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Abstract 

This works aims to investigate the impact of wind forcing datasets and wave 
breaking parameterizations on spectral wave model performance under ex- 
tremely energetic conditions. For this purpose we used the wave model Wave- 
WatchIII to simulate the evolution of the highly energetic storms that oc- 
curred in winter 2013/2014 in the North-East Atlantic. We forced the wave 
model with two different wind datasets: one proceeding from the ECMWF 
ERA5 reanalysis dataset and the other from satellite observations. More- 
over, two wave energy dissipation parameterizations were tested: Test471 
and Test500. The model accuracy was assessed by comparing the output 
datasets with buoy data both in deep and coastal water. Moreover, wave 
height measurements from satellite were used to assess the model accuracy 
along storm tracks across the ocean. The accuracy of simulated results shows 
a significant dependence on the wind forcing and wave dissipation parameter- 
ization used. Error metrics computed under storm conditions at wave buoys 
are consistent with those computed along storm tracks. At the wave buoy 
locations, all datasets tend to underestimate wave parameters at the peaks 
of the storms. 
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1  1. Introduction 

2 Recent work has reported that extreme sea state conditions have increased 
3  in terms of frequency and intensity in the last decades (Young and Ribal, 
4  2019; Reguero et al., 2018). This trend, related to climate change and pos- 
5  sibly involved in a long-term tendency, has significance for engineering ap- 
6  plications: among them we can mention coastal hazard assessment, offshore 
7  ship operations and the design of marine structures. Marine engineers and 
8  scientists often combine datasets proceeding from different sources in an ef- 
9  fort to achieve an accurate and exhaustive description of extreme events and 

10  their impacts (O’Reilly et al., 2016; Castelle et al., 2015; Masselink et al., 
11  2016). In this context, by integrating in situ and remote measurements, 
12  third-generation spectral wave models and their output make a fundamental 
13  contribution towards a better understanding and prediction of extreme wave 
14  events. 
15 Third-generation spectral wave models are widely used nowadays for wave 
16  hindcast and forecast at global and regional scales (Bernier et al., 2016; Be- 
17  sio et al., 2016; Perez et al., 2017; Sandhya et al., 2018; Ruju et al., 2019). 
18  These models solve the wave action balance equation with a set of source 
19  terms encompassing the effects of physical processes from wave generation 
20  to dissipation (Tolman et al., 2013). Although the recent implementation 
21  of physical-based parameterizations has led to an increase of model output 
22  accuracy, simulating extreme wave events remains a challenge (van Vledder 
23  et al., 2016; Holthuijsen et al., 2012; Zieger et al., 2015; Campos et al., 2019). 
24  This is mainly due the paucity of observations available during the evolution 
25  and at the peak of extreme events with respect to moderate and more fre- 
26  quent conditions. As a result of the data used during the parameterization 
27  development and model calibration processes, model uncertainties are gen- 
28  erally higher for rare wave conditions.  For instance, Filipot and Ardhuin 
29  (2012) reported a deterioration of error statistics associated with different 
30  parameterizations for significant wave heights above 8 m. 
31 Under energetic and storm conditions characterized by large wave steep- 
32  ness values, the wave energy dissipation parameterization takes a key role 
33  in spectral evolution and wave growth limitation. Despite the significant at- 
34  tention received, it is likely to represent the least understood source term 
35  (Ardhuin et al., 2010). In addition to parameterizations, is is well acknowl- 
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36  edged that wave model accuracy strongly depends on the accuracy of the 
37  wind forcing dataset (Stopa et al., 2016).  This works aims to investigate 
38  the impact of two different wave breaking parameterizations and two wind 
39  forcing dataset under extremely energetic wave conditions. We use the third 
40  generation wave model WaveWatchIII (WWIII), version 5.16, to simulate the 
41  sequence of severe storms occurred that in the North-Est Atlantic during the 
42  winter 2013/2014. 
43 Previous work has recognized the winter of 2013/2014 as one of the most 
44  exceptional in terms of storm sequence and intensity in the North-East At- 
45  lantic Ocean (Wadey et al., 2014; Masselink et al., 2016). Due to the rela- 
46  tively south paths of these extra-tropical cyclones, extreme energetic wave 
47  conditions were recorded by coastal monitoring systems of Western European 
48  countries, from Portugal to Ireland. On coastal areas, these storms drove 
49  extreme surge, runup and overtopping causing large morphological changes 
50  and strong damage to infrastructures (Castelle et al., 2015; Scott et al., 2016; 
51  Autret et al., 2016). 
52 The two wave energy dissipation parameterizations tested in this work are 
53  Test471 and 500. They are both included in the parameterization group ST4 
54  available in WWIII version 5.16. Moreover, we assess the impact of two wind 
55  forcing datasets. One of them is constituted by the wind analysis obtained 
56  through the use of various remotely sensed wind observations (Bentamy et al., 
57  2019; Desbiolles et al., 2017). The other is the ERA5 reanalysis dataset 
58  (Hersbach et al., 2019). Model accuracy is assessed by comparing simulated 
59  results with the measurements from buoys located in the North-East Atlantic 
60  as well as satellite observations along storm tracks. 

 
61  2. Methods 

62  2.1. Data collection and storm identification at wave buoys 
63 We collected in situ wave parameters from eight North-East Atlantic wave 
64  buoys belonging to different observational networks. Two of them (62163 and 
65  62001) are offshore buoys, located in water depths exceeding 2500 m. The 
66  other six (62069, 62103, 62064, 4403, 5602, DW5) are coastal buoys deployed 
67  in mean water depths ranging from 30 to 68 m (see Figure 1 showing the 
68  geographical setting). Table 1 lists the wave buoys with mean water depth 
69  and main wave parameters. 
70 These buoys are exposed to a combination of long-period Atlantic swells 
71  and locally-generated wind waves.  Due to the shelter offered by the sur- 



5  

 
 

 

 
 
 
 
 

Figure 1: Global (blue dots) and local (green dots) grid configuration over the Eastern 
Atlantic region. Red dots indicate the buoy locations. 

 
72  rounding coastline and small islands and the dissipation on the continental 
73  shelf, wave height at buoys 62103, 4403 and DW5 is significantly smaller 
74  than that at other locations. Buoy 62103 lies in the British channel and it 
75  is thus partially sheltered by the Brittany and Cornwall peninsulas. On the 
76  other hand, the presence of the islands of Ushant and Belle-Ile dampens the 
77  incoming wave energy hitting buoys DW5 and 4403, respectively. Wave prop- 
78  agation at coastal buoy locations is affected not only by topographic features 
79  but also by tidal dynamics (currents and water levels) that can be particu- 
80  larly intense in proximity of Brittany shores. All the buoys chosen in this 
81  work provide a high time coverage of nearly 100% for the winter 2013/2014 
82  on which this work focuses on. 
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Table 1: Wave buoys with mean water depth and significant wave height Hs statistics. for 
the period considered. 

 

Buoy depth [m] mean Hs [m] Hs,99 [m] Hs,70 [m] 
62163 2526 5.0 11.9 5.9 
62001 4554 4.5 10.9 5.4 
62069 66 3.9 9.6 4.7 
62103 68 2.6 7.1 3.1 
62064 54 3.4 8.2 4.1 
4403 30 2.4 5.8 3.0 
5602 45 3.6 8.7 4.3 
DW5 42 2.5 6.6 3.0 

 

 
83 We used the peak-over-threshold (POT) (Mathiesen et al., 1994) method 
84  to identify the 24-hour independent storms occurred during the 2013/2014 
85  winter at buoy 62163. The Hs threshold was chosen equal to the 30% ex- 
86   ceedance Hs (Hs,70) calculated over the 2013/2014 winter period. We retained 
87  only the storms with a duration larger than 12 h that met the independence 
88  criterium with more than 24 hours between the end of a storm and the be- 
89  ginning of the following one. Although the threshold value of 30% may seem 
90  low for extreme event analysis, due to the highly-energetic period consid- 
91  ered, this method allowed the identification of 13 storms in the winter period 
92  comprised between the 21th of December and the 21th of March (dates usu- 
93  ally taken as of the meteorological start and end of winter). However, we 
94  extended the winter period up to the 31 of March to include the 14th storm 
95  occurred on the 24th of March; see upper panel of Figure 2. The extreme 
96  wave parameters representative of each storm of the sample were selected 
97  as the values occurring at the time in which the maximum wave height was 
98  observed during the storm duration. 
99 The adoption of the same method, used for the event identification at 

100  buoy 62163, would have led to a different number of storms at each buoy 
101  location. For consistency, we recognized at buoys locations the same storms 
102  first identified at the offshore buoy 62163. Since this buoy lies at the western- 
103  most location and North-East Atlantic storms are mainly moving eastward 
104  (Dodet et al., 2010), they are likely to hit first buoy 62163 and then continue 
105  propagating until they reach the other buoys. For this reason, at the other 
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106  buoy location we expect that both the beginning and the end of a storm 
107  happen later than at buoy 62163. Therefore, we identified the beginning of 
108  a storm at each buoy location as the time at which Hs firstly increases over 
109  Hs,70 after the beginning of the storm at 62163. Analogously, the end of the 
110  storm was set at the time at which Hs falls below Hs,70 after the end of the 
111  storm at 62163. Note that Hs,70 is different at each location. 
112 The criteria of storm independence and minimal duration prescribed at 
113  buoy 62163 are not always met at the other locations. This is particularly 
114  evident at buoy 4403 where, just before the February 10th, storms S7 and 
115  S8 are contiguous since Hs remains above the threshold for a considerable 
116  amount of time from the start of storm S7 to the end of the storm S8. Nev- 
117  ertheless, this procedure has the main benefit of allowing the identification 
118  of the same storms (14 in number) at each buoy location, each of them being 
119  related to the same synoptic system (see Figure 2 that highlights the storms 
120  over the time series of Hs measured by buoys). 

121  2.2. Data collection and storm tracking from atmospheric pressure 
122 We used the fifth generation ECMWF atmospheric reanalysis ERA5 (Hers- 
123  bach et al., 2019) as a database to track the low-pressure systems propagation 
124  across the Atlantic Ocean during the 2013/2014 winter. We identified the 
125  low-pressure systems from the atmospheric pressure at the sea level. First, at 
126  each ERA5 output time instant the active low-pressure systems (that we can 
127  classify as extra-tropical cyclones) were identified as those systems that have 
128  a pressure value lower than 980 hPA and imposing a minimum distance of 5o 

129  between different systems. Moreover, the evolution of system propagation in 
130  time and space was made assuming a maximum velocity of 120 km/h (33.3 
131  m/s) of the low-pressure system. 
132 This method led to the identification of a large number of low-pressure 
133  systems whose life duration spanned from few hours up to several days for 
134  the most persistent. To focus on the same events recognized at the buoy 
135  locations, we looked for the active systems at the time arrival of the 14 
136  energetic storms, in terms of Hs, recorded at the buoy 62163. We named 
137  these low-pressure systems with the same name of the storms they drove 
138  at the buoy locations (S1, S2, etc.). Since an energetic low-pressure system 
139  drove the Hs peak occurred in the last stage of storm S4 at buoy 62163, we 
140  added this one (calling it S4B) to the sample constituted by the 14 systems 
141  that were active at the beginning of the 14 storms.  Once identified, the 
142  propagation path of these 15 systems, responsible for the largest wave heights 
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Figure 2: Time series of significant wave height Hs at the buoy locations. Yellow rectangles 
extend over the storm duration. Grey dashed lines indicate the Hs thresholds Hs,70 used 
for storm identification. 
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143  in the winter 2013/2014, was tracked back from its generation in the Western 
144  Atlantic and forward to its dissolution in the Eastern Atlantic. Figure 3 shows 
145  the paths of the low-pressure systems highlighting the intense extra-tropical 
146  cyclones driving the the five highest Hs at the storm peak at buoy 62163. 
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Figure 3: Paths of the low-pressure systems recorded in the winter 2013/2014 in the 
North Atlantic. The paths of the 5 most intense systems are highlighted by coloured lines. 
Markers are 6-hour spaced. 

 
147  2.3. Modelling techniques 
148 We used the numerical model WAVEWATCH III (WWIII) (Tolman, 
149  2016) version 5.16 to simulate the energetic wave dynamics that occurred in 
150  the winter 2013/2014. WWIII is a spectral wave model able to reproduce the 
151  physical processes governing wave motion over a wide range of water depths. 
152  Its physical and numerical configurations make it suitable to perform hind- 
153  cast and forecast at global and regional scales. The governing equation of 
154  the model is the wave action balance equation in which the source and sink 
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155  of wave energy is taken into account by means of a set of source terms: 

 

 

156 

DN S 
= 

Dt σ 

 
, (1) 

157  where D/Dt represents the total derivative (moving with a wave component) 
158  and S represents the net effect of sources and sinks for the wave action 
159  spectrum N = E/σ (where E is the energy spectrum and σ is the intrinsic 
160  frequency of the wave). Parameterizations are usually divided into four main 
161  source terms: atmospheric Satm, nonlinear Snl, ocean Soc and bottom Sbt. 
162  This work focuses on the parameterization of wave energy dissipation by 
163  breaking included in the ocean term Soc, that is assumed to be the most 
164  important sink of wave energy in storm seas (van Vledder et al., 2016). 
165 In this study, a multigrid approach allowed the optimization of compu- 
166  tational cost given the wide range of physical process scales we are focusing 
167  on: from the long scales of wave and swell generation in the deep ocean 
168  to the small scales of wave-current interaction and depth-induced processes 
169  in coastal water.  The model ran over a rectangular grid with a constant 
170  spatial resolution of 0.5◦ covering the entire globe. Wave spectra computed 
171  over this grid represented the boundary conditions for the coastal simula- 
172  tions performed over an unstructured grid extending over coastal water from 
173  Northern Spain in the South to the British channel in the North. This 
174  unstructured mesh was developed in the scope of the HOMONIM project, 
175  funded by the French government, in order to improve the operational wave 
176  surge forecasting system along French Altlantic coast (Michaud et al., 2015). 
177  It is made up of 92757 nodes with a decreasing resolution from 10 km at 
178  offshore boundaries to about 200 m at the coastline and is supported by 
179  an accurate and recent 100 m resolution bathymetry also developed in the 
180  HOMONIM project (see Biscara et al. (2014)). The triangle-based grid is 
181  used in WAVEWATCH III with the explicit N-scheme based on contour resid- 
182  ual distribution (see Roland (2009) for a review). Initially implemented in 
183  the Wind Wave Model-II (WWM-II), this numerical scheme have then been 
184  successfully validated in WAVEWATCH III on an unstructured mesh closely 
185  similar to ours (Ardhuin et al., 2009; Boudiere et al., 2013). See figure 1 that 
186  shows the model grid configuration together with the location of the buoys. 
187  It is worth mentioning that, the mean water depths of 4 coastal buoys given 
188  in table 1 are between the minimum and maximum water depths extracted 
189  from the model simulations, as expected. The exceptions are buoys 5602 and 
190  4403 whose mean water depth provided by the responsible entity (CEREMA 
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191  in this case) is smaller than the depth ranges from the model: water depth 
192  ranges 56-61 m at 5602 and 35-41 m at 4403. 
193 We discretized the WWIII wave spectra into 32 frequencies and 24 direc- 
194  tions. The frequency range extended from 0.0373 to 0.716 Hz, with a fre- 
195  quency increment factor of 1.1. Wave directions were linearly spaced resulting 
196  in an angular resolution of 15o. Resonant nonlinear wave-wave interactions 
197  occurring between four wave components (quadruplets) were computed with 
198  the Discrete Interaction Approximation (DIA) method. Triad wave interac- 
199  tions, accounting for nonlinear energy transfer in the nearshore, were also 
200  included through the LTA model. Wave dissipation was simulated with the 
201  parameterizations of Ardhuin et al. (2010) and Filipot and Ardhuin (2012) in 
202  Test471 and Test500, respectively (see section 2.4). Table 2 lists the parame- 
203  terizations used for the main source terms, see the WWIII manual (Tolman, 
204  2016) for an exhaustive description of these terms. Note that both Test471 
205  and Test500 are included in parameterization group ST4. 

 
 Table 2: Source term treatment in WWIII.  

Sin + Sds Snl Str Sbot Sdb Sbs 

Parameterizazion ST4 NL1 TR1 BT4 DB1 BS1 
 

 
206  2.4. Parameterization of the dissipation induced by wave breaking 
207 The two wave dissipation parameterizations assessed in this work are 
208  those by Ardhuin et al. (2010) and Filipot and Ardhuin (2012). Consistent 
209  with previous literature (Filipot and Ardhuin, 2012; Leckler et al., 2013), 
210  they are referred to as Test471 and Test500, respectively. These formulations 
211  recognize that wave energy can be dissipated by the breaking process in 
212  two ways: a spontaneous breaking in which the energy of a wave packet 
213  is dissipated by the breaking of that very wave packet and a cumulative 
214  breaking dissipation in which energy dissipation is the result of the breaking 
215  of longer waves wiping out shorter waves. Test471 and Test500 differ in the 
216  way the spontaneous breaking source term Sbk is computed. For this reason 
217  we briefly outline here the computation process for Sbk. 

218  2.4.1. Test471 
219 Following the work of Phillips (1984), several wave parameterizations 
220  related breaking probability to spectral saturation.  Ardhuin et al. (2010) 
221  (therein after ARD10) introduced a saturation-based semiempirical wave 
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222  breaking parameterization with a larger dissipation rate in the mean wave di- 
223  rection, consistent with the observations of Mironov and Dulov (2007). The 
224  directional saturation spectrum Br(k, θ) is defined as: 

r ∫ θ+∆ 
 

  
 

 

 
r r r 

226  with ∆=80o, E(k, θr) is the frequency spectrum and k is the wave number. 
227  ARD10 extrapolated the theory of Banner et al. (2000), originally formu- 
228  lated for dominant waves, over the entire directional spectrum to obtain the 
229  breaking probability parameterization Qb: 

230 Qb(k, θ) = 28.16 · max[
√

Br(k, θ) − 
√

Br , 0]2, (3) 

231  where Br is the breaking threshold with a correction providing a constant 
232  ratio of the root-mean-square orbital velocity and phase speed at different 
233  water depths d (Filipot et al., 2010): 

234 Br = BrY (M4Y 3 + M3Y 2 + M2Y + M1), (4) 

235  where Y = tanh(kd). The deep water threshold Br and the other constants 
236  in the polynomial fit can be found in ARD10. The factor 28.16 comes from 
237  the original factor of 22 of Banner et al. (2000), m√odi fied  by taking into 
238  account that wave steepness is on the order of 1.6  Br and that the wave 
239  counting analysis for a given wave scale from Banner et al. (2000) tends to 
240  give a number of waves twice less than that expected for monochromatic 
241  waves. The dissipation term of spontaneous breaking Sbk is: 

S  (k, θ) = σ 
Cds {δ max[B(k)−Br , 0]2+(1+δ )max[Br(k, θ)−Br , 0]2}E(k, θ), 

bk 

242 

r2 d r d 
r 

r 

(5) 
243  in which Cds is a dissipation constant, δd is a coefficient that controls the 
244  directionality of breaking and B(k) is the maximum value of Br(k, θ) for θ 
245  in the range [0, 2π]. Although this formulation is able to address both deep 
246  water and depth-induced breaking, ARD10 warned about the uncertainties 
247  involved in its application in shallow water environments. 

248  2.4.2. Test500 
249 With the main aim of overcoming the limitations of previous wave break- 
250  ing parameterizations, Filipot et al. (2010) and Filipot and Ardhuin (2012) 

225 B (k, θ) = 
θ—∆ 

B 
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251  (therein after FAB12) made a significant effort towards a unified breaking 
252  parameterization valid from the deep ocean to the surf zone. Filipot et al. 
253  (2010) divided the frequency spectrum into wave scales with finite bandwidth 
254  centred at frequency fi. Then, following Thornton and Guza (1983), they 
255  assumed that the breaking wave height distribution for each scale is given 
256  by the product of a Rayleigh distribution PR(H, fi) and a weight function 
257  Wb(H, fi). In order to extend the formulation outside shallow water, they 
258  replaced the breaking criterion of Thornton and Guza (1983), based on the 
259  relative water depth H/d, with the breaking parameter defined by Miche 
260  (1944): 

 

261 βr = 
 

 krHr 
  , 

tanh(krd) 
 

 

262  where kr and Hr are the representative wave number and wave height for 
263  each wave scale fi. The breaking wave height function Wb is: 

 
 
 

264 
W (H, f ) = 1.5[ 

βr 

b i β 

β 
]2{1 − exp[−( )4]}, (7) 

t,lin t,lin 

265  where βt,lin is the breaking threshold defined by Miche (1944) but that takes 
266  into account the wave linearization (Filipot et al., 2010), inherent to the wave 
267  scale decomposition. The breaking probability for the wave scale with central 
268  frequency fi is: 

 
 
 

269 Qb(fi) = 
∞ 

PR(H, fi)  Wb(H, fi)dH. (8) 
0 

270  The dissipation source term Sbk,i for the component involved in the wave 
271  scale i is then given by: 

 
 
 

272 

 

 

273 

D(fi)E(f ) 
Sbk,i(f ) = ∞ , 

0 

where D(fi) is the dissipation rate per unit area 

(9) 

274 D(fi) = Qb(fi)Π(fi)ϵ(fi), (10) 

275  being Π(fi) and ϵ(fi) the crest length density per unit area and the dissipation 
276  rate per unit length of breaking crest, respectively (Filipot and Ardhuin, 
277  2012). 

(6) 

∫ 
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278 Since the frequency windows overlap, each spectral component is asso- 
279  ciated with several wave scales. The dissipation source term is expressed 
280  as: 

 

281 Sbk 

1 
(f ) = 

N 

N 

S 
i=1 

 
bk,i (f ), (11) 

282  in which N is the number of wave scales involving the frequency f . 

283  2.5. Atmospheric forcings 
284 In this work we tested the impact of two atmospheric forcing datasets on 
285  WWIII model performance, under a winter characterized by a sequence of ex- 
286  ceptionally energetic storm conditions in the North-East Atlantic (Masselink 
287  et al., 2016). The first forcing dataset proceeds from the wind analysis ob- 
288  tained through the use of various remotely sensed wind observations. On the 
289  other hand, ERA5 reanalysis represents the second forcing dataset. These 
290  forcing datasets are briefly described in the following sections. 
291 Besides wind forcing, water levels and flow velocities computed by the 
292  Model for Applications at Regional Scales (MARS) (Lazure and Dumas, 
293  2008) were included in the WWIII simulations. MARS simulations were 
294  carried out over three nested grids with spatial resolution ranging from 2 km 
295  to 250 m in the shallower areas. MARS output was included only in the 
296  simulations over the unstructured grid, allowing the computation of wave- 
297  current interactions in the coastal environment. 

298  2.5.1. Satellite winds 
299 The remotely sensed data, also referred to as satellite wind analyses, 
300  used in this study are mostly derived from scatterometer wind retrievals in 
301  combination with radiometer observations (Bentamy et al., 2019; Desbiolles 
302  et al., 2017). The main sources of remotely sensed wind data are from scat- 
303  terometers onboard Metop-A (2007-present) and Metop-B (2012-present), 
304  and named ASCAT-A and ASCAT-B. Ancillary remotely sensed data are de- 
305  rived from radiometers Special Sensor Microwave Imager Sounder (SSMI/S) 
306  onboard the Defense Meteorological Satellite Program (DMSP) F16 (2003- 
307  present) and F17 (2006-present), and from WindSat onboard Coriolis satellite 
308  (2003-present). 
309 The scatterometer retrieval in combination with radiometer wind ob- 
310  servations, and with the European Center of Medium Weather Forecasts 
311  (ECMWF) re-analysis model ERA Interim (Simmons et al., 2007), are used 
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312  for determining regular in space and time surface wind analyses (Desbiolles 
313  et al., 2017). These are available at synoptic times (00h:00, 06h:00, 12h:00, 
314  and 18h:00 UTC), over the global oceans with a spatial resolution of 0.25o 

315  0.25o. Their accuracy, determined through comprehensive comparisons with 
316  6-hourly averaged buoy winds, is of same order of scatterometer retrieval 
317  accuracy. 
318 Regarding the study topic, it is of interest to determine some statistics 
319  aiming at the characterization of the remotely wind speed and direction anal- 
320  yses at regional scale. To achieve such purpose, satellite wind analyses are 
321  compared to collocated (in space and time) 6-hourly averaged wind speed 
322  and direction measured by buoys 62103, 62163 and 62001 (see their location 
323  in Figure 1). Scatter plots (not shown) indicate that satellite wind analyses 
324  agree well with buoy estimates for all wind speed and direction ranges, in- 
325  cluding high wind conditions. The correlation between buoy and satellite is 
326  almost 1, while symmetrical regression slope and intercept parameter are 1 
327  and of 0.1 m/s, respectively. Furthermore, the low Root Mean Square Error 
328  RMSE values (lower than 1 m/s and 20o for wind speed and wind direction, 
329  respectively) attest the quality of satellite wind analyses. Satellite data im- 
330  prove the comparisons with insitu wind measurements with respect to the 
331  ERA Interim model. In fact, the satellite wind dataset contributes to reduce 
332  the bias and RMSE values, improving the comparisons for high wind con- 
333  ditions and confirming the results of Bentamy et al. (2017) and Desbiolles 
334  et al. (2017). 

335  2.5.2. ECMWF winds 
336 In 2018 ECMWF released the ERA5 reanalysis with spatial resolution 
337  of 0.25o and 1-hour intervals (Hersbach et al., 2019). This dataset combines 
338  worldwide observations with model data collected from the 1979 until present. 
339  Atmospheric variables are given at the surface and on model levels.  The 
340  variables used as forcing for the WWIII simulations in this work are the 
341  horizontal components of the wind speed at 10 m above the sea level (Tolman, 
342  2016). 
343 Although the ERA5 dataset was originally released with an hourly output 
344  resolution, we reduced the time resolution to 6-hour intervals in the WWIII 
345  forcing. This has been done with the purpose of having the two forcing 
346  datasets assessed in this study with same spatial and time resolution, thus 
347  ensuring an insightful result comparison. The influence of time resolution of 
348  forcing winds on model results will be further addressed in section 4. 
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349  3. Results 

350 The impact of forcing winds and energy dissipation parameterizations 
351  on model performance is assessed by comparing the simulated datasets with 
352  the datasets produced by buoy and altimeter observations. Here, we adopt 
353  normalized statistics with the main aim of comparing a large range of wave 
354  conditions. The normalized root-mean-square-error NRMSE and normalized 
355  bias NBIAS are defined as follows: 
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NBIAS = 
Σ 

(Oi − Mi). (13) 

where Oi and Mi are the observed and modelled variables. 
For the sake of clarity we assign the names of each model output dataset 

by specifying the dissipation parameterization used followed by the wind 
forcing. For instance, the output including Test500 and the ECMWF forcing 
is called Test500ECMWF. 

3.1. Wave buoys 
Figure 4 shows the comparison between observed and modelled significant 

wave height Hs time series at the offshore buoy 62163 and at the coastal 
buoy 5602. Despite some differences among the four model outputs, overall 
the WWIII datasets are able to capture the main evolution of the observed 
dataset. However, evident discrepancies can be found at storm peaks where 
the modelled Hs underestimate the observations, especially in coastal water. 
An exception to this trend is represented by Test500Satellite at buoy 62163 
that seems to better represent the Hs evolution at the peak of the main 
storms. 

To achieve a quantitative assessment of model performance, modelled 
time series are linearly interpolated over the observed time series. The scat- 
terplots of the total number of samples N , divided into deep water and 
coastal water, are shown in Figure 5, for the wave parameter Hs. NRMSE 
is on the order 0.1 at deep water buoy locations, ranging between 0.098 
for Test500ECMWF and 0.134 for Test500Satellite. Test500Satellite slightly 
overestimates Hs (NBIAS is 0.031), whereas a small underestimation is given 

i 
. 
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Figure 4: Observed (gray line) and predicted time series of significant wave height Hs 
at the deep water buoy 62163 (a) and at the coastal buoy 5602 (b). The four computed 
datasets are shown. Storms are coloured in yellow. 

 
380  by Test471ECMWF (NBIAS is -0.025). The other two datasets are practi- 
381  cally unbiased (|NBIAS|<0.003). 
382 In general terms, for all datasets the NRMSE of Hs increases by few 
383  points percentage at coastal buoy locations. This is an expected result given 
384  the additional modelling challenges represented by the coastal environment 
385  (van Vledder et al., 2016), such as complex bathymetries and tidal currents, 
386  with respect to the deep ocean. A remarkable result comes from the obser- 
387  vation of coastal water scatterplots and the associated NBIAS of Hs. In fact, 
388  whereas all datasets overestimate Hs with positive NBIAS between 0.01 and 
389  0.042, the points associated to higher Hs (Hs>10m) fall below the line of 
390  perfect agreement, meaning that those large Hs are underestimated. This is 
391  in agreement with the Hs underestimation at storm peaks already observed 
392  in Figure 4. 
393 The analysis of model accuracy is integrated by the Taylor diagrams in 
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394  figure 6. All datasets have Correlation Coefficients larger than 0.95. In 
395  deep water, Test471Satellite and Test500ECMWF have the larger agreement 
396  with the observations in terms of Standard Deviation and RMSD. In coastal 
397  water, the differences between datasets are less marked, with Test500Satellite 
398  slightly improving the prediction in terms of Standard Deviation. 

399  3.1.1. Storm evolution and peaks 
400 To explore in more detail the model performance in addressing extreme 
401  Hs, Figure 7 provides the scatterplots of observed and modelled Hs at the 
402  storm peak. In this case the number of samples N is simply given by the 
403  product of the number of storms times the number of locations. For all 
404  datasets the NRMSE increases in coastal water. Moreover, NBIAS is always 
405  negative confirming the Hs underestimation at storm peaks. Both in deep 
406  and coastal water, Test500Satellite gives the lowest NBIAS in absolute value 
407  (the underestimation is less pronounced). Whereas the largest Hs underes- 
408  timation (minimum NBIAS) is provided by Test471ECMWF. 
409 In contrast with Figure 7, we do not observe a systematic negative NBIAS 
410  for Hs in Figure 8. This Figure shows the scatterplots of observed and mod- 
411  elled Hs collected during storms in deep water and at coastal buoy locations. 
412  In coastal water, the positive NBIAS values of datasets involving the param- 
413  eterization Test500 are likely to be driven by the large number of Hs data 
414  below 6 m. However, underestimation is still noticeable for more energetic 
415  conditions (Hs>6 m). Figure 10 aims at pointing out the difference between 
416  the identification of the extreme Hs at the peak of a storm (the circle, in 
417  this case storm S10) and the identification of the Hs values collected during 
418  a storm (the thick line). Note that the time instants at which extreme Hs 
419  occurs for the observed and modelled dataset do not necessarily coincide. For 
420  instance, with the ECMWF and satellite datasets, the modelled maximum 
421  is slightly ahead and delayed, respectively. 
422 The Taylor diagrams of figure 9 integrate the information provided by the 
423  scatter plots of figure 8. Correlation Coefficients are on the order of 0.9 for 
424  all datasets. In deep, Test500Satellite gives the largest Standard Deviations. 
425  In coastal water, the low values of the modelled Standard Deviations seem 
426  to confirm the peak underestimation already suggested by the scatterplots 
427  of figure 8. 
428 Figure 11 shows the extreme wave energy flux Fe computed at the peak of 
429  the storm and during the storm occurrence in coastal water. The wave energy 
430  flux Fe is calculated from linear theory, assuming a Rayleigh distribution 
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Figure 5: Scatter plot of observed versus modelled significant wave height Hs in deep water 
(a-d) and coastal water (e-h). The four datasets are shown. The grey line represents the 
mean of the model values. 
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Figure 6: Taylor diagrams of Significant wave height in deep (a) and coastal (b) water. 

 
431  of wave heights (Longuet-Higgins, 1952), as the product between the wave 
432  energy density E and the group celerity cg: 

Fe = E · cg, (14) 
 

433 in which  
E = 

1 
ρgH2 
 

 
, (15) 

 

434 

cg = 

8 
1 
c(1 + 

2 

RMS 

2kh 
sinh(2kh) 

 
), (16) 

435  where ρ is the water density, g is the acceleration of gravity, HRMS is the 
436  root mean square wave height (HRMS = Hs/1.4), c is the wave celerity, k 
437  is the wave number and h is the water depth. Both c and k are computed 
438  from linear wave theory using the mean period T02.  Fe plots tend to be 
439  more scattered than those of Hs, with Test471ECMWF providing the largest 
440  NRMSE for Fe both at the peak and during the storm. Test471ECMWF also 
441  gives the largest underestimation of Fe. Test500Satellite is the only dataset 
442  that overestimates Fe (NBIAS=0.05) during storms although, analogously 
443  the Hs trend commented in Figure 8, large values (Fe > 0.5 MJ ) are clearly 
444  underestimated. This point will be discussed in section 4. Tables 3 and 4 
445  list the error statistics of the four datasets at the wave buoys. 
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Table 3: Hs statistics. 

 

 

Hs NRMSE 
Dataset All Extreme Storm All Extreme Storm 

Deep Water Coastal Water 
T471Satellite 0.11 0.12 0.11 0.13 0.19 0.13 
T471ECMWF 0.10 0.16 0.11 0.12 0.19 0.13 
T500Satellite 0.13 0.09 0.14 0.14 0.16 0.14 
T500ECMWF 0.10 0.11 0.10 0.13 0.16 0.13 

Hs NBIAS 
Dataset All Extreme Storm All Extreme Storm 

 Deep Water Coastal Water 
T471Satellite -0.00 -0.09 -0.01 0.01 -0.12 -0.00 
T471ECMWF -0.03 -0.15 -0.05 0.03 -0.13 0.00 
T500Satellite 0.03 -0.01 0.05 0.03 -0.08 0.02 
T500ECMWF -0.00 -0.09 -0.01 0.04 -0.09 0.03 

 
 

 
Table 4: T2 and Fe statistics in coastal water. 

 

 

T02 NRMSE Fe NRMSE 
Dataset All Extreme Storm All Extreme Storm 

T471Satellite 0.12 0.11 0.08 0.33 0.51 0.34 
T471ECMWF 0.09 0.14 0.08 0.34 0.55 0.36 
T500Satellite 0.14 0.11 0.09 0.32 0.44 0.32 
T500ECMWF 0.10 0.13 0.07 0.31 0.49 0.32 

T02 NBIAS Fe NBIAS 
Dataset All Extreme Storm All Extreme Storm 

T471Satellite 0.04 -0.05 0.01 -0.01 -0.35 -0.04 
T471ECMWF -0.01 -0.10 -0.03 -0.05 -0.42 -0.11 
T500Satellite 0.06 -0.03 0.03 0.05 -0.27 0.05 
T500ECMWF 0.00 -0.08 -0.02 -0.01 -0.36 -0.05 
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Figure 7: Scatter plot of observed versus modelled extreme significant wave height Hs in 
deep water (a-d) and coastal water (e-h). The four datasets are shown. 

 
446  3.1.2. Spectral wave analysis and sea/swell decomposition 
447 The availability of the two-dimensional spectra at the four coastal buoys 
448  managed by CEREMA (62069, 62064, 4403, 5602) allows the spectral anal- 
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Figure 8: Scatter plot of observed versus modelled significant wave height Hs in deep water 
(a-d) and in coastal water (e-h) during storm duration. The four datasets are shown. The 
grey line represents the mean of the model values. 
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Figure 9: Taylor diagrams of significant wave height during storms in deep (a) and coastal 
(b) water. 

 
449  ysis of storms occurred in the winter 2013/2014 at those locations. An ex- 
450  ample of spectral evolution during a storm is displayed in Figures 12 and 13 
451  for storm S10 at the coastal buoy 62069. At the beginning of the storm, the 
452  measured spectrum shows a variegated shape with multiple peaks (see for 
453  instance the secondary peak at 0.17 Hz and 200o) that are less marked in the 
454  modelled spectrum (T471ECMWF). At the end of the storm, the computed 
455  spectrum reproduces the secondary peak at frequencies lower than 0.1 Hz 
456  and direction nearly opposite with respect to mean storm direction, proba- 
457  bly due to wave reflection at the shoreline. Figure 13 highlights as the wide 
458  1-D frequency spectrum observed at the beginning of the storm tends to a 
459  more narrow shape as the storm attenuates towards the end. At the peak of 
460  the storm, the energy gap between the modelled spectra and the measured 
461  one is particularly evident. At the storm beginning, both the atmospheric 
462  Sin and the energy dissipation Sds source terms proceeding from datasets us- 
463  ing satellite forcing are larger that those of the ECMWF dataset. Moreover, 
464  Test500 seems to give a smoother dissipation spectrum. This is consistent 
465  with Leckler et al. (2013) and is likely due to the averaging over wave scales 
466  of equation (11). On the contrary, as a result of its dissipation rate that is 
467  local in frequency, Test471 gives a higher dissipation rate at the peak fre- 
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Figure 10: Observed (gray) and modelled (black) significant wave height Hs during storm 
S10 at buoy 5602. Thick lines highlights the Hs evolution during the storm. The circles 
indicate the extreme Hs values. 
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Figure 11: Scatter plot of observed versus modelled extreme (a-d) and collected during 
storms (e-h) energy flux Fe (a-d) in coastal water. The four datasets are shown. The grey 
line represents the mean of the model values. 
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468  quency at the beginning and at the peak of the storm. At the end of the 
469  storm, Test500 gives the higher dissipation rates. However, their impact on 
470  storm evolution seems to be limited since these dissipation rates at the end 
471  of the storm are three orders of magnitudes smaller than those at the storm 
472  peak. 
473 The identification of the wind and swell components of the spectrum is 
474  carried out by means of the wave age criterion first introduced by Hanson 
475  and Phillips (2001). The wind sea component W is defined as: 

476 W = E—1E|U >c, (17) 

477  where E is the total spectral energy and E Up>c is the energy of the region 
478  of the spectrum under the direct influence of the wind. Up is the projection 
479  of the wind speed, with direction θ, along the mean wave direction θw: 

480 Up = CU10cos(θ − θw), (18) 

481  where C has been set equal to 1.7.  Figure 14 shows the scatter plots of 
482  the wind and swell components of the significant wave height for the four 
483  datasets. Swell waves are characterized by a larger NRMSE than wind waves, 
484  with all the datasets that tend to underestimate extreme values larger than 6 
485  m. The extreme values of wind waves (> 10 m) are larger than those of swell 
486  waves. These extreme wind wave conditions are slightly underestimated, al- 
487  though the ECMWF forcing leads to a positive NBIAS due to overestimation 
488  of moderate values. Table 5 reports the error statistics of the sea and swell 
489  components of the four datasets at the coastal wave buoys. It is worth noting 
490  that all datasets have, respectively, positive and negative NBIAS for wind 
491  and swell waves under storm duration. Therefore, the virtually unbiased total 
492  Hs values during storms may be the result of a balance between a small over- 
493  estimation of the wind component combined with a small underestimation 
494  of the swell component. 

495  3.2. Storm tracking 
496 Figure 15 shows the result of the storm tracking process for storm S10. 
497  The storm path from its generation to its dissipation is superposed to the 
498  atmospheric pressure field at the time of storm arrival at buoy 62163 (see 
499  Figure 15b). The centre of the low pressure system lies few hundreds km 
500  west of the buoy. The large pressure gradients in the southern part of the 
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Figure 12: Computed (T471ECMWF) and measured frequency-directional wave spectra 
at the beginning (a and d), peak (b and e) and end (c and f) of the storm S10 at buoy 
62069. 

 
501  system are capable of driving strong westerly winds, as displayed in Figure 
502  16a. 
503 The intense wind forcing in the southern part of the low pressure system 
504  controls the wave storm propagation across the Atlantic. Figure 16 high- 
505  lights the spatial relationship between the low pressure system and the wind 
506  and wave height fields as the storm hits the offshore buoy 62163. This Fig- 
507  ure displays the results obtained by the Test471ECMWF. The largest winds 
508  (in excess of 25 m/s) and significant wave heights (in excess of 10 m) are 
509  predicted to occur inside the half circle of 800 km radius depicted in Figure 
510  16. 
511 To assess the model performance along the storm propagation, we retain 
512  the Hs altimeter measurements falling inside a half-circle of 800 km of radius 
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Figure 13: Frequency wave spectra at the beginning (a), peak (b) and end (c) of the storm 
S10 at buoy 62069 (T471ECMWF). The values of Hs and T02 are those measured by the 
buoy; the wind speed at 10 m U10 is from the ECMWF dataset. Atmospheric source terms 
(d-f). Dissipation source term (g-i). 

 
513  south of the centre of the recognized low-pressure systems.  See Figures 3 
514  and 16.  Figure 17 shows the comparison between the Hs from altimeter 
515  measurements and from model computations along the storm propagation 
516  paths. The model results have been interpolated from the regular grid over 
517  the altimeter path. The observation of the scatterplots of Figure 17 draws the 
518  attention to the combined role played by model forcing and parameterization 
519  used. Whereas Test471Satellite and Test500ECMWF are characterized by 
520  minimal NBIAS values, Test500Satellite and Test471ECMWF give positive 
521  and negative NBIAS values, respectively. Test500ECMWF is the one showing 
522  the lowest NRMSE. 
523 Figure 18 compares the wind from the ECMWF and satellite forcing 
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Figure 14: Scatter plot of observed versus modelled significant wave height Hs os the sea 
component (a-d) and the swell component (e-h). The four datasets are shown. The grey 
line represents the mean of the model values. 
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Table 5: Sea and swell waves statistics in coastal water. 

 
 

Hs NRMSE 
Dataset All Extreme Storm All Extreme Storm 

 Wind waves   Swell waves  
T471Satellite 0.13 0.13 0.11 0.15 0.14 0.11 
T471ECMWF 0.12 0.14 0.10 0.15 0.15 0.11 
T500Satellite 0.13 0.10 0.12 0.15 0.12 0.12 
T500ECMWF 0.12 0.10 0.12 0.15 0.13 0.13 

Hs NBIAS 
Dataset All Extreme Storm All Extreme Storm 

Wind waves Swell waves 
T471Satellite -0.05 -0.07 0.04 -0.01 -0.08 -0.08 
T471ECMWF 0.03 -0.10 0.01 -0.02 -0.10 -0.07 
T500Satellite -0.03 -0.01 0.06 -0.00 -0.05 -0.04 
T500ECMWF 0.05 -0.06 0.03 -0.02 -0.08 -0.04 

 

 
524  datasets. The wind speed values are extracted along the low-pressure sys- 
525  tems path propagation, thus corresponding to the time and location of Hs 
526  values of figure 17. The NBIAS is slightly negative meaning that, along the 
527  extra-tropical cyclone paths, the winds of ECMWF forcing are smaller than 
528  those of the satellite forcing. This underestimation becomes more evident for 
529  strong winds above 20 m/s. This is consistent with Figure 17, in which for a 
530  given parameterization, NBIAS of Hs is lower with the adoption of ECMWF 
531  forcing. In fact, the smaller ECMWF storm winds are likely to yield lower 
532  energy transfer rates from the atmosphere to the wave motion, eventually 
533  reducing the sea state growth along storm tracks. 

 
534  4. Discussion 

535 In this work, wave spectral numerical simulations under storm wave con- 
536  ditions show a substantial dependence on the wind forcing and wave dissipa- 
537  tion parameterization used. Roland and Ardhuin (2014) suggested that the 
538  quality of wind data and source term parameterizations are the main factors 
539  defining the accuracy of spectral wave results. Here, we address this subject 
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Figure 15: a) Atmospheric pressure field at the moment of the S10 storm arrival at the 
deep-water buoy 62163 (grey point). The dashed line indicates the low-pressure system 
path. b) Time series of significant wave height Hs recorded at the buoy 62163. The 
red dashed line marks the time instant of panel a). The storms at the buoy 62163 are 
highlighted in yellow. 

 
540  under extreme storm conditions. This section highlights the main outcomes 
541  of the present study and discusses its results in the light of previous work. 
542 A first analysis assesses the model performance separately at deep wa- 
543  ter buoys and coastal buoys. Model performance decreases when computed 
544  data are compared with buoy measurements in coastal water. This result is 
545  consistent with previous studies (Ravdas et al., 2018). In contrast with deep 
546  water waves, coastal waves are controlled by the combined effect of irregular 
547  shorelines, uneven bathymetry and mean water level oscillations. In addi- 
548  tion, the interaction with strong tidal currents is not negligible. Besides the 
549  challenges in modelling the complex physics of coastal wave processes, the 

S10  

 
 

S10  

H
s 

[m
] 



33  

 
 

 
 
 
 

 
60°N 

 
 

 
50°N 

 

 
40°N 

 
 
 
 
 
 

60°N 
 
 

 
50°N 

 

 
40°N 

UTC 06:00 14-02-2014 
Wind speed [m/s] 

 
 
 
 
 
 
 
 
 
 
 
 

 
70°W 60°W 50°W 40°W 30°W 20°W 10°W 

Hs [m] 
 
 
 
 
 
 
 
 
 
 
 
 

 
70°W 60°W 50°W 40°W 30°W 20°W 10°W 

 

 
30 
25 
20 
16 
14 
12 
10 
8 
6 
4 
2 

 

 
12.0 
10.0 
8.0 
7.0 
6.0 
5.0 
4.0 
3.0 
2.4 
1.6 
0.8 

 

 
Figure 16: a) Wind speed field at the moment of the S10 storm arrival at the deep-water 
buoy 62163. b) Significant wave height Hs field at same time of panel a). The dashed 
line indicates the low-pressure system path. The solid black line shows the half circle with 
radius of 800 km. Altimeter measurement locations are shown by the grey dots. 

 
550  quality of bathymetric and ocean circulation data play a significant role. In 
551  fact, tidal currents, mean water levels and bathymetry data are inevitably 
552  affected by errors that may propagate into the wave model and therefore 
553  decrease its accuracy in the nearshore. 
554 The NRMSE and NBIAS values of Hs along storm tracks across the 
555  Atlantic are consistent with those at deep water buoys during storm duration. 
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Figure 17: Scatterplots of the observed versus modelled significant wave height Hs along 
the storm tracks. Panels a), b), c) and d) show the comparison for different forcings and 
parameterizations. The grey line represents the mean of the model values. 

 
556  For a given parameterization, the use of the wind forcing from satellite data 
557  tends to increase the NBIAS with respect to the use of the ECMWF wind 
558  forcing. This is likely to be related to an underestimation of extreme winds by 
559  the the ECMWF reanalysis dataset (Rascle and Ardhuin, 2013), see Figure 
560  18. Analogously, for a given wind forcing, NBIAS rises when Test500 is used. 
561  This result is consistent with Filipot and Ardhuin (2012). In general terms, 
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Figure 18: Scatterplot of satellite wind speed versus ECMWF wind speed along the storm 
tracks. The grey line represents the mean of the model values. 

 
562  Test500ECMWF seems to be the most robust choice for the simulation of 
563  storm evolution both along storm tracks (NRMSE=0.1, NBIAS=0.02) and 
564  at buoy locations (NRMSE=0.1, NBIAS=-0.01). 
565 The spectral analysis shows that all datasets tend to underestimate the 
566  swell component oh Hs at four coastal buoys during storm conditions. Fig- 
567  ure 12 reveals that during an energetic storm a considerable amount of low- 
568  frequency energy is propagating with an opposite direction with respect to 
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569  the main storm direction. This highlights the importance of shallow water 
570  processes, such as wave reflection at the shoreline, in determining the total 
571  energy budget in coastal water. To have a first assessment of the impor- 
572  tance of wave reflection during storms, we isolate the seaward component 
573  of spectrum (retaining the seaward wave components that are more than 
574  90o apart from the main wave direction). The comparison of the Hs with 
575  the measurements shows that in the model this component is largely under- 
576  estimated (with NBIAS ranging between -0.19 and -0.25 depending on the 
577  dataset). Although the great part of wave energy is propagating shoreward, 
578  this strong underestimation of the seaward component of the spectrum is 
579  likely to contribute to the underestimation of the swell component under 
580  storms in coastal water. 
581 In contrast with its values during storm events, Hs at the storm peak 
582  is systematically underestimated as revealed by its negative NBIAS values. 
583  This result is valid at both offshore and coastal buoys. Although all datasets 
584  share this trend, this underestimation is particularly marked using the combi- 
585  nation of ECMWF forcing and Test471 parameterization: NBIAS=-0.15 and 
586  -0.12 in deep and coastal water, respectively. The dataset Test500Satellite 
587  provides the smallest NBIAS, in absolute values, thus reducing the under- 
588  estimation.  Although Test500Satellite provides the smallest NRMSE and 
589  absolute NBIAS, it seems that it has the main drawback of overestimating 
590  Hs larger than 15m (see Figures 7 and 17). 
591 When comparing the results coming from the different model settings 
592  described in this work, it is worth mentioning that the calibration of the two 
593  wave breaking parameterizations used here has been carried out with the 
594  ECMWF wind forcing (Tolman, 2016). Nevertheless, both parameterizations 
595  perform well with satellite forcing showing minimal bias for the entire winter 
596  timeseries. Since satellite data are expected to improve the characterization 
597  of high wind conditions with respect to the ECMWF products (Bentamy 
598  et al., 2017), we argue that a new calibration of parameterizations T471 
599  and T500 with the satellite wind forcing may lead to an improvement of the 
600  prediction of extreme sea states. However, the calibration task is beyond the 
601  scope of this work, focusing on the winter 2013/2014, as longer simulations 
602  are required. 
603 Another aspect to be taken into account is that, as can be seen in Figure 
604  10, Hs measurements are more noisy than simulated results. These spikes 
605  are likely to enhance the Hs peak underestimation by the model that could 
606  then be mitigated by applying a despiking filter to the measured timeseries. 
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607  However, we prefer to avoid this alteration due to its involved subjectivity. 
608  It can be worth mentioning that Castelle et al. (2015) simply applied a linear 
609  coefficient equal to 1.07 to adjust the Hs values from WWIII simulations to 
610  the measurements from buoy 62064 under the same period. 
611 An underestimation is found also for extreme mean wave period T02 and 
612  energy flux Fe in coastal water. NBIAS for T02 is slightly smaller, in absolute 
613  value, than that for Hs. On the other hand, the stronger underestimation of 
614  peak values of Fe (NBIAS between -0.27 and -0.42) is due to the Fe parameter 
615 definition, resulting from the product of E which is function of H2 and cg 
616  which is function of wave period. 
617 The observed underestimation of extreme wave parameters highlights the 
618  importance of the choice of an accurate hindcast product for extreme wave 
619  analysis purposes. In fact, long-term hindcasts affected by errors in extreme 
620  sea state conditions can strongly impact the the probabilistic moments and 
621  the tail of the distributions used for extreme event analysis (Campos et al., 
622  2019). This may have a crucial importance especially in calculation design. 

623  4.1. Impact of time resolution of forcing winds 
624 Due to the observed rapid evolution of sea states under extreme weather 
625  conditions, it appears plausible that the time resolution of the wind forcing 
626  might have an impact on wave model result accuracy. In this paper we have 
627  tested two wind datasets with the same time resolution of 6 hours. Here, 
628  we assess a possible negative impact of relatively low time resolutions of 
629  the wind forcing dataset. The accuracy of the wave output proceeding from 
630  simulations with the Test500 parameterization and forced by ECMWF ERA5 
631  winds at one hour resolution is discussed. 
632 In our case the high-resolution wind forcing does not lead to a reduction of 
633  the NRMSE of Hs for the entire dataset in deep water (NRSME=0.10). The 
634  Hs data stays unbiased (NBIAS<0.005). The main benefit of using a high- 
635  resolution wind forcing seems to be related to the ability of catching extreme 
636  Hs at the storm peak. In fact, the NRMSE for extreme Hs experiences a 
637  small decrease (from 0.111 to 0.106). Moreover, the one hour time resolution 
638  forcing leads to a smaller underestimation of extreme Hs: NBIAS passes 
639  from -0.09 to -0.08. Although detectable, the impact of the time resolution 
640  of the forcing winds is undoubtedly limited. The limited magnitude of this 
641  improvement seems to be related to the lengthy evolution of Atlantic swells 
642  that progressively gain energy along their tracks across the ocean.  These 
643  swells characterized by a large wave age are likely to dominate the sea state at 
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644  the considered wave buoys, thus reducing the impact of fast wind oscillations 
645  included in a high time resolution wind forcing. 
646 What we have observed here in terms of the impact of the increased time 
647  resolution of winds on wave modelling is consistent with Mentaschi et al. 
648  (2015) who suggested that a resolution increase of the forcing wind field (in 
649  their case it was a spatial resolution increase) may not lead to an improve- 
650  ment of single point statistics. According to previous studies (Cavaleri, 2009; 
651  Ardhuin et al., 2007; Bertotti and Cavaleri, 2009) they attributed this result 
652  to the so-called double penalty effect: some features and patterns may be 
653  missed or reproduced in a wrong place in space and time by the model. 

654  4.2. Parameterization ST6 
655 Version 5.16 of WWIII includes the new package ST6 which is designed 
656  for the parameterization of wind input, wave breaking and swell dissipation. 
657  We comment here the results obtained by activating ST6. For our dataset, 
658  setting the FAC parameter equal to 1.09, that means increasing the value of 
659  the wind drag by 9%, yields a reduction of absolute NBIAS with respect to 
660  the default value of FAC=1. This is in agreement with Zieger et al. (2015) 
661  who used the same value in combination with CFSR wind reanalysis.  In 
662  fact, our results shows a clear under- and overestimation of Hs with the 
663  other two values proposed by Zieger et al. (2015): FAC=1 in combination 
664  with CFS winds and FAC=1.23 in combination with NOGAPS winds. A 
665  more detailed sensitivity analysis of the FAC or other parameters included 
666  in the parameterization ST6 is beyond the scope of this work. 
667 Although the use of ST6 with FAC=1.09 leads to a small NBIAS for the 
668  entire dataset (<0.04), Hs values at storm peaks remain underestimated. 
669  With both Satellite and ECMWF wind forcing dataset, the use ST6 leads 
670  to NBIAS values of extreme (at the storm peak) Hs comprised between the 
671  values associated with Test471 and Test500.  For instance, at deep water 
672  buoys with ECMWF forcing, the NBIAS for extreme Hs is equal to -0.13, a 
673  value that lies between the those associated with Test471 (-0.15) and Test500 
674  (-0.09), see Table 3. This results suggest that, despite ineluctable differences, 
675  the general behaviour of ST6 in predicting Hs under moderate and extreme 
676  conditions is analogous to what we have already seen and commented for 
677  Test471 and Test500 of the parameterization group ST4. 
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678  5. Conclusions 

679 The aim of this work was to assess the impact of wave breaking parame- 
680  terizations and wind forcing datasets on the accuracy of spectral wave model 
681  results under storm wave conditions. We used the WWIII model to simulate 
682  the storm sequence occurred in the winter 2013/2014 on the North-East At- 
683  lantic. This work focused on two wave breaking parameterizations included 
684  in the parameterization group ST4: Test471 and Test500. Moreover, we 
685  tested two forcing datasets with six-hour time resolution winds: one based 
686  on satellite observations and another based on the ECMWF ERA5 reanaly- 
687  sis. The analysis was carried out firstyl by identifying the individual storms 
688  at North-East Atlantic buoy locations and then following the storm tracks 
689  across the ocean. The main findings are summarized here: 

The choice of the combination of the wave breaking parameterization 
and the wind forcing dataset significantly affects the model results in 
terms of NBIAS and NRMSE of wave parameters. This is valid for 
wave parameters computed over the entire time series, during storm 
evolution as well as at the storm peaks. The change of a given breaking 
parameterization or wind forcing dataset leads to changes in NBIAS 
and NRMSE of Hs and T02 that are on the order of 5%. Due to its 
definition involving the product between group parameters function of 
H2 and T02, Fe suffers more variability. 
For a given wave dissipation paremeterization and wind forcing, the 
NBIAS and NRMSE values of Hs computed under storm conditions 
at wave buoys are consistent with those computed along storm tracks 
across the Atlantic. Test500 together with the satellite wind forcing 
gives higher Hs values, thus increasing the NBIAS with respect to, re- 
spectively, Test471 and ECMWF wind forcing. By improving the error 
metrics, Test500ECMWF seems to represent the most robust choice for 
simulating the storm evolution. 
Negative NBIAS values of Hs at the storm peaks reveal a significant 
underestimation of extreme wave conditions that is particularly marked 
at the coastal buoy locations. This underestimation, common to all the 
tested datasets, is reduced by using the Test500Satellite dataset. 
The spectral analysis shows that at the coastal buoys a considerable 
amount of energy is propagating seaward during storms, possibly as a 
result of wave reflection at the shoreline. This seaward component is 

690 1. 
691  
692  
693  
694  
695  
696  
697  

698  

699 2. 
700  
701  
702  
703  
704  
705  

706  

707 3. 
708  
709  

710  

711 4. 
712  
713  



40  

 

 
714 strongly underestimated by the model (NBIAS of the order of -0.2), 
715 thus contributing to the underestimation of the swell component at the 
716 coastal buoy locations. 
717 5. The use of the high-resolution wind forcing (one-hour resolution) ERA5 
718 does not significantly improve the error statistics computed over the 
719 entire time series at the wave buoys. The main benefit of using a 
720 high-resolution forcing resides in the (limited, on the order of 1%) im- 
721 provement of NRMSE and NBIAS values of extreme wave conditions 
722 at storm peaks. 
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