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In this study, a fuzzy model is presented for predicting the possibility of degradation due to salt 
crystallisation cycles. The formalization of the proposed model has been based on the multivariable 
approach which considers environmental data (such as temperature, solar radiation, wind speed, rain 
quantity, relative humidity), characteristic inflection points of specific salts and stone features derived 
from laboratory characterizations (including mechanical properties, porosity, and mineralogical 
composition). Modeling results have been compared with experimental data elaborations acquired 
by monitoring a semi-confined archaeological site situated in the city of Cagliari (Munatius Irenaus 
cubicle), revealing substantial alignment in the degradation kinetics trends. Moreover, the achieved 
outcomes show the remarkable capability to identify salt crystallisation phenomenon type 
(efflorescence or subflorescence).
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The preservation of cultural heritage is of crucial importance in promoting social sustainability and preserving 
historical continuity1–3. However, the exposure of materials to climatic factors causes a number of degradation 
pathologies that, nowadays, can be accelerated or mitigated by ongoing climate change4–6. The most remarkable 
aspect is the cyclical and short-term variations of these variables, which change in significant ranges even within 
a single day. Fluctuations in temperature and humidity are among the aspects that most affect porous materials, 
and the simultaneous presence of other phenomena such as rain, wind and solar radiation exposition cause 
daily stresses in the microstructure7–10. Visible examples of this are: (a) surface biological patinas, triggered by 
changes in humidity and solar radiation; (b) dissolution of soluble phases, proportional to higher frequency of 
rainfall events and to lower values of pH of the water; (c) freeze-thaw cycles, caused by the presence of water in 
the microstructure, as well as temperature fluctuations around the freezing point; (d) salt crystallisation cycles, 
influenced by relative humidity values, temperature fluctuations, ventilation (evaporation), and solar radiation 
exposure11–20.

The last of these is a problem that frequently compromises the durability of porous materials14–16, 21–23. This 
aspect is particularly relevant for porous limestones, which is a widespread facies throughout the Mediterranean 
basin from which a large part of today’s European heritage has been made over the centuries22,24–29.

A better understanding of this phenomenon and its correlation with environmental variables represents a 
significant challenge in the historical monuments conservation field23,30.

It is characterised by the expansion of salt crystals within the porous microstructure, generating internal 
forces capable of damaging the matrix when the crystallisation pressure exceeds their low mechanical 
strength14–16, 29, 31.

The most commonly encountered salt species in built heritage are sulphates, chlorides, carbonates, and 
nitrates14. Of these, sodium sulphates are of particular importance, as the phase transition between mirabilite 
and tenardite causes considerable stress in the material, being associated with a volume expansion/contraction 
of 314%32.

Salts originate from various sources: the construction materials themselves (mortars, stones, bricks), meteoric 
water, and groundwater (which carry sulphates, chlorides, and nitrates), atmospheric pollution (sulphates 
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and nitrates), and the use of chemical products over time. Biological activities, such as animal excrement and 
vegetation, as well as water infiltration, also contribute to salt accumulation27,33, 34.

In addition, consolidation work on structures carried out with unsuitable materials amplifies the problem. 
In fact, among the most frequently encountered salts are those derived from cementitious materials, which, 
due to water circulation within the structure, migrate into the porous stone materials, crystallising and causing 
considerable degradation23,35, 36.

The physical characteristics of the stone and environmental conditions determine the extent of degradation 
generated7,11, 37–40. Thus, on the one hand, the microstructure of the porous material (pore size, critical porosity 
range, void fraction, pore size distribution, capillary tortuosity, specific pore wall surface area) saturated 
or unsaturated with water (capillary rise permeability, rainfall events, dew point), on the other hand, the 
evaporation rate of this water comes into play, which is governed by the boundary conditions (relative humidity 
and temperature of the environment, exposure to solar radiation, air circulation due to winds)41–43.

Under slow evaporation conditions, salt efflorescence occurs when the liquid front of the water arrives and 
evaporates on the surface of the stone. This phenomenon has a low impact on the degradation of the material 
and is mostly superficial44. However, in the case where evaporation proceeds rapidly and there is a slow supply 
of water, the liquid front is located within the microstructure, as well as the resulting salt crystallisation, which is 
indeed referred to as subflorescence. This situation is much more damaging than the previous one, and its effects 
are clearly visible even on particularly studied and important structures15,40, 45–48.

Given the relevance of the problem, salt crystallisation study remains, during the years, an evergreen issue. 
In particular, different analytical and phenomenological approaches have been proposed in order to better 
understand the specific decay mechanisms.

Benavente at al49 study the modification of the porous microstructure of calcarenitic stones affected by salt 
crystallisation cycles. They propose a thermodynamic model which allows to calculate crystallisation pressure 
for sodium sulphate as a function of supersaturation degree and porous size distributions. Results show a relevant 
influence of specific pore size range and are in agreement with experimental observations performed by mercury 
intrusion porosimetry and SEM microscopy49.

Yu et al.50 formalises a salt susceptibility index which represents a durability estimator calculated by using 
the relationship between connected porosity and microporosity taken into account by indices. The obtained 
estimations are correlate with the weight loss of stones used in the experimental tests50.

Flatt et al.51 presents a strain energy failure criterion which allows to calculate the stresses due to salt 
crystallisation. By taking into account the crystallisation pressure, temperature values and number of cycles it 
is possible to calculate the macroscopic tensile stress. In this sense, the material fails when calculated values are 
higher than critical stress. Experimental tests are carried out in order to quantify salt crystallisation decay such 
as mass loss. The results indicates that at least the 50% of samples start to have weight loss in correspondence of 
a number of cycles for which calculations show that critical stress is exceeded51.

Although most studies focus on a specific type of salt, the actual aqueous solutions within porous materials 
are rich in different ions, which consequently lead to the crystallisation of different salt species. The co-presence 
of diverse ionic species, coupled with the viscosity of the solution, the intrinsic characteristics of the material 
(porosity and composition) and the fluctuation of environmental parameters, affects the crystallisation kinetics 
of the salt species, further complicating the understanding of the phenomenon52. Price53 developed the 
thermodynamic model Environmental Control of Salts (ECOS), which describes the behavior of aqueous saline 
solutions in porous materials. Bionda54 further advanced this work by creating RUNSALT, a graphical user 
interface designed for data processing and output visualization, allowing for easier analysis of crystallisation 
behavior under varying environmental conditions. The model relies on the ionic composition of the saline 
mixture and environmental conditions. Despite numerous advancements that have improved the original 
model55,56, certain challenges remain unresolved. Specifically, accounting for material characteristics such as 
pore structure, impurities in the system, and the kinetics of salt behavior remains an open issue55.

In the literature, numerous experimental and modeling approaches are found where a limited number of 
parameters are controlled. This allows for the clarification of the correlation level between the studied variables 
and the degradation phenomena. On the other hand, there is a clear perception of a natural oversimplification, 
reflected in the observation of case studies affected by the simultaneity of environmental conditions and their 
variability over the time considered (for example, experimental procedures and modeling often refer to standard 
conditions that remain constant over time, which rarely occurs in reality)51,57, 58.

The ambitious challenge is therefore to manage a large number of variables that are better able to describe 
the boundary conditions of the systems studied. These boundary conditions, which are particularly significant 
at different times of the year, are characterized by extreme specificity due to the climatic and microclimatic 
characteristics of various locations and environments.

In this regard, the application of fuzzy mathematics concepts and methods can present an opportunity for 
studying and predicting degradation phenomena.

Over the last century, fuzzy logic and mathematics59–63 have undergone significant development. Although 
the name and first applications in the field of machine and industrial process control engineering date back 
to the 1970s60, today these concepts have found their way into a wide range of fields. These include clinical 
diagnostics64, image processing65, economics66, and are also often used in archaeology for the classification or 
identification of areas with the potential presence of ancient sites67–70.

An example in the field of architecture and monumental heritage is provided by a public and free platform 
that exploits geographical, environmental, and meteorological information combined with expert evaluations 
through a fuzzy inference system, as presented in the work of Prieto et al.71–73. In this case, the management of 
the considerable amount of data is realized by using artificial intelligence technology. The output of the fuzzy 
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model enables the identification of the degree of vulnerability of the examined monuments to evaluate the 
strategies for conserving ancient buildings in Spain71–73.

Some application examples of fuzzy logic can also be found in the field of materials science applied to cultural 
heritage. Using this logic, according to Atzeni et al.74, it is possible to classify the mechanical response and elastic 
properties of the vesicular basalt used in prehistoric Nuragic buildings from experimental and calculated data 
acquired through mineralogical, porosimetric, and mechanical characterization74.

To determine the degree of aging of the Persepolis stone, Heidari et al.75 employed a fuzzy inference system 
and compared the predictions obtained from the model with the experimental decay observed through 
accelerated aging tests under laboratory conditions, observing results in good agreement75.

Based on these considerations, the present work aimed at examining the relationship between environmental 
conditions and the in-situ materials of the Munatius Irenaus cubicle, a semi-confined archaeological site in 
Cagliari, Italy. In particular, the focus was to estimate the degradation kinetics of salt crystallisation phenomena 
during different periods of the year, which could be particularly valuable in planning interventions for conserving 
this cultural asset. The proposed approach is based on material properties, external environmental parameters, 
and internal microclimatic data. The results were compared with decay experimental analysis and observations 
on-site.

This approach represents the initial step towards constructing a fuzzy tree that takes into account all aspects 
contributing to the kinetics of structural degradation. The ultimate goal is to develop management software for 
the archaeological site.

The Munatius Irenaus cubicle
The Paleochristian Munatius Irenaus cubicle, located in the Monumental Cemetery of Bonaria in Cagliari, 
represents an important archaeological site discovered in 1888 during the expansion works of the cemetery76. 
This cubicle (Fig. 1a), entirely excavated in the limestone rock, has a floor plan in the shape of a triangle. The 
structure is characterised by the presence of arcosoles in the walls and pits in the floor. Access is through a gate, 
with steps leading either to a small landing on the right or directly to the cubicle on the left77.

Fig. 1.  Munatius Irenaus cubicle (a); material detachment (b); salt efflorescence (c); flaking (d).
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The walls of the cubicle were originally adorned with mural paintings depicting scenes from the life of Jesus, 
while the vault was decorated with festoons and roses76,78. These paintings are estimated to date back to the early 
4th century AD, as suggested by the dating of some coins found during the excavations. The cubicle contains 
thirteen loculi, eleven of which contained human bodies wrapped in shrouds and covered with lime, while in 
the other two bronze objects were found, one belonging to Diocletian and the other to Galerius Maximian76.

However, the archaeological site is currently in a significantly degraded state. The mural paintings, once 
visible, have almost completely disappeared, and the rock shows numerous signs of deterioration, including 
detachment, pulverization, flaking, concretions, fissures, saline efflorescences, and biological colonization, 
mainly by lichens and mosses (Fig. 1b, c and d). There is a differential degradation within the site, indicating a 
variation in the type and intensity of deterioration76,77.

The restoration and conservation process of the Paleochristian cubicle has been complex and articulated 
over the years. It is believed that the vault and walls of the cubicle were reinforced with the addition of bricks 
and plaster, probably following the works carried out immediately after the discovery of the site in 188876,77. 
Subsequent undocumented interventions included the functional adaptation of the cemetery, such as the 
construction of a cement footpath and the insertion of new loculi both inside the cubicle and in the surrounding 
wall.

Materials and methods
For the study of degradation within the cubicle, it was decided to monitor the North-East side from which 
samples useful for the characterization of the present materials were collected. Three sampling areas (A, B, C; 
Fig. 2) of the lithic material and the salt efflorescences were identified in Fig. 2.

From each area considered (A, B, and C), crystallised salts on the surface and stone fragments in an 
evident stage of detachment and pulverisation have been collected monthly to characterise efflorescence 
and subflorescence. The collected materials were sealed in sample bags and immediately analysed via X-ray 
diffraction (XRD) using a Rigaku MiniFlex II diffractometer. The resulting XRD patterns were analysed using 
MAUD software and the Rietveld method.

Fig. 2.  Studied wall (Nord-East) of the cubicle. Selections (A, B and C) show the sampling areas.
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Using the Micrometrics AutoPore IV porosimeter at a working pressure of approximately 2000 bar, total 
porosity was determined via Mercury Intrusion Porosimetry (MIP).

The environmental data were obtained from the Davis Vantage Pro2 Plus (Wireless) weather station 
(ISARDEGN6 - latitude/longitude: 39.225° N, 9.134° E, elevation: 12 masl). The data records include temperature 
(T), relative humidity (RH), wind speed (WS), wind direction (WD), rain quantity (R), and solar radiation (SR). 
Measurements are taken every 15 min, and the dataset considered is for twelve months. The microclimatic data 
(internal T and RH) were taken by using Tynytag ULTRA 2 datalogger every 30 min.

The site has been documented photographically during inspections carried out at various times of the year.
Finally, for the elaboration of the model, MATLAB® R2022b software has been used.

Fuzzy model
The construction of the fuzzy model (Mamdani-type fuzzy inference) aims to define the possibility of degradation 
occurring at the site due to the salt crystallisation phenomenon (CRISmod). To achieve this, it is necessary to 
consider environmental parameters (external: solar radiation, wind speed, relative humidity, rain quantity; 
internal: temperature and relative humidity), characteristics of the crystallisation phenomenon (inflection 
point for expansion/contraction and hydration/dehydration reactions in specific salt), and material properties 
(porosity, compressive strength, hardness).

The collected data are processed to obtain representative variables of the experimentally measured 
phenomenon. These interact through inferences defined by IF/THEN rules according to a branching schema 
(fuzzy-tree) as shown in Fig. 3. In this type of approach, the composition of the rules, the definition of input 
variables, and the weight of the relationships between them, which lead to the model’s output, are entrusted 
to experts in the field, who operate based on their specific knowledge anchored in established scientific 

Fig. 3.  Diagram of the modeling approach. Starting from the bottom, the main quantities used to calculate 
the variables at the higher level (SLRR, WNDS, DLRH, WFP, PORO, MECH, HRDN) are schematically 
represented. The inferences between the variables, determined by IF/THEN rules, allow for the calculation of 
outputs at the next level (SATS, SALT, LITE). Finally, the calculated outputs (SATS, SALT, LITE) become the 
variables that, through new inferences, allow for the calculation of CRISmod.
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principles59–63. Moreover, this phase is not static but is characterized by self-learning aspects that can assist 
experts in determining inferences to optimize the correlation procedure.

In order to derive CRISmod, it is essential to resolve the entire system of inferences starting from the bottom 
of the tree (Fig. 3).

The set of identified variables and their analytical meaning are reported below.
SLRR: average daily solar radiation.
To express the variable SLRR (Solar Radiation Rate), which is calculated as the average of daily solar radiation 

values greater than zero, it has to be used the following equation:

	
SLRR =

∑n
i=1Si

n
� (1)

where Si represents the solar radiation values, for each day i, that are greater than zero, n is the total number of 
days in the reference months.

WNDS: Weighted Average Wind Speed, calculated for the month.
In order to quantitatively analyse wind speeds over a month taking into account both the frequency of specific 

wind speeds (as categorized by the Beaufort scale) and their relative intensities, it has to be used:

	
WNDS =

∑
(NeBC · CBC)

NTW
� (2)

where NeBC is the number of events in a specific Beaufort class, CBC is the Beaufort class number and NTW is the 
total number of wind speed events in the month. The summation (∑) runs over all Beaufort classes observed in 
the month.

DLRH: Daily Low Relative Humidity index.
To calculate the DLRH index, the following equation has to be used:

	
DLRH =

NRH>50%

n
� (3)

where NRH>50% is the number of events (days) for which the minimum relative humidity (RH) is greater than 
50% and n is the numbers of days in the reference month.

WFP: Water Falls as Precipitation.
To calculate the WFP, the following equation has to be used:

	 WFP =
∑n

i=1
Pi� (4)

where Pi is the precipitation (in mm) on day i, n is the total number of days in the specific month.
The interaction among SLRR, WNDS, DLRH, and WFP enables the estimation of the stone’s saturation 

degree, on which the cubicle under study is carved, formalized through the Knowledge Base (KB):

	 SATS = f21(WFP, WNDS, DLRH, SLRR) ≈ KB21.

SALT: fluctuations in relative humidity affecting salt crystallisation.
To calculate SALT, taking into account the fluctuations of environmental RH and each salt’s critical RH value 

Xc (which is the inflection point for expansion/contraction and hydration/dehydration reactions in specific salt). 
The procedure can be summarized in:

let RHmin be the minimum daily RH value when RHmin < Xc;
let RHmax be the maximum daily RH value when RHmax > Xc.
let nc, salt the critical number of events as the number of days on which these conditions occur in a month. 

If different salts (s) are present, it is necessary to calculate the critical number of events for each salt: nc,1, nc,2, 
nc,3… nc, s.

nc, salt is

	 nc,salt = nc,1 + nc,2 + nc,3 + . . . + nc,s� (5)

For every day (i, single critical event) and for each salt on which the previous conditions are satisfied, calculate 
the RH excursion Ei.

	 Ei = (Xc −RHmin)i� (6)

Considering the calculated excursions with reference to the number of critical events, the following is obtained

	

−
Ei =

∑
Ei,1 +

∑
Ei,2 +

∑
Ei,3 + . . . +

∑
Ei,s

nc,1 + nc,2 + nc,3 + . . . + nc,s
� (7)

let Ei, max be the maximum measured Ei in the year.
Thus, the formula for SALT is:
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SALT =

∑ −
Ei · nc,salt

Ei, max · n · s
� (8)

PORO: critical porosity index.

	
PORO =

P<1 µ m

Ptot
� (9)

where P1<µm represents the quantity of pores with dimensions smaller than 1 μm, and Ptot denotes the total 
porosity of the material.

MECH: mechanical strength as a function of saturation degree of stone79–81 and it is given by.

	
MECH =

UCS · SATSmin

UCSmax · SATS
� (10)

where UCS is the uniaxial compressive strength for studied materials; UCSmax is fixed to 300 MPa such as the 
maximum uniaxial compressive strength for lithic materials; SATS is the saturation degree of the studied material 
for the specific month and SATSmin is the minimum saturation degree considered equal to 50%.

HRDN:  represents the susceptibility of a material’s surface to deterioration caused by thermoclastism 
phenomena. To this end, T fluctuations and SR have been taken into consideration82,83.

	
HRDN =

Hav

Hmax [1− 0.5 · (A + B)]
� (11)

where Hav represents the hardness of the stone as the weighted average of the hardness of the minerals (on 
the Mohs scale) composing the stone (identified by XRD tests), and Hmax is the maximum hardness value on 
the Mohs scale which is equal to 10. A is the ratio of the average T excursion in the considered month to the 
maximum T excursion during the observation period, B is the ratio of the average SR excursion in the considered 
month to the maximum SR excursion during the observation period.

The inference among PORO, MECH, and HRDN allows us to estimate the properties of the lithic material, 
LITE, according to the following KB.

	 LITE = f22 (PORO,HRDN,MECH) ≈ KB22.

Consequently, the inference among SATS, SALT, and LITE enables us to estimate CRISmod.

	 CRISmod = f1 (SATS, SALT, LITE) ≈ KB1.

Each input variable has been fuzzified62,63 using a scale divided into fuzzy Membership Functions (MFs), 
identifying low (L), medium (M), and high (H) values. For the model output, CRISmod, the fuzzy set is composed 
of very low (VL), low (L), medium (M), high (H), and very high (VH) MFs.

Fuzzy set for all variables and IF/THEN rules of the model are reported in Supplementary information (SI.1 
and SI.2).

The model output, at each level of the fuzzy tree, is represented by a shape defined by the area under the fuzzy 
curve established by the IF/THEN rules. The interpretation of this result, in terms of geometric evaluations, is 
inherently more complex. For this reason, fuzzy logic incorporates a calculation method known as defuzzification, 
which enables the extraction of a single numerical value through a specific analytical procedure. Several methods 
exist to achieve this: maximum height, weighted average of maxima, or centroid calculation62,63. In this study, the 
numerical output values were derived using the centroid or center of gravity method, which involves calculating 
the centroid of the considered area.

By repeating this procedure month by month, it is possible to have a weathering kinetic trend of the site.

Results and discussion
Experimental tests have been carried out in order to characterise stone materials in the cubicle Munatius Irenaus 
site.

The mineralogical inspections analysed by using XRD show a composition constituted by calcite, small 
impurities of quartz, and minimal presence of phyllosilicates, such as illite and clinochlore. This allows to identify 
the facies usually called Pietra Cantone which is classified as biomicritic limestone (Miocenic sedimentary 
rock)24. Mirabilite, thenardite, gypsum and halite have also been found.

Other mineralogical tests have been performed on white powders sampled by efflorescence. XRDs show the 
presence of salts with different compositional and thus dimensional characteristics depending on the form in 
which they crystallise. It is therefore interesting to establish their nature to understand the degradation kinetics 
in the studied time interval caused by efflorescence or subflorescence phenomena. As expected, (given the 
XRD analyses of the stone described above) the salts identified (efflorescence or subflorescence) are: mirabilite, 
thenardite, halite, and gypsum. Tables 1 and 2 show the results of XRDs measurements which have been carried 
out during the observation period.

Beginning with these observations, an analysis is conducted in order to categorize the phenomenon of salt 
crystallisation (CRISexp) within a cubic framework, month by month. The presence or absence of salt efflorescence 
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at a sampling point is denoted by ne=1 or 0, respectively. Similarly, the presence of subflorescence detected (ns) 
through XRD analyses is indicated by ns=1 or 0. The sum of these observed values, collected on a monthly 
basis, combined with a hazard parameter, pe for efflorescence and ps for subflorescence, which in this case are 
respectively equal to 1 and 2, allows for the calculation of the CRISexp index as a weighted average.

The identification of hazard parameters allows us to assess the relative impact of each phenomenon. Indeed, 
as widely acknowledged in the literature, the effects of efflorescence are generally less damaging than those of 
subflorescence. At this stage, no distinctions have been made based on the type of salt present. The focus is on 
distinguishing between the two phenomena, as the model’s output reflects the overall degradation caused by 
crystallisation, without accounting for the specific effects of individual salts.

	
CRISexp =

pe
∑12

k=0 ne + ps
∑12

k=0 ns

pe + ps
� (12)

Table 3 reports the CRISexp values for the observation period.
MIP analysis revealed a high total porosity (29.7 ± 2.69%) with pores predominantly concentrated in the 

0.8–1.2 μm range. The most frequent radius is 1.04 μm, but pores with r < 0.8 μm and, to a lesser extent, with 
r > 1.25 μm are present.

Due to the impossibility of extracting a sufficient number of samples from the archaeological site (protected 
nature of the site) to make the experimental results statistically valid, the compressive strength values for Pietra 
Cantone were obtained from the literature and equal to 12 ± 3 MPa24. For the modeling procedure, the input data 
used for MECH is 12 MPa.

The Hav (such as input data for HDRN) is calculated by considering the specific hardness of minerals presents 
in the stone and it is 3.1 in Mohs scale.

The data acquired through the weather station and datalogger have been analysed and processed in order to 
use them as variables in the fuzzy tree.

Figure 4a illustrates the values of the average outdoor temperature (Te_av) across various months of the year. 
The peak average values are attained in July at approximately 28 °C, while the minimum average temperature is 
recorded in February at around 10.5 °C. The most significant fluctuations between the maximum and minimum 
temperatures (ΔTe) are 20.3  °C in May, 19  °C in April, and 18.4  °C and 18.2  °C in December and August, 
respectively. The smallest ΔTe is noted in February, measuring 10.7 °C. For the remaining months, the recorded 
range falls between 15 and 17 °C.

On the other hand, Fig.  4b depicts the average (Ti_av), maximum, and minimum temperatures recorded 
within the cubicle. As anticipated, the highest average temperature is documented in July (26.6  °C), and the 
lowest average temperature in February (10.8 °C), consistent with external data. However, it is notable that the 
ranges of variation are more restrained (ΔTi), with the maximum variation occurring in September (11.3 °C), 
August (10.9 °C), and May (10.8 °C). The minimum ΔTi, conversely, is recorded in February, at a value of 4.3 °C.

Figure 5a illustrates the values of the average external RH (RHe_av) across various months of the year. The 
peak average values are observed in November at approximately 80.6%, while the minimum average RH is 
recorded in May at around 64%. The most significant fluctuations between the maximum and minimum 
temperatures are 69% in August and September, 66% in February, 65% in May, 64% in July and 62% in April 

Aug Sept Oct Nov Dec Jan Feb Mar Apr May June Jul

CRISexp 0.69 0.72 0.50 0.33 0.39 0.58 0.50 0.60 0.75 0.75 0.75 0.75

Table 3.  Values of CRISexp calculated for the observation period.

 

Aug Sept Oct Nov Dec Jan Feb Mar Apr May June Jul

A M;T;H; G M;T;H; G M;T M M;T T T T M;T M;T M;T M;T;H; G

B M;T;H; G M;T;H; G M;T;G M;T M;T M;T;G M;T M;T;G M;T;H; G M;T;H; G M;T;H; G M;T;H; G

C M;T;H; G M;T;H; G M;T;G M;T M;T M;T M;T M;T M;T;H; G M;T;H; G M;T;H; G M;T;H; G

Table 2.  Types of salt in subflorescences identified by monthly XRD tests: mirabilite (M), thenardite (T), halite 
(H), and gypsum (G).

 

Aug Sept Oct Nov Dec Jan Feb Mar Apr May June Jul

A H H T T T T T T M;T M;T M;T H

B G G G G G M;T;G M;T;G M;T;G G G G G

C M;T;G M;T;G M;T;G M;T;G M;T;G M;T;G

Table 1.  Types of salt in efflorescences identified by monthly XRD tests: mirabilite (M), thenardite (T), halite 
(H), and gypsum (G).
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and June. The fluctuation in October and December are 59 and 60% respectively and the minimum value of the 
range is reached in November (48%).

Figure 5b depicts the average RH (RHi_av), and maximum, and minimum recorded within the cubicle. The 
highest RHi_av is documented in February (90.1%), and the lowest RHi_av in August (70.2%). Also in this case, 
the ranges of variation are more restrained, with the maximum variation occurring in July (59.5%), May (58.0%), 
and September (55.3%). The minimum variation is recorded in February, at a value of 38.8%.

Fig. 4.  (a) the average outdoor temperature (Te_av) and (b) the average indoor temperature (Ti_av) in the 
cubicle values vs. different months of the year. The bars identify the variation between minimum and 
maximum values of reached external and internal temperatures (ΔTe; ΔTi).
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In Fig. 5a and b dashed lines are used for representing Xc trends. For halite, this value is constant and equal 
to 75.3%84. While for thenardite/mirabilite and gypsum/anhydrite, this value is influenced by environmental 
temperature and can be obtained through interpolation within the corresponding phase diagram85,86.

The observation of temperature and RH data from Figs. 4 and 5, as expected, demonstrates the dependence 
of the internal environment on the external one. This is because the two environments are not isolated from each 
other but are directly connected. The smaller variation in values within the internal environment is attributable 
to the reduced exposure inherent in the nature of the studied location.

The heaviest rainfall in the study area occurs during March (68.1 mm), February (44.7 mm), and October 
(42.9 mm), as shown in Fig. 6a. Moderate precipitation levels are observed in November (27.93 mm), December 

Fig. 5.  (a) the average outdoor RH (RHe_av) and (b) the average indoor RH (RHi_av) in the cubicle values vs. 
different months of the year. The red line indicating the critical Xc value considered for the specific salts.

 

Scientific Reports |        (2024) 14:22671 10| https://doi.org/10.1038/s41598-024-73192-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


(26.2 mm), January (19.1 mm), and July (15.2 mm). On the other hand, minimal precipitation characterises all 
other months, such as September (2.0 mm), April (7.9 mm), May (2.5 mm), and June (9.9 mm). Significantly, 
August stands out as the only month with no recorded rainfall.

The monthly average of SR (Fig. 6b) was determined by calculating the daily average of SR, considering only 
the hours when SR is different from zero. The data show significant variation, with a minimum of 187.55 W/m2 
recorded in January and a maximum of 515.38 W/m2 in June. The highest value is reached in July, with a value 
of 1060 W/m2. Additionally, high values of SR also occur in April, May, September, July, and August, with values 
of 1028, 956, 925, and 879 W/m2 respectively.

Fig. 6.  (a) mm of rainfall recorded in different months of the observation period; (b) monthly average 
(triangle) and maximum values (square) of SR (W/m2).
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According to the Beaufort scale, the prevailing winds are those classified as Tense Breeze (class 3, 12–
19  km/h) and Moderate Wind (class 4, 20–28  km/h). The prevailing direction is NW for all months except 
September, October and November, during which the most representative direction is SSE. The histogram in 
Fig. 7 highlights the number of events recorded for each class (nW) and shows that the distribution of events in 
all months is fairly homogeneous. The highest intensities are recorded in January, March and April, when peaks 
of 60 km/h are reached, but with a limited number of events.

Considering the characteristics of the material constituting the cubicle, as well as the external and internal 
environmental variables, it is feasible to apply fuzzy modeling. The inferences among the considered variables 
allow to obtain values that express the month by month possibility of salt crystallisation occurring at the site. 
In this manner, it is also possible to estimate a degradation kinetics that can be monitored in order to manage 
degradation phenomena due to salt expansion cycles (input data of the model are reported in Supplementary 
information SI.3).

Figure  8 shows the output numerical values for CRISmod, obtained by defuzzification of fuzzy set. It is 
observable that the model detects a constant presence of salt crystallisation, with varying intensity throughout 
the observation period. Indeed, for the months of August, September, April, May, June and July, the possibility 
of the phenomenon occurring is higher than in October, January, February and March which in turn highlight 
a higher possibility compared to November and December. Moreover, in the same Fig. 8, CRISmod calculations 
(defuzzification values) are compared with CRISexp data (processed from experimental observations reported 
in Table 3) month by month. It is noted that the trend is very similar, demonstrating the model’s capability to 
simulate the conditions under which the crystallisation phenomenon can occur.

Furthermore, it is shown that the possibility expressed by CRISmod is proportional to the presence of 
efflorescence-subflorescence. When the CRISmod value is higher, an increase in subflorescence is observed in 
the experimental results, which represents a significantly more dangerous situation for the durability of the 
materials.

The potential of this modeling extends far beyond what was initially anticipated. It is not just about being able 
to predict the possibility of a degradation phenomenon occurring, but also about gaining a better understanding 
of how it is happening between efflorescence and subflorescence phenomena.

Fig. 7.  Number of records for the winds classified according to Beaufort Scale. 1 = 1–5 km/h; 2 = 6–11 km/h; 
3 = 12–19 km/h; 4 = 20–28 km/h; 5 = 29–38 km/h; 6 = 39–49 km/h; 7 = 50–61 km/h.
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Conclusions
In this article, a fuzzy procedure has been proposed for the prediction of the phenomenon of salt crystallisation 
and the resulting degradation kinetics on porous materials. The modelling was applied to the case study of 
the archaeological site Munatius Irenaus cubicle in which this form of degradation is predominant. The lithic 
material composing the walls consists of particularly porous Miocene calcarenite.

Parameters defining environmental conditions (external: solar radiation, wind speed, relative humidity, 
rainfall; internal: temperature and relative humidity), the relationship between internal and external 
environmental conditions (e.g., presence of water, temperature, relative humidity), characteristics of the 
crystallisation phenomenon (inflection points for expansion/contraction and hydration/dehydration reactions 
in specific salts), and material properties (porosity, compressive strength, hardness) have been considered.

Moreover, by considering certain sampling areas, the salts present in efflorescence and subflorescence were 
characterized and quantified by an analytic procedure.

Fuzzy modeling, through inferences among the considered variables, is capable of quantifying the possibility 
of the salt crystallisation phenomenon occurring. The output of the model enabled the determination of 
the kinetics of the phenomenon, which proved to be present in every period of the year, albeit with varying 
intensities. The comparison between experimental observations and model calculations demonstrated the 
reliability of the latter, which not only estimates the actual presence of the salt crystallisation phenomenon 
but also discriminates between the types, indicating an increasing hazard for periods in which there are more 
situations of subflorescence presence. This aspect is particularly encouraging for the further development of 
this model, which can become a useful and important tool for monitoring and conserving cultural heritage. 
Furthermore, in order to be applicable to a broader range of sites with different causes of degradation, it will be 
possible to further elaborate the model and expand the number of variables and knowledge bases for calculating 
specific outputs.

Data availability
Data are available for this paper on request. Correspondence and requests for materials should be addressed to 
G.P.
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Fig. 8.  The trend of CRISexp (circle) and CRISmod (lozenge) in different months of the observation period.
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