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Abstract. The disability associated with limb amputation makes it dif-
ficult to perform the simplest everyday activities. Robotic prostheses
can be used to address this complication. These prostheses apply ma-
chine learning methods to the EMG/ENG signals to understand the
amputee’s intention. The use of ENG signals compared to EMG signals
is very recent, and allows not only the amputee to perform gestures, but
also to mitigate the symptoms of the phantom limb and to restore the
sense of touch, since the robotic arm can provide tactile feedback to the
peripheral nervous system. In this work, a technique to classify ENG
signals, recorded from individuals with limb amputation, is described.
All the steps that compose the technique are illustrated in detail. In the
last part of this article, some innovative deep learning techniques are
suggested in order to improve the state-of-the-art.
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1 Introduction

More and more people are suffering from motor disabilities that make it diffi-
cult to perform trivial activities in everyday life. Among this group of people,
some have had an amputation. Problems related to the lack of a limb are both
anatomical and psychological [4]. These can be partially solved with the use of
robotic prostheses [2]. Ideally, the prosthesis could be directly controlled by the
amputee by capturing his/her electromyography (EMG) signals or electroneu-
rogram (ENG) signals and applying machine learning methods to automatically
understand the intention on movement based on those signals. State-of-the-art
EMG signals are the most widely used, since classification results are accu-
rate, and thanks to the fact that electrodes used to acquire the signal are non-
invasive [10].

However, controlling the robotic arm based on the analysis of ENG signals
acquired from the peripheral nervous system (PNS) would enhance the user ex-
perience, since the robotic arm could provide tactile feedback to the user through
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the PNS. Even though intrafascicular electrodes are invasive, the availability of
tactile feedback allows to mitigate the symptoms of phantom limb syndrome and
restores the sense of touch [6]. Moreover, signals extracted from PNS are very
selective, receiving signals from a small number of neurons. Hence, they have a
good potential to accurately recognize gestures at a fine-grained level.

The use of intrafascicular electrodes presents a challenge. Indeed, they are not
fixed, but tend to move within the nerve. This leads, over time, to having different
patterns of signals during the execution of the same action, and therefore to
confuse the machine learning classifier. It is, therefore, necessary to be able to
create a model that can be trained periodically with a small training set, also
because the collection of the new training set to update the model is obtrusive
and uncomfortable for the user.

This work represents an overview of what we are doing and what we want
to do in the future to address this challenging research problem. In Section 2,
we describe the steps of the methods that we used. In particular, we present
the data collection method, we show how we reduced the signals noise by us-
ing Wavelet denoising, and we explain how we detected and sorted the spikes
produced by each neuron. Moreover, we illustrate how the features has been
extracted, we explain how we classify motor actions, and we present our post-
processing method. Finally, in Section 3, we report the issues that are still open
and the related solutions that can be developed in future works.

2 Proposed methodology

In this section, we illustrate the main steps involved in the classification of ENG
signals controlling the arm movements. Of course, the performance of each step
is fundamental for the whole process, and can severely influence the final result
of the classification. Figure 1 shows the flow chart which specifies the execution
order of the steps in the technique.
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Fig. 1. Flow chart of the main steps used to classify ENG signals.

2.1 Data collection

Here we describe the data collection method used within the Nebias European
project!. In general, ENG signals can be acquired through the use of different
types of electrodes. The one used in the Nebias project is the Transverse Intrafas-
cicular Multichannel Electrode (TIME) [3]. This is inserted transversely into the
nerve, in order to communicate selectively with the internal fibres (axons) of the
nerve. Its structure allows a multi-site registration and a selective stimulation,
thus provides a bidirectional connection between the peripheral nervous system
(PNS) and the prosthesis.

After implanting the TIME, in order to acquire a training set for the classifier,
the user is asked to imagine performing certain actions, several times, with the
missing limb. During the execution of the actions, the neural signals coming
from eight sites (channels) and the square wave signal (trigger) were recorded.
The latter is produced by a researcher pressing a button during the execution
of each action, and allows understanding when an activity begins and when it
ends. Figure 2 shows the raw data acquired from the TIME (in blue), as well
as the trigger manually set by the researcher. As it can be observed, although
many spikes correspond to actions, the signal is very noisy. Moreover, the user’s
reaction time to the request to execute a command leads to a phase shift between
the trigger switch and the action, which results in a small delay between the start
of the trigger and the actual start of the activity signal.

! http://www.nebias-project.eu/
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Fig. 2. A sample of the acquired dataset. The ENG signal is represented in blue, while
the red lines represent the square wave signal (trigger) which indicates the beginning
and the end of an action.

2.2 Wavelet denoising

Real-world ENG signals, being acquired in naturalistic conditions, are affected
by a high level of noise. Wavelet denoising (WD) [1] is used to reduce the noise
in the raw signal data. WD transforms the noisy signal into noisy wavelet coef-
ficients in an orthogonal time-frequency domain. In this domain, signal features
are concentrated in a few large-magnitude wavelet coefficients. Wavelet coeffi-
cients, which are small in value, are typically noisy. Hence, we can reduce or
remove them without negatively affecting the signal quality. After adjusting the
coefficients based on thresholds, we reconstruct the data using the inverse wavelet
transform. Figures 3 and 4 show the ENG signal respectively before and after
denoising. This phase requires specific expertise, since completely removing the
noise can lead to the loss of essential information for the correct classification.
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Fig. 3. Raw ENG signal
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Fig. 4. Partially denoised ENG signal

2.3 Spike detection and sorting

Within the neural signal, each action is characterized by a different set of action
potentials. An action potential occurs when a neuron sends information down
an axon. The action potential is called a spike. Spike sorting [9] creates clusters
with spikes having similar shape. Every neuron tends to produce spikes of a
particular shape; therefore, each final cluster corresponds to the activity of a
supposed neuron.

The spike sorting algorithm is composed of four main steps:

— Filtration: a bandpass filter is applied to continuously recorded data to ex-
clude low-frequency activity so that spikes are more evident.

— Spike Detection: from filtered data, spikes are usually detected using an
amplitude threshold.
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Fig. 5. The wave_clus tool for spike sorting.

— Feature extraction: to perform spike sorting, it is necessary to extract the
features of the spike shapes. This step reduces the dimensionality, thus
saves computational time and improves clustering results by deleting noise-
dominated inputs.

— Clustering: the last step of spike sorting is to group spikes with similar
features in clusters, corresponding to different neurons. Usually, with TIME-
based data acquisition, spikes are clustered in three classes.

Figure 5 shows the wave_clus tool® used to perform the above steps.

2.4 Features extraction

Observing a single sample is not sufficient to understand whether an action is
taking place or not. This is because not all samples that compose action have
spikes, and some samples that compose inaction may have spikes. Therefore,
signal samples have been grouped by a sliding window [8] . The choice of the
size of the windows is very important, indeed we want a good spikeness (number
of spikes per window) in order to differentiate as much as possible between
actions and inactions.

If we use a TIME, which allows multi-site registration (as already mentioned
in the Section 2.1), we have to perform feature extraction to reduce the high
dimensionality of the windows. From every window, we can extract n -3 features,
where n is the number of channels from which the signals were recorded. These
features correspond, for each channel, to the number of spikes of each cluster
observed in the time window.

2 https://github.com/csnle/wave_clus
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2.5 Classification

Classification, with post-processing, is the focus of this work. Usually, for the
classification of motor actions, Support Vector Machines (SVM) are used [7].
SVM is a recognition technique used in many studies for the analysis of biomed-
ical signals. Tt is a binary classifier and determines the hyperplane that provides
maximum class separation. The idea of the method is to divide the feature space,
obtained by mapping incoming data into a higher dimensional space using a
kernel function, into two parts using linear or non-linear decision boundaries. In
the case of multiple classification problems, data is divided into several problems
with two classes.

However, acquiring signal data from real patients is difficult. Hence, we target
the use of a classifier that allows the use of small training sets. So, in addition
to the SVM, we used a Random Tree classifier. Random Tree is a supervised
classifier belonging to the ensemble method family. The method is a combination
of the Random Forest algorithm and the single tree model algorithm. When
building a single decision tree, each node is formed using the best split using all
variables. With the Random Forest method, only a random subset of predictors
is used. To classify, Random Trees take the feature vector input, classify it using
each tree, and assign the class with multiple assignments. Trees are created by
resampling the dataset to build each tree (as in the Bagging method), then the
algorithm looks for the best split using only a random subset of attributes. This
results in decorrelated trees with less error and greater accuracy.

2.6 Postprocessing

After the classification, a post-processing of the results is always performed to
understand when the action starts and ends, and to reduce incorrect classifica-
tions. Usually, in the literature, a majority voting policy is applied over a sliding
temporal window. However, we devised a different post-processing method.

In our method, we analyze the classifier predictions sequentially using two
counters: “NA” measures the number of activity predictions, while “NI” mea-
sures the number of inactivity predictions. These counters are updated respec-
tively whenever the prediction “A” (activity) and prediction “I” (inactivity) are
encountered. Once one of these counters reaches a certain threshold, one of these
cases OCcurs:

— if the threshold is exceeded by “NI” and the previously analyzed sequence
was considered an activity, then the currently analyzed sequence is identified
as the end of activity;

— if the threshold is exceeded by “NI” and the previously analyzed sequence
was not considered an activity, then the currently analyzed sequence is iden-
tified as inactivity;

— if the threshold is exceeded by “NA” and the previous analyzed sequence
was not considered an activity, the currently analyzed sequence is identified
as the start of new activity;
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— if the threshold is exceeded by “NA” and the previously analyzed sequence
was considered an activity, this means that the previous action is not yet
over.

After each case explained above, both counters are set to zero.

3 Future directions

In this paper, we outlined a general framework that we are investigating for
addressing this challenging research problem. However, several issues are open,
that we will address in future work. In particular, we could reduce the waiting
time for the recognition of action by improving the post-processing method.
Another direction that we want to investigate consists in the use of different
classification techniques. In particular, traditional deep learning methods would
seem appropriate for this task. However, it is well-known that in general deep
learning classifiers require large training datasets, that currently are not available
in this domain. Hence, we will investigate deep learning approaches that do
not require large training sets, such as Siamese neural networks [5]. We believe
that those networks, which have been used with success for the classification of
images, could be successfully applied to these data by devising a novel method for
feature extraction. Moreover, we are considering to use active learning algorithms
to adapt the model according to the user’s feedback.

References

1. Citi, L., Carpaneto, J., Yoshida, K., Hoffmann, K.P., Koch, K.P., Dario, P., Micera,
S.: On the use of wavelet denoising and spike sorting techniques to process elec-
troneurographic signals recorded using intraneural electrodes. Journal of neuro-
science methods 172(2), 294-302 (2008)

2. Cordella, F., Ciancio, A.L., Sacchetti, R., Davalli, A., Cutti, A.G., Guglielmelli,
E., Zollo, L.: Literature review on needs of upper limb prosthesis users. Fron-
tiers in Neuroscience 10, 209 (2016). https://doi.org/10.3389/fnins.2016.00209,
https://www.frontiersin.org/article/10.3389/fnins.2016.00209

3. Hong, K.S., Aziz, N., Ghafoor, U.: Motor-commands decoding using peripheral
nerve signals: a review. Journal of Neural Engineering 15(3), 031004 (apr 2018)

4. Jang, C.H., Yang, H.S., Yang, H.E., Lee, S.Y., Kwon, JW., Yun, B.D,
Choi, J.Y., Kim, S.N., Jeong, HW.. A survey on activities of daily
living and occupations of upper extremity amputees. Ann Rehabil Med
35(6), 907-921 (2011). https://doi.org/10.5535/arm.2011.35.6.907, http://www.e-
arm.org/journal /view.php?number=84

5. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot
image recognition. In: ICML deep learning workshop. vol. 2 (2015)

6. Micera, S., Citi, L., Rigosa, J., Carpaneto, J., Raspopovic, S., Di Pino, G., Rossini,
L., Yoshida, K., Denaro, L., Dario, P., Rossini, P.M.: Decoding information from
neural signals recorded using intraneural electrodes: Toward the development of a
neurocontrolled hand prosthesis. Proceedings of the IEEE 98(3), 407-417 (March
2010)

57



10.

Micera, S., Rossini, P.M., Rigosa, J., Citi, L., Carpaneto, J., Raspopovic, S.,
Tombini, M., Cipriani, C., Assenza, G., Carrozza, M.C., Hoffmann, K.P., Yoshida,
K., Navarro, X., Dario, P.: Decoding of grasping information from neural sig-
nals recorded using peripheral intrafascicular interfaces. Journal of Neurokngineer-
ing and Rehabilitation 8(1), 53 (2011). https://doi.org/10.1186/1743-0003-8-53,
https://doi.org/10.1186/1743-0003-8-53

Pani, D., Barabino, G., Citi, L., Meloni, P., Raspopovic, S., Micera, S., Raffo,
L.: Real-time neural signals decoding onto off-the-shelf dsp processors for neuro-
prosthetic applications. IEEE Transactions on Neural Systems and Rehabilitation
Engineering 24, 1-1 (09 2016)

Quiroga, R.Q., Nadasdy, Z., Ben-Shaul, Y.: Unsupervised spike detection and sort-
ing with wavelets and superparamagnetic clustering. Neural Computation 16(8),
1661-1687 (2004)

Svensson, P., Wijk, U., Bjérkman, A., Antfolk, C.: A review of invasive and non-
invasive sensory feedback in upper limb prostheses. Expert Review of Medical
Devices 14(6), 439-447 (2017). https://doi.org/10.1080,/17434440.2017.1332989,
https://doi.org/10.1080/17434440.2017.1332989, pMID: 28532184

58



