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ABSTRACT SARS-CoV-2 infection is known to trigger an important inflammatory
response, which has a major role in COVID-19 pathogenesis. In infectious and inflam-
matory contexts, the modulation of human endogenous retroviruses (HERV) has
been broadly reported, being able to further sustain innate immune responses due
to the expression of immunogenic viral transcripts, including double-stranded DNA
(dsRNA), and eventually, immunogenic proteins. To gain insights on this poorly char-
acterized interplay, we performed a high-throughput expression analysis of ;3,300
specific HERV loci in the peripheral blood mononuclear cells (PBMCs) of 10 healthy con-
trols and 16 individuals being either convalescent after the infection (6) or retesting pos-
itive after convalescence (10) (Gene Expression Onmibus [GEO] data set GSE166253).
Results showed that the exposure to SARS-CoV-2 infection modulates HERV expression
according to the disease stage and reflecting COVID-19 immune signatures. The differ-
ential expression analysis between healthy control (HC) and COVID-19 patients allowed
us to identify a total of 282 differentially expressed HERV loci (deHERV) in the individu-
als exposed to SARS-CoV-2 infection, independently from the clinical form. In addition,
278 and 60 deHERV loci that were specifically modulated in individuals convales-
cent after COVID19 infection (C) and patients that retested positive to SARS-CoV-2
after convalescence (RTP) as individually compared to HC, respectively, as well as
164 deHERV loci between C and RTP patients were identified. The identified HERV
loci belonged to 36 different HERV groups, including members of all three classes.
The present study provides an exhaustive picture of the HERV transcriptome in
PBMCs and its dynamic variation in the presence of COVID-19, revealing specific
modulation patterns according to the infection stage that can be relevant to the
disease clinical manifestation and outcome.

IMPORTANCE We report here the first high-throughput analysis of HERV loci expres-
sion along SARS-CoV-2 infection, as performed with peripheral blood mononuclear
cells (PBMCs). Such cells are not directly infected by the virus but have a crucial role
in the plethora of inflammatory and immune events that constitute a major hallmark
of COVID-19 pathogenesis. Results provide a novel and exhaustive picture of HERV
expression in PBMCs, revealing specific modulation patterns according to the disease
condition and the concomitant immune activation. To our knowledge, this is the first
set of deHERVs whose expression is dynamically modulated across COVID-19 stages,
confirming a tight interplay between HERV and cellular immunity and revealing spe-
cific transcriptional signatures that can have an impact on the disease clinical mani-
festation and outcome.
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The COVID-19 pandemic has been affecting the global population since December
2019, when the second identified human severe acute respiratory syndrome coro-

navirus (SARS-CoV-2) gave rise to an epidemic in Wuhan city (Hubei province, China).
Since then, the virus has rapidly spread to the rest of the World, leading to around 540
million confirmed cases of COVID-19 and 6.3 million deaths according to the World
Health Organization’s dashboard (https://covid19.who.int, accessed on 24 June 2022).

SARS-CoV-2 is a betacoronavirus, belonging to the Coronavirinae subfamily of the
Coronaviridae (order Nidovirales). It has a positive-sensed single-stranded RNA (ssRNA1)
genome with a 59 cap and 39-untranscribed region (UTR) poly(A) tail, which can be
directly recognized as an mRNA by the cellular translational apparatus. The SARS-CoV-2
genome is ;30 kb long and includes, in total, 14 open reading frames (ORFs) producing
24 nonstructural proteins (nsp) involved in various steps of viral replication and assembly
and 4 structural proteins that constitute the viral components of spikes (S), envelope (E),
matrix (M), and nucleocapsid (N) (1). In particular, the first ORF of the genome, namely,
ORF1ab, makes up approximately 65% of the viral RNA and is translated into two poly-
proteins: pp1a (including nsp1 to –11) and pp1ab (including nsp1 to 16 thanks to a read-
through mechanism) (1). These polyproteins include, among the other nsp, SARS-CoV-2
replicative enzymes such as the viral papain-like and the main 3C-like proteases (nsp3-
PLpro and nsp5-3CLpro, respectively) as well as the RNA-dependent RNA polymerase
(nsp12-RdRp).

The infection of SARS-CoV-2 starts with the binding of S protein to the angioten-
sin-converting enzyme 2 (ACE2) receptor, found on epithelial cells in many mamma-
lian tissues (lower respiratory tract and lungs, but also kidneys, gastrointestinal tract,
heart, liver, and blood vessels) (2). Such recognition promotes viral uptake and fusion
at the cellular or endosomal membrane, followed by the release and uncoating of
SARS-CoV-2 genomic ssRNA1 that is immediately translated at ORF1ab to produce
pp1a and pp1ab. The latter are cotranslationally and posttranslationally processed
into the single nsp to constitute the viral replication and transcription complex (1).
In parallel, the formation of characteristic perinuclear double-membrane vesicles and
spherules create a dedicated microenvironment for SARS-CoV-2 RNA replication and
expression of subgenomic mRNAs, including the remaining accessory proteins and the
structural components of viral particles. The latter are translocated and assembled at
the endoplasmic reticulum and Golgi compartment with the new viral genomes, which
are already associated with N proteins, and the thus-produced virions finally leave the
infected cell by exocytosis (1).

The clinical syndrome associated to SARS-CoV-2 infection, namely, COVID-19, has
been intensively studied, revealing a wide range of manifestations that affect not only
the primary site of infection, but also show important systemic impairments. Concerning
the lungs, clinical signs can be divided into early-phase pathological features (including
pulmonary edema, vascular congestion, and inflammatory infiltration with fibrinoid mate-
rial and multinucleated giant cells) and late-phase manifestations (such as diffuse alveolar
injury, acute respiratory distress syndrome, and bilateral inflammatory mononuclear infil-
trates) (3). However, the major characteristic of SARS-CoV-2 infection is the outbreak of a
potent hyperinflammatory reaction, which can be responsible for multiple organ dysfunc-
tion, leading to systemic deterioration and even death or causing permanent and often
severe sequelae (3).

Human endogenous retroviruses (HERVs) are genomic relics of ancestral viral infec-
tions that threatened primates along their evolution, i.e., in the last 60 million of years
(4). All these ancient infectious agents, which included members or all the three classes
of retroviruses, have gone extinct, in most cases even before the appearance of the
first humans. However, given that their infection and integration targeted the germ
line cells, these proviral sequences have been fixed and vertically inherited throughout
primates’ evolution, now constituting around the 8% of the human genome as long
terminal repeat (LTR)-retrotransposons. Of course, the prolonged persistence in the pri-
mate genome exposed HERV sequences to silencing mechanisms and random mutations,
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leading to the loss of replication capacity. However, a minority of HERVs retain some re-
sidual protein-coding potential, and in some instances their products have been domesti-
cated for pivotal physiological functions in the host (4, 5). The latter case includes the
cooption of HERV Env fusogenic activity for placenta formation (4), the contribution of an-
cient retroviral Gag proteins to human brain development and architecture (6), and intri-
guingly, a pivotal role of the dispersion of endogenous retroviruses (ERV) integrations in
the evolution and shaping of innate antiviral immunity networks in mammals (7).

In addition to residual protein production, growing evidence shows that many
HERV sequences (even if highly defective) can still have an impact on the host through
their regulatory signals, which may influence the expression of nearby cellular genes,
and especially, their abundant production of RNA transcripts. The latter, beside the fre-
quent noncoding nature, can impact cellular systems because they include viral signa-
tures that may still be recognized as pathogen-associated molecular patterns (PAMPs)
by innate immune pathways (5). For example, it has been shown that transcripts expressed
by these multicopy elements can form double-stranded RNA (dsRNA) by complementary
pairing, a known PAMP promptly recognized by cellular and endosomal pattern recogni-
tion receptors (PRRs), being the first-line sensors of antiviral responses (5). Such signaling
triggers a cascade that leads to the nuclear induction of the interferon-I (IFN-I) pathway,
with the production of inflammatory cytokines thought to be involved in the manifesta-
tion of various noninfectious disorders, including neuroinflammatory diseases and several
cancers (4, 5, 8). Intriguingly, the same immunogenic action, detrimental in pathological
conditions, is currently being exploited for innovative immunotherapies (9).

Remarkably, if on the one side HERV expression can trigger the host innate immu-
nity, the latter is itself able to modulate HERV expression, establishing a sort of vicious
circle. For example, the mimicking of a microbial infection through in vivo administra-
tion of bacterial lipopolysaccharides (LPS) was shown to differentially modulate the pe-
ripheral blood mononuclear cell (PBMCs) expression of 4,607 HERV and mammalian
apparent LTR retrotransposon (MaLR) sequences, which showed a general colocaliza-
tion with cellular genes involved and/or modulated in the innate immune response
(10). Similarly, adaptive immune responses evoked by antiviral vaccination have also
been shown to influence HERV expression, showing a dynamic modulation of HERV
transcripts according to the different stages of antibody production (11). In addition,
even with lower genetic resolution, several other studies reported the general modula-
tion of individual HERV group expression in the presence of several viral infections,
including among others, HIV (12–15), hepatitis C virus (HCV) (16), influenza (17), and
herpesviruses (18–21).

Indeed, to date, very few reports have assessed the transcriptional modulation of
HERV loci by SARS-CoV-2 infection or, in light of the predominant inflammatory envi-
ronment, their specific pattern of expression according to COVID-19 clinical stages and
disease severity (22–24). Such interplay is highly relevant, especially considering that
HERV transcriptional activation may sustain and amplify the inflammatory activation
exerted by COVID19, which is a major cause of severe symptoms and death, as well as
of permanent sequelae in convalescent patients.

In the present study, we performed a high-throughput analysis of the expression of
about 3,300 HERV loci in the peripheral blood mononuclear cells (PBMCs) from individ-
uals convalescent after COVID-19 infection (C, n = 6) and patients that retested positive
to SARS-CoV-2 after convalescence (RTP, n = 10) compared to healthy controls (HC,
n = 10) from the transcriptome sequencing (RNA-seq) data set recently published by
Wang and coworkers (Gene Expression Onmibus [GEO] accession no. GSE166253) (25).
Briefly, C patients were defined as patients that have been discharged from the hospi-
tal based on (i) normal body temperature for >3 days, (ii) at least two consecutive
negative SARS-CoV-2 reverse transcriptase quantitative PCR (RT-qPCR) assays, (iii)
improved respiratory symptoms, and (iv) significant absorption of pulmonary lesions.
RTP were C individuals that turned positive at follow-up after discharge from the
hospital ($2 consecutive RT-qPCR assays) (25). In the original study, blood sampling
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for PBMC isolation and RNA-seq were performed 2 to 4 weeks after discharge (C) or
immediately after the novel positivity confirmation (RTP). Neither C nor RTP patients
showed severe COVID-19 manifestations (25). The analysis of their transcriptomes in
the present study allowed us to identify a total of 282 differentially expressed HERV
loci (deHERV) in individuals exposed to SARS-CoV-2 infection (RTP and C, considered
together) compared to HC. Of these deHERVs, 202 were also found to be significantly
modulated in the subcomparisons specific to each clinical stage (RTP versus HC and
C versus HC). In addition, these subcomparisons allowed us to identify 278 and 60
deHERV loci that were specific to the stage of C and RTP patients individually com-
pared to HC, respectively, while 22 other deHERV sequences were modulated only
when the two clinical stages were analyzed excluding HC (RTP versus C). Finally, 31
HERV loci were significantly modulated in all analyses, showing a dynamic transcrip-
tional shift across COVID-19 clinical stages and were characterized in greater detail.

RESULTS
HERV transcriptome is globally influenced by SARS-CoV-2 exposure. At first, to

assess whether the presence of SARS-CoV-2 infection could have an impact on the
overall HERV expression, we performed clustering analyses. Results shown in the sam-
ple-to-sample distance heatmap (Fig. 1A) demonstrated that the general expression of
HERV sequences is strongly influenced by the presence of SARS-CoV-2, allowing us not
only to distinguish healthy controls (HC) from SARS-CoV-2-exposed individuals, but
even to discriminate between past exposure (C) and active reinfection (RTP).

To gain further insights about the impact of SARS-CoV-2 infection on HERV tran-
scriptional variance among the three conditions, we performed an unsupervised princi-
pal-component analysis (PCA) (Fig. 1B). Such analysis evaluates HERV expression
among samples and distributes the latter in a bi-dimensional matrix to identify the first
and second principal components (PC1 and PC2, respectively) accounting for its varia-
tion. The analysis confirmed a major impact of SARS-CoV-2 infection on HERV transcrip-
tional variation (Fig. 1B). In fact, samples were divided in three clusters based on HERV
transcriptional variation, corresponding to the three conditions (HC, C, and RTP), and
both the PC1 and the PC2 appeared to be linked to SARS-CoV-2 infection stage. In par-
ticular, the PC1 accounted for 45% of the total variance in HERV expression and
broadly divided HC from C and RTP patients, corresponding to the exposure to SARS-
CoV-2 infection (Fig. 1B), while the PC2 was responsible for an additional 13% of HERV
transcriptional variance and divided the cluster of RTP patients, i.e., active reinfections,
from the SARS-CoV-2-negative individuals, either because they were never infected
(HC) or already recovered (C).

The same clustering analyses were performed considering the transcriptional activity
of cellular genes (see Fig. S1 in the supplemental material). As expected, SARS-CoV-2
infection has a global modulatory effect on cellular gene expression as well, dividing the
three groups of individuals in the sample-to-sample distance plot (Fig. S1A). However, in
this case the presence of the infection had a lower impact on the cellular gene transcrip-
tional activity and did not seem to be a principal component for its variance (Fig. S1B). In
fact, samples in this case were divided by PC1 (54%) in two dispersed groups, RTP (2/10)
and C (6/6) individuals on the one side and RTP (8/10) ad HC (10/10) on the other side,
while PC2 (9%) divided samples into two mixed groups, both including individuals of
the three conditions (Fig. S1). To understand whether the different transcriptional pat-
terns as observed with cellular genes could be linked to a basal different response to
innate immune stimuli, we considered a subset of 44 genes capable of deconvoluting
complex responses to immune stimulation, distinguishing in this way low from high res-
ponders (26). Sample-to-sample distance analysis performed on these 44 immune genes
showed in this case a different distribution, grouping the samples in three clusters, with
clusters 2 (6 RTP and 2 C) and 3 (4 C) showing very similar transcriptional signatures com-
pared to cluster 1 (10 healthy and 4 RTP) (Fig. S2A). Such a division also resembled the dis-
tribution observed in the PCA built from the whole genic data set, suggesting that—for
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FIG 1 HERV sample-to-sample distance (A) and PCA plot (B). (A) Heatmaps of the overall similarity between samples: the correlation distance measure was
used in clustering columns based on the rlog-normalized HERV expression data. Samples are annotated by condition: red, healthy controls; green,

(Continued on next page)
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cellular gene expression—a major variant is represented by the basal, individual immune
activation (Fig. S1B). Accordingly, the PCA built with the 44 immune genes perfectly
matched the sample-to-sample distance division of the same, suggesting that the PC1
(65%) for cellular gene expression is represented by the different signature of induced
cytokine response, dividing low responders (cluster 1, in which some RTP are comparable
to “unstimulated” HC samples) from high responders (clusters 2 and 3) (Fig. S2B).

COVID-19 stages are associated with specific transcriptional modulation of
HERVs. Given that the HERV transcriptome showed specific patterns of modulation
according to both the presence and absence of the infection and the different clinical
stages, we investigated in more detail the expression of individual HERV sequences in
the three groups through the generation of expression heatmaps. The latter were built
with the 500 HERV loci showing either the highest mean or variance of expression
among samples (Fig. 2A and B, respectively). In both heatmaps, HERV expression was
confirmed to show major variations according to the exposure to SARS-CoV-2 infection
and COVID-19 clinical stages, clearly clustering the samples according to their condi-
tion of HC and recovered (C) or actively infected patients (RTP). Accordingly, these
three groups showed different modulation patterns for the same subset of HERVs
(Fig. 2A and B, respectively). In addition, RTP patients were divided in two clusters that
showed a different localization based on the type of HERV selection (i.e., by either high-
est mean or variance of expression). While the top 500 HERVs sorted by mean of
expression showed a transcriptional behavior comparable to the one of C patients for
both RTP clusters (Fig. 1A), the selection of the top 500 HERVs based on the higher var-
iance led 1 of the 2 RTP clusters (n = 3) to group with HC (Fig. 2B). A similar clustering
was observed in the corresponding heatmaps as generated with the top 500 cellular
genes, similarly sorted by the highest mean or variance of expression (Fig. S3A B,
respectively). Overall, this analysis confirmed that SARS-CoV-2 exposure has a major
impact on HERV expression, leading to specific transcriptional patterns associated with
HC, C, and RTP conditions. The fact that a similar behavior was shown with the same
selection on cellular genes suggests that the indirect impact of SARS-CoV-2 infection
on the PBMC transcriptome is a major determinant of transcriptional modulation, influ-
encing the expression of both canonical genes and endo-retroviral loci.

Exhaustive analysis of HERV modulation by SARS-CoV-2 exposure. In light of
the above-described results, we wanted to identify the individual HERV loci whose
expression is significantly modulated in the presence of SARS-CoV-2 infection, and
hence, we performed a differential expression analysis on the whole data set, setting a
double statistical threshold (adjusted P value [P-adj]of # 0.01 and absolute log2 fold
change of$1).

This allowed us to identify a total of 282 deHERVs compared to HC, with P-adj val-
ues of 0.01 to 1.05240 (Table S2). These deHERVs were further divided according to
their magnitude of change in 72 upregulated HERVs (P-adj values of 0.01 to 6.22214,
log2 fold change from of 1.05 to 4.43) and 210 downregulated HERVs (p-adj values of
0.01 to 1.05240, log2 fold change of –1.01 to –4.44) (Fig. 3A, and Table S2). Among the
deHERVs, the majority belong to class I HERV groups (225/282, 80%), half of which
belong to the HERV-H group (111/282, 39%) (Fig. 3B). This result is in line with the fact
that class I HERVs are more abundant among the 3 classes, with HERV-H being the
most numerous. Among the other 20% of deHERVs, 16% belong to the class II HERV-K
supergroup (46/282), including members from HML1 to 3 and from HML5 to 8, while
the remaining 4% are divided between the class III HERV-L group (7/282) and unclassi-
fied elements (4/282), based on the previous classification using ReTe software (27).

FIG 1 Legend (Continued)
convalescent after recover from SARS-CoV-2 infection; blue, retesting positive after convalescence. The three clusters highlight specific HERV transcriptional
signatures induced by SARS-CoV-2 exposure and infection. Distance values are shades of blue, as represented in the color key and histogram legends. (B)
Principal-component analysis as performed on rlog-normalized HERV loci expression data. It is possible to see the division between nonexposed controls
and individuals exposed to SARS-CoV-2 infection according to the PC1 (45% of variance) as well as the division according to the presence of SARS-CoV-2
active infection by the PC2 (13% of variance).
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FIG 2 (A and B) Heatmaps based on the top 500 HERVs as sorted by the highest mean (A) or variance (B)
of expression. Hierarchical clustering of the top 500 HERV insertions with the highest average (A) or

(Continued on next page)

HERV Dynamic Modulation in COVID19 Microbiology Spectrum

January/February 2023 Volume 11 Issue 1 10.1128/spectrum.02516-22 7

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.02516-22


For completeness, we performed the same differential expression analysis for the
Gencode set of cellular genes, also considering that their modulation could influence
the expression of colocalized HERV elements. Among the ;60,700 cellular genes
included in the study, 1,373 (2%) were upregulated and 2,643 (4%) were downregu-
lated in individuals exposed to COVID-19 infection compared to HC (data not shown).
Their colocalization with deHERVs and the possible impact on their transcriptional
modulation analyzed in the following section.

Characterization of the integration sites of deHERVs. To further investigate HERV
modulation after SARS-CoV-2 exposure, we analyzed the genomic context of insertion
of each deHERV to assess their colocalization with cellular genes. Among the 282
deHERVs, 170 (;60%) were colocalized with a total of 205 cellular genes that were ei-
ther protein-coding (110) or not (95) (Table S3, Fig. 4A). Among the 205 genes that
held deHERV integrations, only a minority (50 genes, 24%) was itself modulated by the
infection, including 19 protein-coding genes and 31 non-protein-coding genes that
were colocalized with 48 deHERVs (Table S3, Fig. 4A). We then compared the modula-
tion of these 50 de-genes with that of the respective colocalized deHERV, observing a
concordant modulation in all cases except for the deHERV locus 2328 (HERV-H) (Table
S4). The latter was downregulated in RTP and C individuals, while the surrounding
gene (RNF217 antisense RNA 1, RNF217-AS1) was upregulated under the same condi-
tions. The rest of the de-genes were upregulated (8) or downregulated (41) concomi-
tantly with the corresponding deHERVs (Table S4, Fig. 4A). We assessed the function of
the 8 upregulated de-genes to check if they are involved in innate immune pathways,
which would explain their activation in RTP and C patients. While 2 of them were non-
protein-coding genes with unknown roles, the other 6 upregulated de-genes included
4 genes involved in immune responses: COLEC12 (collectin subfamily member 12,
colocalized with a MER41 element) is a scavenger receptor that binds carbohydrate
antigens on microorganisms, facilitating their recognition and removal; TNFRSF21 (tu-
mor necrosis factor [TNF] receptor superfamily member 21, colocalized with an HML3
element) activates nuclear factor kappa-B and mitogen-activated protein kinase 8 (NF-
kB and MAPK8, respectively) and plays a role in T helper cell activation, inflammation,
and immune regulation; PKHD1 (ciliary IPT domain-containing fibrocystin/polyductin,
colocalized with a HERV-H element) can control the signal transducer and activator of
transcription 3 (STAT3) signaling, which in turn, plays a role in regulating the host
response to viral and bacterial infections; and PRKAR2B (protein kinase cAMP-depend-
ent type II regulatory subunit beta, colocalized with a MER66 element) is one of the 4
regulatory subunits of the cAMP-dependent protein kinase, which can be phosphoryl-
ated by the activated catalytic subunit and suppress the transcriptional activity of the
cAMP responsive element binding protein 1 (CREB1) in activated T cells. The remaining
2 upregulated de-genes had different activities: FLVCR2 (feline leukemia virus sub-
group C receptor 2, colocalized with a HERV-H element) is a retroviral-like transmem-
brane Ca transporter that may play a role in the development of brain vascular endo-
thelial cells, while PRRG1 (proline rich and Gla domain 1, colocalized with another
HERV-H element) encodes a vitamin K-dependent transmembrane protein (Table S4).
Analysis of the 41 downregulated de-genes showed that most of them (28) were non-
protein coding (Table S4), including also a retroviral gene from a HERV-48 locus in
chromosome 21 (ERVH48-1). The remaining 13 downregulated coding genes encom-
passed, among others, a HERV gene in chromosome 7 (ERV3-1, obviously colocalized
with the corresponding HERV-3 sequence 2521) that encodes an Env protein. This
HERV is colocalized also with ZNF117, a cellular gene containing multiple zinc finger
motifs, which is also downregulated (Table S4).

FIG 2 Legend (Continued)
variance (B) of rlog-normalized counts. The top 500 HERV loci are in rows, and the samples are in columns.
rlog-normalized counts are color-scaled from blue (minimum) to red (maximum). The correlation distance
measure was used in clustering columns. Samples are annotated by condition: red, healthy controls; green,
convalescent after recover from SARS-CoV-2 infection; blue, retesting positive after convalescence.
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FIG 3 Results of HERV differential expression analysis on the total data set. (A) Volcano plot in which each point
represents an individual HERV locus, which spread according to the magnitude (log2 fold change, x axis) and

(Continued on next page)
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Overall, even if the majority of deHERV were colocalized with cellular genes, the lat-
ter were usually not differentially expressed or showed no apparent transcriptional
impact on HERV expression, further suggesting a direct effect of SARS-CoV-2 exposure
on their modulation.

Identification of deHERV signatures specific to COVID-19 clinical stages. We
then asked whether some specific HERV transcriptional signature could be found in
RTP and C patients, beside the already reported differences compared together to
healthy, unexposed controls. To this purpose, we conducted the differential expression
analysis for all the relevant subcomparisons: C versus HC, RTP versus HC, and RTP versus
C (Table S5, Fig. 4B). The 282 deHERVs, as identified in the global analysis (of which 72
were upregulated and 210 were downregulated in exposed individuals; Table S2), were
the same as those that were differentially expressed in the RTP versus HC subcomparison,
showing a concordant modulation with the former results in all cases (Table S5).

Indeed, the C versus HC subcomparison showed a total of 571 deHERVs, of which
377 were upregulated and 194 downregulated in C individuals (Table S5). Of these,
202 (35%) were in common with RTP versus HC subcomparison, showing a concordant
modulation in all cases except for 2 HERV loci that were upregulated in C individuals
and downregulated in RTP subjects (Table S5, Fig. 4A and B). Of note, the 202 C-RTP-
shared deHERV loci included, overall, the 97% and 62% of the upregulated and down-
regulated deHERV loci found in RTP individuals, respectively.

Lastly, the RTP versus C subcomparison was conducted excluding the HC condition
to assess significant differences in the HERV transcriptional pattern according to the
sole clinical stage (Table S5, Fig. 4B). The differential expression analysis between RTP
and C conditions identified 164 deHERVs, of which 51 (31%) were also found to be
modulated in the overall comparison (C and RTP versus HC). Among these, 31 were
also shared by both RTP and C subsets compared individually to HC, while the other 20
were specifically modulated under the RTP condition (Fig. 4B). The remaining 119
deHERVs (69%) were either specifically modulated under the C condition (91) or exclu-
sively found as modulated when comparing RTP to C conditions, but not with respect
to HC (Fig. 4B). The analysis of the effects of the modulation showed that 45 deHERVs
were upregulated and 119 were downregulated: this result refers to RTP compared to
C, meaning that the 45 upregulated HERVs show a significantly increased expression in
RTP state, while the 119 downregulated HERVs show a significantly increased expres-
sion in C state (Table S5, Fig. 4B).

To our knowledge, this is the first set of deHERVs whose expression is dynamically
modulated across COVID-19 clinical stages, revealing that past exposure to COVID19
triggers a delayed and wider transcriptional modulation of HERV elements in C individ-
uals compared to actively infected ones, with 369 additional HERV loci that become
modulated (being upregulated in most cases) and only a minority that return instead
to the original, “basal” condition.

Finally, given that a proportion of the deHERVs as identified in the three above-
described subcomparisons were colocalized with de-genes, we investigated the related bi-
ological processes using gene ontology (GO) to further characterize those de-genes that
were upregulated and colocalized with upregulated deHERVs, i.e., showing a del1/del1
pattern (Fig. S4, Table S6). The latter included 8, 48, and 23 de-genes in RTP versus HC, C
versus HC, and RTP versus C subcomparisons, respectively. GO analysis showed that del1/
del1 genes were associated with the impairment of cellular immune effectors in the
PBMCs of RTP individuals, with the two most significant GO processes represented by the
negative regulation of interleukin-13 (GO:0032696) and interleukin-5 (GO:0032714) pro-
duction in the case of RTP versus HC (P = 0.0020, TNFRSF21 gene) and the negative regula-
tion of immunoglobulin production (GO:0002638) and B cell differentiation (GO:0045578)

FIG 3 Legend (Continued)
statistical significance (log10 -adjusted P values, y axis) of its modulation in SARS-CoV-2-exposed individuals (RTP
and C) compared to healthy controls (HC). Red points indicate significantly modulated HERVs. (B) Summary of
the number of deHERVs as divided by group: both upregulated and downregulated members are reported.
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in the case of RTP versus C (P = 0.0057, CR1 gene) (Fig. S4, Table S6). Besides these proc-
esses, additional immune pathways were affected with lower significance in RTP cells by
the same genes. In RTP PBMCs compared to HC, B cell proliferation (GO:0030889) was also
negatively regulated, along with an increase of the lymphocyte apoptotic process
(GO:0070227) (P = 0.0048 and P = 0.0024, TNFRSF21 gene) (Table S6). The RTP versus C
comparison identified even more affected pathways, highlighting the negative regulation
exerted by CR1 on complement activation (GO:0045959 and GO:0045916, with P = 0.0091
and 0.0137, respectively) on the production of immune response mediators (GO:0002701,
P = 0.0103), and in the humoral response mediated by circulating immunoglobulins
(GO:0002924, P = 0.0114) (Table S6).

FIG 4 Details of HERV modulation in the overall analysis and in the different subcomparisons. (A) Left: diagram
representing the results of the overall differential expression analysis (RTP and C versus HC) in terms of number of
HERVs found to be differentially expressed (being either up- or downregulated), expressed but not differentially
expressed (no-DE), and not expressed at all. Right: genomic context of integration of the deHERV sequences,
which were found either in the intergenic position or within a gene; the latter were further distinguished since
the colocalized gene was itself DE and, in this case, if it was coding a protein or not. (B) Venn diagrams of the
different differential expression subcomparisons. Top: results and overlaps of the DE analysis as performed in C
versus HC, RTP versus HC, and RTP versus C; bottom: detail of the number of deHERVs showing a concordant
modulation in C and RTP individually compared to HC.
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Characterization of 31 key deHERVs showing dynamic modulation across
COVID-19.We then focused our attention on the 31 key deHERVs that showed signifi-
cant modulation in all the comparisons (C versus HC, RTP versus HC, RTP versus C) to
assess their behavior under the different conditions (Table 1, Fig. 5). The 31 key
deHERVs belonged to 14 different HERV groups, including both class I and class II rep-
resentatives (11 and 3 groups, respectively), plus an element with uncertain classification
(Fig. 5A). Concerning the modulation, most of them were downregulated or upregulated
in both C and RTP individuals compared to HC (n = 19 and 10, respectively), while 2
showed a discordant modulation between the two categories of SARS-CoV-2-exposed
individuals, being upregulated under the C condition only (Table 1). In addition, 9 of these
deHERVs were colocalized with genes that were themselves modulated in the overall
analysis (C and RTP versus HC), usually showing concordant behavior (Table 1).

To gain more insights on these 31 key deHERVs and the biological relevance of their
transcriptional activity, we used the raw read counts to calculate their expression val-
ues as transcripts per million kb (TPM) (Table S7). We chose TPM normalization because
it allows us to compare the expression levels of sequences of different lengths, consid-
ering the sequencing depth of the various samples as well. Results from the TPM calcu-
lation for the 31 key deHERVs under each condition are depicted in Fig. 5B and clearly
show the transcriptional behavior of the same HERV under the different conditions.
According to the TPM values, the 31 deHERVs were divided by the dendrogram in the

TABLE 1 Results for the 31 key deHERV loci that showed significant modulation in all analysesa

31 Common deHERVs Results from RTP vs C Results from C vs HC Results from RTP vs HC

Colocalized de-genes

(results from global comparison)

ID Group

Log2

FC P-adj del2

Log2

FC P-adj del2

Log2

FC P-adj del2

Gene

name

Prot.

coding del2

Log2

FC P-adj

2776 HERVE –2.5 1.15E-22 DEL2 3.5 1.31E-43 DEL1 1 1.83E-05 DEL1

2135 HML3 –4.6 9.08E-20 DEL2 6.9 2.01E-31 DEL1 2.3 0.0001827 DEL1

2q11.2 HERVW 23 2.84E-15 DEL2 1.1 0.0036475 DEL1 21.9 4.63E-08 DEL2

5860 HERVFB 23.3 4.18E-15 DEL2 1.4 2.40E-05 DEL1 21.9 1.38E-05 DEL2 AL591845.1 no DEL2 21.21 0.009788

4613 HERVH 1.9 9.15E-10 DEL1 23.1 3.99E-25 DEL2 21.2 9.67E-09 DEL2

15q15.1 HML8 1.6 3.51E-09 DEL1 –2.7 1.46E-26 DEL2 –1.1 4.54E-07 DEL2 RAD51-AS1 no DEL2 21.13 1.42E-07

2574 HERVE 1.9 1.16E-08 DEL1 –3.5 1.02E-28 DEL2 21.6 2.46E-11 DEL2 AC079781.5 no DEL2 21.21 1.92E-06

3052 HERVH –1.7 3.31E-07 DEL2 21.3 3.64E-06 DEL2 –2.9 2.96E-28 DEL2 AL355377.4 no DEL2 22.79 2.46E-11

6228 HERVIP 2.9 1.98E-06 DEL1 –5.4 2.74E-21 DEL2 22.5 1.22E-08 DEL2

3107 HERVH –1.2 4.54E-06 DEL2 21.3 1.94E-07 DEL2 22.5 2.15E-31 DEL2

6171 HML2 1.5 2.83E-05 DEL1 22.7 5.19E-16 DEL2 21.2 7.31E-05 DEL2

6116 LTR39 22.2 3.03E-05 DEL2 5.3 2.22E-11 DEL1 3.2 0.0001674 DEL1

3192 HML2 4.6 4.92E-05 DEL1 26.3 1.80E-09 DEL2 21.8 0.0015817 DEL2

6q27b HERVW 1.7 0.000101 DEL1 22.8 6.48E-12 DEL2 21.1 0.0010291 DEL2

5361 HERVE 1.5 0.000108 DEL1 22.7 2.16E-14 DEL2 21.2 2.19E-06 DEL2

3387 HERVIP 2.5 0.000139 DEL1 –4.6 6.85E-15 DEL2 22.2 2.84E-06 DEL2

1091 MER41 –2.4 0.00015 DEL2 5.2 9.49E-10 DEL1 2.8 0.0027002 DEL1

19p13.2b HML6 2 0.000165 DEL1 23.8 1.87E-15 DEL2 21.8 2.61E-07 DEL2

3165 HERVFA –1.9 0.000226 DEL2 6.2 1.64E-14 DEL1 4.3 1.90E-07 DEL1

4491 MER41 –2.7 0.000548 DEL2 5.5 1.87E-09 DEL1 2.8 0.0059368 DEL1 COLEC12 Yes DEL1 1.99 0.006223

3949 HERVE 1 0.000575 DEL1 –2.8 2.70E-26 DEL2 –1.8 2.95E-16 DEL2 AL590064.1 No DEL2 21.31 3.24E-08

FLVCR2 Yes DEL1 2.37 2.39E-08

2153 HML2 22.5 0.000627 DEL2 6.2 8.28E-12 DEL1 3.7 7.13E-05 DEL1 TNFRSF21 Yes DEL1 2.08 6.27E-06

4332 HML3 1.1 0.000803 DEL1 22.6 1.04E-18 DEL2 21.5 4.31E-09 DEL2 AC108134.3 No DEL2 21.28 7.85E-07

2319 Unclassifiable 22.3 0.001278 DEL2 5.4 5.66E-10 DEL1 3.1 0.0008136 DEL1

4745 HERVH 21.4 0.001808 DEL2 21 0.0088384 DEL2 22.4 3.23E-12 DEL2

3q25.1a HERVW 3.5 0.002572 DEL1 –5.4 5.59E-07 DEL2 21.8 0.0026058 DEL2

3366 HERVH –1.9 0.002919 DEL2 6 2.58E-12 DEL1 4.1 3.11E-06 DEL1

3757 HERVI 22 0.00398 DEL2 5.4 9.41E-10 DEL1 3.4 0.0002105 DEL1

5410 HERVH48 2.5 0.006516 DEL1 26.1 1.85E-14 DEL2 23.6 6.91E-33 DEL2 Z83745.1 No DEL2 23.64 8.28E-25

933 HERVH 1.5 0.006929 DEL1 –3.7 3.60E-14 DEL2 22.2 1.60E-07 DEL2

14q32.11 HERVW 1.9 0.007315 DEL1 –3.3 2.36E-07 DEL2 21.4 0.0039035 DEL2

aThe table shows the results of differential expression analysis as performed in pairwise comparisons of the expression between RTP and C SARS-CoV-2-exposed individuals,
C and HC, and RTP and HC. The results for the eventual colocalized genes, when significantly modulated, are also reported and refer to the overall comparison (C and RTP
individuals versus HC). FC, fold change; del2, the observed modulation: DEL1 indicates upregulation while DEL2 indicates downregulation; prot., protein.
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y axis into three main clusters, highlighted with gray boxes (Fig. 5B). The upper cluster
(indicated as no. 1 in the figure) included 10 deHERVs with a higher expression in C
and a lower expression in HC. The middle cluster (no. 2) showed an opposite trend,
including 16 deHERVs with a higher expression in HC and a lower expression in C. In
both these clusters, RTP showed an intermediate modulation of the deHERVs. The

FIG 5 The 31 key deHERVs showing a significant modulation in all DE analyses. (A) Distribution among the different
HERV groups. (B) Heatmap of expression based on the calculation of transcripts per million kilobases values (TPM);
the concomitant modulation of eventual colocalized de-genes, when present, is indicated with red and green dots,
meaning colocalization with an upregulated or downregulated gene(s), respectively. Samples predicted to be low
responders based on the analysis of the 44 key innate immune genes are marked with an asterisk (*).
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lower cluster (no. 3) included 5 deHERVs with a higher and comparable expression in C
and HC, respectively, and a lower one in RTP. In the same heatmap, the samples were
clustered based on the deHERVs’ TPM, as represented by the dendrogram in the x axis
(Fig. 5B). Of note, while all HC and C samples were clustered according to their condi-
tion, forming two homogeneous groups, RTP samples were split into three clusters.
While two of these RTP clusters were related to the C cluster, the first was more closely
related to HC based on the expression of a subset of 9 deHERVs (Fig. 5B). A closer look
revealed that this cluster includes 3 of the 4 individuals that were predicted to be low
responders based on the analysis of the 44 key immune genes, in which they were
grouped with HC samples as well (Fig. S2).

Finally, we filtered the 31 deHERV loci based on a TPM threshold, selecting the 20
showing a mean TPM of >2.5 under at least one condition (Table S7). Overall, the high-
est TPM values were observed in HC (maximum [max], 109.9; mean, 14.6, median, 4.2),
followed by RTP (max, 79.8; mean, 5.8; median, 1.3) and C (max, 26.6; mean, 3.1; me-
dian, 0.6), based on the fact that most of them were downregulated in the individuals
exposed to SARS-CoV-2. TPM values of the 20 selected deHERVs were then plotted and
statistically analyzed between conditions: the results are shown in Fig. 6 for the 6
deHERV loci colocalized with cellular genes that were themselves modulated in the
overall analysis (C and RTP versus HC) and in Fig. S5 for the remaining 14 deHERVs. The
most relevant deHERVs according to this analysis are commented on individually in
the discussion section.

Overall, the division of RTP individuals in two clusters according to TPM analysis is
in line with the fact that they represent clinically active infections and can hence be
viewed as a transition step toward convalescence. In a broader view, these results
might indicate the presence of a minority of HERV loci whose expression is modulated
by the general activation of innate immunity, hence possibly acting as sentinels of a
sort for the different infections, while another portion might show transcriptional
changes specifically linked to the presence of a certain virus. Hence, to further
explore this possibility, we extracted from the Gencode set ;1,100 genes based on
the list provided by InnateDB (https://www.innatedb.com), a publicly available data-
base of the genes and signaling pathways involved in the innate immune response.
Aiming to assess if their dynamic modulation across the different conditions had
some common traits with respect to our key HERVs, we generated a heatmap of the
InnateDB genes’ variance (Fig. S6) and compared it to the heatmap of HERV expres-
sion, as obtained from the top 500 HERVs with the highest variance (Fig. 2B, reported
also in Fig. S6B to facilitate the comparison). Intriguingly, the two heatmaps are per-
fectly comparable, showing similar behavior both for the blocks of immune genes
and HERVs that show a common modulation under the different conditions (as repre-
sented by the rows’ dendrogram) and for the clustering of samples (as shown in the
columns’ dendrogram).

De novo reconstruction of putative transcripts from the 20 selected key
deHERVs. Finally, given that the 31 key deHERVs are modulated under all conditions,
we wanted to reconstruct their potential transcripts from raw reads to assess their cod-
ing potential as well as their interaction with those of colocalized/nearby cellular
genes. To this purpose, we applied the Trinity pipeline for de novo transcript recon-
struction for the samples as divided into HC, RTP, and C conditions (Table S8, Fig. S7).

Analysis of the inferred transcriptomes confirmed a good relation between TPM val-
ues as calculated for the whole locus and the actual transcripts’ production capacity. In
fact, on he one side, the deHERVs that showed low expression values based on the
above-described TPM threshold (mean TPM, >2.5 under at least one condition; Table
S7) were not associated with the relevant transcripts (data not shown). On the other
side, for the remaining 20 key deHERVs, TPM values under the three conditions had a
direct link with the presence of different isoforms of potential interest. Indeed, the
12 key deHERVs associated with potentially relevant transcripts have been characterized
in terms of genic structure, coding potential, and interplay with nearby cellular genes
(Table S8, Fig. S7).
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FIG 6 Boxplot of expression levels for the key deHERVs modulated in all conditions that are colocalized with de-genes. The
expression levels (as transcripts per million kilobases values [TPM]) of the 7 out of 31 key deHERVs integrated within cellular

(Continued on next page)
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As already mentioned, most of the transcripts showed isoforms specific to the HERV
locus and/or in the same orientation under the condition with the highest TPM expres-
sion. For example, HERV-E locus 2776 had the highest TPM under the C condition (17.9
versus 2.0 and 4.2 in HC and RTP, respectively). Accordingly, in the transcriptome recon-
structed from C samples, we found a predicted transcript (2776_C_TRINITY_DN12_c0_g1_i2,
3,024 bp) that overlaps the HERV locus (at pol-env genic portions) with the same orienta-
tion, while HC and RTP transcriptomes included only shorter and antisense transcripts
(Table S8, Fig. S7). A similar situation was observed for the HERV-E locus 3949 (3949_
HC_TRINITY_DN2_c1_g2_i1, c1_g2_i4, g2_i8, and c1_g2_i9), the HERVIP10 locus 6228
(6228_HC_TRINITY_DN3_c1_g5_i1 and c1_g5_i2), the HERV-H48 locus 5410 (4332_HC_
TRINITY_DN3_c2_g1_i2 and c2_g1_i7), and the HERV-H locus 933 (933_HC_TRINITY_
DN1_c1_g3 and c1_g3_i7) (Table S8, Fig. S7). Another example of transcripts in different
orientations according to the condition is HML3 locus 4332, which was highly expressed
in C individuals (TPM, 66.3 versus 8.5 and 24.6 in C and RTP, respectively). Accordingly,
only under this condition did we find sense transcripts: some of them were colinear to the
HERV structure (4332_HC_TRINITY_DN3_c2_g1_i2 and c2_g1_i7), while other isoforms
included only HERV portions overlapping the long noncoding RNA (lncRNA) XR_933016,
which is in the same orientation and includes only an additional portion outside the HERV
(Table S8, Fig. S7). Similar transcripts were observed under the RTP condition showing an
opposite orientation and hence potentially providing antisense complementation to the
lncRNA (Fig. S7). The possible formation of dsRNA was observed in other instances and is
a known and common mechanism of transcriptional silencing. For example, HERV-H locus
4613 is expressed in a transcript that seems primed by an upstream L1 element and over-
laps in antisense orientation with exons 5 and 6 of the transcriptional regulator ZNF846
(4613_HC_TRINITY_DN5_c0_g2_i14 and c0_g2_i21) (Fig. S7). Another possible interaction
between HERV and gene expression is represented by readthrough mechanisms, in which
the gene transcription is prosecuted forming a chimeric transcript including HERV-derived
transcripts. HML2 locus 6171, which showed the highest TPM among the key deHERVs, is
highly expressed in HC and RTP (TPM, 82.7 and 37.4, respectively). Under these condi-
tions, a transcript produced by the already mentioned CR1 gene (6171_HC_TRINITY_
DN6_c0_g1_i3) continues including 1,606 bp of the HERV (which is in the opposite
orientation), possibly suggesting a readthrough mechanism (Table S8, Fig. S7). Other
potential readthroughs may occur in HC and RTP for the HERV-W loci 14q32.11 and
3q25.1a and the colocalized genes GPR68 and ANKUB1, respectively (Table S8, Fig.
S7). In the case of 14q32.11, the readthrough provides an antisense transcript
(14q32.11_HC_TRINITY_DN0_c1_g1_i1 and 14q32.11_RTP_TRINITY_DN4_c0_g1_i3I) to
the downstream gene DGLUCY (Homo sapiens D-glutamate cyclase, transcript variant 1),
encoding a mitochondrial product. Finally, HERV-E locus 2574 was inferred to produce a
transcript including a portion of the HERV and one of the downstream SATR1 satellite
repeat, being colocalized with CZ1P-ASNS lncRNA, which itself is produced by naturally
occurring readthrough transcription between the neighboring CCZ1P and ASNS genes
(Table S8, Fig. S7).

Of note, none of the observed HERV-derived transcripts have retained protein-cod-
ing potential, often having a defective structure and presenting various internal stop
codons and frameshifts induced by indels that mostly occur very prematurely in the
protein sequence (Table S8).

DISCUSSION

The intensive study of COVID-19 syndrome has revealed a wide range of clinical
manifestations, most of which affect not only the primary site of infection, i.e., the re-
spiratory tract, but show important and more severe systemic impairments. In particu-

FIG 6 Legend (Continued)
genes that were themselves modulated are plotted along with those of the colocalized genes under the different conditions,
to assess the possible reciprocal influence. Plots marked with an asterisk are the deHERVs with the highest expression (log10

TPM, >10 for at least one condition). Statistics are based on t test.
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lar, a main feature of SARS-CoV-2 infection is the outbreak of a potent hyperinflamma-
tory reaction, which can cause multiple organ dysfunction and death or led to perma-
nent and severe sequelae in the so-called postacute long-COVID syndrome (3, 28).

In this context, HERV transcriptional activation, as observed in different infectious
and autoimmune diseases as well as in tumorigenesis (4, 5, 8), may sustain and amplify
the inflammatory activation exerted by COVID-19, having the ability to be sensed as
PAMPs by cellular PRRs and evoke an innate immune response. Such an immune trig-
ger by HERV expression is now well characterized, given that the same immunogenic
action is currently being exploited for innovative immunotherapies (5, 29–31).

Despite its possible relevance to COVID-19 symptoms and outcome, to date, a very
limited number of studies has been dedicated to HERV modulation by SARS-CoV-2
infection. In addition, these few available studies are poorly comparable with the pres-
ent analysis. Kitsou et al. investigated HERV group expression in the RNA-seq profiles
from the bronchoalveolar lavage (BAL) fluid of 7 COVID-19 patients and 3 HC, reporting
the upregulation of different HERV groups in the former (22). Indeed, a similar analysis
in the PBMCs (i.e., the same biological sample considered here) from 3 COVID-19
patients and 3 HC showed an opposite panorama, with some deregulated HERV
groups (HERV-I, HERV-FRD) and no significant difference for the others (22), being
more in line with our findings, even if based on the expression of whole HERV groups
and not on the expression analysis of their individual members. An exception was the
HERV-L group, reported to be downregulated in the study, but showing 5 upregulated
deHERVs out of 7 based on our analysis (22). A second study was focused only on the
HERV-W group and hypothesizes that a HERV-W Env protein is expressed on the leuko-
cytes of COVID-19 patients, correlating with inflammation and pneumonia severity
(23). Our results included a total of 13 deHERV-W loci, which were downregulated in
RTP and C patients except for 1 sequence that was upregulated under both conditions
and another that was upregulated in RTP patients only. The other 4 deHERV-W loci spe-
cific to the RTP condition were all downregulated compared to HC, while C individuals
showed 28 additional deHERV-W loci exclusive for this stage, of which 25 were upregu-
lated compared to HC. Further comparisons are not possible, given that the genomic
origin (or origins) of the observed HERV-W Env protein(s) is still unknown (23). Finally, a
third study analyzed by reverse transcriptase PCR (RT-PCR) the generic expression of
HERV-H, HERV-K(HML2), and HERV-W pol genes as well as of the HERV Env proteins syn-
cytin-1 and -2 in a cohort including HC and children with either mild/moderate symp-
toms, severe symptoms, or multisystem inflammatory syndrome (MIS), evaluating also
the IFN response (24). The authors found that children with mild manifestations had
increased mRNA levels of HERV genes compared to those with severe symptoms (sig-
nificantly for all but syncytin-1 and -2) or MIS (significantly for all, but borderline for
syncytin-1) and that such expression is correlated with the levels of TRIM28 or SETDB1
(24). Also, in this case, it is difficult to compare these results with our high-throughput
analysis, given that RNA was extracted from whole blood and analyzed with a different
technique and, especially, because the individual HERV-H, HERV-W, and HERV-K(HML2)
members that were amplified by the pol primers used in each group are not known.
Similarly, also, the actual specificity of syncytin-1 and -2 primers should be carefully
assessed to avoid cross-amplification of different HERV loci. Besides these limitations,
based on our results, no modulation of syncytin-1 or syncytin-2 loci (HERV-W 7q21.2
and HERV-FRD 6p24.1, respectively) was observed, at least in the PBMCs of adult SARS-
CoV-2-exposed individuals.

Hence, most of the previously available studies had a resolution limited to the
generic HERV group level, meaning that no information is available for the modulation
of the individual HERV loci (which, for example, are at least 213 in number in the case
of the HERV-W group) but is only available for the overall expression of the different
HERV groups. This approach is of course less informative, given that the actual contrib-
utors of the observed modulation in terms of HERV sequences remains unknown
among the different conditions. In addition, most of these studies were focused on
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cells that originated from biological sites directly affected by the infection, such as
respiratory cells from bronchoalveolar lavage fluid or rhino-pharyngeal swabs.

Indeed, in the present study, we aimed to investigate the modulation of the HERV
transcriptome in PBMCs. It is important to underline that, on the one hand, these cells
are not infected by SARS-CoV-2, and hence can not account for variations directly asso-
ciated to viral infection and presence. On the other hand, PBMCs represent cellular
immune effectors and are hence highly relevant to antiviral responses, having a central
role in the plethora of inflammatory and immune events that characterize COVID-19
pathogenesis and sequelae. For this reason, we thought to assess the transcriptional
variations in PBMCs of individuals exposed to SARS-CoV-2, after either viral clearance
(convalescence) or the recurrence of the infection (retesting positive).

Sample-to-sample distance and PCA analysis based on the expression of ;3,300
individual HERV integrations confirmed that SARS-CoV-2 infection has a major impact
on the HERV transcriptome in PBMCs, which showed a different pattern of modulation
both in the exposed individuals (RTP1C) with respect to HC and, especially, according
to the presence of an active infection (RTP) or a past exposure to the virus (C), being
hence able to divide the samples according to their COVID status (Fig. 1A). In line with
this, the past or current presence of SARS-CoV-2 infection accounts overall for the 58%
of the total variance observed in HERV expression: based on HERV transcriptional varia-
tion, we were able to divide HC from patients that were exposed to SARS-CoV-2 infec-
tion, regardless their current clinical status (PC1, 45%), but also patients with an active
infection from healthy individuals and recovered patients (PC2, 13%) (Fig. 1B).

This confirms, on the one hand, that SARS-CoV-2 infection is associated with a long-
term effect on the host, which is still evident after viral clearance and in a cellular
population being not directly infected by the virus, and on the other hand, that such
modulation has different and specific signatures in actively infected patients and indi-
viduals recovered from the infection when considering HERV expression.

It is noteworthy that the same analyses performed on the expression of cellular
genes did not have a comparable resolution for COVID19 exposure. In fact, while the
sample-to-sample distance plot based on the global cellular gene expression showed a
similar division according to COVID-19 status, the PC analysis conducted on the expres-
sion data from cellular genes did not distinguish the different conditions, suggesting
that factors other than the exposure to the infection have a major impact on their tran-
scriptional variation (Fig. S1). We then hypothesized that the individuals could have an
intrinsic interindividual variability in their response to the infections, given that most
of the infected patients (RTP) were clustered with HC by the PC1 (54%). To gain further
insights on this, we restricted the analysis to a subset of 44 key innate immune genes
that have been reported as a specific signature of induced cytokine response (26),
which is a main characteristic of COVID-19 hyperinflammatory pathogenesis (3). Accordingly,
sample-to-sample distance and PC analyses performed with these 44 immune genes
showed their clear division into two major groups with opposite immune signatures:
one including two clusters formed by all C patients and 6 RTP patients, and the other
including the rest of the RTP patients (4) and all the HC (Fig. S2). It is hence reasona-
ble that this second subset of RTP patients is formed by low-responder individuals,
thus showing a transcriptional pattern like that of the HC. In this case, the PC1 (65%
of the variance) is represented by the different signature of the induced cytokine
response. Another possibility could be that these RTP patients represent false posi-
tives, but this is unlikely since the analyses performed with the whole set of cellular
genes, even if less specific for this immune signature, already grouped RTP patients
into two subclusters that were clearly divided from the other two categories (Fig.
S1A). Also, the observed differences cannot be linked to an imbalance in the immune
cell subset in RTP patients, since they were shown to have a stable number of
immune cells compared to the others (25). It is, instead, possible to speculate that
these RTP individuals, due to their status of immune low responders, could have had
only a partial viral clearance after the primary infection, showing a rebound of the
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same virus after an apparent negative period. This is in line with the fact that they
showed weakly activated T cells in the original study, which may contribute to the
obstruction of SARS-CoV-2 clearance (25) and would also explain their slight division
from the other RTP patients, representing in its place true reinfections. Notably, this
possibility is also in line with the distribution of samples based on the HERV PC1, in
which 2 of the RTP low responders are in the half of the plot with HC, and a third are
near the PC1 axis (Fig. 1B). A similar influence on the HERV transcriptome has already
been reported after the in vivo administration of lipopolysaccharides, mimicking a
bacterial infection (10). In this case, however, the impact of the immune status on
HERV variance seems to be a minor component, also given that none of the deHERVs
were colocalized with any of the 44 immune genes.

The generation of heatmaps based on the selection of the 500 HERV sequences
showing either the highest mean or variance of expression (Fig. 2A and B) further con-
firmed that the individual HERV loci are grouped in blocks based on their specific mod-
ulation under the different conditions, and these transcriptional pattens allow clear
divisions of HC, C individuals, and RTP patients. Moreover, as already suggested by the
PCA analysis, RTP patients represent the most heterogeneous group in terms of HERV
transcriptional variation, being sometimes more similar to the HC transcriptional pat-
tern yet still separated from this well-defined cluster (Fig. 2B). The fact that a similar
behavior was shown with the same selection on cellular genes likely indicates that the
indirect impact of SARS-CoV-2 infection on the PBMC transcriptome is a major determi-
nant of transcriptional modulation, influencing the expression of both canonical genes
and endo-retroviral loci.

Having the evidence of a global modulation of HERV by SARS-CoV-2 exposure, we
then moved to the locus level, identifying the individual HERV integrations that were
modulated under the different conditions. To this purpose, we performed multiple dif-
ferential expression analyses: on (i) the overall data set, comparing exposed individuals
to HC to identify deHERVs modulated regardless of status of RTP or C, as well as on
specific subsets, including (ii) C and (iii) RTP individuals individually compared to HC, to
assess the specific modulation by past or present exposure to the infection, respec-
tively, and (iv) C and RTP individuals (without HC) to assess the HERVs significantly
modulated between the two clinical stages.

The overall analysis (C plus RTP versus HC) identified 282 deHERVs; of these, 72 were
upregulated (P-adj values of 0.01 to 6.22214) and 210 were downregulated (P-adj values
of 0.01 to 1,05240) in individuals exposed to SARS-CoV-2 infection (Fig. 3A, Table S2).

To gain more insights on the basis of deHERV modulation in SARS-CoV-2-exposed
individuals, we assessed their colocalization with cellular genes, which can themselves
be modulated by the infection and hence influence HERV expression. Among the 282
deHERVs found in the study, 170 (;60%) were colocalized with a total of 205 cellular
genes, only a minority of which were modulated by the infection (50 genes, 24%)
(Fig. 4A, Table S3). In particular, we observed a concordant modulation between the
deHERV and the colocalized de-gene, except for the deHERV locus 2328 (HERV-H),
which was downregulated in RTP and C individuals, while the surrounding gene RNF217-
AS1 was upregulated under the same conditions. The fact that the deHERVs showed a
concomitant modulation with the colocalized gene can be somewhat expected by the
fact that a HERV sequence inserted within a gene is likely influenced by the latter’s tran-
scriptional activity. RNF217-AS1 is among the four lncRNAs reported to have important
effects on the survival prognosis of esophageal squamous cell carcinoma (ESCC), being
significantly upregulated in these patients compared to HC. It may be possible that a sim-
ilar upregulation can be linked to the important immune activation by COVID-19 infec-
tion. Another interesting aspect highlighted by the analysis is that most of the deHERVs
colocalized with de-genes show a concomitant negative modulation in the individuals
exposed to SARS-CoV-2 (Table S4). This is somewhat unexpected, given that we thought
that most of the deHERVs colocalized with modulated cellular genes would have been
activated, likely because those genes were involved in inflammatory and immune
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responses. In contrast, only 8 among the 48 deHERVs with concordant modulation to the
colocalized de-genes were upregulated in RTP and C patients (Fig. 4A, Table S4). These
included 2 noncoding genes, 4 genes involved in the immune response against infectious
agents (COLEC12, TNFRSF21, PKHD1, PRKAR2B), and 2 genes with different activity
(FLVCR2, of retroviral origin, and PRRG1) (Table S4). The remaining 41 downregulated de-
genes comprised 28 nonprotein coding elements and 13 protein-coding sequences with
different functions, also including 2 retroviral genes associated with the encompassing
HERV locus (Table S4). In addition to a HERV-48 locus in chromosome 21, producing a
noncoding RNA (ERVH48-1), a downregulated HERV gene potentially encoding an Env
protein was found at chromosome 7 (ERV3-1, HERV-3 locus 2521). Besides its own env
gene, this HERV is colocalized also with ZNF117, a cellular gene containing multiple zinc
finger motifs, which was also downregulated. This is in line with the fact that readthrough
transcription has been reported between this gene and the upstream ERV3-1 locus (14).

Concerning the HERV groups modulated by exposure to SARS-CoV-2, among the
282 deHERVs from the overall analysis, the majority belong to class I HERV groups
(80%), being HERV-H elements in half of the cases (Fig. 3B). This result was expected,
given that Class I HERVs are the most abundant, and HERV-H is the group with the
highest number of members (27, 32). Similarly, within the class II HERV-K groups (16%
of deHERVs), HML2 was the most represented, possibly also due to its relatively recent
activity that led to recent, human-specific integrations (33), followed by HML3, HML5,
HML1, and HML6. The remaining 4% of deHERVs were divided between the class III
HERV-L group (7/282) and unclassified elements (4/282) based on our recent compre-
hensive classification (27). Except for the HERV-L group, including 5/7 upregulated
deHERVs (71%), all the other HERV groups showed a prevalent downregulation of the
respective deHERV members in individuals exposed to SARS-CoV-2, with only 0 to 30% of
deHERVs being upregulated (except for HERV-I, including 1 upregulated and 1 downregu-
lated member). Clearly, this result is likely more representative of the RTP status, given
that RTP individuals accounted for 10/16 of SARS-CoV-2-exposed individuals.

In the light of this and given that no previous studies assessed HERV differential
expression among different COVID-19 clinical stages, we also characterized the specific
modulation of HERV transcriptome under each condition (RTP and C individually com-
pared to HC) and between past and current SARS-CoV-2 exposure (RTP versus C).

All the 282 deHERVs identified in the global analysis (RTP and C versus HC) showed
a concordant modulation in the RTP versus HC subcomparison (Table S5 and Fig. 4B),
as expected from the slight imbalance between the numbers of the two conditions.
However, the 72% of these deHERV loci were shared in the C versus HC subcomparison
as well (202/282), confirming a common transcriptional signature acting on specific
HERV loci in the presence (either past or current) of SARS-CoV-2 infection. Furthermore,
among the 202 deHERVs shared between the RTP and C subcomparison, 99% shared a
concordant modulation compared to HC (70 upregulated deHERVs and 130 downregu-
lated deHERVs), with only 2 discordant deHERVs that were upregulated in C and downre-
gulated in RTP.

Intriguingly, the C versus HC subcomparison revealed that, besides the persistence
the above deHERVs shared with RTP-infected patients, the past exposure to COVID-19
triggers a delayed and wider transcriptional modulation of HERV elements in C individ-
uals, with additional HERV loci (369) that become modulated only during convales-
cence, while only a minority of elements (80) return instead to the original, basal condi-
tion in after the transcriptional changes observed in the presence of the active
infection (Table S5, Fig. 4B). Moreover, contrary to the modulated HERVs shared with
the RTP condition, the deHERV loci specific to C status were mostly upregulated (305/
369, 83%). In our hypothesis of a close connection between immune activation and
HERV modulation, this result is in line with the observation by Wang and coworkers,
reporting that negative regulators of immune system and lymphocyte activation sig-
naling were enriched in PBMCs from RTP patients (25). The same scenario was also con-
firmed by our GO analysis of upregulated de-genes colocalized with comodulated de-
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HERVs in RTP individuals compared to HC and C individuals in the subcomparison anal-
yses (Fig. S4, Table S6). In fact, even if the immune genes involved were different, the
two most significant GO processes were associated with the impairment of cellular
immune effectors in both RTP versus HC (P = 0.0020, TNFRSF21 gene) and RTP versus C
(P = 0.0057, CR1 gene) (Fig. S4, Table S6).

Excluding HC, the differential expression analysis between the RTP and C conditions
identified 164 deHERVs: of these, 51 (31%) were also modulated in the overall compari-
son (C and RTP versus HC), including 31 deHERVs shared by both the RTP and C subsets
and 20 other specifically modulated in RTP individuals (Fig. 4B). The remaining 119
were instead upregulated in the C state, further confirming a specific HERV upregula-
tion associated with this stage.

Of note, we identified 31 key deHERVs, whose expression was significantly modu-
lated in all COVID-19 stages (C versus HC, RTP versus HC, RTP versus C) (Table 1, Fig. 5).
The fact that these loci belonged overall to 14 HERV groups (Fig. 5A) confirms that
HERV modulation occurs at the individual locus level, requiring high-throughput tran-
scriptional analyses of each individual group member instead of generic, whole-group
expression studies. The latter have been often performed using primers and probes
with uncertain coverage and selectivity, creating general confusion and a lot of unreli-
able tentative associations that somehow undermined the field’s credibility. Most of
these key deHERVs showed a concordant modulation in SARS-CoV-2-exposed patients,
being either downregulated (19) or upregulated (10) in both C and RTP compared to
HC (Table 1). TPM calculation provided more insights into their transcriptional modula-
tion, revealing three clusters (on the y axis): one with deHERVs with higher expression
in C (cluster 1, n = 10), a second with higher expression in HC (cluster 2, n = 16), and a
third with higher expression common to C and HC (cluster 3, n = 5) (Fig. 5B). In the first
two clusters RTP showed an intermediate TPM, which is in line with the fact that they
represent clinically active infections and can hence be viewed as a transition step to-
ward convalescence. To our knowledge, this is the first set of deHERVs whose expres-
sion is dynamically modulated across COVID-19 clinical stages.

Based on this analysis, we also confirmed that some of the RTP patients are likely
low responders for the key innate immunity genes analyzed previously (Fig. S2), form-
ing 3 clusters based on deHERV TPMs (Fig. 5B). While the second and third RTP clusters
were related to C, according to their common exposure to SARS-CoV-2, the first was
related to the HC group, including 3 out of 4 supposed low responders that showed a
transcriptional behavior similar to that of HC in the key innate immunity gene analysis
(marked with a asterisks in Fig. 5B). Interestingly, such a common modulation was not
evident in the expression of all the 31 deHERVs but seemed to influence only a subset
of 9 deHERV loci (Fig. 5B). The other RTP predicted to be a low responder was instead
included in the third group but also showed deHER versus TPM more similar to that of
the first RTP cluster. These results might indicate that, in the context of viral infections,
a portion of de HERV loci are modulated by the activation of innate immunity, possibly
acting as sentinels of a sort for any kind of infection, while another portion show tran-
scriptional changes specifically linked to the presence of a certain virus. This scenario is
further supported by the fact that the heatmap based on the variance of around 1,100
cellular genes involved in innate immune responses shows a clustering of samples and
an overall transcriptional pattern that is comparable to those of the top 500 HERVs,
also in terms of dynamic variation across conditions (Fig. S5).

We then selected and analyzed in detail the 20 deHERVs showing a TPM of >2.5
under at least one condition, distinguishing them based on the colocalization with cel-
lular de-genes (n = 7, Fig. 6) or lack of colocalization (n = 13, Fig. S5). The highest TPM
values were found for HML2 locus 6171 at chromosome 1 (mean TPM of 82.7 in HC,
37.4 in RTP, and 9.9 in C): this HML2 was inserted in antisense orientation within the
CR1 gene, encoding a protein that mediates cellular binding of particles and immune
complexes that have activated the complement (Fig. S5). Of note, even if this gene was
not differentially expressed in the main analysis (RTP plus C versus HC) (Table S3,
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Fig. S5), CR1 and the colocalized HERVs were both upregulated in the PBMCs of RTP
compared to C individuals, and CR1 modulation was predicted to affect immunoglobu-
lin production and B cell differentiation based on the above-mentioned GO analysis
(Fig. S4, Table S6). The de novo transcript reconstruction in HC and RTP individuals
showed a possible readthrough between this gene and the HERV that, being in the op-
posite orientation, can eventually provide a silencing mechanism under these condi-
tions according to TPM values (Table S8, Fig. S7). The second and third deHERVs based
on TPM values belonged to class I, being, respectively, the HML8 locus 15q15.1 and
the HML3 locus 4332. Like the first one (HML2 locus 6171), both were upregulated in
HC and showed the lowest expression in C individuals, and in addition, they were colo-
calized with two non-protein-coding de-genes (Fig. 6, Table S3). In particular, the
HML8 locus 15q15.1 (mean TPM of 69.2 in HC, 33.5 in RTP, and 8.6 in C) is integrated
within RAD51-AS1, producing an uncharacterized antisense RNA to the RAD51 recom-
binase gene that is, in turn, involved in homologous recombination and repair of DNA,
while the HML3 locus 4332 (mean TPM of 66.3 in HC, 24.6 in RTP, and 8.5 in C) is inte-
grated within AC108134.3/XR_933016, producing an uncharacterized long noncoding
RNA (lncRNA). The analysis of these two deHERVs was done also considering the
expression of the colocalized genes and showed that the latter have a modulation con-
cordant with the colocalized HERV gene but with lower TPM values (Fig. 6). If, on the
one hand, it is thus unlikely that the genes’ modulation has an impact on the deHERVs
expression, on the other hand, the fact that both these uncharacterized genes have
annotated exons within the respective HERV sequences leaves open the possibility
that HERV modulation can, in turn, influence their transcription. Accordingly, transcript
reconstruction suggested a possible readthrough between XR_933016 exons, with the
HERV sequence present in some isoforms, and a similar but antisense transcript in RTP
may led to the formation of dsRNA (Table S8, Fig. S7). A similar concordant modulation,
with a lower gene expression, was observed for the HERV-E loci 2574 in chromosome 7
(mean TPM of 5.4 in HC, 1.9 in RTP, and 0.4 in C), being integrated within introns of
two uncharacterized lncRNAs. HERV-E locus 2574 is colocalized with CZ1P-ASNS
lncRNA, produced by naturally occurring readthrough transcription between the
neighboring CCZ1P and ASNS genes, being possibly derived from a similar mechanism
(Table S8). Two of the remaining three deHERVs integrated within de-genes were
found within noncoding sequences as well, showing concordant modulation having
slightly lower TPM values in this case: the HERV-H locus 3052 in chromosome 9 (mean
TPM of 3.1 in HC, 0.4 in RTP, and 1.0 in C) was colocalized with the uncharacterized
lncRNA gene AL355377.4, and the HERV-H48 locus 5410 in chromosome X (mean TPM
of 5.1 in HC, 0.4 in RTP, and 0.05 in C) was colocalized with the uncharacterized lncRNA
gene Z83745.1 (Fig. 6). In both cases some exons were annotated and overlapped the
HERV structure, suggesting that these transcripts might originate from these two ele-
ments. Finally, the HML3 locus 2135 in chromosome 6 was one of the two deHERVs up-
regulated in SARS-CoV-2-exposed individuals—with the highest expression under the
C condition (mean TPM of 0.1 in HC, 0.5 in RTP, and 8.9 in C)—as well as the only one
among the deHERVs colocalized with de-genes (Fig. 6). Of note, the colocalized gene
showed an overlapping transcriptional behavior and was the already mentioned
TNFRSF21, which plays a role in T helper cell activation, inflammation, and immune
regulation in the presence of infectious agents. Like CR1, this gene and the colocalized
HERVs were both upregulated in the PBMCs of C and RTP individuals compared to HC,
and such TNFRSF21 modulation was linked to the negative regulation of interleukin-13
and -5 production based on the previously mentioned GO analysis (Fig. S4, Table S6). It
is hence likely that the HERV modulation can be influenced by the activation of this
gene in SARS-CoV-2 infection and along COVID-19 convalescence, accounting for its
specific upregulation in RTP and C individuals.

Among the deHERVs that are not colocalized with de-genes (n = 13), beside the
above-mentioned HML2 locus 6171 that was the one with the highest TPM, some
other elements showed a relevant level of expression (Fig. S5). Among these, only the
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HERV-E locus 2776 in chromosome 8 was upregulated in SARS-CoV-2-exposed individ-
uals, also in this case with the highest expression under the C condition (mean TPM of
2.0 in HC, 4.2 in RTP, and 17.9 in C) (Fig. S5B). Accordingly, a specific predicted tran-
script including the HERV and showing the same orientation was inferred under the C
condition only (Table S8, Fig. S7). This HERV is integrated within an intron of the GPAT4
gene (glycerol-3-phosphate acyltransferase 4) that was not differentially expressed in
the overall analysis (Table S3). However, the GPAT4 TPM shows the same behavior as
the deHERV under the different conditions, suggesting that the gene can have some
impact on the HERV upregulation (data not shown). Most of the other deHERVs were
downregulated in SARS-CoV-2-exposed individuals, further confirming that the pres-
ence of infectious and immunogenic conditions is not necessarily associated with a
general activation of HERV expression. Still, in this case the dynamic gradient of TPM
was evident, with the highest expression being in HC, followed by RTP, and the lowest
under the C condition in most cases (Fig. S5A).

In general, besides the possible occurrence of readthrough mechanisms and forma-
tion of dsRNA, the de novo transcript reconstruction for the key deHERVs that were
dynamically modulated under all conditions also showed that these elements are far
from being the most preserved, often showing a defective structure with several indels
that generate frameshifts in the coding region, as well as nucleotide substitution that
often led to the introduction of premature stop codons. Even if this prediction has
clear limitations, in the scenario indicating a possible role of these HERVs in the
dynamic transition, such a defective structure may be the result of a specific selection,
leading to the production of specific transcripts under certain conditions of immune
modulation and preventing the production of potentially harmful retroviral proteins.
Of course, further studies are needed to clarify this complex interplay between HERVs
and cellular immunity, which started since mammalian evolution with a pivotal role in
the shaping of antiviral responses (7) but is still far from being fully understood. In par-
ticular, since a limit of the present study is the lack of primary infections, it will be im-
portant to complete the overview presented here by characterizing the transcriptional
profile of acute SARS-CoV-2 infections and compare it to the one observed in patients
who retest positive. Also, it will be interesting to test the identified key deHERVs in cel-
lular systems to assess their possible impact on immune gene activation and vice versa.

Conclusions. Overall, our results provide some interesting and new insights about
HERV modulation by SARS-CoV-2 and, especially, its dynamic evolution along COVID-
19 clinical stages.

On the one hand, the fact that a majority of deHERV loci as identified in RTP individ-
uals are also shared with the C condition (202/282), showing a concordant modulation
in 99% of cases, reveals that SARS-CoV-2 exposure has a prolonged influence on a sub-
set of HERV loci, which show the same stable modulation even after the clearance of
the infection. It is worth noting that the majority of these common deHERVs are down-
regulated. In fact, the common idea is that the presence of infectious agents can led to
a general upregulation of HERV expression, as reported, for instance, for HIV (12–15),
HCV (16), influenza (17), herpesviruses (18–21), and other viral infections (5, 34, 35).
Based on these observations, it has been proposed that HERV elements have been
exploited by the innate immunity machinery to improve antiviral responses against
current infectious agents (5, 36). In our case, considering SARS-CoV-2 infection, it
seems that such an activation occurs later, i.e., during convalescence instead of in
actively (re)infected individuals. Whether this is linked to the inefficient antiviral
response to SARS-CoV-2 is still to be clarified. Also, according to the hypothesis of a
role of HERV modulation toward the trigger of antiviral responses, it is not mandatory
that the infection has an activating action on HERV loci, because the significant reduc-
tion of certain HERV transcripts can provide biological signals (e.g., if the transcript is
involved in interference and/or silencing of immune effectors).

On the other hand, the preponderant additional deHERV activation specific to the C
stage is in line with the growing evidence that COVID-19 is linked to the persistence
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(or even the onset) of severe and systemic sequelae after SARS-CoV-2 infection has
been cleared, leading to postacute long-COVID syndrome (28). In particular, the evi-
dence of a dynamic and progressive transcriptional activation of HERV subsets during
convalescence can indicate a role of HERV expression (among the other factors) in the
major inflammatory signature of long-COVID syndrome and deserves further investiga-
tions considering patients with primary infection as well.

In this context, however, it is more likely that, instead of a general, unspecific upreg-
ulation of whole groups of endogenous elements by viral infections, only a minority of
HERV sequences are modulated in the presence of infectious agents, acting as immune
sentinels for antiviral responses. For example, a subset of specific mammalian ERVs are
known for their central role in the shaping and evolution of the IFN transcriptional net-
work, a crucial weapon for innate immune responses (7). In this complex interplay, it is
probable that factors other than those involving the HERV group have a major impact
on the modulated HERVs, including the proximity to immune genes, requiring investi-
gation at the locus level rather than general analysis of a whole HERV group modula-
tion (37, 38).

MATERIALS ANDMETHODS
Collection of public transcriptomic profiles. The RNA-seq raw data analyzed in the present study

were generated by Wang and coworkers (25) and retrieved from the Gene Expression Omnibus (GEO) re-
pository (accession number GSE166253). In particular, this data set was chosen due to its technical pa-
rameters (paired-end reads of 150 1 150 bp, around 40 million per sample), which were suitable for the
univocal detection of reads mapping to repetitive multicopy elements. As previously mentioned, the
data set included a total of 26 RNA-seq profiles from either convalescent COVID-19 patients (C, n = 6),
patients that retested positive to SARS-CoV-2 after convalescence (RTP, n = 10) and healthy controls (HC,
n = 10). The population showed a mean and median age of 65 years and included 12 females and 14
males (Table S1). Raw RNA-seq data were downloaded via ftp from the European Nucleotide Archive
(ENA; www.ebi.ac.uk/ena/) and subjected to quality control with the software FastQC (39) prior to subse-
quent analyses. A quality check confirmed that all FASTQ files included reads of 150 bp in length, with-
out uncalled bases and with satisfactory quality scores (Table S1).

Bioinformatic pipeline for HERV expression analysis. For each sample, the corresponding paired
FASTQ file was first aligned to the reference human genome sequence (GRCh38/hg38) using the STAR
aligner version 2.5.2 (40). Then, the Python library HTSeq-count (41) was used to quantify the reads map-
ping to each of the ;3,300 individual HERV loci included in our HERV data set (HERVdb), relying on their
univocal genomic coordinates (27, 42–47). The same framework was used to count the reads mapping
to all the human genes included in the Gencode data set version 34 (48). Raw counts were analyzed
with RStudio software version 1.4.1106 (49) to estimate the relative abundance of reads and to perform
differential expression analyses of HERV loci and cellular genes among the different conditions (C and
RTP versus HC, C versus HC, RTP versus HC, C versus RTP). In particularly, the relative abundance of reads
was calculated as transcripts per million kb (TPM) expression values, while differential expression analy-
ses were performed from raw counts with the DESeq2 package (50), setting as the statistical threshold a
Benjamini-Hochberg adjusted P value (P-adj) of#0.01 and an absolute log2 fold change (log2FC) of$1.

Characterization of deHERV loci. The individual HERV loci found to be differentially expressed
(deHERV) under the different conditions were classified and aligned to the corresponding reference
sequence from the Dfam database of repetitive elements (51) to infer their genic structure and evaluate
their completeness and coding potential. The genomic context of integration of deHERV loci was charac-
terized by intersecting their univocal coordinates with those of the complete set of human genes
(Gencode34). Gene Ontology analyses of upregulated de-genes colocalized with comodulated deHERVs
were performed with the ModEnrichr suite and GO Biological Process 2021 annotations (52). For the
31 key de-HERVs modulated under all conditions, the corresponding means of expression and those of
eventually colocalized genes (expressed as TPM values) were statistically compared between C and RTP
individuals using a two-sample t test.

De novo reconstruction of transcripts. Raw RNA-seq data of the three different sets of individuals
were used for the de novo reconstruction of the PBMC transcriptomes for HC, C, and RTP conditions
using Trinity software (53). Reconstructed transcripts were mapped back to the human genome refer-
ence sequence with GMAP mRNA aligner (54) and visualized in the context of the human genome with
Integrative Genomics Viewer (IGV) software (55).
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