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A B S T R A C T   

The Industry 4.0 paradigm enables advanced data-driven decision-making processes leading many manufac-
turers to a digital transformation. Within this context, Predictive Maintenance (PdM) - i.e. a maintenance 
strategy that predicts failures in advance - based on Machine Learning (ML) - i.e. a set of algorithms to analyze 
data for pattern recognition - emerged as one of the most prominent data-driven analytical approaches for 
maximizing availability and efficiency of industrial systems. Indeed, there exists a considerable body of literature 
dealing with ML-based PdM where a wide set of ML algorithms has been applied to a broad range of industrial 
settings. Whilst this results in extensive knowledge on the topic, the need to choose the right algorithm for a 
specific task arises as a challenging issue since it is considered an essential stage in the development and 
implementation of an ML-oriented approach. To respond to such a necessity, this work proposes a conceptual 
framework to guide practitioners as well as non-expert users in ML algorithm selection for PdM issues. The aim is 
to provide a set of guidelines and recommendations for the identification of which ML techniques are likely to 
achieve valuable performance for specific tasks or datasets. First, the most commonly applied ML algorithms in 
PdM are analyzed together with their core characteristics, advantages, and disadvantages. Then, several decision 
variables depending on dataset and ML characteristics, learning objectives, accuracy and interpretability are 
considered. Finally, illustrative case studies are presented to demonstrate how the proposed framework can be 
adopted in real industrial applications.   

1. Introduction 

In recent years, the technological revolution known as Industry 4.0 is 
driving companies toward a sustained change in the traditional 
perspective. This transition involves the gradual digitalization and 
automation of manufacturing practices through the adoption of a wide 
spectrum of disruptive technologies to manage companies’ processes at 
all levels of production, management, service, and maintenance. In this 
scenario, the advance of new technologies and tools such as Big Data, 
Internet of Things (IoT), and cyber-physical system (CPS) allow the 
development of innovative approaches to industrial automation based 
on the digitalization process and cognitive production (Alabi et al., 
2018). Thus, the result of this unavoidable tendency will be the con-
version of enterprises into smart factories capable of designing inte-
grative systems where every component communicates and cooperates 
with each other and with humans in real-time. This contributes to 

generate a large amount of data from several sources, such as charac-
teristics of products, machines, production lines, materials, failures, or 
human resources (Dogan and Birant, 2021). From this perspective, data 
is increasingly considered as one of the most significant assets since it 
generates added value for companies providing a considerable potential 
in terms of useful information and knowledge (Carvalho et al., 2019). 
But to take full advantage of the data, it is necessary to know how to get 
the most value from it. Indeed, it is vital to adopt the right tools and 
technologies to aim at turning these information into beneficial out-
comes. Machine Learning (ML), a branch of AI, has the potential to 
become one of the main driver in the fulfilment of these needs by 
providing a valuable decision support in a wide range of manufacturing 
and production applications (Rai et al., 2021). 

Within the industrial field, a suitable application of these concepts 
concerns asset maintenance since the availability of huge amount of data 
may be helpful for planning maintenance activities aiming at avoiding 
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equipment failures (Mobley, 2002). Analysis of current and historical 
data that describe system states, events, and operations is a key 
component of failure prediction approaches. Indeed, the adoption of 
sensors mounted on machines enable the monitoring of proper health 
condition parameters during operation to provide significative knowl-
edge of degradation processes and potential failures (Florian et al., 
2019). This advanced technique strategy is commonly called Predictive 
Maintenance (PdM) which permits failure detection at an early stage 
before failures occur through the continuous monitoring of equipment 
performance or conditions. The adoption of PdM allows for several 
benefits such as a cost reduction, an increase in machinery lifetime, and 
the improvement of both safety and product quality among others 
(Ruiz-Sarmiento et al., 2020; Vogl et al., 2016). One of the most suitable 
methodologies, adopted in PdM, is based on Machine Learning (ML) 
algorithms which adaptively learn the diagnosis knowledge of moni-
tored equipment aimed at preventing failures (Zenisek et al., 2019). ML 
is commonly categorized into four groups: (i) supervised learning in 
which the algorithm learns from the input data consisting of labeled 
training datasets; (ii) unsupervised learning in which the algorithm 
learns by using unlabelled datasets to detect patterns or dependencies 
within those data; (iii) semi-supervised learning in which the algorithm 
is trained by both labeled and unlabelled data; (iv) reinforcement 
learning that refers to a goal-oriented algorithm performed in an envi-
ronment through a trial and error process (Gupta et al., 2016). Literature 
on ML covers a large variety of relevant studies addressing different 
approaches and techniques adopted for each specific application (Çinar 
et al., 2020; Dalzochio et al., 2020; Lei et al., 2020; Bertolini et al., 2021; 
Leukel et al., 2021; Nacchia et al., 2021; Rai et al., 2021; Jahani et al., 
2023; Rolf et al., 2023). 

Generally, the algorithm selection is a crucial step within the 
decision-making process since there is no unique ML algorithm that can 
efficiently handle the analysis of every dataset or all use cases. Often, the 
choice is established merely by the comparison between different al-
gorithms whose final decision falls on the one that ensures the “best 
solution” only in terms of predictive and computational performance. As 
a consequence, this may frequently lead to results that are poor or too 
generic for the problem at hand. Therefore, a different approach is 
required by means of the analysis of specific features suitable for guiding 
users toward their choice. The criticality attending this step lies in 
defining a valid criterion capable of consistently determining the ML 
algorithm best suited for the requested task depending on such features. 

Concerning maintenance issues, the adoption of ML-based models 
relies on their great potential in fault detection, so they are considered as 
the key elements in data-driven strategy to support a valuable real-time 
decision-making process. Consistent with this vision, their proper 
implementation is strongly influenced by several aspects. The first 
aspect is related to the ML input, i.e., the size and the type of available 
data. An appropriate amount of data is needed to ensure a good capa-
bility for the identification of the health status of the monitored machine 
aimed at achieving the maintenance goal of predicting potential failures. 
The type of data should meet the requirements in terms of maturity and 
quality, i.e., dataset should be complete, objective, consistent and rele-
vant to ensure value-added and efficient maintenance activities (Florian 
et al., 2019). A second aspect concerns the ML algorithm performance. 
Indeed, the basic idea is to guide the choice towards the one that max-
imizes accuracy, precision and the training/prediction speed aims at 
ensuring shorter data processing times or better prediction outcomes. 
Another aspect emerges by considering the constraints existing in real 
industrial applications, such as the investment costs, the connection of 
physical assets, the storage of the data and specific user’s priority. 

Usually, user experience or prior research on similar content can be 
used to support the ability to select the best ML algorithm, but it appears 
evident that it is crucial to define the applicability domain in terms of 
technical, organizational, and economic assessment aiming at assisting 
users during the decision-making process. 

Therefore, this work proposes a novel framework to guide 

companies, practitioners, and non-expert users in ML algorithm selec-
tion for predictive maintenance applications. This approach is based on 
the definition of the main learning characteristics, as well as on the 
maintenance objective aimed at providing proper support to the 
decision-making process. It provides a qualitative assessment of the 
achievable accuracy based on the maturity and quality of the data and 
the statistical characteristics of the dataset. It is worth underlining that 
the proposed framework does not claim to cover all the extant literature 
on the ML algorithms suggesting which is generally the best one should 
be implemented since the problem under study is complex and non- 
trivial. The main aim is to provide guidance to researchers and practi-
tioners when designing strategies to successfully approach ML-based 
predictive maintenance issues. So, the basic idea is to develop an easy 
and responsive tool aiming at performing agile and informed decision- 
making in establishing a proper ML algorithm suitable for the specific 
case at hand if the above-mentioned aspects and characteristics for 
doing so are taken into consideration. 

This paper is organized as follows: Section 2 illustrates the theoret-
ical background, Section 3 reports the main ML algorithms usually 
adopted for PdM issues, Section 4 introduces the ML algorithms selec-
tion framework for PdM, and Section 5 presents the illustrative case 
studies of the proposed framework. Section 6 briefly describes the 
overall requirements needed for the proper implementation of a ML- 
oriented approach. Finally, in Section 6, the conclusions and future 
research are depicted. 

2. Theoretical background 

2.1. Predictive maintenance 

Both Predictive Maintenance (PdM) and Condition-Based Mainte-
nance (CBM) are preventive strategies that aim at reducing unexpected 
equipment failures and minimizing downtime (Prajapati et al., 2012; 
Quatrini et al., 2020; Zonta et al., 2020). CBM is a preventive mainte-
nance approach that involves monitoring the actual condition of 
equipment using sensors and other data collection methods to assess the 
current state of components. PdM, instead, is a proactive maintenance 
strategy that uses data analytics, sensors, and predictive modelling to 
predict when equipment is likely to fail. The goal of PdM is to intercept 
in advance the symptoms of anomalous behaviours of a physical system 
through just-in-time maintenance actions aiming at preserving the 
availability, quality, and safety of the system, decreasing the risks of 
failure, and reducing the costs of unnecessary time-based maintenance 
activities. 

This approach involves the development of predictive tools based on 
historical data, statistical inference methods, and engineering ap-
proaches (Nacchia et al., 2021). Indeed, implementing PdM means 
constructing a learning system that automatically improves through 
experience and consequently identifying the fundamental elements 
governing this system, which also involves humans and organizations 
(Jordan and Mitchell, 2015). 

PdM success depends on the quality and robustness of the condition 
monitoring system (CMS) and it is developed according to the following 
key phases: data processing, and decision making (Jardine et al., 2006; 
Martin, 1994). 

Data Processing comprehends Data Acquisition, Data Manipulation, 
State Detection, Health Assessment, Prognostic Assessment and Advi-
sory Generation (ISO 13374-2, 2021). Data acquisition can be provided 
by different sources, and the data can be of different types, including 
monitoring data, maintenance event data, and process data. It is the 
initial step in the machinery prognostics process which provides basic 
condition monitoring knowledge for subsequent steps. Data Manipula-
tion calculates the descriptors/indexes from collected data, while State 
Detection categorizes data and defines if the component or the system is 
in a state of “normal” or “abnormal”, The Health Assessment phase, 
instead, defines the current health state of the component/system and 
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the associated diagnosis; the Prognostic Assessment process, instead, 
defines the future state of the component/system and the remaining 
useful life (RUL). Finally, the Advisory Generation process integrates 
different information to generate advisories for the decision-making 
process. 

PdM objectives may be divided into two main categories – di-
agnostics and prognostics – with a different technique implemented for 
each (Jardine et al., 2006). The first category is a posterior event anal-
ysis, so the aims is to recognize patterns in the data, reveal specific fault 
conditions, and the fault is identified in real-time (Kiangala and Wang, 
2018). The second category is a prior event analysis and it aims at 
estimating the Remaining Useful Life (RUL) of the monitored compo-
nent, that is, at predicting how much time is left before a failure occurs, 
given the current machine condition and the past operation profile (Kim 
and Sohn, 2021). Finally, the decision-making process enables the 
identification of a potential set of maintenance tasks aiming at effec-
tively achieving the defined objectives. 

Several methods for the realization of the PdM models are reported 
in the literature: model-based, data-driven, knowledge-based, and 
combination models (Ying et al., 2010). Currently, Machine Learning 
(ML) is a powerful tool for developing intelligent learning systems in 
many applications of PdM (Carvalho et al., 2019). In fact, ML techniques 
have the ability to handle high dimensional and multivariate data, as 
well as to extract hidden relations within the data in complex and dy-
namic environments (Wuest et al., 2016). In this work, we focus on a 
data-driven approach in which the analysis is conducted starting from 
the data and the relations within them; these relations are identified 
using statistical techniques or artificial intelligence (AI). The principal 
objectives of data-driven models are to detect the faults in advance using 
historical and on-time data, to estimate the RUL and condition in-
dicators of the system, and consequently, to classify the fault with a 
diagnosis. These data-driven approaches are able to find highly complex 
and non-linear patterns in data of different types and from various 
sources and convert raw data into learning models, which are then 
applied to fault prediction, fault detection, fault classification, or fore-
casting. The quality and maturity of the data condition affect the 
feasibility of this approach (Pillai and Vadakkepat, 2021). 

2.2. Machine learning 

As a subfield of AI, ML enables computer programs to build a 
mathematical model based on historical data, known as “training data”, 
in order to make a prediction, a diagnosis, or a plan; recognize behaviour 
patterns; or make decisions without a priori knowledge and without 
being explicitly programmed for the task (Burkov, 2019; Zhang, 2020). 
Mitchell (1999) defines the learning process as follows: “A computer 
program is said to learn from experience E concerning some class of tasks T 
and performance measure P if its performance at tasks in T, as measured by 
P, improves with experience E.” 

The learning process involves the input variables X (predictors, in-
dependent variables, features, or just variables) and one or more output 
variables Y (target, response, or dependent variable). The purpose of ML 
is to define the relation f between X and Y, whose general expression is 
as follows: 

Y = f (X)+ ∈ , (1)  

where f is an unknown function representing the systematic information 
that X provides about Y, and ∈ is a random error. ML refers to a series of 
algorithmic approaches to estimate f for the purpose of making a pre-
diction or an inference. In the first case, the goal is the maximization of 
accuracy, that is, identifying f that minimizes the prediction error. In the 
second one, the goal is interpretability, that is, identifying which pre-
dictors are associated with the response, or which relation the predictors 
and the response are in, or how the relation between Y and the pre-
dictors can be summarized. The learning process involves using n ob-

servations, called training data, to teach an algorithm or method, how to 
estimate f and fit (or train) a model to the samples. Thus, the training 
dataset is defined as follows: 

{(x1, y1), (x2, y2),…, (xn, yn)},where xi =
(
xi1, xi2,…, xip

)T
, (2)  

xij denotes the input (also called input or features), y represents the 
output (response variable), with i = 1,2,…,n, n number of input and j =

1,2,…,p, p number of output, and the learning process aims to estimate 
function f̂ (it represents the estimate for f), such that Y ≈ f̂ (X) for each 
observation (X,Y). The training process aims to minimize the prediction 
error. No method is better than all the others for all possible datasets. 
Thus, an important step in developing an ML model is deciding which 
learning method provides the best results for each dataset. The mea-
surement of the quality of the fit can be performed with different metrics 
and techniques, based on the learning activity. However, it is necessary 
to compare these metrics on a test dataset that has not been previously 
analyzed. 

The training methods are classified as parametrics and non-para-
metrics (Hastie et al., 2017). Parametrics are model-based or rather, 
based on assumptions of the functional form of f . Non-parametrics make 
no explicit assumptions about the functional form of f , making these 
methods more flexible. However, each method has advantages and 
disadvantages. Parametric methods are more restrictive but need fewer 
observations to converge. Non-parametric methods are more easily 
adaptable to a wide range of functions but require a large number of 
observations to obtain an accurate estimate of f . Furthermore, these 
more complex methods can suffer from overfitting, a phenomenon where 
the estimated model fits the training data too much and fails to gener-
alize the problem. In contrast, parametric methods can suffer from 
underfitting; in fact, if the chosen model vastly differs from the one 
hidden in the data, the estimate produces high bias and is unreliable. 
Parametric methods are computationally simpler; they are indicated in 
case of linear or smooth models and if the relation between input and 
output is well defined. Generally, restrictive methods are more inter-
pretable and therefore particularly suitable when inference is the main 
objective. On the contrary, very flexible methods can lead to compli-
cated estimates of f , making interpretation impossible. A model’s 
interpretability and accuracy are equally desirable characteristics when 
estimating f but in contrast to each other. In fact, the restrictive (para-
metric) methods are characterized by high interpretability and low ac-
curacy, while the more flexible (non-parametric) methods are 
characterized by low interpretability and high accuracy. While the 
advantage of applying simple methods when the aim is inference has 
been demonstrated, there is no uniqueness when the aim is accuracy 
(Hastie et al., 2017). Although the more flexible methods are designed to 
favour the accuracy of the estimate, it is uncertain that with them, an-
alysts will always obtain more accurate estimates. In fact, if the relation 
is simple, using linear or spline models, analysts can obtain more ac-
curate predictions, avoiding overfitting. 

The literature reveals two main learning approaches: active learning 
and passive learning. The former refers to the learning processes where 
the ML algorithm learns from pre-selected data and is, therefore, able to 
perform better with less training (Settles, 2009). The latter refers to the 
learning approaches that use random samples from the dataset to build 
models for predicting the output (Mishra and Gupta, 2017). Based on the 
feedback to learning, three passive learning types are distinguished: 
supervised learning, unsupervised learning, and reinforcement learning. In 
supervised learning, the algorithm “observes some example 
input-output pairs and learns a function that maps from input to output” 
(Russell and Norvig, 2002). 

This approach is described in Eq. (2), where for each observation i =

1,2, ....,n, there is an input xi, but a target variable yi exists. Thus, the 
goal is to define a training data-mapping function that is able to make 
predictions (Silva and Zhao, 2016). The response variables are called 
labels, which constitute one or more tags that contain desirable 
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information on the data and favour their recognition. Based on the 
response type, two types of learning activity can be defined: regression 
and classification. The former aims to predict a continuous variable, the 
latter a categorical or binary one. The previous discussion about para-
metric and non-parametric models is related to supervised learning 
approaches. In unsupervised learning, the algorithm “learns patterns in 
the input even though no explicit feedback is supplied” (Russell and 
Norvig, 2002). It describes the situation where for each observation i =

1,2, ....,n, there is an input xi, but no response yi is available. The main 
task involves discovering intrinsic patterns and extracting unknown 
insights from the data. In this case, no labels are available for the data 
analysis (Mitchell, 1999). The main unsupervised approach is the clus-
tering analysis that aims to distinguish groups inside the data. 
Semi-supervised learning aims to combine these two tasks, attempting to 
improve the performance in one of them by utilizing information 
generally associated with the other (van Engelen and Hoos, 2020). For 
instance, in a classification problem, additional data points labeled with 
clustering methods might be used to aid in the classification process. In 
contrast, for unsupervised methods, knowing that certain data points 
belong to the same class might improve the clustering results. Finally, in 
reinforcement learning, the algorithm learns from a series of re-
inforcements – rewards or punishments. Its aim is to take suitable action 
in a given situation in order to maximize a reward (Sutton and Barto, 
2018). The algorithm discovers outputs through a trial-and-error pro-
cess. Typically, there is a sequence of states and actions where the 
learning algorithm interacts with its environment. 

As introduced before, a priority step during ML model development 
is the method selection for the analyzed dataset, since no method is 
better than all the others for all possible datasets. The model is selected 
by evaluating the prediction accuracy achieved on a test dataset that has 
not been previously analyzed. For comparing predictive ability on a test 
dataset, the most popular metrics for regression are mean squared error 
(MSE) or mean absolute error (MAE); for classification problems, the 
metrics are accuracy, precision, recall, score, F1, ROC, and AUC (Bishop, 
2006; Strutz, 2011; Goodfellow et al., 2016; Hastie et al., 2017). The 
metric selection is a task assigned to data science that performs it based 
on the model goal. In case a test dataset is unavailable, the mean pre-
diction error can be estimated via cross-validation, which is a method of 
estimating the test error on the training data. In each iteration, the 
cross-validation method involves dividing the dataset into a training set 
and a validation set. The former is used for fitting the model, the latter 
for estimating the error; the final error is calculated as the average of the 
errors observed in each iteration. 

A key factor influencing training success is the number of available 
observations; thus, it must be considered in the training method selec-
tion. In fact, while model-based methods allow obtaining reliable pre-
dictions even with a reduced number of observations, non-parametric 
methods require a huge amount of data to converge, having to estimate 
many more coefficients (Hastie et al., 2017). There are statistical heu-
ristic methods available that allow calculating suitable sample sizes. For 
instance, samples must be multiples of the number of classes to predict 
(e.g., tens, hundreds, or thousands). In another case, the samples must 
be a defined percentage greater than the number of inputs; in others, the 
number of samples should be related to the number of model parameters 
(Jain and Chandrasekaran, 1982). 

Finally, algorithms can be characterized by their ability to manage 
outliers. Generally, data that do not belong to the sample are identified 
as outliers. These generate noise that reduces the accuracy of the pre-
diction. Usually, these samples are removed (Grbić et al., 2013). How-
ever, the datasets related to maintenance problems may have few 
samples related to faults (Susto et al., 2015). Defining these samples as 
outliers would be a mistake. 

In these situations, it is important to be able to use an algorithm that 
ensures good performance even with imbalanced datasets. 

The analysis of the most relevant scientific contributions shows that 
most of the articles focus on the development of the ML model, based on 

specific cases and applications. Most of them propose ML approaches 
with a predefined maintenance objective, not considering what condi-
tions lead to selecting one rather than another. While there are frame-
works for selecting the most suitable algorithm to train the ML model, 
many of them focus on accuracy (Kotsiantis et al., 2007; Malhotra, 2015; 
Lee et al., 2016; Singh et al., 2016; Accorsi et al., 2017; Liu et al., 2018; 
Xu et al., 2019; Paturi and Cheruku, 2020; Xu and Saleh, 2021), pre-
diction speed (Kotsiantis et al., 2007; Singh et al., 2016; Liu et al., 2018; 
Xu et al., 2019), or computational requirements (Kotsiantis et al., 2007; 
Javed et al., 2017; Saxena et al., 2017; Xu et al., 2019; Xu and Saleh, 
2021). Other selection approaches require the computation of a specific 
value that is able to suggest the best statistical model to be used in an 
analysis, such as the Akaike information criterion (AIC) and the 
Bayesian information criterion (BIC) (Hastie et al., 2017). These criteria 
assume that the user knows the algorithm characteristics and can elab-
orate complex statistical analysis. Sala et al. (2018) address the problem 
by including decision variables, such as algorithm scalability or 
robustness to outliers. However, no tool relates algorithmic approaches 
to the maintenance process. This study aims to provide a tool for those 
who are approaching ML to guide them in effective algorithm selection, 
combining maintenance and analytical knowledge. 

3. Algorithms 

Covering this gap requires identifying the decision variables that 
affect the algorithm selection. In particular, it is necessary to understand 
the algorithms’ behaviour as a function of the dataset’s statistical 
characteristics. For this purpose, this section provides a description of 
the main algorithms used for PdM to allow a comprehensive under-
standing of problems. The list is not exhaustive and is limited to ML and 
does not deal with time-series forecasting, a topic that will be explored 
in future research, together with deep learning algorithms, semi- 
supervised algorithms and reinforcement learning algorithms. This al-
lows the research method used to be analyzed in order to extend it to 
other algorithms or decision variables. 

The next section shows how this information has been categorized 
into a conceptual framework that fits the research aim. The following list 
reports the algorithms considered for supervised learning.  

- Linear Least Squares Regression (LLSR). This algorithm is suitable for 
predicting the values of a continuous response variable Y based on 
predictors X, assuming a linear relation between X and Y, as in the 
following equation: Y = β0 + β1X1 + β2X2 + ⋯+ βpXp + ϵ. The al-
gorithm’s task is to estimate the regression coefficients by mini-
mizing the sum of squares of the residuals (RSS) [30]. This algorithm 
has difficulty in finding a model that fits the data of inherently non- 
linear processes. Furthermore, while the LLSR method often provides 
optimal estimates of unknown parameters, it is very sensitive to the 
presence of unusual data points in the data used to fit a model. One or 
two outliers can sometimes seriously skew the results of a least 
squares analysis (Pham, 2006).  

- Lasso Linear Regression (Lasso). This algorithm is suitable for 
regression. Lasso regression is very close to LLSR; however, the co-
efficients are estimated by minimizing a slightly different amount. In 

particular, the estimates of the coefficients of Lasso β̂
L
λ are the co-

efficients that minimize 
∑n

i=1(yi − β0 −
∑p

j=1βjxij)
2
+ λ

∑p
j=1

⃒
⃒βj

⃒
⃒ =

RSS + λ
∑p

j=1
⃒
⃒βj

⃒
⃒, where λ is a tuning parameter. Introducing the 

term 
⃒
⃒βj

⃒
⃒, called the shrinkage penalty, has the effect of reducing the 

estimates of βj towards zero and improving the accuracy of the 
model. The penalty has the effect of forcing some of the coefficient 
estimates to be exactly equal to zero when the λ tuning parameter is 
large enough, thus selecting the variables that facilitate the inter-
pretation of these models (Agresti, 2003). 

S. Arena et al.                                                                                                                                                                                                                                   



Engineering Applications of Artificial Intelligence 133 (2024) 108340

5

- Logistic Regression (Logit). This algorithm is suitable for binary 
classifications. Although they can be extended to more classes, in 
practice, these models are not used in multiple classification prob-
lems, which prefer the linear discriminant analysis. It models the 
probability that Y belongs to a specific category, where 0/1 encoding 
can be used for the response variable. For this reason, this logistic 
function is used: p(X) = eβ0+β1X/(1 + eβ0+β1X), and the coefficients 
can be estimated with the maximum likelihood method [30]. As with 
the LLSR method, it is best suited for linear processes, thus for data 
separated by a single linear boundary (Dreiseitl and Ohno-Machado, 
2002).  

- Linear Discriminant Analysis (LDA). This algorithm is suitable for 
multiple classifications. This classifier is derived from the assump-
tion that the observations of each class follow a normal distribution. 
It tries to approximate the Bayes classifier (Mitchell, 1997) by 
introducing the estimates of mean, variance, and a priori probability 
of each class into the model that describes the discriminant functions 
of the classes, which are linear (Balakrishnama and Ganapathiraju, 
1998). Compared with the Logit method, it is more stable in cases of 
well-separated classes, in cases where the distribution of predictors is 
approximately normal, and, as mentioned, in the case of multiple 
classifications (Hastie et al., 2017).  

- Quadratic Discriminant Analysis (QDA). This algorithm is suitable 
for multiple classifications. Similar to LDA, the QDA classifier results 
from the assumption that the observations of each class are drawn 
from a Gaussian distribution and include the parameter estimates in 
Bayes’ theorem to make the prediction. However, different from the 
LDA, the QDA assumes that each class has its own covariance matrix. 
Compared with the LDA, the QDA is a more flexible classifier, better 
in cases where the training set is very large or the assumption of a 
common covariance matrix for the classes is unsustainable (Duda 
et al., 1973; Hastie et al., 2017).  

- Autoregressive Moving Average (ARIMA). It can be applied to many 
real-time series. These models are based on three parts: an autore-
gressive (AR) part, a contribution from a moving average (MA), and a 
part involving the first derivative of the time series. The AR part of 
the model has its origin in the theory that individual values of time 
series can be described by linear models based on preceding obser-
vations. The consideration leading to MA models is that time-series 
values can be expressed as dependent on the preceding estimation 
errors. Past estimation or forecasting errors are considered when 
estimating the next time-series value. The integrating part (I) is used 
when trend filtering is required. The algorithm fits the data in order 
to estimate parameters p,q,d, where parameter p denotes the order of 
the AR part, parameter q represents the order of the MA part, and d 
signifies the number of differentiation steps (Hamilton, 2020).  

- Decision Tree (DT). This algorithm is suitable for both regression and 
classification. It is non-parametric. It has a flowchart structure, 
where each node represents a test and each leaf represents the 
answer. In the case of regression, in each step, the predictor space is 
divided into distinct and non-overlapping regions. For each obser-
vation of each region, a prediction equal to the mean of the response 
values is estimated. The goal is to minimize the value of the global 
RSS; therefore, among all candidates, the predictor and the division 
point are selected in such a way that leads to the maximum reduction 
of the RSS value. The tree-pruning techniques improve the DT’s 
ability to generalize and its interpretability. In the classification, the 
response is qualitative, and for tree growth, the Gini index or Entropy 
is used. DT is suitable when the data have many features that interact 
in complicated and non-linear ways. DT methods are simple and 
useful for interpretation. However, they are generally not competi-
tive with the best supervised learning approaches in terms of pre-
dictive accuracy since they are not robust as data change. While it 
can handle a wide variety of input data, this algorithm is unsuitable 
for large datasets (Breiman et al., 1984b).  

- k-Nearest Neighbours (k-NN). This algorithm is suitable for both 
classification and regression. It is a non-parametric method. 
Regarding classification, given a positive integer K and a test 
observation x0, the k-NN classifier first identifies the K points in the 
training data closest to x0 (represented by N0). Then, it estimates the 
conditional probability for class j as the fraction of the points in N0 
that have values of the response variable equal to j: Pr(Y = j|X =

x0) = 1/K
∑

i∈N0

I(yi = j). Finally, the k-NN method applies Bayes’ 

theory and classifies the test observation x0 into the class with the 
highest probability. In case regression x0 is a prediction point, and 
f(x0) is estimated using the mean of all training responses in N0, 
f̂ (x0) = 1/K

∑

xi∈N0

yi, (Hastie et al., 2017). Consequently, the algorithm 

assumes that objects close to each other are similar. The algorithm 
can be trained using different distance metrics (e.g., Euclidean, 
Chebyshev, etc.). Its performance is strongly influenced by the size of 
the data and the presence of outliers and noise (Kotsiantis et al., 
2007). The scale of features for k-NN regression influences the 
quality of the predictions. This method is particularly indicated in 
case of a nonlinear decisional boundary or when X and Y have a 
non-linear relation. A useful tool to consider in combination with ML 
methods like k-NN and XG-Boost (described below) is the statistical 
method for multivariate outlier detection called the Mahalanobis 
Distance (MD) (Cabana et al., 2021). MD is mainly adopted to 
identify and remove multivariate outliers and improve prediction 
(Dashdondov and Kim, 2023), but it is also applied as a method in 
complex manufacturing systems (Palacín et al., 2021; Sølvsberg 
et al., 2023). Although there are novel ML approaches where the MD 
is used in non-Euclidian distance learning (Tao et al., 2020; Yin et al., 
2023), it’s primary function in ML approaches is as a support tool for 
other ML methods. Methods like k-NN and others that can apply 
non-Euclidian distance metrics, can be trained with the MD distance 
to improve classification performance (Berrendero et al., 2020).  

- Generalized Additive Models (GAM). This algorithm is suitable for 
both regression and classification. It provides a general framework 
for extending a standard linear model by allowing non-linear func-
tions for each of the variables while maintaining additivity. Non- 
linear fits can potentially make more accurate predictions for the Y 
response, while retaining interpretability, so they are useful if ana-
lysts are interested in inference. However, the model is limited to 
being additive, with the risk of losing interactions between variables 
(Hastie and Tibshirani, 2017).  

- Support Vector Machine (SVM). This algorithm is suitable for both 
regression and classification. In the classification, the algorithm 
looks for a linearly separable hyperplane that separates the values of 
one class from those of the other. If there is more than one, it looks 
for the one that has the highest margin with the support vectors to 
improve the accuracy of the model. If such a hyperplane does not 
exist, SVM uses non-linear mapping to transform the training data 
into a higher dimension (if there are two dimensions, it will evaluate 
the data in three dimensions). In this way, the data of two classes can 
always be separated by a hyperplane, which will be chosen for 
splitting the data. SVM uses a kernel to quantify the similarity be-
tween observations (Hofmann et al., 2008). In regression, SVM 
predicts a continuous response. In this case, it looks for a model that 
deviates from the measured data by a value not exceeding a small 
amount, having the values of the parameters as small as possible, in 
order to minimize sensitivity to error (Smola and Scholkopf, 2004). It 
is usually used for high-dimensional data, where there are a large 
number of predictive variables. Large datasets can be easily 
managed. The performance of the algorithm decreases in the pres-
ence of noise (Kotsiantis et al., 2007).  

- Random Forest (RF). This algorithm is suitable for both regression 
and classification. It uses ensemble learning, combining many DTs to 
overcome their high variance problems. The insight behind this 
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approach, called bagging, is to take many population training sets, 
build a separate predictive model using each training set and 
calculate the average of the resulting predictions. In case few 
training data are available, bootstrap sampling can be carried out, 
extracting repeated samples from the single training dataset. 
Furthermore, whenever a division in a tree is considered, RF chooses 
a random sample of predictors as candidates for the division, not 
allowing the algorithm to consider most of the predictors. In this 
way, it is possible to decorrelate the trees, but above all, it involves a 
reduction in both the test error and the out-of-bag (OOB) error 
(Breiman et al., 1984a; Hastie et al., 2017).  

- eXtreme Gradient Boosting (XGBoost). This algorithm is suitable for 
both regression and classification. It uses ensemble learning, 
combining many DTs. In contrast to RF, this algorithm uses boosting. 
It works similarly to bagging, except that trees are grown sequentially 
and it does not involve bootstrap sampling. Each tree is grown using 
information from previously grown trees, so each tree is estimated on 
a modified version of the original data. Therefore, learning does not 
make a complete estimate of the data but learns slowly; given the last 
estimated model, the next tree is estimated on the residuals of the 
model. Thus, the model slowly improves in areas where it does not 
perform well. Slow learning methods are highly accurate (Breiman 
et al., 1984a; Hastie et al., 2017). In particular, XGBoost was 
developed to increase speed and performance by introducing a 
penalty parameter to reduce overfitting. It uses gradient descent 
regression trees to calculate the optimal values for each leaf and the 
overall tree score. There is a regularization term, comprising the 
feature subsampling term and learning rate (Chen and Guestrin, 
2016). It is a particularly interesting algorithm for computational 
speed and accuracy.  

- Artificial Neural Network (ANN). This algorithm is suitable for both 
classification and regression. The central idea is to extract linear 
combinations of the inputs as derived features, and then model the 
target as a non-linear function of these features (Hastie et al., 2017). 
The algorithm consists of different layers of computation units called 
neurons. The neurons compute a defined function, and their con-
nections are weighted. The first layer is called the inputs layer, the 
last is the outputs layer, and the others are hidden layers. The 
number of hidden layers defines the model’s complexity and the 
types of neural networks. The training aims to optimize the weight 
for links in order to minimize the loss function. ANNs are particularly 
suitable for highly non-linear systems and require a huge amount of 
data to converge, proportional to the network complexity. The 
neural network algorithm can deal with noise and outliers in the 
dataset (Singh et al., 2016). 

Tables 1 and 2 summarize the analysis and the comparison among 
the above-mentioned supervised (Table 1) and unsupervised (Table 2) 
algorithms according to their advantages and limitations in the context 
of PdM applications. Furthermore, in the same tables, some examples of 
ML algorithm applications for PdM are reported in a non-exhaustive 
way. The aim is to focus on the most commonly used ML methods 
applied to PdM, showing which are being explored in this field. This list 
is the synthesis of the results from several recent literature review papers 
where a complete overview of the different applications for ML-based 
PdM is available for readers (Carvalho et al., 2019; Çinar et al., 2020; 
Dalzochio et al., 2020; Nacchia et al., 2021). 

The following list reports the algorithms considered for unsupervised 
learning. 

- K-means clustering (K-MNS). It divides data into K mutually exclu-
sive clusters. The distance from the cluster centre defines the items’ 
probability of belonging to it. It starts by assigning the items to one of 
the predetermined K clusters and then calculating the K group cen-
troids or by pre-specifying the K group centroids. It selects the 
average of a cluster’s points as its centre (mean). Subsequently, to 

reduce the variation within the cluster, through an iterative pro-
cedure, the algorithm tries to minimize the sum of squares within 
groups (WGSS) on all variables, reassigning the items to the different 
clusters. The procedure stops when no WGSS improvements are 
achieved with further reassignments. It fits large datasets, but its 
performance decreases when outliers are present in the dataset 
(Pham et al., 2005; Pham, 2006; Hastie et al., 2017).  

- K-medoids clustering (K-MDDS). It resembles the K-MNS clustering 
but differs in the cluster centre selection. It picks the actual data 
points from the clusters as their centres (e.g., medoids). The term K 
represents the number of medoids to be identified and the number of 
clusters that are required. It randomly chooses K points from the 
input data. K’s value can be assessed using methods such as the 
silhouette method. Each data point is assigned to the cluster to which 
its nearest medoid belongs. For each data point of cluster i, its dis-
tance from all other data points is computed and added. The point of 
ith cluster for which the computed sum of distances from other points 
is minimal is assigned as the medoid for that cluster. The steps are 
repeated until convergence is reached, that is, when the medoids 
stop moving. Since medoids do not become influenced by extrem-
ities, the K-MDDS algorithm is more robust to outliers and noise than 
the K-MNS algorithm (Park and Jun 2009).  

- Hierarchical clustering (HC). It is represented as a dendrogram. Its 
root is the unique cluster that gathers all the samples, the leaves 
being the clusters with only one sample. It begins by defining a 
measure of the dissimilarity (or distance if the triangular inequality 
holds) of each item to all the others. Which definition of distance to 
use (Euclidean, Manhattan, Canberra, Ward’s method, etc. (Ward Jr, 
1963)) often depends on the specific application or is a subjective 
choice. Some distance measures are only appropriate for certain 
types of data, while others have been introduced to group features 
rather than observations. The agglomerative approach (e.g., bot-
tom-up) proceeds iteratively. Starting from the bottom of the 
dendrogram, each of the n observations is treated as a cluster. The 
two most similar clusters are merged so that there are now n − 1 
clusters (Hastie et al., 2017; Rokach and Maimon, 2005).  

- Density-based spatial clustering of applications with noise 
(DBSCAN). It estimates the density around each point (item) by 
counting the number of points in a neighbourhood ε specified by the 
user, and it applies thresholds to identify the core, border, and noise 
points. In the second step, the core points are gathered in a cluster if 
they are density-reachable (i.e., if there is a chain of core points where 
each point falls within the ε around the next). Finally, the edge points 
are assigned to the clusters. A cluster, therefore, satisfies two prop-
erties: all points of the cluster are mutually density-connected, and if 
a point is density-reachable from any point of the cluster, then it is 
part of the cluster itself. It is appropriate for data that contain clusters 
of similar density (Ester et al., 1996; Schubert et al., 2017).  

- Gaussian Mixture Model (GMM). This probabilistic model assumes 
that all the data points are generated from a mixture of a finite 
number of Gaussian distributions with unknown parameters. It 
generalizes k-means clustering to incorporate information about the 
covariance structure of the data, as well as the centres of the latent 
Gaussians. By adopting this approach, the clustering problem be-
comes that of estimating the parameters of the mixture assumed and 
then using the estimated parameters to calculate each item’s a pos-
teriori probability of belonging to the cluster. Furthermore, deter-
mining the number of clusters becomes a model selection problem 
for which objective procedures exist. GMM belongs to model-based 
clustering methods. Usually, density parameters are estimated with 
maximum likelihood using the expectation-maximization (EM) algo-
rithm (Bishop, 2006; Fraley and Raftery, 2002). 

As said, Table 2 reports the above-mentioned unsupervised algo-
rithms according to their advantages, limitations, and application in 
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Table 1 
Comparison of the supervised machine learning algorithms examined.  

Algorithm Type Advantages Limitations Application, Equipment/Systems Ref. 

LLSR Regression  • Predicting values of a continuous 
response variable.  

• It is easy to implement.  

• Assumes linear relation.  
• Suboptimal for non-linear 

data  
• Sensitive to outliers.  
• Prone to underfitting.   

Lasso Regression  • Regression analysis of continuous 
response variable.  

• Performs feature selection by 
shrinking coefficients towards zero.  

• Avoids overfitting.  

• Assumes linear relation.  
• Suboptimal for non-linear 

data.  
• Assumes normal distributed 

data.  
• Selected features can be 

highly biased.  
• For different bootstrapped 

data, the features selected 
can be very different 

RUL estimation; Fault prediction; 
Bearing; Jet engine blades; Oil analysis of 
gearbox; Nuclear power plant; CNC 
machine; Turbofan engine tool; Track; 
Aircrafts; Rotor bar; Printing machine; 

Çinar et al. (2020) 

Logit Binary 
classification  

• Dataset with dependent variable and 
one or more independent variables.  

• It is easy to implement.  
• LR-based models can be updated 

easily.  

• Assumes linearity.  
• Sensitive to outliers.  
• Prone to overfitting.  
• Unless multinomial, generic 

LR can only classify variables 
that have two states (i.e., 
dichotomous)   

LDA Multiple 
classification  

• Suited for well-separated classes.  
• It is simple, fast, and portable 

algorithm.  

• Assumes normal distribution 
and linearity.  

• Sometimes not good for few 
categories variables.  

• Sensitive to outliers.  
• Prone to overfitting.   

QDA Multiple 
classification  

• Large training sets with no common 
covariance matrix.  

• Robustness to Outliers: they are 
generally more robust to outliers 
compared to linear classifiers.  

• Assumes Gaussian 
distribution and unique 
covariance matrix for each 
class.   

ARIMA Regression/ 
Binary/ Multiple 
classification  

• Stationary time series. 
•Easy to understand and interpret.  
• Can handle covariates information.  
• Suitable for small datasets  

• Assumes linear relation and 
polynomial computational 
data.  

• Sensitive to outliers.  
• Only intended for univariate 

time series. 

RUL estimation; 
Machine tool of CNC Machine; 

(Çinar et al., 2020;  
Dalzochio et al., 
2020) 

DT Regression/ 
Binary/ Multiple 
classification  

• Non-parametric data;  
• Complex and non-linear variables.  
• Suitable for a wide variety of data 

(such as numeric, nominal, 
categorical)  

• Easy to understand and interpret, 
perfect for visual representation.  

• Data preparation is easy.  

• Unsuitable for large datasets.  
• Less robust and accurate if 

other methods are applicable.  
• Prone to overfitting.  
• It is very sensitive (High 

variance)  
• Require classes to be 

mutually exclusive. 

Time to fail class classification; Fault 
classification; Turbofan-engine; Rotor 
bar; Power Transformer; Engine 
equipped with a rotating shaft; Boiler 
and heat pump of (HVAC) system; 

(Çinar et al., 2020;  
Dalzochio et al., 
2020) 

k-NN Regression/ 
Binary/ Multiple 
classification  

• It is easy to implement and the 
training is done in faster manner.  

• Non-parametric data; can be trained 
with Euclidian and non-Euclidian 
distance metrics; not reliant on 
training data.  

• One can plug in any distance metric 
even defined by the user. This allows 
working with complex objects, like 
time series, graphs, geographical 
coordinates …  

• Sensitive to high feature 
number.  

• Prone to overfitting.  
• Testing is slow.  
• Sensitive to noise. 

Time to fail class classification; Fault 
classification; 
Tungsten filament –Ion implantation; 
Engine equipped with a rotating shaft; 
Turbofan engine; Switchgear; Piping/ 
Structures; 

(Carvalho et al., 
2019; Çinar et al., 
2020; Dalzochio 
et al., 2020; Nacchia 
et al., 2021) 

GAM Regression  • Handles linear and non-linear data.  
• Suitable when number of potential 

predictors are high.  

• Prone to overfitting.  
• Additive properties can risk 

losing variable interactions.   
SVM Regression/ 

Binary/ Multiple 
classification  

• High-dimensional data with high 
number of predictors;  

• Handles large datasets.  
• Less vulnerability to overfitting 

issue compared to other techniques.  
• High accuracy and good 

generalization ability  
• Flexible selection of kernel for 

nonlinearity  

• Performance can degrade 
with the presence of noise.  

• Computationally expensive 
for large and complex 
datasets.  

• May require deep knowledge 
while choosing appropriate 
kernel functions. 

Fault classification; Condition 
monitoring; 
Tracking gauge deviation; Rotor bar; 
Aircraft; Track; Railways-Mile track; 
Rolling bearing; Gas turbine engine; 
Power Transformer; Electrical power 
systems; Tungsten filament –Ion 
implantation; Rotating machine-Gear 
Box; Building facilities; Nuclear power 
plant; 

(Çinar et al., 2020;  
Dalzochio et al., 
2020) 

RF Regression/ 
Binary/ Multiple 
classification  

• Useful for high variance datasets (it 
takes the average value from the  

• Feature set must contain 
signal to avoid guessing. 

Time to fail class classification; Fault 
classification; Fault detection; 
Printing machine; Rotating machinery; 

(Çinar et al., 2020;  
Dalzochio et al., 
2020) 

(continued on next page) 
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PdM field. 

4. Framework 

The recent trends in the computer science field have made technol-
ogies available that were previously only accessible to specialists in the 
sector. In particular, the IT market provides platforms for data man-
agement and ML model development to exploit the knowledge arising 
from the data in corporate decision-making processes. Thus, the need for 

guiding those who approach ML during model development is a chal-
lenge. However, the theoretical accuracy and the computational speed 
do not ensure satisfactory results, making the algorithm selection a non- 
trivial task. This suggests the need to include other decision parameters 
during this stage of the process. In fact, in the literature, there are 
multiple algorithms, each of which is better suited to certain conditions 
of the dataset, as shown in the previous section. In the study of Sala et al. 
(2018), this challenge is faced by operations in general. 

This work focuses on maintenance issues and aims to guide users 

Table 1 (continued ) 

Algorithm Type Advantages Limitations Application, Equipment/Systems Ref. 

outcomes of its constituent decision 
trees)  

• Empirically, this ensemble-based 
classifier performs better than its 
individual base classifiers  

• Large number of trees slows 
down algorithm.  

• More complex and 
computationally expensive  

• Unsuitable for real-time 
prediction.  

• Prone to overfitting.  
• Less interpretability and 

sensitivity to outliers. 

Turbofan-engine; Rotor bar; Aircraft; 
Production line and semiconductor; 
Industrial pumps; Cutting machine; 
Refrigeration system; Wind turbine; 
Trucks and buses air; compressors; 
Induction motor; HDD; Vending 
machine; Power Transformer; Gas 
turbine; Machine tool of CNC Machine; 
Oil analysis of gearbox; Woodworking 
industrial machines; 

XG-Boost Regression/ 
Binary/ Multiple 
classification  

• Suitable for modelling that require 
improvement over time.  

• Helps reduce overfitting.  
• Improved modelling by combining 

trees.  
• It is an easy to read and interpret 

algorithm.  

• Can still overfit on small 
datasets or with high number 
of trees.  

• Parameters require proper 
tuning for optimal 
performance.  

• Sensitive to outliers 

RUL estimation; 
Printing machine; Production line and 
semiconductor; Woodworking industrial 
machines; 

(Çinar et al., 2020;  
Dalzochio et al., 
2020) 

ANN Regression/ 
Binary/ Multiple 
classification  

• Suitable for non-linear data.  
• Handles noise and outliers well.  
• Availability of multiple training 

algorithms  
• Suitable for tasks characterized by 

evolving patterns.  

• Prone to overfitting.  
• Optimal network structure 

can be trial and error.  
• They may have 

characteristics of “black 
box”.  

• Computationally expensive 
to train the network for a 
complex classification 
problem.  

• Predictor or independent 
variables require pre- 
processing 

Fault prediction; Anomaly detection; 
Condition prediction; RUL estimation; 
Soft sensing; Predicting control; Tool 
wear monitoring; 
Cooling fan; Tracking gauge deviation; 
Wind turbine; Gas turbine; Building 
facilities; Packaging robot; 

(Carvalho et al., 
2019; Çinar et al., 
2020; Dalzochio 
et al., 2020)  

Table 2 
Comparison of the unsupervised machine learning algorithms examined.  

Algorithm Type Advantages Limitations Application, Equipment/Systems Ref. 

k-MNs Clustering  • Suitable for large datasets.  
• Easy to implement.  

• Sensitive to outliers.  
• Uncertainty of initial clustering 

centres leads to lack of stability.  
• Must specify number of clusters in 

advance. 

Fault detection; RUL estimation; 
Exhaust fan; Laser melting; Oil-immersed 
power transformer; Turbofan engine; 
Semiconductor manufacturing; Machine 
motor 

Çinar 
et al. 
(2020) 

k-MDDs Clustering  • Increased robustness to outliers and noise.  
• More suitable for smaller datasets.  

• Not suitable for clustering non- 
spherical groups.  

• As the initial medoids are chosen 
randomly, the results might vary based 
on the choice in different runs. 

Semiconductor manufacturing; Çinar 
et al. 
(2020) 

HC Clustering  • Better suited for small dataset.  
• Less stringent assumptions about cluster 

shape.  
• Less sensitive to outliers.  

• Specific types of data may require 
specific distance measures.  

• Sensitive to incomplete or mixed data.  
• Susceptible to misinterpretation.  
• Computationally expensive. 

Semiconductor manufacturing; Çinar 
et al. 
(2020) 

DBSCAN Clustering  • Appropriate for data with similar density 
clusters.  

• Suitable for noise cancellation.  
• Robust towards outliers’ detection.  
• It performs well with arbitrary shaped 

clusters.  

• Unsuitable for datasets with large 
variance in clusters.  

• Not suitable for high-dimension 
datasets.   

GMM Clustering  • Assumes data generated from finite number 
of Gaussian distributions (this allows for 
more complex cluster shapes compared to K- 
means clustering).  

• Less sensitive to scale.  
• Suitable for small datasets.  

• No measure of data point relation to 
clusters.  

• It assumes normal distribution.  
• Computationally expensive.    
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who do not know the limits and the opportunities of algorithms in their 
selection. To achieve this aim, a conceptual framework based on the 
literature review introduced in the previous section has been defined. 
The study deals with the main ML algorithms, deep learning algorithms 
are excluded except for ANN, semi-supervised algorithms, reinforce-
ment learning algorithms and the algorithms for dealing with time series 
have not been analyzed, except for the ARIMA model. Furthermore, the 
study scope has been limited to supervised and unsupervised learning. 
Since the framework must support those who are approaching ML, 
drivers have been identified with attributes that are easy to extract and 
do not require elaborate analyses to be extracted. Decision drivers 
belonging to the three categories that influence the algorithm selection 
have been identified: the algorithm learning characteristics, the dataset 
statistical characteristics, and the PdM characteristics. The results are 
shown in Table 3, which contains the list of drivers and their 
descriptions. 

In the previous section, it has been pointed out that estimating f has a 
twofold goal: to make a prediction or to make an inference. These goals 
are often at odds with each other, forcing the analyst to make a trade-off 
choice. Non-parametric techniques make the best prediction work; 
however, they are very difficult and complex to interpret. Algorithms 
adapt complex interactions between independent variables that are 
difficult to understand and may not always make sense. In the industrial 
context, maintenance operators expect to be able to interpret the 
model’s output to justify the decision to be made. Furthermore, the 
ability to interpret the model builds confidence in these approaches. In 
this case, it is highlighted how model-based learning approaches meet 
this need. Hence, the framework must allow the evaluation of the 
accuracy–interpretability trade-off. Table 4 summarizes the attributes 
assigned to each algorithm for each decision variable considered. 
Furthermore, it provides qualitative ratings on the accuracy and the 
interpretability obtainable with each of them, based on the literature 
and author experience. As reported in the table, the ensemble methods 
(RF, XGBoost) are non-parametric, with good accuracy and low inter-
pretability. However, some techniques can be applied to obtain the 
features important for prediction by improving the interpretability of 
the model. The Shapley Additive Explanations (ShAP) approach is 
considered the most robust for this goal (Shapley, 1953; Lundberg and 
Lee, 2017). Finally, accuracy is closely linked to data quality and 
maturity (Arena et al., 2022). In fact, even if all the other conditions 
would allow applying a non-parametric algorithm, with poor data 
quality, good performance is not achievable. 

Deepening the decision variables related to ML and their relation to 
dataset ones, the type of learning represents the primary algorithm’s 
characteristic. Supervised learning involves regression and binary or 
multiple classifications, while activity learning associated with unsu-
pervised algorithms entails clustering. The response type is the dataset 
characteristic that guides the choice of the activity learning attribute. A 
quantitative response is closely associated with regression, a binary 
response is associated with binary classification, and a categorical 
response is associated with multiple classifications. If the response is 
unavailable (unlabelled dataset), it is necessary to use an algorithm for 
pattern recognition (i.e., an algorithm clustering). 

Regarding the objective function, as explained in the previous sec-
tion, a model-based approach requires a smaller amount of data for 
features and vice versa for the non-parametric approach. However, 
when input and output are in a linear relation, both the algorithms based 
on a linear model and those based on complex models allow high ac-
curacy to be achieved. 

This leads to preference for the former as they are easier to compute 
and interpret. In general, the algorithm’s complexity must reflect the 
system’s complexity. In identifying linearity in a dataset, applying a 
linear model is necessary for analyzing the residuals’ graph. Ideally, the 
residuals’ graph shows an unrecognizable pattern; on the contrary, the 
presence of a pattern can indicate a linearity problem. Finally, imbal-
anced datasets must deal with non-robust-to-outliers algorithms or 

Table 3 
Decision variables for each category identified.  

Category Decision variable Attribute description 

Machine 
learning 

Learning type Supervised and unsupervised approaches 
are analyzed. The former refers to a 
labeled dataset, the letter to an unlabelled 
one. 

Learning activity is the task that the model must carry out. 
Four types of learning activities are 
considered: regression, binary 
classification, multiple classification, and 
clustering. 

Objective function is the function type fitted by the 
algorithm. Two types of objective 
functions are considered: model-based (e. 
g., parametric) and non-parametric. 

Dataset Response type is the output of the analysis (e.g., Y). Four 
response types are considered: binary, 
categorical, continuous, and unavailable. 
The binary response can assume two 
values (e.g., fault/non-fault). A 
categorical attribute has a finite number 
or a countable infinite set of values 
normally represented by integers or labels 
(e.g., generator failure, bearing failure, 
etc.). Quantitative or continuous data can 
assume any real value (e.g., bearing 
temperature, RUL, etc.). 

Variance identifies the dataset balancing, that is, if 
the dataset includes values that are 
statistically identified as outliers since 
they are rare compared with the 
population; however, they represent a 
system state to be included in the analysis 
(e.g., representative of fault conditions). 
Two attributes are considered by 
variance: balanced and imbalanced. An 
imbalanced dataset means that the ratio 
between the majority class samples (non- 
fault) and the minority class samples is 
greater than 10 (Lee et al., 2016). 

Linearity identifies the dataset linearity. Quantities 
are in a linear relation if there is some 
form of direct proportionality between 
them. Two attributes for this driver are 
considered: linear and non-linear. 

Observations/ 
Features ratio 

identifies the dataset numerosity based on 
the predictors included as model inputs. 
Two attributes are considered: n ≈ p and 
n≫p. Several studies provide statistical 
methods to estimate the samples number 
to be included in the model training for 
the model’s accuracy; however, these 
methods require elaborate analyses. 
Hence, in this study, qualitative attributes 
are proposed to guide the initial decision 
in order to restrict the initial application 
scope. 

Predictive 
maintenance 

Fault type two types of objective functions are 
considered: incipient and critical. See the 
previous section for details. 

Model objective four types of model objectives are 
considered: RUL estimation, fault detection, 
diagnosis, and state detection 

States number identifies the states number to discover 
based on the behaviour of the system. 
This driver is considered in the event of 
the unlabelled dataset when the a priori 
failures definition is not possible for 
fitting the model. The model aims to 
identify the different working conditions 
of the system, thus the fault. Two types of 
states number are considered: known and 
missing.  
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instance-based ones, such as k-NN, while their application to balanced 
datasets needs outliers’ removal in the pre-processing phase. 

The purpose of this study is to address the algorithm selection for 
PdM issues; thus, there is a need to analyze how the related decision 
variables vary based on those analyzed so far. 

How to approach the maintenance objective is closely linked to the 
fault type. In fact, for failures due to wear and tear, the approach must 
consider the system’s evolution over time. This means that during the 
feature selection and extraction phase, the analyst must include or build 
predictors representing this information; alternatively, the analyst must 
use algorithms for time-series forecasting (i.e., with memory algo-
rithms). This study investigates the former requirement, reporting just 
the ARIMA example to cover the latter, postponing an in-depth analysis 

of time-series forecasting algorithms for future studies. The symptoms of 
wear-and-tear failures or incipient ones manifest themselves slowly, 
evolving, making these failures highly detectable through the analysis of 
weak signals. On the contrary, critical failures appear abruptly, and a 
prognostic approach would be technically unfeasible. In these cases, 
although it is not possible to accurately estimate the component/system 
RUL, the analysis and modelling of the CMS data allow increasing the 
detectability of faults. 

Fault detection or diagnosis approaches can detect anomalous be-
haviour’s in advance and associate them with anomalies already verified 
in the past, allowing intervention in advance and in a prompt manner, 
with preventive maintenance actions. The ML-based PdM strategy al-
lows the greatest advantages for this type of failure. 

Table 4 
ML and dataset characteristics of selected learning methods, accuracy, and interpretability. Key =good, =fair, =poor.  

ML 
Algorithm 

ML Characteristics Data Characteristics Accuracy Interpretability Ref. 

Learning 
Activity 

Learning Type Objective 
Function 

Response 
Type 

Variance Linearity n/ 
p 

LLSR Supervised Regression Model- 
based 

Continuous Balanced (Dreiseitl and 
Ohno-Machado, 2002;  
Pham, 2006) 

Lasso Supervised Regression Model- 
based 

Continuous Balanced 
Agresti (2003) 

Logit Supervised Binary 
Classification 

Model- 
based 

Binary Balanced (Agresti, 2003; Hastie 
et al., 2017) 

LDA Supervised Multiple 
Classification 

Model- 
based 

Categorical Balanced (Mitchell, 1997;  
Balakrishnama and 
Ganapathiraju, 1998;  
Hastie et al., 2017) 

QDA Supervised Multiple 
Classification 

Model- 
based 

Categorical Balanced (Duda et al., 1973;  
Hastie et al., 2017) 

ARIMA Supervised Regression Model- 
based 

Continuous Balanced 
Hamilton (2020) 

DT Supervised Regression/Binary 
Classification/ 
Multiple 
Classification 

Non- 
parametric 

Continuous/ 
Binary/ 
Categorical 

Balanced 
Breiman et al. (1984b) 

k-NN Supervised Regression/Binary 
Classification/ 
Multiple 
Classification 

Non- 
parametric 

Continuous/ 
Binary/ 
Categorical 

Imbalanced (Kotsiantis et al., 2007; 

Hastie et al., 2017) 

GAM Supervised Regression Non- 
parametric 

Continuous Balanced 
Hastie and Tibshirani 
(2017) 

SVM Supervised Regression/Binary 
Classification/ 
Multiple 
Classification 

Non- 
parametric 

Continuous/ 
Binary/ 
Categorical 

Imbalanced (Smola and Scholkopf, 
2004; Kotsiantis et al., 
2007; Hofmann et al., 
2008) 

RF Supervised Regression/Binary 
Classification/ 
Multiple 
Classification 

Non- 
parametric 

Continuous/ 
Binary/ 
Categorical 

Balanced (Breiman et al., 1984a; 

Hastie et al., 2017) 

XG-Boost Supervised Regression/Binary 
Classification/ 
Multiple 
Classification 

Non- 
parametric 

Continuous/ 
Binary/ 
Categorical 

Balanced (Breiman et al., 1984a; 

Chen and Guestrin, 
2016; Hastie et al., 
2017) 

ANN Supervised Regression/Binary 
Classification/ 
Multiple 
Classification 

Non- 
parametric 

Continuous/ 
Binary/ 
Categorical 

Balanced (Singh et al., 2016;  
Hastie et al., 2017) 

k-MNs Unsupervised Clustering – – – – – – – (Pham et al., 2005;  
Hastie et al., 2017) 

k-MDDs Unsupervised Clustering – – – – – – – Park and Jun (2009) 
GMM Unsupervised Clustering – – – – – – – (Fraley and Raftery, 

2002; Bishop, 2006) 
HC Unsupervised Clustering – – – – – – – (Ward Jr, 1963;  

Rokach and Maimon, 
2005; Hastie et al., 
2017) 

DBSCAN Unsupervised Clustering – – – – – – – (Ester et al., 1996;  
Schubert et al., 2017)  
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Estimating the RUL means predicting the days/hours of the system’s 
residual operation, which is a continuous variable; thus, the regression 
task is suitable. Fault detection and diagnosis are respectively associated 
with binary and multiple classifications. The literature cites several 
examples of fault detection conducted with semi-supervised approaches. 
However, this study does not investigate these types of approaches, 
postponing the demonstration of their general validity for these learning 
types for future studies. 

In cases where a database of events associated with faults is un-
available, a supervised approach is not possible. For this reason, the 
objective of identifying the system states is associated with clustering 
activities. The study of the failure modes of the component/system could 
allow for identifying how many and which operating states, or degra-
dation, should be identified in the dataset (states number). In this case, it 
is possible to apply algorithms that require defining the number of 
patterns in advance (K-MNS, K-MDDS, GMM, and DBSCAN). Alterna-
tively, it is necessary to apply more interpretable algorithms in which it 
is possible to subsequently define the pruning level in order to assign a 
sample to a specific pattern. The variable states number is introduced to 
distinguish between these two cases only in unsupervised approaches. 

What has been discussed so far has led to the definition of the 
framework in Fig. 1. The framework first classifies the supervised al-
gorithms presented in the paper in a set of dimensional attributes to aid 
in decision-making concerning choosing an appropriate algorithm in 
different scenarios. The included dimensions are objective function or 
model-based vs. non-parametric methods, similar or much larger set of 
observations vs. number of features, algorithms are classified by the 
quality and maturity of available datasets, and methods are considered 
by output accuracy, linearity of variables and features and how easy it is 
to interpret algorithm output. The ShAP methods dimension describes 
how interpretability can be improved by applying methods like the 
Shapley Additive Explanations (Lundberg and Lee, 2017). The algo-
rithms are then color-coded for fault type scenarios where they are 
applicable, with blue for RUL scenarios, orange for fault detection, and 
green for diagnosis. An underlined algorithm name describes variance 
imbalance and balanced variance with no underline. Naming in bold 
describes a linear method, and normal naming describes non-linear. The 
non-supervised algorithms are separated by interpretability, a square for 
known states and a circle for missing states. The yellow coloring de-
scribes the algorithms’ role in status identification. The legend sum-
marizes the associations among learning activity, learning type, response 
type, fault type, and maintenance objective. The next section shows two 
examples of the legend’s usefulness in identifying the maintenance 
objective, that is, the color that identifies a limited selection of algorithms 
to choose from. The final selection is based on observation/features ratio, 
data quality, and maturity and variance considerations. The states number 
is the variable to consider if the dataset is unlabelled. Finally, accuracy 
and interpretability can also be assessed in accordance with the 
decision-making function of the model. 

5. Illustrative case study 

The purpose of this study is to identify a valid approach for main-
tenance issues, leaving the analyst the task to generalize the issue 
characteristic parameters he has to face. Following, two approaches of 
the framework usage are presented, with the aim of demonstrating how 
the proposed framework can guide the algorithm selection; however, 
there are no limits for its application scope based on specific data or 
assets. 

Case A shows how the framework can support the technical evalu-
ation of the ML-based PdM starting from the definition of the failure 
modes that affect the system. On the other hand, case B describes the 
assessments that can be made by the available data. 

5.1. Case A 

A company wants to evaluate the implementation of ML-based PdM 
in a production line. There is no CMS in the company, however, data 
relating to the maintenance carried out are available. The equipment 
analysis phase, based on Florian et al. (2019), is performed on a small 
number of critical components. The maintenance and intervention costs 
data allows for applying the economic model proposed by Florian et al. 
(2021) for evaluating the threshold investment cost and the perfor-
mances that the ML model should ensure for the ML-based PdM to be 
sustainable. The proposed framework can guide the evaluation of the 
technical requirements required for achieving the desired performance. 
In the case described the type of fault and data on maintenance events 
are available. If the system is subject to wear or incipient failures, all 
maintenance objectives are achievable, however, since the labels are 
available, the supervised approaches are preferred. Among the three, the 
prognostic models allow a greater optimization of the maintenance 
process, in fact, the costs reduction is due to both the decrease in failure 
interventions (concerning the performance of the model) and the 
organizational aspects optimization (e.g. spare parts purchase, mainte-
nance workers assignment, production stop, intervention procedures 
preparation) (Vogl et al., 2016). In the same way, the fault detection and 
diagnosis models avoid fault interventions, while the process optimi-
zation is not guaranteed as the time to the fault is not a model output. 

The system failure modes engineering analysis allows to estimate the 
system linearity, the framework in these cases suggests that it is possible 
to apply algorithms that require a reduced number of observations, e.g. 
there is no need to waste resources for storing high-frequency sampling 
data or allocating excessive computational resources for model devel-
opment (in accordance with the failure mode behaviour). On the con-
trary, for complex systems, there is a need of investing in IT 
infrastructures to ensure the transmission reliability of the good quality 
data, but above all, it is necessary to ensure a huge amount of data for 
the models training or re-training. 

In general, using the proposed framework, a maintenance manager 
can carry out a technical evaluation of the ML-based PdM to support the 
appropriate economic evaluations, even without having in-depth data 
analysis knowledge. 

5.2. Case B 

A company wants to evaluate the implementation of the ML-based 
PdM on a production line whose data is collected in a CMS, with the 
maintenance data. As in the previous case, the critical components for 
which to prioritize the PdM can be identified. 

Failure mode assessment allows the feature selection to be carried 
out for obtaining a labeled training dataset. Several scenarios can occur: 
(i) the time to failure is a reliable measure, thus a quantitative answer is 
available that allows for developing a model for the RUL estimation; (ii) 
the event data allows to accurately identify the different failure modes, 
thus a model for the diagnosis of the failures can be implemented; (iii) 
the data related to the faults allow to identify only if the system was 
functioning or not, therefore a model for fault detection can be 
implemented. 

Furthermore, the observations/characteristics ratio and the 
balancing of the dataset can be identified for evaluating, firstly, the 
technical feasibility, secondly which algorithms to apply, thus avoiding 
the waste of resources that would occur with a try and error approach. 

6. Conclusions 

In recent years, data-driven approaches, thanks to the spread of ML 
techniques, have emerged as the most promising to accurately predict 
and diagnose the system’s health conditions during operations. ML- 
based PdM provides many competitive benefits, such as maintenance 
cost reduction, higher product quality, system efficiency, and improved 
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Fig. 1. ML-based PdM algorithm selection framework.  
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availability. However, when considering real industrial applications, 
implementing an ML-based PdM strategy presents multiple challenges, 
such as the investment costs, the connection of physical assets, the 
storage of the data, extraction of valuable information, and the devel-
opment of precise ML algorithms. To overcome these constraints, it is 
essential to identify the applicability domain in terms of technical, 
organizational, and economic assessment of this maintenance strategy. 
Thus, this work provides a conceptual framework aimed at guiding users 
in the selection of one or more suitable ML algorithms to use in their 
analyses, with the purpose of establishing the technical ML-based PdM 
feasibility. 

The conceptual framework allows for systematizing the knowledge, 
about the algorithmic approach patterns and failure characteristics that 
could affect their choice and for defining the variables that affect algo-
rithmic choice. The parameters were classified into three main cate-
gories based on their nature: data set, ML, and maintenance. The 
decision variables presented in the selection framework constitute a 
solid base for the selection of proper ML algorithms since they are easily 
recognizable and do not necessitate deep analysis to be identified. The 
associations between decision variables (learning activity, learning type, 
response type, fault type, and maintenance objective) are analyzed and 
designed. The final selection is based on observation/features ratio, data 
quality, and maturity and variance considerations. The state’s number is 
the variable to consider if the dataset is unlabelled. Finally, accuracy and 
interpretability can also be assessed in accordance with the decision- 
making function of the model. 

The proposed selection framework does not claim to be complete 
with respect to the available literature on the topic and/or to suggest the 
best algorithm to the user due to the vast complexity characterizing the 
ML field of research and application. Thus, the basic idea is to develop a 
simple and easy tool to choose the right approach that fits the specific 
purpose at hand through an agile and informed decision-making 
process. 

The research presented leaves possible future improvements. First, 
the current pool of ML algorithms lacks Semi-Supervised approaches. 
Furthermore, deep-learning algorithms, reinforcement learning algo-
rithms and time-series forecasting could be also considered in the 
framework. Future work could encompass multiple aspects not consid-
ered, starting from the validation strategy, which should be chosen 
carefully to be effective, and continuing with the selection framework 
extension and refinement. 

As part of future work, there are factors out of scope for this article 
that are still important to consider for users of ML-oriented approaches. 
This includes a holistic and comprehensive view on the multifaceted 
domain of ML that takes into account the role of humans, social in-
teractions, and close interrelations with cutting-edge technologies and 
decision-making. One of these factors is a thorough description of the 
requirements needed to implement ML methods. Bokrantz et al. (2020) 
describe the overall requirements by defining Smart Maintenance as « an 
organizational design for managing maintenance of manufacturing plants in 
environments with pervasive digital technologies» and point to the di-
mensions of data-driven decision-making, human capital, and both in-
ternal and external integration as required for Smart Maintenance 
transition. Both Smart Maintenance and ML can be further connected to 
the ongoing efforts towards digitalization and Industry 4.0 (I4.0). Aca-
tech (2020) describes this development as a 6-stage process, where 
digitalization is shown through computerization and connectivity, and 
I4.0 through the steps of visibility, transparency, predictive capability, 
and adaptability. This stepwise depiction of I4.0 is useful to develop 
further to ensure improved transitioning from classic maintenance to-
wards Smart Maintenance and to fully utilize the untapped potential of 
ML methods. 
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