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Abstract: Sustainable building materials for integrated (structural and thermal) retrofitting are the
need of the hour to retrofit/upgrade the seismic vulnerable and ill-insulated existing building stocks.
At the same time, the use of natural fibers and their recyclability could help construct safer and more
sustainable buildings. This paper presents three aspects of jute fiber products: (1) the evaluation of the
mechanical performance of the jute nets (2.5 cm x 2.5 cm and 2.5 cm and 1.25 cm mesh configurations)
through tensile strength tests (with the aim for these to be used in upgrading masonry wall with
natural fiber textile reinforced mortars (NFTRM) systems); (2) the hundred percentage recyclability
of left-over jute fibers (collected during the net fabrication and failed nets post-tensile strength tests)
for the composite mortar preparation; (3) and the evaluation of insulation capacity of the recycled
jute net fiber composite mortar (RINFCM) through thermal conductivity (TC) measurements, when a
maximum amount of 12.5% of recycled jute fiber could be added in the mortar mixture at laboratory
conditions and with available instruments Notably, when more than the said amount was used, the
fiber-mortar bonding was found to be not optimal for the composite mortar preparation. These
studies have been carried out considering these products’ applicability for integrated retrofitting
purposes. It has been found that the denser mesh configuration (2.5 cm x 1.25 cm) is 35.80% stiffer
than the other net configurations (2.5 cm x 2.5 cm). Also, the mesh configuration (2.5 cm x 1.25 cm)
shows about 60% more capability to absorb strain energy. TC tests have demonstrated the moderate
insulation capacity of these composite mortar samples, and the TC values obtained from the tests
range from 0.110 (W/mK) to 0.121 (W/mK).

Keywords: jute fiber; natural fiber textile reinforced mortars (NFTRM); recycled fiber composite;
structural retrofitting; thermal capacity

1. Introduction

Creating thermally efficient and structurally safe building stocks stands as a key objec-
tive within the contemporary construction and building (C&B) sector. This commitment
arises from the industry’s pursuit of constructing safer, more sustainable, environmentally
friendly, and nearly self-sufficient buildings.

Moreover, a building in its complete service life generates vast amounts of waste,
some of which is recyclable, and others are not, and therefore, are responsible for creating
environmental problems. In the European Union (EU), construction and demolition (C&D)
accounts for about 180 tons of waste per year [1]. The C&D wastes of the C&B sector are
mainly dumped in landfills, thus directly damaging the environment and ecosystem and
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detrimental to human health [2]. The EU, with Directive 2008/98/EC [3], discourages
the disposal of 100% of demolition wastes and, to reinforce its Sustainable Development
Strategy, in the last decade gradually developed the Integrated Product Policy [4,5] to
reduce the environmental impacts of products throughout their life-cycle. Considering
environmental and ecological sustainability, different research groups have studied the
recyclability of C&D wastes [6-12] for various C&B applications. Similarly in the literature,
the use of argo-wastes also can be found in [6,13-18].

In the EU, buildings stocks constructed before the 1990’s are not energy efficient [19],
and mostly these buildings are constructed without having properly followed the seismic
standard [20]. At the same time, these buildings are known to be some of the highest
producers of CO, and other greenhouse gases, and these figures are about 39% globally and
36% in the EU [21]. On the other hand, the C&B sector, directly and indirectly, consumes
nearly 36% globally and 40% in the EU, of the total produced energy [22].

Notably, both ancient and modern building stocks are vulnerable to natural and man-
made created/caused disasters [23]. According to [24], in the Asian continent, the northern
Indian traditional Himalayan buildings, particularly the rammed earth and dry-stone
buildings, are predominantly vulnerable and susceptible to seismic activity.

Recently, various laws and regulations, obligatorily or voluntarily, obliged the public
and private entities to structurally or/and thermally retrofit/upgrade existing buildings
according to the latest standards, like Eurocode 8 [25] and near-zero energy building
(nZEB) [26]. Whereas, Ref. [27] has proposed higher energy-performance buildings by 2030
(2027 for the public sector) with new zero-emission buildings (ZEB) requirements.

Therefore, a wide range of newer building materials and composite materials have
been studied by many research groups, with the aim to use these materials for structural,
thermal, integrated retrofitting or upgrading purposes, and obviously during new building
construction.

Due to superior mechanical properties, man-made fibers, like carbon, basalt, steel,
glass, etc., have been used predominantly in raw or in textile form, for structural retrofitting
or upgrading [20] of building stocks and various structures.

It is well established that natural fibers are cheaply and abundantly available [28], and
are also known to have good thermo-mechanical properties [29]. At the same time, they
have 78-79.4% lesser carbon footprint [30]; therefore, these fibers can be used for making
greener and sustainable building materials.

Whereas due to good insulation capacity, natural fibers like wool, hemp, jute, sisal,
etc., are particularly usable for thermal upgrading [20].

In the last few years, the application of raw or recycled natural fibers in composite-
mortar forms, as thermos-acoustic building insulation material and integrated retrofitting/
upgrading material, can be found in the literature. Some notable works in this direction
can be highlighted with the use of jute-clay and loofah-clay [31], jute-composite [32], straw-
clay [33], date-palm fiber cementitious composites [34,35], hemp fiber-lime [36], wool-
cement [37], recycled oil palm fiber-fly ash [38], rice straw and furcraea foetida fiber [39],
jute fiber self-consolidating concrete (SCC) [40], sawdust bio-composite [41], acai fiber [42],
acai seed ash [43], sheep-wool [44], abaca fiber [45], coir fiber [46], and Eucalyptus globulus
bark fiber reinforced concrete [47].

Fiber reinforced polymer (FRP) is predominantly used for civil reinforcement appli-
cations [48] due to its strength. Particularly carbon FRP [49], glass FRP [50], and basalt
FRP [51,52] are mainly used for civil applications, while scholars and researchers are also
working on the natural FRP [53,54] or hybrid FRP [55], extensively.

Whereas the textile reinforced mortar (TRM) is more suitable for masonry retrofitting /
upgrading, due to its various advantages over FRP systems [56]. Notably man-made
fibers like carbon [57,58], steel [59], glass [60,61], and mineral fiber like basalt [62,63] are
predominately used commercially for TRM retrofitting /upgrading.

The use and application of a natural fiber (NF) for TRM systems is also gaining
momentum, but still its use at commercial level is very limited and its applicability can be
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found at the research level only. Some important works, and the use of NFTRM, can be
found in [64-67] for jute fiber TRM, hemp fiber TRM, flex fiber TRM systems and banana
TRM, respectively.

Among all natural fibers, jute fiber ranks second in terms of the amount/quantity
being produced [68]. Notably, jute fiber-made building materials and composite mortars
have been developed, and their mechanical and thermal behaviors have been studied and
reported in [31,69-74], respectively.

Authors already have proposed in their previous works [75,76], various compositions
of jute fiber composite mortars with different proportions of raw fiber (depending on
dry mortar mass) mortar and water combinations, while their physical behaviors and
thermo-structural performances are reported and were evaluated.

Also, authors have recycled and used jute fiber waste, derived from various sources,
to prepare jute fiber composite mortars [77,78] and other fibers (loofa, sheep wool, hemp
shives, thistle fibers) for composite building materials [31,77,78] with the aim that these
materials could be used for thermal retrofitting or upgrading.

This paper validates the capability of jute fiber nets that are to be used for NFTRM
retrofitting or upgrading masonry walls and analyzes the performance of the recycled
jute net fiber mortar that might be used for thermal retrofitting. Therefore, to encourage
the United Nationals Sustainable Goals (UNSG) and by following the directive of the EU
“EU 2008/98/EC”, this research was conducted to encourage the recycling of C&B sector
residual wastes. By doing so, 100% of the residual scape thread and net fibers, leftover
during the net fabrication process and post-flexural tests were recycled to prepare the
jute net fiber composite mortar, with the aim of this composite mortar to be used for the
thermal retrofitting purpose. Therefore, the novelty of this research work is threefold:
(1) the applicability of natural fiber (jute) for integrated upgrading/retrofitting of masonry
walls/structures, (2) the assessment and validation of strength (jute fiber net) and insulation
properties of the jute fiber composite mortar, and (3) the possible recyclability of the
residual natural fiber (jute) from a previous process (net fabrication), therefore encouraging
a sustainable production process.

The structure of this paper can be highlighted as it starts with a brief introduction,
thereafter the materials and methods used are explained. Section 3 is subdivided into two
parts; in Section 3.1 the observations of the jute net tensile strength tests are reported, while
in Section 3.2 the thermal conductivity test results are reported and at the end, in Section 4,
the conclusive remarks are stated.

2. Materials and Methods

For this experimental campaign, the main raw material for net preparation (i.e., jute
threads) was collected from the state of West Bengal, India. This three-yarn jute thread type
was fabricated in a local jute mill.

While the mortar used for the composite-mortar preparation is a lime-based mortar
and has a dry density equal to 750 kg/m?3. It is a thermo-dehumidifying plaster and it
certified as R and T/CSII (EN 998-1 [79]).

2.1. Jute Fiber Net Preparation

Figure 1 presents the class 1 mm (1.19 mm with Co.V. of 7.27) [78] jute fiber thread,
which has been selected for the jute net fabrications and has tensile strength (f;) and strain
energy (U) measured equal to 122.45 MPa (with Co.V. of 26.16%) and 1.03 kN.mm (with
Co.V. of 34.59%), respectively [78].

Two types of jute nets were manually prepared with two distinct inner mesh configura-
tions: (1) 2.5 cm x 2.5 cm and (2) 2.5 cm x 1.25 cm, respectively, in the Strength Laboratory
at the University of Salerno, Italy (Figure 2). Notably these configurations have been
considered for better mortar penetration during the net application on the wall surface.

The length of each tested sample with net mesh types 2.5 cm x 2.5 cm and
2.5 cm x 1.25 cm, were 0.5 m long. About 18 cm of net (Figure 3) was exposed to the
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applied loads. The net samples are placed inside two clamps, as shown in Figure 4, and
the top and the bottom fixtures were tied with a torque wrench with an adjustable pre-
set torque value of 50 N/m (Figure 4), this was performed to bind the edges of the net
uniformly with quasi-equal force.

— T 4 15 .
T Wtz i

7D

Figure 3. Samples were tightly clamped.
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(b)
Figure 4. (a) Complete view and (b) the set parameter of the adjustable torque-wrench.

2.2. Jute Fiber Nets Tensile Strength Tests

The fix-clamp fixtures holding the net sample(s) were fixed to the testing machine
(Figure 5) and thereafter the mechanical behavior of these net samples was evaluated
through the tensile strength tests. For this test, a Schenck universal machine (Figure 6), was
used, and it has a maximum load capacity and maximum workable length of 630 kN and
20 cm, respectively. The tensile tests were conducted at a rate of 2 mm/min.

i

(b)

Figure 5. Net samples with mesh configurations. (a) 2.5 cm x 2.5 cm and (b) 2.5 cm x 1.25 cm were
placed in the machine for the tensile strength test.
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Zuick [Roen

Figure 6. Schenck universal machine used for tensile strength tests.

2.3. Recycled Jute Fiber Net Composite Mortar (RIFNCM) Preparation

Notably during the net fabrication and after the jute-net tensile strength tests, a
significant amount of jute net and thread fibers were left over, and these scrap fibers were
recycled along with the tensile test failed net fibers (Figure 7), to prepare the recycled jute
net fiber composite mortar (RINFCM).

Leftover jute net fiber

Jute net fiber mortar sample

Figure 7. Leftovers from the jute net fabrication and post-tensile test used for composite mortar preparation.
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Measuring
Chamber

side Movable cold plate _

Hot side Fixed hot plate

The composite mortar’s grout was prepared following EN1015-2 [80], while no work-
ability test has been performed as these samples have only been used for the thermal
conductivity test. The quantity of water added during the grout preparation was based on
the author’s previous calculation, and experience of working with raw-jute fiber, threads,
and composite mortars, while the information about this research work and respective
observations can be found in [20,78].

During the mixture preparation, the pre-present aggregates were separated from the
mortar, and thereafter 12.5% recycled jute net fibers (Table 1) were added based on the
measured mortar mass (without any aggregates). During mixing, about 49.8% of water
(Table 1) with respect to the total mixture (mortar + fiber) mass was added slowly to prepare
the grout. The mixing process was performed for approximately 7 min. Thereafter, two
molds of the dimensions 160 mm x 140 mm x 40 mm were used to prepare two samples
to be used for thermal conductivity tests. The samples were left inside molds and in
plastic bags for the first 2 days, then they were taken out from the molds and re-placed
inside another plastic bag for another 3 days. After, they were left in a quasi-constant
environmental condition (22 °C and 65% RH) in a room until the 28th aging day. This
first drying process is the part to which the utmost attention must be paid, avoiding the
formation of surface depressions or specimen distortions, which would compromise their
subsequent thermal characterization tests. After this period, the samples were oven dried
(at 50 °C) to remove the remaining moisture, which would influence measurements and
thermal conductivity values.

Table 1. Amount of fiber and water used.

Total Recycled Jute Net Fiber Used Total Water Used for the Mixture

12.5% of the dry mortar mass 49.8% of the total mixture (mortar + fiber) mass

2.4. Jute Net Fiber Composite Mortar Thermal Conductivity Test

The thermal conductivity values of these samples have been determined at the Applied
Thermodynamic and Energetic Laboratory at the University of Cagliari using a TAURUS
TCA 300 (Figure 8) device. It is a heat flow meter instrument, that conducts measurements
according to ISO 8301 (1991) [81] and EN 1946-3 (1999) [82].

»
>

14 cm

m

Visible jute thread fiber pieces

Figure 8. Thermal conductivity measuring instrument: TAURUS TCA 300.
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The measuring chamber of the TAURUS TCA 300 has two measuring plates, an upper
cold plate and a lower hot plate. Notably, the function of these plates can be reversed and
can be set accordingly, as required. The original plates have a 300 mm x 300 mm total
surface area, while the main measuring zone is located exactly at the center of these plates
and the active zones have a 100 mm x 100 mm surface area (Figure 8). Measuring like
sample specifications and instrument parameters (Table 2) were set using an instrument-
integrated computer.

Table 2. TAURUS TCA 300 set parameters.

Measuring Intervals min
Intermediate sampling time 1
Total measuring time 300

According to EN 12939 [83], the tests were carried out at sample mean temperatures
equal to 10 °C, 20 °C, and 30 °C (Figure 9), always maintaining a difference of 20 °C
between the two plates. Consequently, the TC values were calculated based on Equation (1),
using the measured heat fluxes values:

S

= QA(tH —tc)

[W/mK] @

where Q = heat flux in W/m?; s = sample thickness (m); ty = temperature of the hot plate
(°C); tc = temperature of the cold plate (°C); and A = the active zone surface area (m?).

measurement heat flow temperature of temperature of temperature mean thermal
number in W/m?* cold side warm side difference temperature conductivity
in*C in"C inK in*C in W/m*K)
44704 022 19.78 19.55 10,00 0.11020
46.746 10.23 2977 19.53 20,00 0.11536
48992 20.24 39.76 19.51 30,00 012104
0.125
< 012 ~
> -
£ . -
= -
= . o
E= 7
= A -
S0.115 X
°
= - ~
=] -~
9 ) -
= .
E g .
g -
E - ) -
0,11 X
0.105 T
L S S S SN A e S B S S S S S S S S S B HE S m e |
10 15 20 25 30

mean temperature in *C

Lambda ( 10°C) = (0.1101 £ 0.0033 ) W/(m*K) / Lambda = 0.10470 + 0.00054 * MT W/{m*K)

Figure 9. Thermal conductivity values of measured sample.
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Figure 9 presents a typical result sheet with all measured (heat flow in W/m?, tempera-
tures of cold and warm side in °C) and calculated (temperature difference in K and thermal
conductivity in W/mK) quantities, with respect to the set sample mean temperatures (10 °C,
20 °C, and 30 °C).

In Figure 9, the uncertainty bands relating to conductivity values at the three differ-
ent temperatures are already graphically expressed. While considering the calibration
uncertainty of the TAURUS, the repeatability of the measurements obtained and the linear
regression error, it is possible to estimate an average standard deviation (SD) equal to
0.004 W/mK.

3. Results

In this section, the mechanical strength of the jute nets (fabricated by using 1 mm
diameter jute threads) and the thermal conductivity value of the recycled jute net fiber
composite mortar are reported.

During this experimental campaign, the mechanical strength of the two types of jute
nets, with 2.5 cm X 2.5 cm and 2.5 cm x 1.25 cm mesh configurations, were evaluated
through tensile strength tests.

Subsequently, the fiber scraps during the net fabrication and the post-tensile test failed
net fibers were collected and recycled to prepare the jute net fiber composite mortar and
later the thermal conductivity value of these samples was estimated.

3.1. Jute Net Tensile Strength Tests

A total of seven samples of each type of jute thread net (2.5 cm x 2.5 cm and
2.5 cm x 1.25 cm mesh configurations) were used for the displacement-controlled ten-
sile strength tests. The tensile strength and the axial displacement were recorded during
the tests. Notably, from each net type, two non-satisfactory results were discarded and
were not considered due to faulty measurements.

The results presented in this section clearly highlight that the denser mesh configura-
tion (2.5 cm x 1.25 cm) was found to be significantly more rigid, with an average stiffness
increase of 35.80%, compared to the 2.5 cm x 2.5 cm mesh samples (see Figures 10-12).
Furthermore, the load-bearing capacity of the denser mesh was observed to be over 50%
greater, accompanied by a 14.35% increase in maximum elongation. This mesh also demon-
strated superior strain energy transfer, exceeding its counterpart by more than 60%, as
evidenced in Table 3.

Further, Table 3 presents a detailed comparison of the mechanical properties, including
maximum load, displacement, strain energy, and stiffness, along with the coefficient of
variation for each parameter, offering insights into the reliability and variability of the
measurements. The different performances of the two mesh configurations can be easily
explained, considering that the denser mesh presents more threads for unit area than the
other configuration.

Figures 10 and 11 illustrate the force—displacement behavior for each type of mesh
configuration. The primary mechanical observations from these tests are further docu-
mented in Tables 4 and 5. These tables present specific data points, such as the first collapse
load, maximum load, and the corresponding displacement at maximum load for individual
samples, providing a granular view of the performance characteristics.

Table 3. Mechanical properties of jute fiber nets.

Max. Load Max. Displacement Strain Energy Stiffness
S 1
N ar.np E.! Mean Co.V Mean Co.V Mean Co.V Mean Co.V
omination
N % mm % kN.mm % N/mm %
N_1.25 337.21 9.94 82.86 18.56 14.05 21.04 10.28 11.98
N_25 217.23 24.82 72.46 17.82 8.76 39.14 7.57 20.22

where, Co.V. is the coefficient of variation.



Sustainability 2024, 16, 1175

10 of 18

300 1N 253 300 1N 254
225 - 225
Z150 - Z 150
= =
75 - 75 -
0 T 1 O T 1
0 50 100 0 50 100
0 [mm] 0 [mm]
(a) (b)
300 1N 255 300 1N 256
225 225 -
Z 150 Z 150
= =
75 - 75
O T 0 T 1
0 50 100 0 50 100
6 [mm] 6 [mm]
(©) (d)
300 1N 257
225
£ 150
=
75
0 1 \
50 100
0 [mm]
(e)

Figure 10. Force-displacement graphs of the jute net (a) Sample N_2.5_3, (b) Sample N_2.5 4,
(c) Sample N_2.5_5, (d) Sample N_2.5_6 and (e) Sample N_2.5_7, with fiber mesh 2.5 cm x 2.5 cm
configuration.

Table 4. Mechanical properties of the jute fiber net type N_2.5.

Sample First Collapse Load Maximum Load Corresponding Displacement at Maximum Load
N N mm
N_2.5_3 (Figure 10a) 220.5 257.38 75.69
N_2.5_4 (Figure 10b) 136.00 167.48 37.4
N_2.5_5 (Figure 10c) 287.67 287.67 65.25
N_2.5_6 (Figure 10d) 229.42 229.42 40.14
N_2.5_7 (Figure 10e) 144.21 144.21 33.80
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Figure 11. Force-displacement graphs of the jute net (a) Sample N_1.25_1, (b) Sample N_1.25_2,
(c) Sample N_1.25_3, (d) Sample N_1.25_5 and (e) Sample N_1.25_6, with fiber mesh 1.25 cm x 2.5 cm
configuration.

Table 5. Mechanical properties of the jute fiber net type N_1.25.

Sample First Collapse Load Maximum Load Corresponding Displacement at Maximum Load
N N mm
N_1.25_1 (Figure 11a) 236.50 314.40 94.21
N_1.25_2 (Figure 11b) 281.99 287.33 79.00
N_1.25_3 (Figure 11c) 384.69 384.69 66.65
N_1.25_5 (Figure 11d) 342.76 342.76 45.72

N_1.25_6 (Figure 11e) 271.84 356.09 56.20
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Jute net samples

Figure 12. Jute nets (sample types: N_1.25 and N_2.5) stiffnesses.

Interestingly, none of the net samples experienced complete rupture during testing.
Instead, multiple collapses were observed, attributed to failures at knot points or within
the thread fiber between knots. This behavior resulted in various spikes in the force—
displacement graphs, (Figures 10 and 11), indicating the localized nature of the failures. On
the positive side, the denser mesh configuration shows promise for enhanced load-bearing
capacity and stiffness, which are desirable traits for applications in construction. However,
the occurrence of the multiple collapses suggests that while the material is strong, the nets’
reliability is related to the manufacturing processes or material behavior at micro-scales,
such as at knots.

Figure 12 presents a comparison of the stiffnesses between the jute net mesh con-
figurations 2.5 cm x 1.25 cm and 2.5 cm x 2.5 cm. It is clearly noticeable that the first
configuration is stiffer than the latter configuration. The maximum and minimum stiffness
for the 2.5 cm x 1.25 cm mesh configuration was found to be 11.75 N/mm and 8.41 N/mm,
respectively. While 9.83 N/mm and 5.48 N/mm are the maximum and minimum stiffness
for the 2.5 cm x 2.5 cm mesh configuration.

3.2. Recycled Jute Net Fiber Composite Mortar (RINFCM) Thermal Conductivity Tests

The TC values of the jute fiber (12.5% of fiber, with respect to the dry mortar mass)
composite mortar samples were evaluated. The samples were prepared based on the
authors previous experience, which can be found in [20,75].

Table 6 presents the TC values measured at 10 °C, 20 °C and 30 °C, respectively, and it
has been found that the composite sample RINF(12.5%)CM with 12.5% (with respect to the
dry mortar mass) recycled jute fiber is 48.36%, 47.61%, and 46.22%, respectively lower (in
average) than the sample [75] with the 6.5% of recycled jute fiber (added with respect to
the dry mortar mass) composite mortar (Figure 12).
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Table 6. Thermal conductivity of the RINFCM.

A (W/mK)

Tests Performed at

Reference Thermal Conductivity Values of

Sample o o o Samples with Different Combinations [Jute
Nomenclature 100 2000 300 Fiber Percentages (with Respect to the Dry
Mortar Mass) & Jute Fiber Lengths].

° 0.5%: 0.434 (min for 10 mm) to 0.654 (max
for 30 mm) [20].

RJNF(12.5%)CM . 1.0%: 0.432 (min for 10 mm) to 0.512 (max
(120/? of rec.ycled jute 0.110 . 0.115 . 0.121 for 30 mm) [2().],

net fiber with respect (with Co.V. of 8.5%) (with Co.V. of (with Co.V. of . 1.5%: 0.420 (min for 10 mm) to 0.566 (max
to the dry mortar o = 6.52%) 4.12%) for 30 mm) [20].

mass)

. 2.0%: 0.438 (min for 10 mm) to 0.546 (max
for 30 mm) [20].
. 6.5%: 0.213 to 0.225 [75].

where, Co.V. is the coefficient of variation.

The TC values of RINF(12.5%)CM sample were compared to the sample combinations
with different fiber percentages (0.5%, 1.0%, 1.5%, and 2.0%) and fiber lengths (30 mm,
10 mm, and 5 mm), as highlighted in [75]. The TC values of the RJNF(12.5%)CM are lower in
the range between 74% and 80% approximately, with respect to the samples mentioned [75].

Figure 13 presents a comparison between the obtained TC values of the RINFCM
(under observation) and similar types of samples (with different fiber lengths and fiber
percentages (with respect to the dry mortar mass) combinations) reported in [20,75], while
the sample preparation and drying conditions are same. Notably the comparison has been
also carried out with the samples made with 6.5% recycled fibers [75]. In this regard, it
is the authors’ opinion that the previous processing of jute fibers does not influence the
thermal conductivity of the samples to a significant extent.

Notably, the samples considered here are oven dried before conducting the TC mea-
surements. However, as highlighted by the authors in [78], during the composite mortar
mixing, fiber balls are formed when the jute fibers came in contact with water. Therefore,
jute fibers not only have the ability to absorb water individually but also can trap some
extra water collectively in the fiber balls cavity. As the fiber used in this case were three
yarn jute threads, therefore in the yarn cavity, too, there could be the possibility of trapping
a small amount of water.

Here, it is worth highlighting that with the available instruments and at the given
laboratory condition, it was only possible to prepare the composite mortar with a maximum
of 12.5% of recycled jute fiber. Notably, more than the said amount of the fiber—-mortar
bonding was not optimum for the composite mortar preparation.

When the RJNF(12.5%)CM samples dried and the trap water was removed, there must
be some empty cavities formed inside of the said samples. So, a higher fiber density in the
sample means more numbers of empty cavities, consequently improving the insulation
capacity of the sample. Therefore, it can be said that RINF(12.5%)CM is a better insulator
than the other compared samples in Figure 13.
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Figure 13. Thermal conductivity values of the tested samples vs. different combinations (fiber % and
length) of jute fiber composite mortar samples, can be found in [20] Majumder et al. (2023) and [75]

Majumder et al. (2022).

4. Conclusions

This study investigates the mechanical and thermal properties of jute fiber products
and the recyclability of residual waste thread and net fibers, which are leftover during the
net fabrication process and post-flexural tests.

Tensile strength tests have been conducted to evaluate the feasibility of the jute
fiber nets to be used for net fiber textile retrofitting mortar (NFTRM) of the masonry
walls or structures. For this campaign, two types of jute nets with 2.5 cm x 2.5 cm and
2.5cm x 1.25 cm were tested.

Both types of jute nets were manually fabricated using jute fiber threads in the Strength
laboratory of the University of Salerno, Italy. During the net fabrication process, scrap
thread fibers and net fibers were collected. Additionally net fibers leftovers after the tensile
strength tests were also collected and all these collected fibers were recycled to prepare
RJNFCM. About 12% of recycled jute fiber (with respect to the dry mortar mass) was used
for RJFCM preparation.

The tensile strength tests have demonstrated that the net sample 2.5 cm x 1.25 cm is
35.80% stiffer than the other net configurations (2.5 cm x 2.5 cm). While the previous one
also has the capability to dissipate about 60% more applied load in terms of strain energy.

Whereas the TC tests have shown the TC values of the RINFCM range from 0.110 (W /mK)
to 0.121 (W/mK), and these composite samples have shown better insulation capacity in
comparison to the author’s previous works [20].

Following this experimental campaign, authors have used these jute fiber products
(jute fiber nets and jute fiber composite mortars) for integrated upgrading of the masonry
walls, and both structural behavior and thermal performance of these walls are evaluated.



Sustainability 2024, 16, 1175 15 of 18

Therefore, this work shows how it is possible to use these natural fiber products for
integrated retrofitting or upgrading of the masonry wall or structures, to have sustainable,
eco-friendly, greener, healthier, safer, and energy-efficient buildings.

More research is needed to optimize the thickness of TRM in order to obtain a given
structural or thermal performance. In addition, the production process of jute nets should
be improved to be scaled for industrial production. Further research is also scheduled to
analyze the aging time of the jute net (prepared with jute threads (Figure 1), which are
about one year older) used for the TRM system.

Finally, it is important to highlight that incorporating life cycle assessment (LCA)
strategies is essential to comprehensively understand the environmental implications of
jute fiber products and fiber-reinforced mortars in the construction industry, see for exam-
ple [84]. LCA can produce a detailed analysis of the carbon footprint at every stage of a
product’s life; from the cultivation of jute, which typically requires lower inputs of fertil-
izers and pesticides compared to other crops, thereby reducing the initial environmental
impact, through the processing and manufacturing phases, where energy consumption
and waste generation can be significant. For jute fiber-reinforced mortars, an LCA would
consider not only the direct emissions and energy use during production, but also the
potential savings in the use phase, due to improved energy efficiency from the material’s
insulating properties. Furthermore, the end-of-life recyclability of jute enhances its sus-
tainability profile, potentially reducing landfill waste and allowing for the material’s reuse
or repurposing, thus contributing to a circular economy [85]. By applying LCA to jute
products, the construction industry can better align with the EU’s sustainability directives,
moving towards greener building practices that minimize the carbon footprint and foster
long-term ecological balance.
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