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A B S T R A C T

Fare evasion is a critical threat for Transit Agencies (TAs) and/or Public Transport Companies (PTCs) every-
where, especially in Proof-of-Payment Transit Systems (POP-TSs). The research on fare evasion risk is limited and
based on econometric models restricting time characterization to a single period. This paper aims to enhance the
use of fare evasion risk over several periods for possible real-time deterrence against fare evasion. The paper
moves from an existing framework, identifying the factors of fare evasion and risk exposure in terms of frequency
(or probability) and severity (or vulnerability), and adopts Artificial Neural Networks (ANNs) to shed light on the
intricate nexus between these components, estimating the fare evasion risk for every (segment of a) route. Next,
the risk index is evaluated for each time period of interest. The predictions are ranked and represented by time-
dependent dashboards to recognize routes with high-risk evasion that require deterrence strategies. Some real-
time strategies are simulated from fare inspection logs, passenger surveys, and probability distributions on data
collected in three years. In conclusion, this research provides actionable insights for TAs/PTCs in dealing with
fare compliance and can be integrated into any bus transit management system.

1. Introduction

Fare evasion is a primary threat to Transit Authorities/Public Trans-
port Companies (TAs/PTCs) worldwide, owing to economic, social, and
psychological implications. Although no public transportation system is
immune from fare evasion, Proof-of-Payment Transit Systems (POP-TSs)
without barriers have the highest evasion rate (e.g., Barabino et al., 2020;
Barabino et al., 2024). Indeed, passengers must buy and validate the
ticket (or pass) before using the service, but they may astutely choose to
evade the fare because tickets are not automatically checked.

Addressing fare evasion is trickydue topolicy, deterrence, enforcement,
operational costs, and equipment facets (e.g., Wolfgram et al., 2022). To
date, a unified strategy against fare evasion does not exist. TAs/PTCs have
two main “weapons” to fight fare evasion: ticket (or pass) inspections and
fine charging for evaders (e.g., Sasaki, 2014; Guarda et al., 2016; Dai et al.,
2018; Alhassan et al., 2022; Barabino et al., 2022b; Wolfgram et al., 2022;
Celse and Grolleau, 2023). The employment of inspectors is known in the
literature as the “conventional” strategy (e.g., Delbosc and Currie, 2019).

1.1. State of the art

Inspections protect revenue and reduce aggressive behavior and

vandalism (e.g., Barabino and Salis, 2020). Optimal inspection levels
reduce fare evasion (e.g., Barabino et al., 2015; Cools et al., 2018; Porath
and Galilea, 2020), whereas suboptimal levels are less effective (e.g.,
Guzman et al., 2021). The research on deterrence shows that offenders
are more dissuaded by the certainty of being caught than by the severity
of the fine (e.g., Smith and Clarke, 2020). Thus, proper inspection levels
could decrease crime and increase passenger security (e.g., Killias et al.,
2009). Several studies investigated the deterrence using simulated data
(e.g., Boyd et al., 1989; Boyd, 2020) and real data (e.g., Barabino et al.,
2013, Barabino et al., 2014; Barabino and Salis, 2019), as well as opti-
mization methods for scheduling inspections (e.g., Yin et al., 2012;
Correa et al., 2017; Brotcorne et al., 2021; Escalona et al., 2024).

In many TAs/PTCs worldwide, the metrics of fare inspection effec-
tiveness are based on the ratio E/P, where E usually refers to fare evaders
(or a proxy) and P to passengers. The most common metric is the fare
evasion ratio (FER), where E is measured by fines, and P is the number of
inspected passengers and is measured by the number of tickets checked
in a time window (e.g., Wolfgram et al., 2022). The higher the indicator,
the higher the fare evasion. Even though this statistic is frequently used
to quantify fare evaders, TAs and PTCs often disagree on the definition of
“evader.” Moreover, determining the number of checked passengers is a
complex task (e.g., Dauby and Zoltan, 2007; Wolfgram et al., 2022). In
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more advanced PTCs, this metric can be replaced by the ratio between
the number of validated smart cards and the number of passengers
boarded, which is measured by automatic passenger counting for each
location (e.g., Pourmonet et al., 2015). The lower the indicator, the
higher the fare evasion. However, this modus operandi has flaws as well:
in many transit systems worldwide, it is not mandatory for pass holders
to tap in/out their tickets, which are often paper-based. Therefore, a low
value of this ratio could provide biased information on the concentration
of evaders. Moreover, because smart card data and passenger data were
automatically collected, they also provide biased measures if they are
not correctly handled. To summarize, both metrics could be inaccurate.

The conventional inspection strategy can be enhanced by the intro-
duction of a risk metric, as done in many fields of engineering and
economics (e.g., Aven, 2015; Ventura et al., 2023). Indeed, TAs/PTCs
can identify high-risk evasion areas on the transit network, implement
targeted strategies to reduce revenue losses and develop policies and
actions promoting fairness and equity. Moreover, the determination of
high-risk evasion routes (areas) can lead TAs/PTCs to an effective
deployment of personnel, devices, and technology. Furthermore, TAs/
PTCs can identify patterns and areas where measures need to be
strengthened to ensure the safety and security of passengers and staff,
thereby fostering a comfortable traveling experience. Since fare in-
spection can lead to delays on buses and can negatively impact pas-
senger satisfaction, the implementation of alternative measures against
fare evasion risk may result in improved operational efficiency,
smoother boarding processes, and enhanced passenger experiences.
Finally, the evaluation of fare evasion risk involves analyzing data on
inspection policy, demographics, and behavioral factors. This process
promotes data-driven decision-making within TAs/PTCs to understand
the dynamics of fare evasion and devise suitable targeted strategies. This
evidence-based decision-making fosters efficiency, transparency, and
accountability in managing transit networks.

The risk concept integrates the frequency and/or probability,
severity and/or consequences, and exposure terms. They must be inte-
grated because they depend on several explanatory factors (e.g., attri-
butes, determinants, predictors, or variables). Very few studies on fare
evasion adopted the risk concept and separately investigated the fre-
quency and/or probability and severity in South America, Australia, and
Europe by descriptive statistics and inferential modeling.

Specific studies in Santiago (Chile) revealed a positive correlation
between the frequency of fare evasion and the number of passengers
boarding (and alighting), the number of doors on buses, the number of
passengers boarding through the back door, high occupancy rates, and
long headway (e.g., Guarda et al., 2016). Furthermore, fare evasion is
more common in the afternoon and the evening for young men, crowded
buses without turnstiles, and bus stop far from metro stations without
devices for off-board payment and ticket sales (e.g., Cantillo et al., 2022).

Other studies have investigated how potential fare evaders’ charac-
teristics, behaviors, motivations, and attitudes can affect the probability
of fare evasion. These facets were investigated according to a one-size-
fits-all, a priori, or a posteriori segmentation.

One-size-fits-all segments showed that the probability of fare evasion
could be influenced in different ways by sociodemographic factors, travel
behavior, and situational variables (e.g., Eddy, 2010 Bucciol et al., 2013;
Barabino et al., 2015;Dai et al., 2017;Cools et al., 2018;Allen et al., 2019).

As for the a priori segmentation, Currie and Delbosc (2017) showed
that honesty and evasion tolerance explained both intentional and un-
intentional evasion. On the contrary, ticket competency and perceived
ease of evasion explained intentional and unintentional evasion,
respectively. According to Barabino and Salis (2020), male gender and a
history of fare evasion are common characteristics that increase the
likelihood of fare evasion among students, workers, and jobless pas-
sengers. Conversely, specific predictors characterize each segment.

As for the a posteriori segmentation, Delbosc and Currie (2016)
identified three segments of passengers: deliberate evaders, uninten-
tional evaders, and evaders with no history of evasion, each one having

the specific attitude to (not) evade the fare. They were largely clustered
according to the structural and operational elements of the transit sys-
tem. González and Codocedo (2019) identified “proud,” “empathetic,”
and “circumstantial” paying passengers and “radical,” “strategic,”
“ambivalent,” and “accidental” non-paying passengers, mainly clustered
according to several personality factors (e.g., values and attitudes).
According to Guzman et al. (2021), age and evasion records are the
strongest determinants of evasion. Additionally, the likelihood of fare
evasion decreases as the level of satisfaction increases. However, per-
sonality traits can limit how satisfaction affects fare evasion. Barabino
and Salis (2023) showed that the probability of evading the fare depends
on the employment level and discovered a medium segment of captive
and chronic unemployed evader passengers, many captive and frequent
evader students, and a minor portion of rare evader choice workers.

Less attention was devoted to the severity, which included several
issues, such as lost income and/or violence aboard. A few works were
based on circumstances that had already occurred, and they usually
estimated the lost revenues from fare evasion (e.g., Cosby, 1985; Isreal
and Strathman, 2002; Prokosch and Gartsman, 2017).

Barabino et al. (2023) first applied the risk concept in this field. They
proposed a systematic framework for assessing the risk of fare evasion
along each route or segment of a transport network. This framework
proposed generalized regression models for frequency, logistic regres-
sion for severity, and a risk function linking these components. The
method yielded the fare evasion risk index for every (segment of a)
route, which is then rated and shown on user-friendly dashboards to
plan and implement deterrence strategies.

1.2. Literature gaps

All previous works provided valuable contributions to our under-
standing of some components of fare evasion. However, some gaps
persist.

First, although Barabino et al. (2023) introduced an approach for the
average measure of risk over a single period of interest, none has
investigated the change of fare evasion risk over several periods to plan
and implement real-time deterrence strategies accordingly. This is
particularly useful against the so-called calculators, who are always on
guard and ready to defraud the ticketing system intentionally (e.g.,
Delbosc and Currie, 2016; Salis et al., 2017). For example, they often
share information on inspections in real-time by virtual communities of
fare evaders, i.e., maps of the potential places/routes of inspection ac-
tivities (e.g., Assaf and Van den Broeck, 2022). Therefore, it is worth
capturing the variation of fare evasion risk over time to target the in-
spection along routes.

Second, all prediction methods are based on econometric models (e.
g., negative binomial regression for the frequency, binomial logit for the
severity). They have the great ability to recognize the effect of each
factor on fare evasion, which is an essential prerequisite to under-
standing the phenomena. Moreover, the research on factors influencing
fare evasion considers generalized linear models. No work has been
made on Artificial Intelligence models such as Artificial Neural Net-
works (ANNs), which are expanding in many engineering and economic
fields and can be leveraged to estimate the risk components. Unlike
econometric models, ANNs are functional relationships between system
inputs and system outputs even if the effect of each predictor on the
response variable may not be easy-to-understand (e.g., Zhang, 2010).
Moreover, leveraging ANNs is intriguing in capturing the intricate (often
nonlinear) relationship between the frequency and severity of fare
evasion and its influencing factors to provide recommendations for fare
evasion risk planning and management.

1.3. Objective

This paper aims to cover the previous gaps with a new framework for
modeling, forecasting, ranking, and managing risk in a different way.
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Building on Barabino et al. (2023), it leverages an ANNmodel to capture
the complex relationship among the frequency, the severity of fare
evasion, and the related factors to build a risk function for each (segment
of a) route. Next, the risk function is evaluated in short time windows,
ranked for real-time utilization, and represented by time-dependent
dashboards to identify routes requiring major attention. Next, some
real-time deterrence strategies are simulated. A real-world experiment is
effectively done on data gathered over three years by passenger surveys,
inspection logs, and probability distributions.

This experiment contributes both theoretically and practically. To
our knowledge, no theoretical research has been done toward real-time
estimation and management of fare evasion risk by ANN. In terms of
application, this framework provides an advanced applicative tool for
TAs/PTCs to assess the fare evasion risk of routes. It can serve as a de-
cision support tool to enhance fare payment on specific routes and

quickly warn TAs/PTCs of high-risk fare evasion on (segment of a) route.

1.4. Paper outline

The remainder of the paper follows. Section 2 shows the framework
for real-time estimating and managing the risk of fare evasion by ANN.
Section 3 presents the application of this framework in a real case study.
Section 4 reports the results and some discussions. Section 5 draws
conclusions and future research.

2. Methodology

This section describes the methodology for evaluating and managing
the fare evasion risk on a bus transit network, which is summarized in
Fig. 1.

Fig. 1. Flow chart of the proposed methodology for the evaluation and real-time management of the fare evasion risk on a bus transit network.
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It adopts the symbols recommended by the American National
Standards Institute (ANSI) and the International Organization of Stan-
dardization (International Organization of Standardization, 1985).

2.1. Bus transit fare evasion historical dataset

A fare evasion event is generated by the interaction between inter-
mediate factors and risk exposure factors. Intermediate factors may
generate the conditions of a potential risk event. They depend on the
context, organization, passengers, and vehicles. Risk exposure factors
reflect the actual use of the transit network in terms of the number of
individuals or services interested in fare evasion occurrence. They
include supply-oriented, demand-oriented, and both supply- and
demand-oriented factors. Both intermediate and risk exposure factors
can affect the frequency (or the probability) and severity of fare evasion.
Their interplay affects the occurrence and severity of the fare evasion
event and results in final fare evasion factors. These factors include the
type and frequency of fare evasion, related motivations, severity, and
location. The experimental dataset of TAs/PTCs can be exploited to
collect all these factors. More details are reported in Barabino et al.
(2023).

2.2. STEP 1 – Risk prediction model fitting

According to STEP 1, an index to evaluate the risk of fare evasion on
a bus transit network is defined according to this notation. Let:

• L be the set of routes.
• S(l) be the set of homogeneous segments of route l ∈ L. They are legs
with the same road configuration or the same urban environment or
legs between two consecutive bus stops.

• T be the set of time windows discretizing the measure of fare evasion
risk.

• FEEslt be the Fare Evasion Exposure on homogeneous segment s ∈
S(l) in time window t ∈ T. It represents the rate of occurrence of a
potential fare evader travelling on the considered segment.

• FEPslt be the Fare Evasion Probability on homogeneous segment s ∈
S(l) in time window t ∈ T. It represents the likelihood that, if a po-
tential fare evader pops-up, the fare evasion event takes place.

• FECslt be the Fare Evasion Consequences on homogeneous segment
s ∈ S(l) in time window t ∈ T; it represents the most likely result of a
potential fare evasion event (e.g., additional costs for TAs/PTCs).

• FEFslt be the Fare Evasion Frequency on homogeneous segment s ∈
S(l) in time window t ∈ T; it is a driver of the probability FEPslt .

• FESslt be the Fare Evasion Severity on homogeneous segment s ∈ S(l)
in time window t ∈ T; it is a driver of the fare evasion consequences
FECslt .

• E be the set of exposure factors and eslt ∈ E the generic exposure
factor observed on homogeneous segment s ∈ S(l) of route l ∈ L in
time window t ∈ T.

• X be the set of frequency predictors and xslt ∈ X the generic frequency
predictor on homogeneous segment s ∈ S(l) of route l ∈ l in time
window t ∈ t.

• Y be the set of severity predictors and yslt ∈ Y the generic severity
predictor on homogeneous segment s ∈ S(l) of route l ∈ L in time
window t ∈ T.

Hence, for each route l ∈ L and time window t ∈ T, the risk function
Rlt is defined by summing the risk Rslt on each segment s ∈ S(l) of route l
∈ L in time window t ∈ T. According to Fine (1971), the risk function is
defined as follows:

Rlt=

def
∑

s∈S(l)

Rslt =

def
∑

s∈S(l)

FEPslt*FEEslt*FECslt ; ∀l ∈ L; ∀t ∈ T (1)

Each term of (1) needs to be estimated according to the historical

dataset of fare evasion. A straightforward method for this task is to build
a complete bivariate risk model based on frequency and severity func-
tions and include the exposure factor in the frequency model (Barabino
et al., 2023). The latter is a logical choice that naturally follows from the
definitions of probability, exposure, and frequency factors. It can be
straightforwardly demonstrated that the frequency of fare evasion
events at time t ∈ T (i.e., FEFslt) is obtained by multiplying the following
components: 1) the likelihood that, if a possible fare evader pops-up, the
fare evasion occurs (i.e., FEPslt); 2) the rate of repetition of the fare
evaders (i.e., FEEslt). Hence, the frequency and the severity of fare
evasion are assumed to be response variables, and they are predicted as a
function of the selected explanatory factors. Specifically, the frequency
is assessed as a function of the risk exposure factors and a set of pre-
dictors mined from intermediate safety outcome factors. Similarly, the
severity is forecasted as a function of a set of predictors taken from in-
termediate safety outcome factors. Finally, the risk index is obtained by
multiplying frequency and severity outcomes.

Rlt=

def
∑

s∈S(l)

Rslt =

def
∑

s∈S(l)

FEFslt({eslt∈E},{xslt∈X})*FESslt({yslt∈Y});∀l∈L;∀t∈T

(2)

Therefore, each component of eqn. (2) should be modeled and esti-
mated. In this study, both frequency and severity components are
modeled by ANNs. A regression ANN is fitted for the frequency
component, which is modelled by an unbounded discrete variable.
Conversely, a classifier ANN is chosen for the severity component since
it is represented by a binary variable. More formally, let:

• J be the set of frequency or severity records in the historical dataset.
• TR⊂J, VA⊂J and TE⊂J be the training, validation, and test subsets,
respectively.

• F be the set of frequency or severity explanatory factors, i.e., E and X,
or Y, respectively, and fj ∈ F the generic factor in record j ∈ J.

• INP ∈ R|J|•|F| be the input matrix for the ANN fitting process, i.e., the
matrix of each explanatory factor f ∈ F related to each record j ∈ J.

• TAR ∈ R|J| be the target vector for the ANN fitting process, i.e., the
vector of the Fare Evasion Frequency or the Fare Evasion Severity
with entries tarj for each j ∈ J.

• ω be a function linking the input matrix INP to the target vector TAR.
• ω̃ be an approximation of ω.
• P be the set of ANN hidden layer perceptrons1 and p ∈ P the generic
perceptron.

• inppj be the input signal of the hidden layer perceptron p ∈ P for j ∈ J.
• outpj be the output signal of the hidden layer perceptron p ∈ P for
j ∈ J.

• inpj be the input signal of the output layer perceptron for j ∈ J.
• outj be the output signal of the output layer perceptron for j ∈ J.
• bp be the bias for the input signal of hidden layer perceptron p ∈ P.
• b be the bias for the input signal of the output layer perceptron.
• wpf be the weight factor for the input signal of the hidden layer
perceptron p ∈ P for f ∈ F.

• wp be the weight factor for output signal of the hidden layer per-
ceptron p ∈ P.

• ϕ be the activation function of the hidden layer perceptrons.
• ϕ be the activation function of the output layer perceptron.
• ϱ be the input variable of the activation functions.
• ϛ be the slope parameter of the linear activation function.
• θ ∈ R|P|(|F|+1 )+1 be the generic vector with the parameters of the ANN
model and θ0 ∈ R|P|(|F|+1 )+1 be the parameter vector obtained
through the learning phase.

1 A perceptron is the node of the network, the ANN.
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• εj be the generic residual value, i.e., the difference between the
observed and predicted frequency or severity for j ∈ J, and ε ∈ R|J| be
the vector of the residual values.

• RSS be the Residual Sum of Squares, i.e., the sum of the squared
residual values.

• CF be the Cost Function quantifying the prediction error of the ANN
model.

Then, ω links the input matrix INP to the target vector TAR, such that
TAR = ω(INP). This function can be interpreted as a computation model
linking the causes (INP) with their observed outcomes (TAR). Generally
speaking, ANNs define a mapping TAR = ω̃(INP, θ) +ε and discover the
values of the parameter vector θ that leads the best approximation (Ian
et al., 2016), i.e., that minimizes a properly defined Cost Function (CF).

A two-layer feed-forward network is chosen to perform this mapping
(e.g., Schmidhuber, 2015). In this architecture, the information pro-
ceeds forward from the input nodes, through the hidden nodes, and
towards the output nodes. As shown in Fig. 2, this network is formed by
two layers of perceptrons: a hidden layer of |P| perceptrons and an
output layer on one perceptron.

As for the hidden layer, the input signal inppj of each perceptron p ∈ P
is obtained by multiplying the factors values fj with their weight factors
wpf and then adding the bias factor bp, according to eqn. (3):

inppj = bp +
∑

f∈F

wpf ∗ fs;∀p ∈ P; ∀j ∈ J (3)

Then, the output signal outpj of each perceptron in the hidden layer is
determined by an activation function ϕ on the input signal. A hyperbolic
tangent sigmoid activation function is selected for the hidden layer (e.g.,
Anastassiou, 2011; Romero Reyes et al., 2013; Sramka et al., 2019).
Therefore:

ϕ(ϱ) = tanh(ϱ) =
eϱ − e− ϱ

eϱ + e− ϱ; (4)

outpj = ϕ
(
inpspj

)
;∀p ∈ P; ∀j ∈ J (5)

Similarly, as for the output layer, the input signal inpj of perceptron is
obtained by multiplying the output signals outpj originating from the
hidden layer perceptrons by the weight factors wp and then adding the
bias factor b, according to eqn. (6):

inpj = b+
∑

p∈P
wp ∗ outpj; ∀j ∈ J (6)

Then, the output signal (outj) of the perceptron in the output layer is
determined by an activation function ϕ to the input signal. The
expression of ϕ depends on the typology of the response variable.
Particularly, since the frequency is an unbounded response variable, a
linear activation function is selected. Conversely, a sigmoidal shape is
preferred for the severity considering the binary nature of this response
variable. Thus, a regression or a classification ANN is obtained for the
frequency or the severity component, respectively. Hence:

ϕ(ϱ) =

⎧
⎨

⎩

ϛϱ for the frequency model;
eϱ

eϱ + 1
for the severity model;

(7)

outj = ϕ
(
inpj

)
; ∀j ∈ J (8)

Hence, the predicted value of the response variable (denoted as t̃arj)
equals the perceptron output signal. More formally:

t̃arj = outj; ∀j ∈ J (9)

Before fitting, the records (i.e.,J) are randomly partitioned into three
subsets: training, validation, and test. The training set (i.e., TR) is pro-
vided to the network during training to directly estimate weights and
biases. The validation set (i.e., VA) is employed to assess the network
generalization and check if overtraining begins to occur. The testing set
(i.e., TE) has no effect on training and offers an unbiased metric of
network performance.

During the training-validation phase, the training data TR is
employed to tune the weights and the biases to minimize the cost
function CF calculated on the validation subset TR (Brownlee, 2019). In
this paper, two forms of CF are selected:

• The Mean Squared Error (denoted as MSE) for the frequency model,
being the most popular for regression problems where a quantity is
predicted (Reed and Marks, 1999).

• The Cross Entropy (denoted as CE) for the severity model, as it is the
most appropriate for classification problems, where outputs are
interpreted as likelihoods of belonging to a specified class (Reed and
Marks, 1999; MathWorks, 2022a).

More formally:

Fig. 2. Schematic structure of the two-layer feed-forward ANN selected for the frequency and severity prediction models.
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Hence, the training-validation procedure is formalized as follows:

θ0 = argmin
θ

CF(θ) (11)

A back-propagation algorithm is chosen, being one of the most
popular for training–validating feedforward neural networks (Ian et al.,
2016). Three back-propagation algorithms are adopted to solve (11):
Levenberg-Marquardt, Bayesian Regularization, and Scaled Conjugate
Gradient. The first typically requires more memory but less training
time, while the second is generally more time-consuming, but it can lead
to a better generalization for complex, small, or noisy datasets. The third
requires less memory (MathWorks, 2022b). In all algorithms, the
training stops when there is no further improvement in generalization,
which is indicated by an increase in the cost function on the validation
sample.

It may be noted that training–validating several times will produce
different results due to dissimilar initial conditions and random splitting.
Hence, multiple instances are issued, and the best solution is chosen
according to the lowest CF. At the end of the training-validation phase,
θÌ¿0 is selected, and the functional form of the ANN model is obtained:

t̃arj = ω̃
({

fj ∈ F
}
, θ0

)
; ∀j ∈ J (12)

After the training-validation phase, the ANN model is tested to
evaluate its performance in the fitting of training and validation data (i.
e., TR and VA), as well as in predicting unseen records (i.e., TE). To
execute the testing procedure, different metrics are considered
depending on the response variable at hand, as summarised in Table 1.

More precisely, as for the frequency:

• The Regression Plot (RP) is graphed for TR, VA and TE by plotting the
couples (tarj, t̃arj) on a Cartesian plane; hence, the closer the points to
the first quadrant bisector, the greater the fitting goodness.

• The Pearson correlation coefficient between tarj and t̃arj (denoted as
R) is computed for TR, VA and TE; it is a positively oriented score, i.
e., the greater the value, the better the outcomes.

• The Mean Absolute Error (denoted as MAE), the Root Mean Squared
Error (denoted as RMSE), and the Coefficient of Variation (denoted
as CoV) are computed for TR, VA and TE; hence, the results are
negative oriented scores, i.e., the smaller the values, the better
outcomes.

As for the severity:

• The Confusion Matrix (CM) is computed for TR, VA and TE; in the
rows it reports the true class of severity and in the columns the
predicted class. To clarify, CM is a 2x2 matrix with True Negative
(denoted as TN) and True Positive (denoted as TP) values along the
main diagonal and False Positive (denotes as FP) and False Negative
(denoted as FN) values along the antidiagonal. The closer to 0 the
values along the antidiagonal, the greater the fitting goodness, since
null numbers for FP and FN indicate a perfect prediction.

• The True Positive Rate (denoted as TPR), the True Negative Rate
(denoted as TNR) and the accuracy (denoted as ACC) are computed
for TR, VA and TE; hence, the results are positively oriented scores, i.
e., the greater the values, the better the results.

Next, the relevance of each explanatory factor is evaluated by
computing the Permutation Feature Importance (denoted as PFIf ), that it
is recognized as a reliable indicator, particularly for non-linear or opa-
que estimators (Strobl et al., 2007). The PFIf is stated as a reduction in a

Table 1
Performance metrics for frequency and severity models, defined on the TE subset. As the for TR and VA subsets, performance metrics are computed according to the
same definitions, where TE is replaced with TR or VA, respectively.

Response
variable

Metric Symbol Definition

Frequency Regression Plot RP Cartesian graph of (tarj, t̃arj) couples (∀j ∈ TE)
 Pearson correlation coefficient R ∑

j∈TE
(
tarj − mean

(
tarj

) )
∗
(
t̃arj − mean

(
t̃arj

) )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

j∈TE
(
tarj − mean

(
tarj

) )2
√

∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

j∈TR
(
t̃arj − mean

(
t̃arj

) )2
√

 Mean Absolute Error MAE ∑
j∈TE

⃒
⃒εj

⃒
⃒

|TE|
 Root Mean Squared Error RMSE ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

j∈TEεj2

|TE|

√

 Coefficient of Variation CoV RMSE
∑

j∈TE
⃒
⃒tarj

⃒
⃒

|TE|
 Ratio among the total number of predicted and

observed fare evasion events
π ∑

j∈TEt̃arj
∑

j∈TEtarj
Severity Confusion Matrix CM A 2x2 matrix with T N and T P values along the main diagonal, and F P and F N values

along the antidiagonal
 True Positive Rate (or Sensitivity) TPR T P

T P + F N
 True Negative Rate (or Specificity) TNR T N

T N + F P
 Accuracy ACC T P + T N

T P + F N + T N + F P

CF :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

MSE =

∑
j∈VAεj2

|VA|
for the frequency model;

CE = −
1

|VA|
∑

j∈VA
tarj log

(
t̃arj

)
+
(
1 − tarj

)
log

(
1 − t̃arj

)
for the severity model;

(10)
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model score after a single factor value is casually rearranged (Breiman,
2001). This approach destroys the link between the factor and the target,
and the model’s score drops, thus revealing how strongly the model
relies on the factor. This indicator is calculated on TE to stress the
importance of features in out-of-sample prediction. More precisely, let:

• N be the set of arbitrary permutation instances.
• INPn,f ∈ R|J|,|F| be the corrupted version of the input matrix at the
permutation n ∈ N, that is generated by casually rearranging the
column related to f ∈ F of the uncorrupted input matrix INP.

• CF(θ0)TE be the CF of the trained ANNmodel, calculated on TE by the
uncorrupted input matrix INP.

• CF(θ0)TEn,f be the CF of the trained ANN model, calculated on TE by

the corrupted input matrix INPn,f .
• s = − CF(θ0)TE be the reference score of the trained ANNmodel on the
uncorrupted input matrix INP.

• sn,f = − CE(θ0)TEn,f be the score of the trained ANN model on the

corrupted input matrix INPn,f .

Hence, several permutation instances (|N|) are executed for each f ∈
F and the related PFIf are calculated by taking the average of the scores
according to eqn. (13).

PFIf = s −
1
|N|

∑

n∈N
sn,f ;∀f ∈ F (13)

The higher PFIf , the higher the importance of f ∈ F.
Although the effect of each predictor on the response variable is not

evident, a deeper analysis can be made by calculating the associated
partial derivative. More formally, let:

• ∂ω̃
∂fj

be the partial derivative of the function ω̃
({

fj ∈ F
}
, θ0

)
with

respect to the specific factor f ∈ F computed in record j ∈ J.
• Δf be a “small” increase in the value taken by the factor f ∈ F.

Thus, ∂ω̃
∂fj

is numerically estimated by computing the associated in-

cremental ratio as follows:

∂̃ω
∂fj

≅ ω̃
(
fj+Δf ;

{
fj ∈ F : f ∕= f

}
,θ0

)
− ω̃

({
fj ∈ F

}
,θ0

)

Δf ;∀f ∈ F;∀j∈ J
(14)

By analyzing the statistical distribution of ∂̃ω
∂fj
, some interesting in-

sights emerge. For example, a positive mean value of ∂̃ω
∂fj

(computed

across the dataset) indicates that an increase in f ∈ F leads to an average
increase in the predicted value of the target variable tarj. Conversely, a

negative mean value of ∂̃ω
∂fj
indicates that an increase in f ∈ F could lead to

an average decrease in the predicted value of the target variable tarj.
Finally, once the ANN frequency and severity models have been

fitted, they are combined to return a risk prediction model according to
eqn. (15).

Rlt=
∑

s∈S(l)

Rslt=
∑

s∈S(l)

ω̃(({eslt∈E},{xslt∈X}),θ0)∗ω({yslt∈Y},θ0 );∀l∈L;∀t∈T

(15)

2.3. STEP 2 – Real-time explanatory generation of factors’ values

Once the risk prediction model has been fitted to the historical
dataset, it could be leveraged by TAs/PTCs to forecast in real-time the
fare evasion risk on the bus transit network during upcoming time
windows to implement management actions. Note that the method is

general, as one can make forecasts either for the following periods in
time (e.g., the risk in the soft period of the morning from the peak pe-
riods in the early morning) and the period with specific characteristics
(e.g., the risk in the soft period of the morning from the morning soft
periods in the dataset).

Thus, a procedure to generate predictor values could be defined in
several ways. On the one hand, if adequate technology is available,
frequency and exposure data may be collected daily by inspection logs
and automatic passenger counting; conversely, severity data can be
collected by on-board digital video cameras while respecting privacy
concerns. On the other hand, if this technology is not available, the
former data can be generated from historical data by Monte Carlo
methods, as described in the following. More formally, let:

• Ě be the set of generated exposure factors and ěslt ∈ Ě the value of the
specific predictor generated for the homogeneous segment s ∈ S(l) in
time window t ∈ T.

• X̌ be the set of generated frequency predictors and x̌slt ∈ X̌ the value
of the specific predictor generated for the homogeneous segment s ∈
S(l) in time window t ∈ T.

• Y̌ be the set of generated severity predictors and y̌slt ∈ Y̌ the value of
the specific predictor generated for the homogeneous segment s ∈
S(l) in time window t ∈ T.

• ψ ě,s,l,t, ψ x̌,s,l,t and ψ y̌,s,l,t be the probability density functions of the
predictors ěslt ∈ Ě, x̌slt ∈ X̌, and y̌slt ∈ Y̌, respectively, for the homo-
geneous segment s ∈ S(l) and time window t ∈ T.

• Ψě,s,l,t=

def
∫

ψ ě,s,l,tdeslt , Ψx̌,s,l,t=

def
∫

ψ x̌,s,l,tdx̌slt and Ψy̌,s,l,t=

def
∫

ψ y̌,s,l,tdy̌slt be the cumulative distribution functions of the predictors
ěslt ∈ Ě, x̌slt ∈ X̌, and y̌slt ∈ Y̌, respectively, for the homogeneous
segment s ∈ S(l) and time window t ∈ T.

• ně,s,l,t ∈ [0; 1], nx̌,s,l,t ∈ [0; 1] and ny̌,s,l,t ∈ [0; 1], be the random numbers
generated for the prediction of ěslt ∈ Ě, x̌slt ∈ X̌, and y̌slt ∈ Y̌, respec-
tively, for the homogeneous segment s ∈ S(l) in time window t ∈ T.

In this procedure, each predictor is interpreted as a random variable,
and then an appropriate probability function is built from the historical
dataset. Each distribution function depends not only on the time window
t ∈ T, but also on the homogeneous segment s ∈ S(l) of route l ∈ L. For
example, the user’s age could be a significant severity predictor of fare
evasion. On the one hand, the distribution of age varies among different
time windows (e.g., morning peak hour, midday peak hour, evening
peak hour, off-peak hour), because different user categories use the
service (e.g., young students and older workers might be prevalent in the
morning and the evening peak hours, respectively). On the other hand,
the age distribution also varies among the different routes and segments
along the bus network (e.g., young students might prevail on routes that
pass near schools, while older workers might be more frequent on routes
that cross industrial or commercial areas).

For each predictor, bus route, homogeneous segment and time
window, a random number obeying a uniform distribution, is generated
in the interval [0; 1] (i.e., ně,s,l,t, nx̌,s,l,t or ny̌,s,l,t). Then, the value of the
predictor (i.e., ěslt , x̌slt or y̌slt) is determined by inverting the associated
cumulative probability function (i.e., Ψě,s,l,t, Ψx̌,s,l,t or Ψy̌,s,l,t), according
to Eqns. (16), (17) and (18), respectively.

ěslt = Ψ− 1
ě,s,l,t

(
ně,s,l,t

)
; ∀ěslt ∈ Ě; ∀s ∈ S(l); ∀l ∈ L;∀t ∈ T; (16)

x̌slt = Ψ− 1
x̌,s,l,t

(
nx̌,s,l,t

)
; ∀x̌slt ∈ X̌;∀s ∈ S(l); ∀l ∈ L;∀t ∈ T; (17)

y̌slt = Ψ− 1
y̌,s,l,t

(
ny̌,s,l,t

)
; ∀y̌slt ∈ Y̌;∀s ∈ S(l);∀l ∈ L;∀t ∈ T; (18)
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2.4. STEP 3 – Real-time risk prediction

Once the predictor values have been generated for upcoming t ∈ T,
for each route l ∈ L, the risk index (denoted as Řlt ) is predicted in real-
time through the model fitted in STEP 1, by summing the risk Řslt on
each segment s ∈ S(l) and route l ∈ L:

2.5. STEP 4 – Real-time routes and links ranking

Next, the routes and links are assessed using a five-level risk scale,
which accounts for the quartile distribution of the fare evasion risk index
predicted for the upcoming t ∈ T.

More precisely, the route risk value and the link risk value (i.e., Řlt

and Řslt) are arranged in a growing order. Next, the Q1t, Q2t, Q3t
quartiles (i.e., the 25th, 50th and 75th percentiles, respectively), along
with the interquartile range (IQRt), i.e., the difference between Q3t and
Q1t, are computed. Thus, the routes and the links are ranked accord-
ingly, but there is no need to adopt these specific ranges.

Table 2 illustrates the five-level ranking scale and specifies the lower
and upper boundaries for each risk level. It is noteworthy that this scale
is temporal dependent, as the lower and the upper bounds may be
different for each upcoming time window t ∈ T.

2.6. STEP 5 – Real-time data visualization

Once the risk ranking has been established, charts and maps are built
to offer lucid representations of the outcomes for the upcoming time
window t ∈ T. Charts serve as a straightforward and comprehensible
dashboard for the ranking of routes based on their predicted fare evasion
risk for each t ∈ T. Consequently, managers can gain a clear overview of
how fare evasion risk will impact the entire network during the up-
coming time windows. On the other hand, maps illustrate the ranking of
fare evasion risk for individual segments of the route; each section is
color-coded to reflect the anticipated risk level for fare evasion during
the upcoming time window t ∈ T. These maps are generated using GIS
and are easy to understand, to support managers in identifying the areas
of the route that will demand special attention during the upcoming
t ∈ T.

2.7. STEP 6 – Real-time deterrence strategies

Next, the maps created in the previous step are exploited to plan in
real-time deterrence strategies. Among these strategies, inspection and
messaging activities during the upcoming time window t ∈ T are plan-
ned for those segments s ∈ S(l), which are predicted to fall into the two
highest levels, i.e., R1 and R2, respectively. More precisely, as for seg-

ments in R1, inspectors will be sent by managers to check passenger
tickets. These measures are anticipated to have a substantial impact on
curbing fare evasion, because they increase users’ perceptions on the
certainty of getting caught (e.g., Smith and Clarke, 2020). Additionally,
as noted by Barabino et al. (2023), a higher perception of inspection
frequency corresponds to a reduced inclination to engage in fare
evasion.

Since the number of inspectors is not sufficient to visit all high-risk
segments, as for segments in R2, a less resource-consuming strategy
based on messaging actions is proposed. This strategy is based on the
evidence that beliefs about the occurrence of fare evasion (e.g., the so-
cial norm) are among the main determinants of fare evasion (e.g., Celse
and Grolleau, 2023; Ayal et al., 2021). Particularly, Ayal et al. (2021)
noted that passengers were less likely to evade the fare when they were
informed about the low rate of evasion through social norm messaging
while simultaneously exposed to a control eye-cues poster. Drawing
from this experience, this framework proposes communication actions
that display messages on-board. More precisely, when a vehicle travels
along a R2 route segment, a message stating, e.g., “Along this bus route,
more than pg% of travellers own a regular ticket or pass” will be displayed
on a Variable Message Panel (VMP), together with watching eye cues.
Furthermore, a second message stating, “This bus is a video surveillance
area,” will be displayed simultaneously on the VMPs to increase users’
feeling of “being observed” by others.

It is noteworthy that the stated percentage of passengers with a
regular ticket (denoted as pg%) might be greater than the real one
because the latter is likely to be too low on R2 routes to discourage
unethical behaviour. However, the adoption of a misleading pg% does
not raise concerns if passengers are not supposed to know the real per-
centage of regular travelers. Nevertheless, to avoid passengers doubting
the truthfulness of the messages, the pg% value should not be constant in
time and space. Thus, for each segment s ∈ S(l) and time window t ∈ T,
an effective strategy might be to set the pg% value by randomly sorting a
number within appropriate ranges.

Řlt =
∑

s∈S(l)

Řslt =
∑

s∈S(l)

ω̃
(({

ěslt ∈ Ě
}
,
{
x̌slt ∈ X̌

})
, θ0

)
∗ ω̃

({
y̌slt ∈ Y̌

}
, θ0

)
; ∀l ∈ L;∀t ∈ T; (19)

Table 2
Definition of the risk ranges of fare evasion during each upcoming time window t ∈ T.
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3. Experiment in an Italian metropolitan area

Research context

The comprehensive methodology was implemented in MATLAB and
tested in the metropolitan area of Cagliari, Italy, which boasts a popu-
lation of approximately 0.4 million residents. The study focused on the
transit network of CTM, the largest PTC in this area. CTM manages its
transit services with a fleet of 271 between buses and trolley, providing
35.8 M+trips annually (CTM, 2023). We mined the most pertinent data
for the model from PTC records gathered in 2013, 2014, and 2015.2 It is
worth noting that these data are easily manageable, provided that PTCs
routinely collect fare evasion monitoring data and consistently gauge
passenger perceptions regarding ticket inspections.

3.2. Data and sources

Data on final, intermediate, and risk-exposure factors were mined
from the dataset presented in Barabino et al. (2023). More specifically,
various data sources were considered.

Final factors on the fare evasion frequency were mined from the
fare inspection logs, commonly conducted on-board to prevent service
disruptions. Inspection logs report the number of passengers inspected
and fined for each route and time window. The frequency was modeled
as the total number of fined, eluded, and escaped passengers in a time
window. Final factors on fare evasion severity were gathered by
administering onboard surveys to passengers by asking for their self-
reported fare evasion. The measure of severity was defined according
to the revenue loss. Specifically, individuals with lacking or unvalidated
tickets were classified as severe fare evaders, while minor irregularities
(e.g., just expired tickets) were not categorized as severe offenders. In
total, data for evaluating the frequency and severity of fare evasion were
gathered over a span of at least two weeks, encompassing both weekdays
and weekends, from 07:00 to 19:00, which amounted to more than
19,000 records.

Data on intermediate factors related to context, organization, and
vehiclewere gathered from the inspection log files. Theymainly include
temporal elements, system planning and design attributes, inspection
patterns, and vehicular characteristics. Data on intermediate factors
on passengers were gathered by administering a four-section ques-
tionnaire, including sociodemographic characteristics, travel behavior
characteristics, situational factors, and personality traits.

Tables A1 and A2 in the Appendix provide descriptive statistics on
the intermediate and final factors of the fare evasion datasets adopted to
set up the frequency and severity model proposed in this research.

Data on risk exposure factors were gathered from the PTC’s data-
set. These factors encompass passenger volumes, which are determined
by ride checks on a route-by-route basis, the length of the inspection
path (defined as the distance between the bus stops where passengers
alight and board during each inspection run), and the level of occupancy
(defined as the ratio of passengers to the vehicle’s capacity).

Finally, in this study, the segmentation between consecutive stops
was adopted because of:

• Exposure Term Collection: Passenger numbers are gathered at
consecutive bus stops, allowing for a better representation of expo-
sure heterogeneity.

• Industry Practice: PTCs widely use segmentation between consecu-
tive stops as the standard unit of analysis, and data and performance
metrics are often reported in this manner (e.g., Barabino, et al., 2016;
Ceder, 2016; Pili et al., 2019). This choice enhances the compre-
hensibility of results within the PTCs’ community.

• Experiment Replicability: Stating segments as the “leg between two
consecutive bus stops” eliminates any vagueness that might derive
from segmentation based on different features.

4. Results and discussion

4.1. Fare evasion frequency model

According to STEP 1, the frequency model was fitted by adopting an
ML technique based on a regression ANN, as indicated in eqns. from (3)
to (12). To identify training (i.e., TR), validation (i.e., VA) and test (i.e.,
TE) subsets, respectively, a splitting ratio of 70 %, 15 % and 15 % was
used (Flach, 2012). By changing the training procedure and the hidden
layer’s number of neurons, many calibrations were made to enhance the
fitting. After tuning, a network with 10 perceptrons in the hidden layer,
trained using the Levenberg-Marquardt algorithm, is selected as it pro-
vides the greatest data fitting. The training-validation process was
stopped at epoch 13, which returned the value of the minimum cost
function (i.e.,MSE) on the validation subset (i.e., VA) as shown in Fig. 3.
Weights and biases of the hidden layer perceptrons (i.e., wpf and bp) and
for the output layer perceptron (i.e., wp and b) are provided in Tables A3
and A4 in the Appendix, respectively.

The fitting and prediction performances of the model were tested
through the metrics in Table 1 for the frequency response variable. Fig. 4
shows that the model adequately describes frequency data, since (tarj,
t̃arj) points are located close to the regression lines in all subsets. The
other metrics (Table 3) corroborate the goodness of fit and prediction of
the ANN model, which accounts for more than 75 % of the variability in
the data (as shown by R > 0.75). Furthermore, the results of ANN look
conservative because it slightly overestimates the number of fare
evasion events (as shown by π ≳1).

Next, the Permutation Feature Importance and the partial derivative
of each factor in the frequency model (i.e., PFIf and ∂ω̃

∂fj
) were computed

according to eqns. (13) and (14). The outcomes are reported in Table 4
and Fig. 5.

To summarize, an exposure factor (i.e., passenger volume) and two
organization factors (i.e., inspection types B and A) showed the strongest
contributions in explaining the fare evasion frequency, being the values
of PFIf significantly higher than those associated with the other factors
(Fig. 5).

Fig. 3. Cost function for the frequency model (i.e., MSE) as a function of
training epoch. In epoch 13, the best validation performance was attained as
indicated by the green circle. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

2 The analysis of more recent data is not feasible because of CTM’s confi-
dentiality policy.
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Focusing on each factor separately, the volume of passengers carried
during a specific time window (i.e., Pass_vol) was the most important
predictor, having a PFIf greater than 70 and a positive partial derivative.
This finding corroborates Barabino et al. (2023), who proved that the
larger the exposure in terms of passenger volume, the more frequent the
fare evasion. Moreover, the level of occupancy looks less important,
unlike that observed by some authors (i.e., Lee, 2011; Guarda et al.,
2016; Cantillo et al., 2022). Next, all the factors related to targeted in-
spection type followed, with categories B and A ranking second and
third, respectively, and PFIf values at least twice as large as C and D,
which ranked fourth and fifth, respectively. These findings are consis-
tent with Barabino et al. (2023), in which the presence of checkers (A
and B) results in a higher rate of fare evasion compared to the presence

of inspectors alone (C and D). Although these results look unexpected,
they might be explained by crafty evaders who are constantly on guard
to elude inspectors and could travel along alternative routes where the
inspection is not yet targeted (e.g., Assaf and Van den Broeck, 2022).
Moreover, the positive partial derivatives of all targeted inspection types
(i.e., from A to D) seem to contrast with the assumption that highly
targeted inspections would reduce fare evasion (e.g., Boyd, 2020).
Hence, random inspections look more effective than those following
targeted paths in lowering fare evasion, endorsing real-world results in
Barabino et al. (2023) and laboratory experiments in Dai et al. (2017).
The last experiment showed that targeted inspections reduce fare
evasion rates by around 50% in the first four days and result in a burst of
fraud during subsequent periods with no inspection. Next, a standard
patrol of two inspectors (i.e., Standard) rated sixth, and a negative value
was found for its partial derivatives. The relatively high importance of
this predictor and its lowering effect on fare evasion frequency are ex-
pected results. Indeed, previous studies showed that a two-inspector
patrol is more effective than three or more inspectors in dealing with
fare evasion (e.g., Barabino et al., 2023; Barabino and Salis, 2019).
Finally, the time period during which the inspection was performed (i.e.,
7:30–9:30 and 12:30–14:30) placed seventh and eighth, respectively,
and both presented negative partial derivatives. Interestingly, 7:30–9:30
was found to have the highest PFIf among the time period-related

Fig. 4. Regression Plots (RPs) for the frequency model.

Table 3
Performance metrics for the frequency model.

Metric Value on TR Value on VA Value on TE

R 0.76 0.77 0.83
MAE 3.39 3.78 3.33
RMSE 5.49 5.67 4.80
CoV 0.994 0.977 0.892
π 1.011 1.032 1.000

Table 4
Permutation feature importance and ranking of each factor for the ANN frequency model.

Factor Abbreviation PFI PFI Ranking Mean partial derivative* Probability that
∂ω̃
∂fj

≥ 0 **

Exposure

Passenger volume Pass_vol 70.281 1 0.001 100.00 %
Level of occupancy Occ_Lev 0.731 11 4.216 100.00 %
Context     
Time period 7:30–9:30 Rush_Morn 1.506 7 − 1.354 35.62 %
 12:30–14:30 Rush_Half 1.296 8 − 0.592 32.54 %
 17:30–19:30 Rush_Even 0.978 10 1.162 80.07 %
Organization     
Inspection Type A A 16.062 3 4.036 68.93 %
 B B 24.214 2 6.302 98.75 %
 C C 5.772 4 4.350 85.70 %
 D D 2.672 5 5.199 93.85 %
Level of enforcement Standard Standard 2.131 6 − 1.424 16.19 %
Vehicle     
Capacity Capacity 0.650 12 0.030 89.70 %
Length Medium Medium 0.615 13 2.489 89.17 %
 Long Long 1.023 9 0.524 67.83 %

*Computed as the mean of
∂ω̃
∂fj

values in the dataset. ** Computed as the ratio between the number of records in which
∂ω̃
∂fj

≥ 0 and the total number of records in the

dataset.
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factors. This is an expected outcome because Barabino et al. (2023)
found that rush morning was the time period-related factor associated
with the greater coefficient in terms of absolute value. Indeed, they
showed that the lowest frequency of fare evasion occurred during the
morning rush hours. Although these findings were gathered in a
midsized European city, they are consistent with Lee (2011) and Reddy
et al. (2011) in big cities of San Francisco and New York (USA) as well as
in Guarda et al. (2016) and Cantillo et al. (2022) in the big city of
Santiago (Chile). The other variables look less important.

4.2. Fare evasion severity model

According to STEP 1, the severity model was set up by fitting a
classifier ANN, as specified in eqns. from (3) to (12). Like the frequency
model, a splitting ratio of 70 %, 15 % and 15 % was used for TR, VA and
TE subsets, respectively. After several attempts at improvement, a
network with 40 perceptrons in the hidden layer and trained by the
Levenberg-Marquardt algorithm was chosen. The training-validation
process was terminated at epoch 29, corresponding to the minimum
CE on VA (Fig. 5). Weights and biases of the hidden layer perceptrons (i.
e., wpf and bp) and the output layer perceptron (i.e., wp and b) are pro-
vided in Tables A5 and A6 in the Appendix, respectively.

Next, the metrics in Table 1 for the severity response variable were
considered to test the fitting and prediction performances of the model.
On the one hand, the CMs (Fig. 6) and the TPRmetric (Table 5) indicated
that the model slightly underestimates the number of severe fare evasion
events, probably due to the strong skewing of the dataset toward no
severe events. All in all, the model was found to be sufficiently accurate,
as 90 %+ of the observed data were correctly predicted. Indeed, ACC
values greater than 0.9 were attained not only for the TR and VA data-
sets, but also for the TE dataset (Table 5), which had no influence on
training and, therefore, provides an unbiased measure of model per-
formance. See (Fig. 7).

Afterwards, the Permutation Feature Importance and the mean
partial derivative of each factor in the frequency model (i.e., PFIf and ∂ω̃

∂fj
)

were computed according to eqns. (13) and (14). Results are summa-
rized in Table 6 and in Fig. 8.

Generally speaking, a personality factor (i.e., honesty), a situational

factor (i.e., fines in the past), two sociodemographic characteristics (i.e.,
two different educational qualification levels), and a travel behavior
characteristic (i.e., trip purpose) demonstrated the highest impacts in
explaining the fare evasion severity (Fig. 8).

Focusing on each factor, honest users (i.e., Hon_Y) turned out to be
the most important predictor, with a PFIf of about 0.1 (significantly
higher than the PFIf all other factors). Moreover, a negative partial de-
rivative indicated a decreased severity, which is an expected outcome.

Fig. 5. Bar chart representing the PFIf of each factor for the ANN frequency model. Factors are sorted from most important to least important. Red and green bars
indicate that an increase in the factor “on average” leads to an increase or decrease in fare evasion frequency, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Cost function for the severity model (i.e., CE) as a function of training
epoch. In epoch 29, the best validation performance was attained as indicated
by the green circle. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 5
Performance metrics for the severity model.

Metric Value on TR Value on VA Value on TE

TPR 0.370 0.339 0.323
TNR 0.984 0.980 0.983
ACC 0.932 0.922 0.917
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Specifically, honesty presented one of the highest negative coefficient
estimates (in terms of absolute value), and being honest was proved to
reduce the likelihood of a severe event by about 9 times compared to
being dishonest. Moreover, this result confirms previous post hoc seg-
mentation studies (e.g., Barabino and Salis, 2023; Currie and Delbosc,
2017; Delbosc and Currie, 2016).

Next, the history of prior fines (i.e., Fine_Past_Y) emerged as the
second-ranking factor, and a positive value was found for its partial
derivative. This confirmed previous research (e.g., Barabino et al., 2023;
Barabino and Salis, 2023; Barabino et al., 2022a; Barabino and Salis,
2020). In contrast, the findings of Bucciol et al. (2013) indicated that
prior fines were insignificant in influencing fare evasion behavior.
Furthermore, unlike the results presented by Dai et al. (2017), our
research shows that passengers previously fined may attempt to offset
their losses by evading fares once again.

Next, the educational qualification of the users followed with the
categories “middle school graduate” (i.e., Middle_Sc) and “upper school
graduate” (i.e., Upper_Sc) ranking third and fourth, respectively. Both
factors presented a lower impact on fare evasion severity. These results
confirm the conclusions of some previous works while contrasting

others. Indeed, Barabino et al. (2023) found that passengers with a lower
educational level significantly boost the severity of fare evasion, and
Bucciol et al. (2013) concluded that this variable has a negligible effect.
Hence, more research is needed to better understand the influence of
this predictor. Finally, the trip purpose (i.e., Study_Trips) rated fifth and
presented a negative partial derivative. This is an expected finding, as it
has been demonstrated that severe fare evasion is more likely to occur
for other trip motivations, e.g., when passengers are making occasional
trips (e.g., Barabino et al., 2023). Interestingly, the perception of the
inspections does not strongly influence the severity model. This fact
could partially explain why past research did not observe clear trends.
Indeed, while some studies showed how this perception affects fare
evasion (e.g., Barabino et al., 2015; Cools et al., 2018; Porath and Gal-
ilea, 2020) and agree with the research on deterrence (e.g., Clarke et al.,
2010), others disagree (e.g., Bucciol et al., 2013; Barabino and Salis,
2023).

4.3. Real-time risk prediction and ranking and data visualization

Next, according to STEP 2, in this case study, a Monte Carlo method

Fig. 7. Confusion Matrixes (CMs) for the severity model.

Table 6
Permutation feature importance and ranking of each factor for the ANN severity model.

Factor Abbreviation PFI Rank Mean partial derivative* Probability that
∂ω̃
∂fj

≥ 0**

Sociodemographic characteristics

Gender Male Gen_M 0.006 8 0.029 90.29 %
Age class Above 65 Above_65 0.001 15 − 0.027 20.99 %
 51–65 51–65 0.006 9 − 0.046 2.63 %
 36–50 36–50 0.001 16 − 0.027 7.32 %
 26–35 26–35 <0.001 19 − 0.026 16.62 %
 18–25 18–25 0.007 7 0.028 78.38 %
Educational qualification Upper school graduate Upper_Sc 0.020 4 − 0.059 1.31 %
 Middle school graduate Middle_Sc 0.021 3 − 0.036 22.15 %
 Middle school not graduated Middle_Sc_N 0.005 10 − 0.002 49.37 %
Employment Worker Worker <0.001 17 0.023 87.55 %
Reason to use the bus Other Other_Use_Bus 0.003 12 − 0.022 13.33 %
Travel behaviour characteristics     
Trip purpose Work Work_Trips 0.002 13 − 0.011 33.43 %
 Study Study_Trips 0.020 5 − 0.043 26.53 %
In-vehicle time More than 15 min Time_More_15 0.005 11 − 0.038 5.99 %
Quality rating Satisfied Statisf_Y 0.002 14 − 0.020 37.37 %

Situational factors
    

Perceived inspection frequency From 6 to 10 Insp_Freq_6_10 <0.001 20 − 0.020 12.21 %
 From 1 to 5 Insp_Freq_1_5 <0.001 18 − 0.009 48.47 %
Know the amount of the fine Yes Know_Fine_Y 0.007 6 0.035 95.94 %
Fined in the past Yes Fine_Past_Y 0.032 2 0.081 99.91 %
Personality factors     
Honest Yes Hon_Y 0.100 1 − 0.157 0.00 %

*Computed as the mean of
∂ω̃
∂fj

values in the dataset. ** Computed as the ratio between the number of records in which
∂ω̃
∂fj

≥ 0 and the total number of records in the

dataset.
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generated the explanatory factors for each upcoming temporal window
(t ∈ T). The duration of the time windows was chosen to ensure uni-
formity in the typology of the period within each window (i.e., soft hours
or rush hours). As a result, the duration of each window was different
according to the type of the period (i.e., two hours for rush and 18 h for
soft). To run the Monte Carlo simulation, the probability density func-
tions associated with each predictor were preliminary defined according
to historical data. More details about these functions are provided in
Appendix (Section 3).

Next, according to STEP 3, for each route, the risk index was real-
time predicted for each window by eqn. (19), where the explanatory
factors generated in STEP 2 were assumed as input. Next, according to
STEP 4, the risk predictions were ranked for each time window by the
five-level risk scale based on the distribution quartiles. In what follows,
results are presented considering segments rather than routes to provide
greater granularity. The case study time windows are chosen to cover all
time periods and type of day combinations. The outcomes are reported
in Table 7.

On the one hand, in the case of Weekday – Other intervals and
Weekend – Other intervals, the upper bounds of the maximum risk level
are comparable. On the other hand, during Weekday − 7:30–9:30, the
upper bound of the maximum risk level was significantly higher than
Weekend − 7:30–9:30. This outcome might depend on the higher values
of exposure during the former rather than the latter, due to the overlap
of work and study activities. Next, in Weekend − 12:30–14:30 and the
Weekend − 17:30–19:30, the upper bounds of the maximum risk level
were found to be notably higher than those of the Weekday −

12:30–14:30 and the Weekday − 17:30–19:30. This is probably due to
the joint effect of the larger number of leisure/tourism trips with the
lower rate of inspections performed during the weekend.

Next, according to STEP 5, maps were plotted to clearly represent
risk predictions. They help visualize the ranking of routes at a dis-
aggregated level and, thus, better appreciate the variability of risk along
each segment of the entire transit network (Fig. 9).

Fig. 9 shows that the fare evasion risk has a strong spatial and tem-
poral dependence. Consider as an illustrative example, Weekday –

Table 7
Ranking scale for link risk ranges during the eight different time windows taken as illustrative examples.

Fig. 8. Bar chart representing the permutation feature importance of each factor for the ANN severity model. Factors are sorted from most to least important. Red
and green bars indicate that an increase in the factor “on average” leads to an increase or decrease in fare evasion severity, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Fare evasion risk maps on the overall network during the eight different time windows taken as illustrative examples: (a) Weekday – 7:30–9:30; (b) Weekday
– 12:30–14:30; (c) Weekday – 17:30–19:30; (d) Weekday – Other intervals; (e) Weekend – 7:30–9:30; (f) Weekend – 12:30–14:30; (g) Weekend – 17:30–19:30; (h)
Weekend – Other intervals.
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12:30–14:30 (Fig. 9 (b)) andWeekday – 17:30–19:30 (Fig. 9 (c)) maps. In
Weekday – 12:30–14:30, the area with the higher density of segments
and the maximum risk level (i.e., R1) is the northern part of the city,
where there are many activities. Conversely, inWeekday – 17:30–19:30,
the riskiest segments are along the southern coastline, where leisure
attractions prevail. Moreover, the time windows affect the number of
segments with a given risk level. Furthermore, in the cases ofWeekday –
12:30–14:30 (Fig. 9 (b)) and Weekend – 12:30–14:30 (Fig. 9 (f)), the
number of R1 segments is sensibly greater in the former than in the
latter, probably due to a different distribution of transit user’s activities
within the city.

4.4. Simulation of real-time risk deterrence strategies

According to STEP 6, real-time risk deterrence strategies are simu-
lated for eight scenarios, one for each time window, to provide an
illustrative example of the proposed methodology (Table 8).

Noteworthy, whilst inWeekday – Other intervals andWeekend – Other
intervals, the fractions of segments involved by the more severe strate-
gies are similar, in Weekend – 7:30–9:30 the fraction of inspected seg-
ments is quite higher (about 0.7 %) than in Weekday – 7:30–9:30.
Conversely, inWeekday – 12:30–14:30 andWeekday – 12:30–14:30, the
percentages of inspected segments turned out to be substantially higher
than in Weekend – 12:30–14:30 and Weekend – 12:30–14:30. Specif-
ically, this difference exceeded 2 % for the 12:30–14:30 period. At first
glance, these results could appear to be incompatible with the risk level
bounds. Indeed, there is a low number of segments to be inspected in the
time windows when a high risk of fare evasion is predicted and vice
versa. Nevertheless, the two outcomes are not contradictory because
they are just two sides of the same phenomenon. More specifically, on
the one hand (e.g.,Weekend – 12:30–14:30), there are comparatively few
segments with a maximum risk level of fare evasion (i.e., R1), but the
upper bound associated with this level is relatively high. Strictly
speaking, there are few but very risky segments. On the other hand (e.g.,
Weekday – 12:30–14:30), the number of segments with the maximum
risk level (i.e., R1) is comparatively larger, but the upper bound with this
level is relatively lower (i.e., there are many but less risky segments).
Moreover, this quantitative result confirms what is qualitatively high-
lighted from the risk maps (e.g., Fig. 9 (b) and Fig. 9 (f)). Finally, it is
interesting to note that the percentage of segments that would be
affected by inspection activities in all time windows is quite comparable
to the optimum inspection rate that maximizes the PTC’s profit, i.e., 3.4
%-4.0 % (Barabino et al., 2014; Barabino and Salis, 2019).

4.5. Summary of the key findings and fare evasion deterrence strategies

Finally, this section highlights the key findings and translates them
into policy actions to reduce fare evasion. These are reported in Table 9,
which is self-explicative and structured into four columns: “Risk
Component”, disaggregating the fare evasion risk in frequency and

severity components; “Factor(s)”, listing the main variables influencing
fare evasion risk according to the PFI values; “Observed Effect”, sum-
marizing how each factor impacts fare evasion risk according to the
mean partial derivative values; and “Suggested Deterrence Strategy,”
recommending strategies to address each main risk factor, often
involving dynamic real-time methods. By focusing on these refined ac-
tions, TAs/PTCs can effectively reduce both the frequency and severity
of fare evasion, ensuring a more compliant and fair public transportation
system.

Table 8
Simulated deterrence strategies. For each scenario, the percentage of segments
that would be affected by the different strategies is shown.

Strategy Weekday
–
7:30–9:30

Weekday –
12:30–14:30

Weekday –
17:30–19:30

Weekday –
Other intervals

Inspections 5.46 % 7.84 % 6.48 % 3.12 %
Messaging 19.54 % 17.16 % 18.52 % 21.88 %
Do nothing 75.00 % 75.00 % 75.00 % 75.00 %

Strategy Weekend
–
7:30–9:30

Weekend –
12:30–14:30

Weekend –
17:30–19:30

Weekend –
Other Intervals

Inspections 6.15 % 5.64 % 5.89 % 3.51 %
Messaging 18.85 % 19.36 % 19.11 % 21.49 %
Do nothing 75.00 % 75.00 % 75.00 % 75.00 %

Table 9
Summary of the key findings and corresponding fare evasion deterrence
strategies.

Risk
Component

Factor(s) Observed Effect Suggested Deterrence
Strategy

Frequency Passenger
Volume

Higher passenger
volumes result in more
frequent fare evasion
events

Implement strategies to
manage passenger
volumes during peak
times and ensure better
monitoring and control
of the busiest routes.
This includes, e.g.,
deploying inspection
teams based on real-
time risk predictions.

 Inspection
Types

Targeted inspection
with checkers (types A
and B) generates more
evasion than target
inspections with
inspectors only (C and
D). Moreover, random
inspections are more
effective than targeted
ones in lowering fare
evasion frequency.

Avoid inspection Types
A and B in segments
with high fare evasion
risk. Vary inspection
times and locations (i.
e., implement random
inspections) to prevent
evaders from predicting
inspection patterns, e.
g., by deploying
inspection teams based
on real-time risk
predictions.

Severity Honesty Honest individuals are
much less likely to
commit severe fare
evasion.

Develop programs
encouraging honesty
and integrity among
passengers. This
includes community
engagement initiatives
that promote fare
compliance as a social
norm. These campaigns
might be based on real-
time risk predictions
and include, e.g.,
information
dissemination by VMPs
strategically located in
vehicles and at bus
stops.

 Educational
Level

Higher educational
levels (middle and
upper school
graduates) correlate
with lower fare
evasion severity.

Launch educational
campaigns targeting
populations with lower
educational levels to
raise awareness about
the importance of fare
compliance. These
campaigns might be
based on real-time risk
predictions, as are done
in the case of honesty.

 Trip Purpose The trip purpose
significantly
influences the severity
of fare evasion.
Occasional trips are
associated with a
greater fare evasion
severity than study
and work trips.

Intensify inspections
during periods when
the fraction of
occasional trips is larger
(e.g., off-peak hours,
weekends) by deploying
inspection teams based
on real-time risk
predictions.
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Interestingly, many TAs/PTCs worldwide are addressing fare
evasion, according to the guidelines in Table 9.

For instance, managing passenger volumes during peak times is
crucial. Effective strategies include dynamic deployment of inspection
teams, as in New York City (MTA, 2019). Moreover, the city is moving
from a “citations first” approach to a “warnings first” approach, i.e., to
educate passengers. This choice shows that first-time fare evaders
should receive an official warning recorded, prioritizing this measure
over the immediate issuance of citations or arrests (Blue-Ribbon Panel –
BRP, 2023).

Random inspections have proven more effective than targeted ones.
For instance, the towns of Adelaide and San Francisco in California
(USA) address fare evasion by unpredictable inspection patterns in terms
of times and locations (e.g., Milnes, 2012; SFMTA, 2020).

Promoting honesty among passengers through community engage-
ment initiatives has also been effective. For example, San Francisco has
implemented public awareness campaigns to establish fare compliance
as a social norm (e.g., SFMTA, 2020). Likewise, Sydney, Australia’s ef-
forts in public education on fare compliance serve as a useful model (e.
g., Cassidy, 2018). Implementing similar campaigns informed by real-
time risk data can effectively raise awareness and promote lawful
behavior.

5. Conclusions and research perspective

Nowadays, fare evasion is a major threat to TAs/PTCs. It is an
emerging topic for academic research to recommend possible deterrence
strategies. The current approach models the fare evasion risk from all
factors that could be gathered daily in the activities of fare inspectors
and surveying passengers (if any). This study contributes to the litera-
ture as follows:

• It investigates fare evasion risk by machine learning methods. Spe-
cifically, two ANNmodels are trained, validated, and tested to assess
the frequency and severity of fare evasion to account for the intricate
(potentially nonlinear) nexus connecting these components.

• It provides a real-time estimation of risk value for each (segment of a)
route and time window of interest, which is ranked accordingly.

• It recommended real-time deterrence strategies based on inspections
and messaging actions to lessen fare evasion along the most critical
(segments of a) route.

• It shows how to plan accurate fare compliance strategies as opposed
to static daily measures in the literature. The performance of fare
evasion on (segment of a) route can be diagnosed using simple-to-
read control dashes based on charts and maps, which help priori-
tize interventions on the high-risk evasion routes according to in-
spection and communications strategies.

To the best of our knowledge, this is the first research using ANNs to
predict fare evasion risk in transit networks in real-time. Moreover, this
research can foster the assessment and management of the risk of fare
evasion because the framework works with any PTC. If new data be-
comes available, this framework can be employed in any urban context
to investigate the effects of various factors on the risk of fare evasion. For
instance, TAs/PTCs can schedule accurate randomized inspection paths
along the network.

This study indicates some research developments. Because original
data were manually collected, each factor and route segment were
simulated in any time window. Nevertheless, in the era of strong ad-
vancements in technology, all these data could always be available
because they can be automatically collected by several tools and/or
sensors on board the bus. For instance, frequently, fare evasion data are
collected by inspection logs. Although these logs are available daily, in
many TAs/PTCs, they are still gathered by paper and pencil, which
presents some critical issues (e.g., digital data transfer). However, the
opportunity for palmtop devices to support inspection activities is

strongly recommended. These devices could reduce the timing of ticket
controls, automate the citation process, manage reiterated passenger
misbehavior, and quickly return data available for processing (e.g., Egu
and Bonnel, 2020). Risk exposure data (i.e., passenger data) could easily
be collected by automated passenger counting systems quantifying
boarding and alighting passengers. Thus, these data could improve the
estimation of the exposure factors, as well as improve the passenger
experience by facilitating efficient boarding, enabling more accurate
occupancy information, and enhancing the overall quality of public
transport services. The severity data used in this study were based on
surveying passengers and identifying specific factors. This option could
be quite an expensive activity. Conversely, recent computer vision
development has adopted pattern recognition in images. Therefore,
most factors could be inferred by digital video cameras that are
frequently available on vehicles (e.g., Huang et al., 2022). This tech-
nology may contribute to automatically inferring passenger factors, thus
refining the measure of the severity of fare evasion. Nevertheless, ac-
cording to the European General Data Protection Regulations (GDPR),
collecting such digital characteristics must be implemented with
appropriate measures in accordance with data privacy. Finally, as these
data are collected by different devices and sensors, their integration
should be investigated to develop more refined real-time risk prediction
models that should include multi-source data fusion algorithms.

Second, future research should precisely measure the type of evasion
and analyze its severity to produce a more accurate evaluation of risk.
Furthermore, the exposure factors could be explicitly modeled instead of
being part of the frequency model. Moreover, adding the accurate lo-
cations of each passenger’s boarding bus stop might raise the quality of
the fare evasion datasets.

Third, future research should evaluate the predictive capabilities of
ANN models compared to more traditional econometric models, spe-
cifically for the frequency and severity components of fare evasion risk.
Such a comparison could uncover scenarios in which ANN models excel
over traditional econometric approaches and vice versa, enhancing the
understanding of fare evasion dynamics. Additionally, this method
could highlight potential areas for model improvement and innovation.

Finally, exploring new techniques for segmenting transit networks
could provide further insights. Current segmentation methods might not
fully capture the complex patterns of fare evasion. Studies can better
identify high-risk areas and tailor interventions by developing and
applying innovative segmentation strategies. This could lead to more
precise and targeted policies, ultimately improving the efficiency of fare
evasion prevention measures.

In summary, this study shows the time-dependent degree of fare
evasion throughout the network using the fare evasion risk estimation as
a driver. Research challenges will arise from the development of opti-
mization approaches for inspection planning, scheduling, and random-
ized patrols on route segments.
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CTM, 2023. Carta mobilità 2023-2024. Available at: https://ctmcagliari.
portaletrasparenza.net/it/trasparenza/servizi-erogati/carta-dei-servizi-e-standard-
di-qualita.html. Accessed on 16.07.2024.

Currie, G., Delbosc, A., 2017. An empirical model for the psychology of deliberate and
unintentional fare evasion. Transp. Policy 54, 21–29. https://doi.org/10.1016/j.
tranpol.2016.11.002.

Dai, Z., Galeotti, F., Villeval, M.C., 2017. The efficiency of crackdowns: a lab-in-the-field
experiment in public transportations. Theor. Decis. 82 (2), 249–271. https://doi.
org/10.1007/s11238-016-9561-0.

Dai, Z., Galeotti, F., Villeval, M.C., 2018. Cheating in the lab predicts fraud in the field:
an experiment in public transportation. Manag. Sci. 64 (3), 1081–1100. https://doi.
org/10.1287/mnsc.2016.2616.

Dauby, L., Zoltan, K., 2007. Fare evasion in light rail systems. Transportation Research
Circular 6–8.

Delbosc, A., Currie, G., 2016. Cluster analysis of fare evasion behaviours in Melbourne,
Australia. Transp. Policy 50, 29–36. https://doi.org/10.1016/j.tranpol.2016.05.015.

Delbosc, A., Currie, G., 2019. Why do people fare evade? A global shift in fare evasion
research. Transp. Rev. 39 (3), 376–391. https://doi.org/10.1080/
01441647.2018.1482382.

Eddy, D., 2010. Fare Evasion is it a youth issue? Transit Australia-Australia’s Urban
Passenger Transport Journal 65 (12), 1–7.

Egu, O., Bonnel, P., 2020. Can we estimate accurately fare evasion without a survey?
Results from a data comparison approach in Lyon using fare collection data, fare
inspection data and counting data. Public Transport 12 (1), 1–26. https://doi.org/
10.1007/s12469-019-00224-x.

Escalona, P., Brotcorne, L., Fortz, B., Ramirez, M., 2024. Fare inspection patrolling under
in-station selective inspection policy. Ann. Oper. Res. 332 (1), 191–212.

Fine, W.T., 1971. Mathematical Evaluation for Controlling Hazards. J. Safety Res. 3,
157–166.

Flach, P., 2012. Machine Learning: The Art and Science of Algorithms That Make Sense
of Data. Cambridge University Press.
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