplot), along with the corresponding im-
ages, on the right side, specifically related to JET pulse #96471. On the 
right, the y-axes of the images refer to the different channels of the di-
agnostics, while the parameter value is expressed by the color scale. It is 
possible to see how at 11.4 s approximately, the plasma temperature at 
the core (channels #1÷10) cools down, while the core electron density 
is high and the density profile peaks, due to the lowering at the edge. The 
plasma definitely cools down at 12.1 s approximately, when the spec-
trogram in Fig. 2 confirms the mode locking. 

4. Dataset 

To train the CNN predictive model, it is necessary to have a dataset of 
experimental data comprising properly terminated discharges and dis-
charges terminated with a disruption. 

In order to assess the effectiveness of MHD analysis for disruption 
prediction, the same database used in [20] is considered for training and 
testing the CNN model. This allows for a comparison between the per-
formance of the proposed predictor in this paper and a disruption pre-
dictor that does not incorporate MHD activity information. The 
previously proposed disruption predictor [20] takes inputs such as in-
ternal inductance, locked mode amplitude normalized by the plasma 
current (LMnorm), and temporal information from radiated power 
(Prad), electron temperature (Te), and electron density (ne) profiles. The 
dataset comprises 193 disruptive and 219 regularly terminated dis-
charges from the JET experimental campaigns conducted between 2011 
and 2020. These discharges had a flat-top plasma current exceeding 1.5 
MA and a flat-top length longer than 200 ms. Pulses with unavailable 
Mirnov coil signals are excluded from the dataset, resulting in a smaller 
set of 167 disrupted pulses and 196 regularly terminated pulses, which 
are divided into training, validation, and testing sets as detailed in 
Table 1. For each chosen pulse, the flat-top starting time (tSFT) was 
determined as the first time instant when the plasma reached the X-point 
configuration. In the case of disrupted pulses, the flat-top ending time 
(tend) was defined as the time of valve activation for those terminated by 
Massive Gas Injection (MGI), or as the time corresponding to the drop off 
in core temperature and the onset of the plasma current spike (disrup-
tion time tD) for unmitigated disruptions. The dataset does not include 
disruptions caused by Vertical Displacement Events. 

As mentioned before, the input features are obtained from various 
diagnostics: the Bolometer horizontal camera, which provides 1D pro-
files of radiated power; the High-Resolution Thompson Scattering 
(HRTS), which provides electron temperature and density, and the 
Mirnov coils from which the spectrograms are generated. The database 
also includes the 0D signal of the locked mode. These diagnostics have 
different sampling times ranging from 10− 4 to 10− 2 s. In order to meet 
the real-time implementation requirement, assuming a common time 
base with a time interval of 2 ms, at each time instant the previous 
closest sample value of each signal is retained, without additional 
filtering. Additionally, preprocessing algorithms are applied to elimi-

nate outliers and replace corrupted values in both the 1D and 0D signals, 
following the approach proposed in [20]. Then, the three images from 
plasma profiles are vertically stacked, and their ranges are normalized 
with respect to the signal ranges in the training set, obtaining the final 
image in Fig. 4. A segmentation of the final image is achieved by 
applying an overlapping sliding window of 200 ms, represented by the 
dashed black line in Fig. 4. Each sample in the pulse is associated to a 
time slice of 132×101 pixels. 

In order to be included in the database, the spectrogram of the 
Mirnov coil signal underwent a Short-Time Fourier Transform (STFT) 
with a window size of 2.048ms with a 48μs overlap, resulting in a time 
resolution of 2ms. The frequency of the spectrogram is then cut to 40 
kHz. The segmentation process generates input images of size 81 × 101 
pixels. 

As the CNN is a supervised algorithm, during the training a label 
must be assigned to each time windows (or time slice). Thus, the phase 
where the disruption precursors start to act must be identified for 
disruptive discharges. In [40], a multivariate statistical procedure was 
proposed to automatically estimate, for each disrupted pulse, a time 
instant, called tpre− dis, that identifies the onset of disruption precursors, 
thus enabling the identification of a so-called "precursor phase." Thus, 
the time slices belonging to the regularly terminated discharges, and 
those coming from the disruptive ones between tSFT and tpre− dis are 
labelled as “0″; whereas the time slices coming from the disruptive ones 
after tpre− dis are labelled as “1″. To address the class imbalance issue 
caused by the varying durations of the two phases, different approaches 
are used for generating time slices. For regularly terminated discharges 
and the not disrupted phase of disruptive ones (before tpre− dis), time 
slices are generated and then subsampled to obtain one image every 200 
ms. Instead, for the disruptive pulse after tpre− disthe subsampling retains 
one sample every 24 ms. This helps to alleviate the unbalance between 
the two classes. In order to adhere to real-time constraints, during the 
test phase, all the consecutive time slices are presented to the CNN. 

5. Performance indices 

Similar to the majority of existing literature, the evaluation of the 
disruption predictor’s performance is typically assessed in terms of:  

✓ Successful predictions (SP): Alarms triggered by the predictor in 
response to disruptive pulses.  

✓ Missed alarms (MAs): disruptions for which the predictive system 
does not trigger any alarm.  

✓ False alarms (FAs): regularly terminated discharges for which the 
predictive system triggers an alarm. 

In the case of disruptive pulses, the effectiveness of the predictor in 
enabling mitigation and avoidance actions can be assessed by analyzing 
the cumulative fraction of detected disruptions over time to disruption, 
i.e., over warning time. 

The cumulative fraction curve in Fig. 5 provides the value, per unit, 
of alarms correctly activated with an anticipation time of at least the 
corresponding warning time 

(
Δtwarning

)
defined as the difference be-

tween the disruption time (tD) and the triggering of the predictor alarm 
(talarm). The graph also provides an overview of early alarms and their 
corresponding anticipation times. Additionally, it allows the reading of 
the fraction of correct predictions (SP), which corresponds to the 
intersection between the cumulative curve and the minimum time of 
anticipation required to activate the mitigation system 
(tD − tvalve = 10 ms at JET), and the number of tardy alarms and missed 
alarms (TD+MA) as (1-SP). This graph also serves as a powerful means 
of comparing different models. Fig. 5 presents the cumulative curves 
proposed in [43] for the comparison of three different predictive models 
based on three different Machine Learning methods: Multilayer Per-
ceptron (MLP), Generative Topographic Map (GTM), and Convolutional 

Table 1 
Number of pulses in the training and test sets.   

JET Campaigns Disruptions Regulars 

Training C28-C30 57 50 
Validation C28-C30 18 15 
Test C36, C38 92 131  

E. Aymerich et al.                                                                                                                                                                                                                               



Fusion Engineering and Design 204 (2024) 114472

6

Neural Network (CNN) on the same JET campaigns used in the present 
proposal (without taking into account the signals from the Mirnov coils). 

6. Deep-CNN predictor architecture 

A deep-CNN architecture typically consists of a series of filtering 
blocks (FBs) with multiple layers, which perform significant feature 
extraction from input images [44,45], see Fig. 6. A fully connected layer 

(FC) combines the extracted features, and in case of a classification task, 
it subsequently feeds them into the SoftMax (S) layer. The SoftMax 
layer’s role is to produce two likelihoods, which sum up to one, for the 
sample to be disrupted or non-disrupted. To mitigate overfitting on the 
training set and enhance generalization, a dropout layer (D) is 
commonly inserted before the FC. When several images are used as 
input, separate branches, formed by cascades of FBs, can extract features 
independently from each image. These features can then be combined 

Fig. 4. JET pulse #96741: Image resulting from the processing of the plasma profiles. An overlapping window of 200 ms produces the segmented images fed to the 
prediction model. 

Fig. 5. Cumulative fraction of disruptions detected by the MLP-NN (blue curve), GTM (red curve), and CNN (green curve) as a function of the warning time in the test 
set in [43]. The dashed vertical red line, corresponding to the minimum time of anticipation required to activate the mitigation system at JET, highlights late alarm 
(TD) fraction. The dashed black curve refers to the reference time tpre− disr (graph from [43]). 

Fig. 6. General architecture of a deep-CNN.  
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and optionally passed to a new cascade of FBs, as depicted in Fig. 6, or 
directly forwarded to the fully connected layer. 

Each FB generates features from images using a cascade of a Con-
volutional Unit (CU) followed by a pooling layer (P), as depicted in 
Fig. 7a. Each CU consists of a series of layers, including a convolutional 
layer (C), a batch-normalization layer (N), and a nonlinear activation 
layer with nonlinear activation functions (A), typically using Rectified 
Linear Units (ReLU), as shown in Fig. 7b. Specifically, the convolutional 
layer (C) can consist of multiple filtering layers (channel kernels) of the 
same size, with their weights optimized during the training phase. 

Since the aim of this paper is to investigate the potential of the 
Mirnov coils signals as disruption predictors, the results presented in the 
following section will be compared to those achieved by a CNN predictor 
proposed by the same authors in [20], which has the architecture 
depicted in Fig. 8. The architecture of the reference disruption predictor 
consists of a cascade of two FBs. An input image, corresponding to a 
temporal slice extracted from the images obtained by processing the 
plasma profiles (refer to Fig. 4), is fed to the first filter bank. 

Two 0D signals, namely li and LMnorm, were introduced as inputs to 
the second convolutional unit. These signals were combined with the 
output image generated by the max pooling layer (refer to Fig. 8). In the 
first convolutional unit (CU1), followed by a max pooling layer (P1max) 
with a pool size and stride of 8× 1, the input image is filtered vertically 
(along the "spatial" dimension), resulting in a reduction in size from 132 
×101 to 16× 101. Two segments of size 1 × 101 from the 0D signals are 
then incorporated. Subsequently, the second convolutional unit (CU2), 
followed by an average pooling layer (P1avg) with a pool size of 1 ×12 
and stride of 1× 4, filters the resulting image horizontally (along the 
"time" dimension), leading to a reduction in image size to 18 × 20, 
producing 360 features. In the final stage, a Multi-Layer Perceptron with 
a Soft Max (S) output layer determines the likelihood of the input 
segment belonging to specific classes. In this case, the classes are regu-
larly terminated or disrupted discharges. For each input time slice, the S 
layer provides the disruptive likelihood of the last sample in the 
considered time slice. 

Fig. 9 shows the CNN output for JET disrupted pulse #96471, which 
represents the disruption likelihood of each sample. It is possible to see 
how the output rises accordingly to the variation of the temperature 
profile shown in Fig. 4, and accordingly to the slowing down of the mode 
seen in Fig. 2. The predictor functions as a classifier, assigning each test 
sample to a specific class based on its disruptive likelihood value. If the 
likelihood value overcomes an optimized threshold alarm value, the 
sample is classified as belonging to the disruptive class; otherwise, it is 
classified as belonging to the regular (or safe) class. The alarm threshold 
is optimized using a heuristic procedure that minimizes the number of 
prediction errors, specifically the combined sum of false alarms and 
missed alarms, on the training and validation discharges. During the 
optimization, the threshold values range from a minimum of 0.5 to a 
maximum of 1.0. 

7. Proposed disruption predictor 

To evaluate the significance of Mirnov signals in predicting disrup-
tions, an initial study focused on selecting a CNN architecture that uti-
lized only the 2D spectrogram images as input. The selected highest 
performance architecture involves a single-branch CNN (as shown in 
Fig. 10). Before the fully connected layer, a series of four feature blocks 
(FBs) are interconnected in a cascade. The initial three feature blocks are 
comprised of a convolutional unit with a filter size of 3 × 3 and stride of 
1 × 1, followed by a max pooling layer (Pmax) with a pool size and stride 
of 3× 3. This combination filters the image both vertically and 

horizontally (across the spatial and temporal dimensions, respectively), 
resulting in a reduced image size of 3 × 3 × 16 from the original 81×

101× 1. The fourth feature block consists of a convolutional unit with a 
pool size and stride of 3 × 3 followed by an average pooling layer (Pavg) 
with a pool size and stride of 3× 3, further reducing the image size to 1×

1× 32. The number of filters of the four convolutional layers starts with 
4 of the CU1 and is doubled at each layer reaching 32 filters for CU4. 

This first investigation confirmed the necessity of integrating spec-
trograms with data from other diagnostic signals. Indeed, the CNN, 
exclusively trained on spectrograms, demonstrated a rate of approxi-
mately 20 % of missed alarms and a false alarm rate exceeding 50 % on 
the test set in Table 1. As mentioned earlier, it is important to note that 
not all disruptions are caused by an MHD activity, and an MHD activity 
itself could trigger an alarm even in the case of a regularly terminated 
discharge. Then, the modularity of a CNN has been further examined 
and a two-branch CNN is employed, as illustrated in Fig. 11. The upper 
branch has the same architecture of the predictor presented in Fig. 8, but 
it was trained using training and validation set of this work. On the other 
hand, the lower branch originates from the last described predictor in 
Fig. 10. The 352 features resulting from the two branches directly feed 
the fully connected layer. Note that the convolutional units and the 
pooling blocks in the two branches are frozen from previous training 
procedures, only the fully connected layer being retrained. This solution 
helps in reducing the complexity of the training process, leading to a 
significant reduction of the computation time despite the larger size of 
the network. This approach does not heavily impact the accuracy of the 
network since it reduces the number of parameter updates being per-
formed [20]. The final classification is determined by comparing the 
alarm, obtained by thresholding the disruption likelihood from the 
SoftMax block, with the alarm obtained by thresholding LMnorm. Both 
thresholds have been fine-tuned, leading to a threshold value of 0.82 for 
the S block and a threshold value of 0.2 mT/MA for LMnorm. A sample is 
classified as disruptive if either the CNN’s disruption likelihood or the 
LMnorm value exceeds its optimized threshold. Otherwise, it is classified 
as regular, as shown by the alarm scheme in Fig. 12. 

8. Results and comparison 

Table 2 presents the performance of the reference predictor (illus-
trated in Fig. 8) along with the proposed predictive model, which in-
tegrates the information from temperature, density and radiation 
plasma profiles with that from the Mirnov coil measurements. 

Unfortunately, by the end of 2016, several pick-up coils, essential for 
both equilibrium reconstruction (slow coils) and MHD analysis (fast 
Mirnov coils), were lost in JET experiments [34]. Hence, due to the 
unavailability of the H302 or H305 signals for some shots, the compo-
sition of the database has been adjusted for both the training and test 
sets. 

Consequently, for the comparison, the architecture proposed in [20], 
and shown in Fig. 8, has been tested using the test set reported in 
Table 1. The newly proposed predictor exhibits enhanced performance 
in both the training and test sets. Particularly noteworthy is the pre-
dictor’s remarkable reduction in the number of false alarms triggered in 
response to regularly terminated pulses in the test set, decreasing from 
11 to only 3. Moreover, the performance in terms of disruption predic-
tion results in 1 tardy alarm and 1 missed alarm. 

In Fig. 13, the cumulative fraction of disruptions detected by the 
proposed disruption predictor is presented as a function of the warning 
time. The red curve corresponds to the training set, the black curve 
corresponds to the test set, and the green curve represents the disrup-
tions detected solely by thresholding the locked mode signal. In cases 
where both branches in the alarm scheme in Fig. 12 are triggered in the 
same discharge, only the first alarm is depicted. It is important to note 
that the top branch CNN, responsible for processing the plasma profiles 
and Mirnov coils data, can yield longer warning times compared to the 
bottom branch, which focuses on detecting the disruption due to mode Fig. 7. a) Detail of a filtering block (FB); b) detail of a convolutional unit (CU).  
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locking. 
This separation of the two distinct mechanisms enhances the inter-

pretability of the predictor’s alarms, in view of the development of 
avoidance schemes. Based on the graph in Fig. 13, it can be observed 
that around 70 % of the disruptions cause the CNN predictor to activate 
the alarm at least 100 ms prior to the disruption. However, when 
exclusively relying on the locked mode signal, this percentage drops to 

Fig. 8. Architecture of the CNN prediction model used as reference [20], where the input image represents a time slice from the images obtained processing the 
plasma profiles as described in Section 4 (see Fig. 4), and the lower image is obtained by stacking the 0-D signals of li and LMnorm. 

Fig. 9. Disruption likelihood of the JET disrupted pulse #96471.  

Fig. 10. Architecture of the deep-CNN prediction model that uses only information from Mirnov spectrograms: the input image represents a time slice from the 
images obtained processing the Mirnov coil signal. 

Fig. 11. Architecture of the proposed CNN prediction model, where the input images I and Spectrogram represent a time slice from the images obtained processing 
the plasma profiles, as described in Section 4 (see Fig. 5), and from the Spectrogram obtained processing the Mirnov coil signal. 

Fig. 12. Alarm scheme characterized by two parallel branches, one fed with the 
images processed by the CNN and the other fed with the locked mode signal, 
each with its optimized threshold. 

Table 2 
Comparison between performance of the reference and the proposed CNN 
disruption prediction models.  

Data set Reference Predictor Proposed Predictor  

TD% MA% FA% TD% MA% FA% 

Training 2.00 0 4.28 0 0 1.54 
Test 0 1.09 8.40 1.09 1.09 2.29  
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less than 40 %. In over 30 % of the disruptions, the warning time is a 
minimum of 1 second, whereas there are only a few alarms activated by 
the locked mode signal. Moreover, the vertical red dashed line in Fig. 13 
emphasizes the disruptions identified at least 10 ms in advance, to allow 
for timely implementation of mitigation actions at JET. Detections with 
a warning time shorter than 10 ms are categorized as late or tardy 

alarms. An example of the working principle of the predictor can be seen 
in Fig. 14, which refers to the test pulse #95295 (outside the training 
range). The CNN output in Fig. 14a identifies a clear rise of the 
disruptive likelihood at about 9.4 s (dashed vertical red line), accord-
ingly with the visible change in the plasma behavior across the input 
profiles shown (Figs. 14e). Later, when the 200 ms input sliding window 

Fig. 13. Cumulative fraction of disruptions detected by the proposed disruption predictor on the training set (red curve), on the test set (black curve), and only by 
thresholding the locked mode signal in test set (green curve) as a function of the warning time. The dashed vertical red line (corresponding to the minimum time of 
anticipation required to activate the mitigation system at JET) highlights late alarms. 

Fig. 14. JET disrupted discharge #95295. a) CNN disruptive likelihood. The dashed vertical red line indicates the CNN alarm time (the first time at which the 
likelihood overcomes the threshold); b) Internal inductance, in green, and plasma current in blue; c) locked mode signal normalized by the plasma current; d) CNN 
input spectrogram image; e) CNN input profile image. 
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is not focused anymore on the profile perturbation, the disruptive like-
lihood slightly decreases. The likelihood rises finally again in corre-
spondence of the slowing down of the MHD activity at around 9.8 s. 

Fig. 15 instead reports the CNN inputs and output for the regularly 
terminated test pulse #95293. As it can be seen, the CNN triggers a FA at 
12.2 s nearby a high radiation from the central lines of sight of the 
bolometer horizontal camera, together with a decrease of both the 
electron temperature and the peaking of the electron density at the core 
(see Fig. 15e). The same false alarm was already discussed in [20] for the 
reference predictor. The other two FAs triggered by the proposed pre-
dictor are due to the rise of the normalized locked mode signal over the 
optimized threshold. Thus, no FAs seem to be triggered solely because of 
the Mirnov coil measurements. 

9. Conclusions 

This paper investigates the impact that additional diagnostic infor-
mation may have in a deep-CNN model for disruption prediction. In 
particular, the information from the fast pick-up coils has been pro-
cessed using the STFT transform [37] and has been converted into an 
image which can be processed as input by a CNN. This method extends 
the capabilities of the disruption prediction model based on a deep-CNN. 
First, a CNN model processes the spectrogram information, but this in-
formation alone is not sufficient to obtain a reliable disruption predictor. 
For this reason, the features of this CNN are stacked together with the 
ones obtained from the profile data of the HRTS and the Bolometer, and 
the output is processed by a fully connected neural network. This final 
set of features allowed the predictive model to detect both localized 
destabilizations of the temperature, density, and radiation and slowing 
down of the MHD modes, and it also leads to a significantly lower 
number of false alarms with respect to the previous predictor, for a test 
set consisting in 92 disruptive and 131 regularly terminated discharges. 
In particular, a comparison of the current model performance with the 
predictor proposed in [20] highlighted a drop in the FA rate from 8.4 % 
to 2.3 %, with a slight increase of TDs from 0 % to 1.1 % (1 case). The 

proposed predictor is compatible with the real-time use since the CNN 
takes less than 2 ms to compute a prediction and the preprocessing of the 
input signals is real-time compliant. Among the preprocessing proced-
ures the bottleneck of the computation time is the FFT, which takes 5 ms 
when computed by a Matlab code with 32 GB RAM. However, this time 
could be significantly reduced by using dedicated hardware and by 
optimizing the algorithm on a compiled programming language. The use 
of the 1D plasma profiles as model input eases the a-posteriori inter-
pretation between the disruption chain of events and the predictors 
decisions. 

Therefore, the work provides a way for the integration of additional 
features which can detect the general physical mechanisms causing the 
disruptions and the development of more complex models, demon-
strating that a large set of relevant diagnostics can be used to identify the 
different physical mechanisms which can trigger disruptions. Note that 
the interpretability of CNN disruption predictors could be increased by 
applying Explainable AI methods such as the Grad-CAM [29,46], which 
highlight the regions of the image that explain the model’s decision. In 
this way, it is possible to correlate the model response to the detected 
phenomenon. Explainable AI approaches will be investigated in future 
works to understand better the impact of each diagnostic in the pre-
diction model. 

One of the challenges of data-driven predictors for disruptions is how 
to apply them to ITER or future devices, which is still an unresolved 
problem. Previous studies [17,18,47] explored the cross-tokamak 
method for disruption prediction using neural networks. The results 
showed that the neural network approach could be used for different 
tokamaks, but it required some adjustments of the output threshold and 
the operating parameter ranges based on the test data. It also suggested 
that using features that are consistent across different devices would be 
beneficial for cross-machine disruption prediction. The current predic-
tor in this work is not directly applicable to ITER plasmas, because it 
uses input parameters that are not dimensionless. However, the authors 
are already working towards the standardization of the profile data in 
view of cross-machine application of CNN disruption algorithms. 

Fig. 15. CNN output on the regularly terminated discharge #95293. a) CNN disruptive likelihood, the dashed vertical red line indicates the CNN alarm time (the first 
time at which the likelihood overcomes the threshold); b) Internal inductance, in green, and plasma current in blue; c) locked mode signal normalized by the plasma 
current; d) CNN input spectrogram image; e) CNN input profile image. 
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Finally, the Mirnov coils processing adopted in this work is quite stan-
dard and could be adopted to other coils with the same sampling fre-
quency. The reliability of this approach will be investigated in future 
works considering JET and ASDEX Upgrade data. 
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