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Abstract

RGB-D object recognition systems improve their predictive performances by
fusing color and depth information, outperforming neural network architec-
tures that rely solely on colors. While RGB-D systems are expected to be
more robust to adversarial examples than RGB-only systems, they have also
been proven to be highly vulnerable. Their robustness is similar even when
the adversarial examples are generated by altering only the original images’
colors. Different works highlighted the vulnerability of RGB-D systems; how-
ever, there is a lacking of technical explanations for this weakness. Hence, in
our work, we bridge this gap by investigating the learned deep representation
of RGB-D systems, discovering that color features make the function learned
by the network more complex and, thus, more sensitive to small perturba-
tions. To mitigate this problem, we propose a defense based on a detection
mechanism that makes RGB-D systems more robust against adversarial ex-
amples. We empirically show that this defense improves the performances
of RGB-D systems against adversarial examples even when they are com-
puted ad-hoc to circumvent this detection mechanism, and that is also more
effective than adversarial training.
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1. Introduction

Object classification systems are machine learning models that classify
objects depicted inside input photos. The acquisition of pictures destroys
the information about the depth since images are projections of 3D objects
on a flat 2D rectangular surface, hence losing meaningful information in the
process. To overcome this loss, RGB-D systems fuse the information ac-
quired through regular RGB cameras with the depth information retrieved
with specific sensors and techniques. Such multi-modality is more reliable
than the information provided by color alone and enables more accurate
classification thanks to the additional knowledge retrieved from the spatial
properties of the objects [1]. Even if it might be reasonable to think that the
addition of the depth information could lead to a more robust system, pre-
vious work [2, 3, 4] have shown that RGB-D models are vulnerable, as well
as RGB systems, against adversarial examples [5, 6]: minimally-perturbed
samples that cause the target model to misbehave at test time. In particular,
they highlighted that attackers that can manipulate both RGB and depth
features have the complete control over the detection capability of the target
system. However, even if these attacks were successful, it is difficult to un-
derstand is such vulnerability is principally caused by one family of features
alone. For instance, Yu et al. [4] indicate that different strategies are more
or less effective on the RGB or depth, alternatively, without drawing any
conclusion on the matter. Also, Geirhos et al. [2] study the efficacy of spatial
and RGB features, concluding that shape and depth can help machine learn-
ing models to increase their predictive accuracy and that both are subject
to attacks, without investigating the latter. Thus, it is established that the
fusion of both RGB and depth information grants machine learning models
the ability to better recognize objects, but such a discussion is completely
missing regarding the cause of their weaknesses.

In this work, we bridge this gap by analyzing why adversarial attacks
against RGB-D systems are effective. To evaluate their performances in re-
alistic conditions, we assess their robustness also against adversarial patches,
contiguous chunks of pixel values optimized to produce misclassifications,
which can be easily applied physically on images and objects as printed stick-
ers [7]. Although RGB-D systems consider both the colors and the depth, an
attacker can easily subvert their performances by optimizing attacks target-
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ing the sole RGB layer. To explain this phenomenon, we investigate how the
internal layers of neural networks transform data during the forward pass.
To this end, we compute pair-wise distances between each layer of models
trained with RGB or depth information using the Centroid Kernel Alignment
(CKA), and we highlight that RGB induces higher variability than the depth
channel. On the other hand, the internal representations learned at training
time using only the depth information are similar considering the pair-wise
distances of the layers, producing a smoother decision function that is more
difficult to exploit by adversarial attacks.

Then, we show how a defense based on detection can be used to reduce the
vulnerability of RGB-D systems. Each input sample is processed to obtain
its RGB-D representation and compared with the predicted class’s centroid.
The input is classified as an adversarial example if these two differ more than
a threshold. We show that our defense effectively increases the robustness
of the victim model not only against adversarial examples unaware of the
defense in place but also against adaptive attacks aware of the detection
mechanism and designed to overcome it. Lastly, we test the efficacy of the
detector compared to an adversarially-trained model [8], that base its robust-
ness on the inclusion of adversarial examples at training time. Our results
suggest that our detector better handles the presence of attacks, by keeping
good performance against attackers with increasing strenght.

Thus, the main contributions of this work can be summarized as follows:

• we empirically assess the performance of a state-of-art object recog-
nition system based on both RGB and depth features, by considering
different neural networks as backbone for the considered fusion model;

• we explain why RGB features are less robust than depth features, by
measuring the variability learned at training time by each internal layer
of the analyzed model;

• we develop a defense that detects out-of-distribution samples, and we
compare its performance with adversarial training, the only defense
proposed to secure RGBD systems, showing that our methodology
achieves better robustness.

The rest of the paper is organized as follows. We first introduce the back-
ground concepts needed to understand the RGB-D systems and the threats
posed by adversarial examples (Section 2). We continue by discussing a
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Figure 1: Adversarial examples detection framework architecture. It consists of RCFusion
and the detector. RCFusion consists of two streams of CNN (e.g. ResNet-18) employed to
extract RGB and depth features at multiple levels of abstraction. The outputs of corre-
sponding hidden layers are projected into a common space, concatenated, and sequentially
fed to an RNN to obtain a compact RGB-D feature used by a classifier for the final classi-
fication. The detector will reject (accept) the input sample x if E(x) is greater than (less
than or equal to) the rejection threshold β.

methodology to interpret and understand the robustness of RGB-D models
(Section 3), and we explain how these systems can be defended (Section 4).
We follow by discussing our empirical findings (Section 5.2). We conclude
our paper by offering an overview of the related work (Section 6) and by
discussing limitations and future work of our study (Section 7).

2. Background

In the following section, we introduce the main concepts we will leverage
in this work. We start by describing how RGB-D object recognition sys-
tems function (Section 2.1), and we discuss the threats posed by adversarial
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examples and adversarial patches (Section 2.2).

2.1. RGB-D Object Recognition Systems

The idea of combining both colored RGB information and depth has been
introduced in literature by Socher et al. [9], where the authors create a clas-
sifier of RGB-D images that employ a CNN and RNN to obtain the deep
features, which are fed to an SVM to produce the final classification. In-
stead, Eitel et al. [10] fuse RGB and depth features before computing the
classification task by combining the information of the two streams in the
pre-last layer of the neural network. In this work, we consider the state-of-
the-art architecture proposed in [1] for RGB-D object recognition and called
recurrent convolutional fusion network (RCFusion). As shown in Fig. 1, RC-
Fusion was designed by using two streams of convolutional networks (CNN),
with the same architecture as ResNet-18 [11] and pre-trained on the Ima-
geNet, to extract RGB and depth features at different levels of the networks.
While the RGB information does not require any particular pre-processing,
depth information is not used ”as-is” as a scalar number acquired by a sen-
sor. It is post-processed to produce a colorized image. Each pixel value
of this image represents not a color but the normal of the surface acquired
by the sensor. The outputs of the corresponding hidden layers (the first
of the network trained on the RGB images, with the first of the network
trained on the depth image, the second ... ) are then projected into a com-
mon space, concatenated, and sequentially fed to a recurrent neural network
(RNN) to obtain a compact RGB-D feature that is used by a classifier for
the final classification. Let ResNet18-R and ResNet18-D represent the CNN
for extracting RGB and depth features, and the output of the i-th layer of
ResNet18-R and ResNet18-D are Rrgb

i and Rdepth
i , with i = 1, 2, . . . ,M , and

M is the total number of layers of ResNet-18. Given that the dimension
of the features obtained from different hidden layers of the same network is
different, we apply the projection block P (·) proposed in [1] to transform a
volumetric input into a vector of dimensions. Let the transformed RGB and
depth features of i-th layer denote with T rgb

i and T depth
i , i.e. T rgb

i = P (Rrgb
i )

and T depth
i = P (Rdepth

i ), and then concatenate the transformed RGB and
depth features of i-th layer to form Si = [T rgb

i ;T depth
i ]. To create a compact

multi-modal representation, we sequentially fed the set {S1,S2, . . . ,SM} to
an RNN. There are two ways to instantiate RNN, as presented in [1], e.g.,
Gated Recurrent Unit (GRU), and Long-Short Term Memory (LSTM). Since
the performance of GRUs and LSTMs are comparable, and GRUs have fewer
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parameters than LSTMs, applying a GRU layer to handle multimodal fea-
tures is therefore convenient. Then a dense layer is combined with RNN to
predict the final label.

2.2. Adversarial Examples and Patches

While machine learning technologies are currently wide-spreading across
many different domains, we are witnessing a rapid growth of studies proving
their weaknesses against multiple and rapid-evolving threats at training [12,
13] and at test time [14]. Test time attacks formalize the presence of attackers
that can compute adversarial examples δ⋆, carefully-crafted perturbations
applied to input samples designed to have them misclassified by the target
model as the attacker desires [5, 15]. For example, to have a malicious
application misclassified as a legitimate one. Adversarial examples are the
result of an optimization problem formulated as follows:

δ⋆ = arg min
∥δ∥p≤ϵ

L(x+ δ, y;θ) (1)

where:
L = sy(x+ δ)− max

j /∈{y}
sj(x+ δ) (2)

x is an input sample, y ∈ Y = {1, . . . , c} is the true label of x, θ corresponds
to the parameters of the target model, δ is the adversarial perturbation, and
sj(x + δ), j ∈ {1, . . . , c} is the j-th output predictions score of the target
model on the adversarial sample x + δ. The constraint ∥ δ ∥p≤ ϵ is an ℓp-
norm constraint imposed to preserve stealthiness of the attack [16]. Typical
norms used for crafting adversarial examples are ℓ1, ℓ2, and ℓ∞, for which
efficient projection algorithms exist [17]. However, since these manipulations
are applied to all the pixels of an image, it is impossible to replicate them in
a real-life scenario where a camera is looking at a scene. To accomplish an
attack in the described way, the attacker would need to either directly act
on the camera sensor or tamper with the images before they are sent to the
machine learning model.

A more realistic threat model to image classifiers is posed by adversarial
patches: contiguous chunks of pixel values optimized to steer the decision
toward a class decided by the attacker. These patches can be physically
printed and placed on objects acquired by the camera [7]. The creation of
adversarial patches amounts to solving an optimization problem similar to
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Eq. 1, described as follows:

δ⋆ = arg min
∥δ∥p≤ϵ

EA∼T L(x⊕Aδ), y;θ), (3)

where the adversarial patch δ is applied to the input image x with random
affine transformations A drawn from T . The operator ‘⊕’ is defined as:
x⊕Aδ = (1− µ) ◦ x+ µ ◦Aδ, where the operator ‘◦’ means element-wise
vector multiplication, µ is a mask with the same size of the input data x,
and its components are ones where the patch should be applied and zeros
elsewhere [18]. Eq. 3 can be minimized by the Algorithm 1 to create a
perturbation that is still effective regardless of its position, rotation, and
scale inside the image, hence mimicking acquisitions of the scene containing
the image and the patch through a camera. In this paper, we leverage a
simplified version of Eq. 3, where we do not apply affine transformations to
the patch but compute a single adversarial patch for each sample used at
test time during the attack. This is the worst-case scenario for the defender,
as each patch is optimized specifically for the image to which it is applied
and is thus obviously more effective than a single patch computed to work on
multiple images. Lastly, we only consider patch attacks that target the RGB
channel of the input samples since modifying the depth information would
require the attacker to possess the capability of assembling physical objects
to mimic the adversarial perturbation, which would make them difficult to
apply in real-world scenarios and costly to generate. The 3D printers that
have high color precision (needed to allow the attacker to manipulate the
colors) are, in fact, still quite expensive.

3. The Robustness of RGB-D Object Recognition

The high vulnerability of RGB-D systems to adversarial perturbations
due to the presence of RGB features had already been noted for object de-
tectors in [19]. However, as far as we know, no one has explained its un-
derlying reasons. To bridge this gap, we analyze the internal structure of
RGB-D models by computing the similarity between layers. We conjecture
that models with high similarities between their hidden layers learn simpler
decision functions; therefore, they tend to be more robust against adversarial
manipulation of input data. Conversely, when hidden layers are dissimilar,
the underlying decision function is more complicated, creating holes in the
decision space where adversarial examples lie. In the following, we revisit
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Algorithm 1 PGD-based Adversarial Patch Attack

Input: x: the input sample; A is a random affine transformations drawn
from T ; η: the step size; Π: a projection operator on the ℓp-norm con-
straint ∥δ∥p ≤ ϵ; n: the number of iterations.

Output: δ: the adversarial patch.
1: δ ← 0
2: for i ∈ [0, n] do
3: δ ← δ − η∇δL(x⊕Aδ, y;θ)
4: δ ← Π(δ)
5: end for
6: return δ

the Centered Kernel Alignment (CKA) [20] as the similarity measure we use
in this paper to determine the similarity between the hidden layers of neu-
ral networks. We then exploit the CKA similarity matrices to explain why
these systems are more vulnerable to perturbation on the RGB features of
the input rather than on the depth descriptor.

HSIC. Before delving into the details of CKA, we introduce the Hilbert-
Schmidt Independence Criterion (HSIC), subsequently used for computing
the CKA measure. Introduced by Gretton et al. [21], HSIC is a useful method
for testing if two random variables are independent. Formally, suppose X ∈
Rm×p1 and Z ∈ Rm×p2 are the output features of the two hidden layers,
having respectively p1 and p2 neurons, for m input samples. We then denote
with xi, xj (zi, zj) the i-th and j-th entries in matrix X (Z), respectively
representing the features representation for the i-th and j-th samples. We
finally define with KX = {Kij

X}i,j and KZ = {Kij
Z }i,j the symmetric kernel

matrices used to evaluate the similarities of features abstracted from the two
layers with p1 and p2 neurons separately. For computing the two matrices, we
used two distinct kernels: a linear kernel function, where Kij

X = xixj
T, Kij

Z =

zizj
T; and the Radial Basis Function (RBF), where Kij

X = exp(−∥xi−xj∥2

2σ2 ),

Kij
Z = exp(−∥zi−zj∥2

2σ2 ) and σ is chosen as a fraction of the median distance
between features. Obviously, these two kernel functions satisfy Kij = Kji.
Based on the empirical estimator of HSIC([21], Definition 2), we can obtain
Eq. (4):

HSIC(X,Z) =
1

(n− 1)2
tr(KXHKZH), (4)
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where centring matrix H = In− 1
n
11T, In is the identity matrix of size n×n,

and 1 is n× 1 vector of all ones.

CKA. HSIC is invariant to orthogonal transformations of the representations
and, by extension, to permutation of neurons, but it is not invariant to
scaling of the original representations. CKA [20] further normalizes HSIC
to produce a similarity index between 0 and 1 that is invariant to isotropic
scaling. Formally, the CKA similarity between two matrices X and Z is
defined as:

CKA(X,Z) =
HSIC(X,Z)√

HSIC(X,X)HSIC(Z,Z)
. (5)

For the Eq. (5), it is not difficult to see that CKA(X,Z) = 1 when
X = Z, namely, X and Z are the feature representation from the same
layer. Besides, CKA(X,Z) = 0 when HSIC(X,Z) = 0, this means that X
and Z are independent of each other.

4. Defending RGB-D Classifiers

In the above section, we presented our methodology for inspecting which
are the vulnerable component defining an RGB-D object recognition system.
We here present our defensive mechanism and how we assess its robustness
against adaptive attacks, i.e., attacks specifically designed to target a given
defense. In the following, we denote with x and x̃ two generic samples taken
respectively from the test and training set. We then denote the output pre-
dictions score of RCFusion, trained on the RGB and depth features, with
S(x) = [s1(x), . . . , sc(x)] ∈ R1×c, where si(x) ≥ 0 and

∑c
i=1 si(x) = 1. A

complete summary of the notation and symbols used throughout the paper
is reported in Table A.2 (see Appendix A).

4.1. Reject-based Detection

The only defense [8] that has been proposed to secure RGBD-base systems
is based on adversarial training [22]. Defenses based on adversarial training
present two problems: (i) they increase the margin between the classes; how-
ever, if the perturbation of the attacker can inject is slightly higher than the
margin, they are ineffective; (ii) they require generating many adversarial
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Figure 2: Visual representation of evasion attack on 3-class bi-dimensional classification
problem: left without defense, right with reject-based defense. Blue dotted lines for final
depth features, black solid lines for final RGB-D features, red dots for centroids, and black
dots for rejected samples. The rejection threshold is shown as a black dotted circle. Green
hexagon for the initial sample and a blue star for the adversarial sample. Defense correctly
rejects the adversarial sample, while without defense, it was wrongly classified as belonging
to the blue class.

examples during training, which is computationally demanding as the gen-
eration of each adversarial example requires multiple forward and backward
pass (and this should be done for all the samples of the training set or at least
the subset considered). Therefore, we propose a defense based on a detector.
The underlying idea of our defensive method is to estimate the distribution of
unperturbed training points at different network layers and reject anomalous
samples that may be incurred at test time, including adversarial examples.
Specifically, our defensive mechanism rejects out-of-distribution samples at
test time by looking at their RGB and depth information, and as far as a
sample moves away from class centroids, classifier support decreases to zero.
Thus, this defense can detect adversarial examples that are highly perturbed
and do not require generating adversarial examples at training time. The
operations required at training time are: (i) computing, for each class, its
centroid in RGB-D space; (ii) finding the rejection threshold, which requires
computing some distances in RGB-D space. Both these operations can be
performed by computing just once (and thus with a single forward pass) the
RGB-D features of the training samples (or the subset considered). There-
fore, the proposed approach is rather more efficient at training time than
adversarial training. Whereas at test time, both do not require expensive
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operations. Adversarial training does not require any other operation than
the standard classification. At the same time, our defense requires comput-
ing the distance in RGB-D space between the considered samples and the
centroid of the predicted class (of which the RGB-D features have already
been computed and stored at training time). The architecture of our de-
fense mechanism is depicted in Fig. 1, which assumes the defender has an
already-trained classifier to be protected against adversarial examples.

For our defense mechanism to work, we compute the centroid of the final
RGB-D features for each class, as shown in Fig. 2, and then reject anomalous
samples whose RGB-D representation is far from the centroid. Without loss
of generality, our approach uses the ℓ2 distance between the RGB-D features
of the class-centroid and the RGB-D features of the input sample. Formally,
we denote the final RGB-D features of RCFusion trained on the RGB and
depth parts with R(x) = [r1(x), . . . , ra(x)] ∈ R1×a, being a = 100 the
dimensionality of the output features of the RNN layer. For each class γ in
the training set, we then compute its corresponding centroid Cγ with respect
to their RBG-D feature as:

Cγ =
1

nγ

nγ∑
k=1

R(x̃γ
k) (6)

where nγ is the number of samples that belonging to class-γ, x̃γ
k is the k-th

sample which from the class-γ of the training set.
We then define anomaly score E for the test sample x as:

E(x) =∥ R(x)− Cγ(x) ∥2 (7)

being γ = arg maxγ S(x) ∈ [1, c] the predicted label of RCFusion trained on
the RGB and depth parts.

Finally, the detector will reject samples if E(x) is greater than the rejec-
tion threshold β, whose optimal value can be found with the Algorithm 2.
According to this rule, we define the output predictions scores of RCFusion
with the detector as: S ′(x) = [(1−sc+1)s1(x), . . . , (1−sc+1)sc(x), sc+1(x)] ∈
R1×(c+1) where the rejection class c+ 1 is defined as follows:

sc+1(x) =

{
1, if E(x) > β

0, if E(x) ≤ β
. (8)

The test samples are then assigned to the class for which the value of S ′(x)
is higher. A test sample x is thus assigned to the rejection class c+ 1 when
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Algorithm 2 Compute the Rejection Threshold

Input: T : the number of iterations; ρ: the step size; n: the number of
rejected samples; N : the total number of training samples; x̃k: the k-th
training sample; R(x̃k): the final RGB-D features of RCFusion trained
on the RGB and depth parts; Cγ(x̃k): the centroid of γ-th class of the
final RGB-D features; γ: the predicted label of RCFusion trained on the
RGB and depth parts; r: the False Positive Rate (FPR).

Output: β: the rejection threshold.
1: for i = 1 : T do
2: βi = ρ× i, n = 0
3: for k = 1 : N do
4: if ∥ R(x̃k)− Cγ(x̃k) ∥2> βi then
5: n← n+ 1
6: end if
7: end for
8: if n

N
> r then

9: continue
10: else
11: β ← βi

12: break
13: end if
14: end for
15: return β

E(x) > β; otherwise, it is assigned to the class with the highest likelihood in
the softmax output.

4.2. Attacking the Defended System

When a defense is based on a detector to reject the adversarial exam-
ples, a defense-unaware attack may craft adversarial examples belonging to
rejection regions, making it very difficult to evade such defense (Fig. 2) [23].
To perform a fair robustness evaluation of the proposed defense method, an
adaptive defense-aware attack is required. Therefore, we formulate an adap-
tive white-box attack suitable for assessing the adversarial robustness of the
proposed rejection-based.

Given a sample x, the attacker can optimize a maximum-allowed ϵ-sized
adversarial perturbation obtaining the defense-aware adversarial perturba-
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tion δ⋆, by solving the following constrained optimization problem:

δ⋆ = arg min
∥δ∥p≤ϵ

Ld(x+ δ, y;θ) (9)

where ∥ δ ∥p≤ ϵ is an ℓp-norm constraint. The formulation of the adaptive
attacks is similar to the one seen in Eq. (1), with the only difference that
now the target loss Ld takes into consideration also the detector defense the
attacker aims to evade. Formally, we define Ld as follows:

Ld = sy(x+ δ)− max
j /∈{y,c+1}

sj(x+ δ) (10)

where c+1 is the rejection class. Compared to Eq. (2), the attacker enforces
not only that the class predicted for the adversarial example does not match
the true label but also that it does not match the rejection class.

In the context of image classification, the solution of the minimization
problem mentioned before produces a perturbation that, applied to the pixel
values of the input image, forces the target model to predict the sample to a
class that is different from the true class. To achieve this error-generic (untar-
geted) evasion, the attacker should minimize the output of the true class and
maximize the output of one competing class (excluding the reject class). It
is worth noting that this algorithm performs a strong maximum-confidence
evasion attack (rather than searching for a minimum-distance adversarial
example). While in this work, we focus only on untargeted attacks, the pro-
posed formulation can also be easily extended to account for error-specific
(targeted) evasion. Note that the targeted attacks requires the model to mis-
classify the sample to the class decided a priori by the attacker, which can
be written similarly to Eq. (9) by using the target label yt instead of y, and
inverting the sign of the loss function [24].

Moreover, to solve the optimization problem above, given that the Eq. (8)
is a step-function and non-differentiable, we apply:

sc+1(x) =
1

1 + exp (−λ(E(x)− β))
(11)

to implement the loss function exploited by the attacker to compute the
adversarial examples in our experiment.

5. Experimental Analysis

In our experimental analysis, we consider two different RGB-D datasets to
perform multi-modal computer vision classification tasks. Our analysis has
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three fundamental objectives: (i) investigating the robustness of RCFusion to
detect which are the most vulnerable features; (ii) interpreting the previous
results by inspecting the similarity between hidden layers of RCFusion; and
(iii) testing the robustness of the proposed defense against defense-unaware
and adaptive attackers. In the following, we define the experimental setup
adopted in our empirical analysis to foster the reproducibility of our results,
and we then present and analyze our findings.

5.1. Experimental Setup

Datasets. We conduct our experiments by choosing two datasets, i.e., RGB-
D Object Dataset [25] and OCID [26], where data dimensionality and the
number of classes are different, thus making our setup more heterogeneous
and challenging.

RGB-D Object Dataset [25]1 contains 300 common household objects taken
from multiple views organized into 51 categories with a total of 207,920
RGB-D images. It was sampled using a Kinect-style 3D camera that records
synchronized and aligned 640 × 480 RGB and depth images at 30Hz. Due
to the massive dataset size, we subsampled it by extracting only every fifth
frame, thus obtaining 41, 877 RGB-D images. We run our experiment based
on ten cross-validation splits: one object instance per class is used for testing,
and training is performed on the remaining 249 (300− 51) instances, where
each split consists of roughly 35,000 training images and 7,000 images for
testing.

Object Clutter Indoor Dataset (OCID) [26]2 comprises 96 fully built up clut-
tered scenes representing common objects organized in three subsets: ARID20,
ARID10, and YCB10. The ARID20 and ARID10 subsets include cluttered
scenes with up to 20 and 10 objects from Autonomous Robot Indoor Dataset
(ARID) objects, respectively, whereas the ARID20 (ARID10) subset includes
cluttered scenes with 3, 180 (2, 499) RGB-D images. Moreover, the YCB10
subset includes cluttered scenes with up to 10 objects from YCB objects.
The data capture diverse settings of objects, backgrounds, context, sensor-to-
scene distance, viewpoint angle, and lighting conditions. In our experiment,
we have chosen ARID20 (ARID10) as the training (testing) set.

1http://rgbd-dataset.cs.washington.edu/
2https://www.acin.tuwien.ac.at/en/vision-for-robotics/software-tools/

object-clutter-indoor-dataset/
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RGB Depth RGB Depth

Figure 3: Samples in the preprocessing and inverse-preprocessing spaces, where the inverse-
preprocessing (preprocessing) space is highlighted in blue (orange).

Preprocessing. To obtain the colorized depth images, we first normalize the
original depth before proceeding to the colorization by adopting the method
based on surface normal [27, 28]. The resulting representation focuses on
capturing structural information (e.g., object shapes, surface properties, and
relative orientations) while being invariant to the distance to the camera or
the total depth range [27].

For the preprocessing procedure, we convert RGB and colorized depth
images from the RGB to the BGR space. We then resize the images of BGR
space as 256×256 and subtract the mean values 3 provided by Mohammad et
al. [28], and then apply a resize again to shrink images to match the input size
of the considered model, which is 224×224. For the inverse-preprocessing, we
resize preprocessed images as 256×256, and then add the mean values to the
resized images, convert the images of BGR space to RGB space, and resize
the images of RGB space to 224 × 224. Finally, the results of preprocessed
and inverse-preprocessed are shown in Fig. 3.

Classifiers. We train the model using RMSprop optimizer with batch
size 64, learning rate 0.0001, momentum 0.9, weight decay 0.0002, projec-
tion depth 256, and the number of memory neurons a = 100 [1]. We re-
port in Table 1 the performances of the trained models on different feature
sets (RGB, depth, and RGB-D) on the RGB-D Object Dataset and OCID.

3https://data.acin.tuwien.ac.at/index.php/s/RueHQUbs2JtoHeJ
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Table 1: Accuracy of RCFusion on ResNet-18 and AlexNet for object recognition on RGB-
D Object Dataset and OCID.

Model Input Part
RGB-D

Object Dataset
OCID

RCFusion on ResNet-18
RGB-D 95.04% 91.51%
RGB 88.70% 87.02%
Depth 82.03% 40.35%

RCFusion on AlexNet
RGB-D 83.72% 65.22%
RGB 69.51% 59.65%
Depth 61.48% 20.45%

ResNet-18
RGB 87.65% 88.08%
Depth 80.14% 35.05%

Also, we include the performance of another deep neural architecture, which
is AlexNet [29], a convolutional neural network originally trained on Ima-
geNet [30]. We use Alexnet as another backbone neural network for RCFu-
sion alongside ResNet-18. We also use the pre-trained ResNet-18 to classify
the RGB images of the considered datasets and train the model using the
RMSprop optimizer, where the batch size, learning rate, momentum, and
weight decay are the one proposed by the original training of RCFusion‘[1].
We also report the accuracy of ResNet-18 in Table 1.

Adversarial Attack. To evaluate the adversarial robustness, we test the
trained networks with attacks that either jointly or separately target the
RGB and depth parts. We leverage the Adversarial Robustness Toolbox,
(ART)4 from which we select the untargeted ℓ∞-norm version of Projected
Gradient Descent (PGD) and PGD-based maximum-confidence patch attack.
PGD [22] is first used to test the robustness when all the RGB and depth
features are perturbed, as shown in Fig. 4. Within this configuration, we
perform 100 iterations, with a step size is 0.05 for the RGB-D Object Dataset
and OCID dataset. Furthermore, to mimic a real-world scenario, we leverage
the adversarial patch to attack against the RGB part, where the maximum
perturbation ϵ = 20, the step size is 1, and we let vary the patch size in
[0, 112]. We provide an example of this attack schema in Fig. 5.

Parameter Setting. For training RCFusion, we refer to the parameter set-

4https://github.com/Trusted-AI/adversarial-robustness-toolbox/
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platecap

Figure 4: The scheme we use for modifying the full image to attack the RGB-D part
of RCFusion, where the maximum perturbation is 0.3, and the inverse-preprocessing and
preprocessing spaces are highlighted in blue and orange.

platecap

Figure 5: The scheme we use for modifying only a portion image to attack the RGB part of
RCFusion, where the patch size is 35×35, and the inverse-preprocessing and preprocessing
spaces are highlighted in blue and orange, separately.

ting provided by the author of [1] and, to obtain a fair comparison, we ad-
just them to obtain the performance of RCFusion on RGB-D Object Dataset
and OCID as consistent as possible with the performance presented in [1].
We have fixed the only hyperparameter of our defense, namely the rejection
threshold β, using Algorithm 2. This algorithm finds the rejection thresh-
old appropriate to obtain the desired FPR (r), which in our experiments,
we required to be equal to 10% on the clean (unperturbed) samples. In the
following, we discuss how the parameters of this algorithm should be set to
obtain an appropriate threshold. The number of iterations (T ) should be set
large enough to allow it to converge. We have set it equal to 1e10. Whereas
the step size ρ should be small because a small variation in the threshold can
greatly impact the correspondent FPR. Thus we set it equal to 1e− 5.

Performance Metrics. We denote the original (undefended) performance
of ResNet-18/AlexNet with “ResNet-18”/“AlexNet”, the original (undefended)
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performance of RCFusion with “RCFusion”, the adversarial training perfor-
mance of RCFusion with “RCFusion AT”, the percentage of samples rejected
by the detector with “Rejection” and the classifier defended with the pro-
posed detector with “Defended”.

Security Evaluation. We compare the object detector and its robust model
considering their security evaluation curves [14, 31], reporting classification
accuracy against an increasing ℓ∞-norm perturbation size ϵ, used to perturb
all the test samples. To set the scaling parameter λ in Eq. (11), we have tried
different values, and we have found that the most appropriate to be 30. There
are two cases to calculate the accuracy of the robust detector: i) without
attack (i.e., for ϵ = 0), the accuracy of the robust detector is computed
as usual, but considering the errors of clean samples which are classified
correctly but rejected; ii) under attack (i.e., for ϵ > 0), all the tested samples
become adversarial examples, and we consider them correctly classified by the
robust detector if they are classified either to the rejection class or their true
class. We also report the rejection rates computed by dividing the number
of rejected samples by the total number of tested samples. It is worth noting
that the difference between the accuracy of the robust detector and rejection
rate at each ϵ > 0 corresponds to the fraction of adversarial examples which
are not rejected but still correctly assigned to their true class.

5.2. Experimental Results

We now discuss our empirical findings by reporting the robustness of
RCFusion against adversarial attacks, analyzing the factors influencing its
vulnerability, and the robustness of the proposed rejection-based defense.

Robustness of RCFusion. We here empirically investigate the robustness
of RCFusion on the maximum perturbation ϵ following the attack pipeline
depicted in Fig. 4 To this end, we apply PGD [22] separately against the
RGB and depth feature only, and then we apply PGD against the RGB and
depth feature combined. We report their results against RCFusion in Fig. 6
when considering the RGB-D Object Dataset and OCID datasets.

The attack against both RGB and depth parts shows that the model is
not robust against adversarial manipulations, as its accuracy drops to zero
with a small perturbation budget. Interestingly, this result is also achieved by
computing PGD against the sole RGB part. On the contrary, when PGD is
applied against the depth part only, the attack needs a higher perturbation
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Figure 6: The robustness evaluation curve is computed by modifying the full image to
attack the RGB, depth, and RGB-D parts of RCFusion for RGB-D Object Dataset (left)
and OCID (right), respectively.
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Figure 7: The robustness evaluation curve is computed by modifying only a portion image
to attack the RGB part of RCFusion and ResNet-18 for RGB-D Object Dataset (left) and
OCID (right), respectively.

budget to drop the accuracy to zero. From these results, it emerges that
the performance of the whole RCFusion network is being hurt more by the
RGB information than the depth information. We have carried out some
experiments to investigate why, and we will present them later on in this
section. However, the depth information alone, even if it can be expressive
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enough to exhibit more robustness than RGB information, usually leads to
poor accuracy (as previously shown in Table 1). Therefore, training the
classifier only on the depth features could not be considered a solution to
obtain a classifier that is more robust to perturbations of the input. The
big difference in the accuracy is given by the fact that the OCID dataset
contains many objects that are distinct but have almost the same shape,
like the ones belonging to the classes “ball” and “orange” and to the classes
“Kleenex box” and “cereal box” , whereas the other dataset contains objects
that have different shapes.

Furthermore, we test the robustness of RCFusion, trained on both the
RGB and depth features, in real-world scenarios where the attacker can
physically tamper with objects. To this end, we explore the effectiveness of
adversarial patches computed to target the RGB part solely, and we compare
its robustness with the one of ResNet-18. We aim to understand to which ex-
tent using a system that also leverages depth features may help with respect
to employing a simpler ResNet-18. To do so, we create adversarial patches
against RCFusion and ResNet-18 and depict the collected results in Fig. 7,
considering both the RGB-D Object and OCID datasets.

From the empirical results, we highlight that the influence of the adver-
sarial patches on the robustness of both RCFusion and ResNet-18 are very
similar, with RCFusion being slightly more accurate. Such minimal discrep-
ancy might be caused by (i) the additional complexity that is included inside
the architecture of RCFusion and (ii) the additional information provided
by the depth information. However, this advantage still decreases with the
increase in the size of the adversarial patch. Therefore, it is easy to con-
clude that the robustness of RCFusion is almost as vulnerable to adversarial
patches as ResNet-18. This means that using RCFusion, which is a more
complex system than ResNet-18, which leverage also the depth, does not pro-
vide relevant advantages in terms of security.

Interpretation of RCFusion Vulnerability. In the following, we analyze
the internal representations in RCFusion to explain why it is vulnerable to
adversarial attacks. To this end, we use the CKA measure, seen in Section 3,
to evaluate the similarity of features abstracted by RCFusion from the RGB
and depth part separately and present the CKA similarity heatmaps in Fig. 8.
We can see: (i) the linear and RBF kernels give similar results on the RGB-D
Object Dataset and OCID. This conclusion is consistent with that presented
in [20]; (ii) the heatmaps generated on the depth information tend to show a

20



0 2 4 6 8
Layer

0
2

4
6

8
La

ye
r

Linear RGB

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8
Layer

0
2

4
6

8
La

ye
r

Linear Depth

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8
Layer

0
2

4
6

8
La

ye
r

Kernel RGB

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8
Layer

0
2

4
6

8
La

ye
r

Kernel Depth

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0 2 4 6 8
Layer

0
2

4
6

8
La

ye
r

Linear RGB

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8
Layer

0
2

4
6

8
La

ye
r

Linear Depth

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8
Layer

0
2

4
6

8
La

ye
r

Kernel RGB

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8
Layer

0
2

4
6

8
La

ye
r

Kernel Depth

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 8: The CKA similarity heatmaps generated based on the RGB and depth informa-
tion by applying the linear (first two) and RBF (last two) kernels, where (a) is the results
of RGB-D Object Dataset, (b) is the results of OCID.

distinctive block structure[32] (seen as a yellow square on the heatmap) than
the RGB information. We conjecture this is because the information learned
by the network trained on depth is more redundant (there is less information
to learn). Therefore, the trained classifier turns out to be smoother and,
thus, more robust to input perturbations.

Robustness of the Proposed Defenses. We here inspect the robust-
ness results offered by our rejection-based defensive method. The results are
reported in Fig. 9- 13.

Firstly, we try to apply the rejection base mechanism on a simple ResNet-
18 instead than to RCFusion. We report the result obtained when the at-
tacker can modify the full input and the ResNet-18 is trained on the RGB
(left column) and depth part of the input (right) for the two considered
datasets. From Fig. 9, we can see that the accuracy of the defended ResNet-
18 (called Defended in the figure) decreases fast when the classifier is under
attack (ϵ > 0). This means that applying the rejection mechanism to the
ResNet-18 does not provide a notable advantage, except when the ResNet-18
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Figure 9: The robustness evaluation curve computed by modifying the full image of the
input of ResNet-18 trained on the RGB (left) and depth (right) separately for the RGB-D
Object Dataset (top-row) and OCID Dataset (bottom-row).

is trained on the depth part of the RGB-D Object Dataset.
Therefore, we evaluate the defense’s performance when applied to RC-

Fusion constructed by ResNet-18. Also, to compare the impact of different
backbone networks on RCFusion performance, we evaluate the performance
of the defense when applied to RCFusion constructed by AlexNet. We present
the results when the attacker can modify the full image in Fig. 10- 11. We
can see that the accuracy of defended classifier and RCFusion decreases until
it reaches zero. This means that the attack algorithm we employ to perform
the analysis works correctly. Moreover, from these two plots, we can see
that even though the accuracy decreases when the perturbation increases,
the accuracy of the defended RFCusion decreases more gracefully than that
of the defended ResNet-18. Besides, we also can see that the performance of
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the detector when applied to RCFusion constructed by ResNet-18 (Fig. 10)
drops faster than that of the detector when applied to RCFusion constructed
by AlexNet (Fig. 11), in other words, the robustness of the detector when ap-
plied to RCFusion constructed by ResNet-18 is inferior to that of the detector
when applied to RCFusion constructed by AlexNet.

To explore the performance of the defended RCFusion in a more realistic
scenario, we assess its robustness against adversarial patches. To this end,
we perform the attack by modifying a portion of an image and present the
result in Fig. 12- 13. In the absence of attacks (i.e., patch size = 0), the
performance of RCFusion slightly outperforms the classifier defended with
the proposed detector. This is expected, and it is because a small portion
of legitimate samples is incorrectly flagged as adversarial examples. Under
attack (patch size > 0), the defended classifier shows more robustness than
that of RCFusion, as the accuracy of the defended classifier decreases more
gracefully than that of RCFusion when patch size > 0. It is worth noticing
that the accuracy of the defended classifier even increases for a small patch
size, as the test samples immediately become blind-spot adversarial examples
when modified slightly and end up in a region that is far from the rest of
the data. Moreover, with the increase of the patch size, the test samples
gradually drifted inside a different class, making them indistinguishable for
the rejection-based defense. Overall, by comparing the performance of the
defended classifier and the undefended RCFusion, and the rejection rate, we
show that our defense mechanism provides a more robust performance than
that of the undefended RCFusion under attack performed by modifying the
full and a portion of an image.

Comparison with Adversarial Training. We compare the performance
of our detector against the RCFusion model defended with the adversarial
training technique developed by Wang et al. [8]. The defense in [8] augments
the training dataset with correctly labeled adversarial examples, thus helping
the neural network better generalize when confronted with malicious noise.
To do so, we start by computing adversarial examples on the full images to
attack the RGB-D part of RCFusion, with a perturbation ϵ = 0.1(0.2) for
RGB-D Object Dataset (OCID), and we use them along with the unper-
turbed training data to produce robust models (RCFusion AT).

We depict the experimental comparison between our detector and the
adversarial training defense by Wang et al. [8] in Fig.14 and Fig.15. The
key observation is that conventional adversarial training, for attacks in-
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jecting perturbations optimized by randomly-picking all considered ϵ, i.e.
ϵ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2, 2.5} (Fig.14), and by using an ϵ = 0.1(0.2)
for RGB-D Object Dataset (OCID) (Fig.15) for RGB-D Object Dataset
(OCID), provide only a small improvement in robustness. In contrast, the
proposed robustness provided by the proposed detector is more elevated.
This is because, with adversarial training, as soon as the perturbation ap-
plied to the adversarial examples is slightly larger than the classifiers’ margin,
they are misclassified. Instead, using the proposed detector, they are classi-
fied as adversarial examples unless they become quite similar (in deep space)
to the samples of the target class. Therefore, our defense provides higher
robustness than adversarial training. Moreover, they are complementary;
therefore, they could be used jointly to obtain even more robustness.

In conclusion, our proposed technique demonstrates superior efficacy in
countering adversarial attacks, enhancing model robustness against malicious
perturbations while maintaining high accuracy and reliability in detecting
out-of-distribution samples.
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Figure 10: The robustness evaluation curve is computed by modifying the full image of
the RGB-D (left) and RGB (right) channel of RCFusion constructed by ResNet-18 on the
RGB-D Object Dataset (top-row) and OCID (bottom-row), when the step size is 0.05.
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Figure 11: The robustness evaluation curve is computed by modifying the full image of
the RGB-D (left) and RGB (right) channel of RCFusion constructed by AlexNet on the
RGB-D Object Dataset (top-row) and OCID (bottom-row), when the step size is 0.05.
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Figure 12: The robustness evaluation curve is computed by modifying only a portion image
of the RGB-D (left) and RGB (right) channel of RCFusion constructed by ResNet-18 on
the RGB-D Object Dataset (top-row) and the OCID Dataset (bottom-row).
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Figure 13: The robustness evaluation curve is computed by modifying only a portion
image of the RGB-D (left) and RGB (right) channel of RCFusion constructed by AlexNet
on the RGB-D Object Dataset (top-row) and the OCID Dataset (bottom-row).
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Figure 14: Comparison between the robustness of the proposed defense methodology with
the robustness of the adversarial training considering all considered ϵ on the RGB-D Object
Dataset (left) and the OCID (right), respectively.

Remarks. In this work, we have assessed the performance of a state-of-the-
art RGBD-based object recognition system called RCFusion against adver-
sarial examples. Given that this system considers not only the RGB features
but also the depth, it is reasonable to suppose it is more resilient to adver-
sarial examples that change only the RGB part of the input compared to
a system based only on RGB features. However, we have shown that their
robustness is similar. Our results show that the vulnerability of RCFusion is
mainly due to the usage of RGB features that, even if combined with the deep
features, make the system vulnerable. However, they are necessary to obtain
satisfactory performance. Therefore, we have proposed a defense based on
a detection mechanism that, as we have shown, can make RCFusion more
robust with negligible overhead. Moreover, we have shown that this defense
mechanism is more effective than the only defenses proposed so far to secure
RGBD-based systems [8].

6. Related Work

In the following, we discuss the work related to the vulnerability of RGB-
D models and the previously proposed defenses against adversarial examples.

Vulnerabilities of RGB-D models. While it is straightforward to com-
pute adversarial attacks against a machine learning model, understanding
the rationale behind such weakness is a difficult task.
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Figure 15: Comparison between the robustness of the proposed defense methodology with
the robustness of the adversarial training considering a single ϵ on the RGB-D Object
Dataset (left) and the OCID (right), where ϵ = 0.1(0.2) for RGB-D Object Dataset
(OCID).

Geirhos et al. [2] remark on their discussion that humans most likely rely
on the shape of observations to categorize and recognize objects, while deep
neural networks retrieve information from the observed texture. To support
this intuition, the authors interview volunteers by asking them to classify
silhouettes and textures of objects and feed the same inputs to RGB neural
networks. The authors also test the robustness of both human volunteers
and neural networks by testing them with common corruptions applied to
images, but they did not test adversarial attacks that target the shape or
depth information.

Tu et al. [33] analyze the robustness of object detectors of self-driving
cars that recognize objects by acquiring RGB images and proximity scans
with Lidar sensors. The authors develop attacks against both components,
jointly or separately, and show how much they degrade the performance of
the target classifier.

Abdelfattah et al. [3] similarly evaluate the robustness of RGB-D models
against adversarial perturbations with the intent of misleading the cloud
point reconstruction. They achieve this result by virtually creating a single
object with an adversarial shape and texture.

Yu et al. [4] investigates the robustness of fusion models that leverage
RGB and thermal information to compute image segmentation. Their results
highlight that these models are not effective against adversaries, even if the
attacks are conducted against one single part at a time.

30



Xie et al. [34] investigate the adversarial robustness of 3D object recogni-
tion by considering a set of attacks, including pixel-based attacks, universal
patches, and black-box attacks in the form of transferability attacks. Their
main findings suggest that robust depth recognition can improve the adver-
sarial robustness of RGB-D models.

Even if these recent works analyze the robustness of RGB-D models, they
all lack an in-depth study regarding the reason for different levels of the ro-
bustness of the RGB and depth component. Complementary to previous
works, we empirically assess the robustness of both RGB and depth features,
and we analyze the variability learned at training time in each internal layer
to explain the reason behind depth robustness and RGB vulnerability.

Adversarial defenses. So far, no work has studied the effectiveness of de-
fenses on RGB-D object recognition systems. The only work that proposes
a defense for an RGB-D system is the one proposed by Wang et al. [8] that
aims to secure an object detector. In this work, the authors study the appli-
cation of adversarial training [22] on both the RGB and depth components
of fusion networks, and they discover that both accuracy and robustness
decreased when hardening separately and jointly the two parts.

Many works, instead, have previously proposed defenses to secure RGB
systems against adversarial examples.

Crecchi, Sotgiu, et al. [23, 35] propose a detection mechanism that trains a
machine learning model on the internal representation learned by the network
to defend. At test time, the detector discards all the input samples whose
internal representation mismatches the one learned at training time.

Meng et al. [36] propose Magnet, a detector that intercepts anomalous
samples by computing the difference between the input and its de-noised
version, leveraging an autoencoder neural network.

All these methods leverage a detection mechanism similar to our proposed
defense but not applied to RGB-D systems to discard adversarial patch at-
tacks.

7. Conclusions

In this work, we investigate the lack of robustness of RGB-D systems by
explaining that attackers can easily obtain misclassification thanks to the
weakness introduced by the color information. We explain this phenomenon
by leveraging the Central Kernel Alignment metric, showing that models
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trained on RGB or both RGB and depth are more sensitive to minimal
changes of input samples compared to networks trained only on depth, hence
amplifying the weakness to adversarial examples. To reduce the vulnerability
of RGB-D systems, we develop a detector capable of discarding anomalous
input samples by comparing their deep fusion representation with centroids
computed at training time. We empirically show that our defense mecha-
nism can reduce the effect of adversarial examples and adversarial patches
aimed to circumvent such detectors. Moreover, we have shown that the only
approach that was proposed by previous works to defend RGBD-based sys-
tems, namely, adversarial training, can only slightly increase the robustness
of RCFusion against adversarial examples with respect to the undefended
model. Whereas the proposed approach is more effective in spite of being
also less expensive at training time, as discussed in Section 4.

One limitation of our work is that our detector still uses the RGB infor-
mation. It would be ideal to leverage only the depth channel of test samples
since we showed that depth alone is more robust to minimal perturbation.
However, this may not be possible because the accuracy of the systems based
on depth is much lower than those based on color. Hence, in our future work,
we will work on creating a detector based only on depth to obtain a more
robust system and thus increase the perturbation that the attackers should
apply to images to subvert the system.
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[16] A. E. Cinà, A. Torcinovich, M. Pelillo, A black-box adversarial attack
for poisoning clustering, Pattern Recognition 122 (2022) 108306.

[17] J. Duchi, S. Shalev-Shwartz, Y. Singer, T. Chandra, Efficient projections
onto the l1-ball for learning in high dimensions, in: Proceedings of the
25th International Conference on Machine Learning, ICML ’08, ACM,
New York, NY, USA, 2008, pp. 272–279.

[18] D. Karmon, D. Zoran, Y. Goldberg, Lavan: Localized and visible adver-
sarial noise, in: International Conference on Machine Learning, PMLR,
2018, pp. 2507–2515.

34

https://www.sciencedirect.com/science/article/pii/S0031320318302565
https://www.sciencedirect.com/science/article/pii/S0031320318302565
https://doi.org/https://doi.org/10.1016/j.patcog.2018.07.023
https://www.sciencedirect.com/science/article/pii/S0031320318302565
https://www.sciencedirect.com/science/article/pii/S0031320318302565


[19] J. Tu, H. Li, X. Yan, M. Ren, Y. Chen, M. Liang, E. Bitar, E. Yumer,
R. Urtasun, Exploring adversarial robustness of multi-sensor perception
systems in self driving, in: 5th Annual Conference on Robot Learning,
2021.
URL https://openreview.net/forum?id=m5k1XdK5nI2

[20] S. Kornblith, M. Norouzi, H. Lee, G. Hinton, Similarity of neural net-
work representations revisited, in: International Conference on Machine
Learning, PMLR, 2019, pp. 3519–3529.

[21] A. Gretton, O. Bousquet, A. Smola, B. Schölkopf, Measuring statistical
dependence with hilbert-schmidt norms, in: International conference on
algorithmic learning theory, Springer, 2005, pp. 63–77.

[22] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards
deep learning models resistant to adversarial attacks, in: International
Conference on Learning Representations, 2018.

[23] A. Sotgiu, A. Demontis, M. Melis, B. Biggio, G. Fumera, X. Feng,
F. Roli, Deep neural rejection against adversarial examples, EURASIP
Journal on Information Security 2020 (2020) 1–10.

[24] M. Melis, A. Demontis, B. Biggio, G. Brown, G. Fumera, F. Roli, Is
deep learning safe for robot vision? Adversarial examples against the
iCub humanoid, in: ICCVW Vision in Practice on Autonomous Robots
(ViPAR), IEEE, 2017, pp. 751–759.

[25] K. Lai, L. Bo, X. Ren, D. Fox, A large-scale hierarchical multi-view
RGB-D object dataset, in: IEEE International Conference on Robotics
and Automation, ICRA 2011, Shanghai, China, 9-13 May 2011, IEEE,
2011, pp. 1817–1824.

[26] M. Suchi, T. Patten, D. Fischinger, M. Vincze, Easylabel: A semi-
automatic pixel-wise object annotation tool for creating robotic RGB-D
datasets, in: International Conference on Robotics and Automation,
ICRA 2019, Montreal, QC, Canada, May 20-24, 2019, 2019, pp. 6678–
6684.

[27] A. Aakerberg, K. Nasrollahi, C. B. Rasmussen, T. B. Moeslund, Depth
value pre-processing for accurate transfer learning based rgb-d object

35

https://openreview.net/forum?id=m5k1XdK5nI2
https://openreview.net/forum?id=m5k1XdK5nI2
https://openreview.net/forum?id=m5k1XdK5nI2


recognition, in: International Joint Conference on Computational Intel-
ligence, 2017.

[28] S. Bucci, M. R. Loghmani, B. Caputo, Multimodal deep domain adap-
tation, arXiv preprint arXiv:1807.11697 (2018).

[29] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with
deep convolutional neural networks, Advances in neural information pro-
cessing systems 25 (2012).

[30] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A
large-scale hierarchical image database, in: 2009 IEEE conference on
computer vision and pattern recognition, Ieee, 2009, pp. 248–255.
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Appendix A. Notation

We list the notation and symbols used throughout this paper in Ta-
ble A.2.

Table A.2: Notation and symbols used in the paper.

Adversarial Examples

x input sample y ∈ Y true label of x

δ adversarial perturbation ∥ δ ∥p ℓp-norm of δ

ϵ maximum noise magnitude η attack step size

Π projection operator L adversarial loss

Defending RGB-D Classifier

S(x) ∈ R1×c softmax output layer for input x si(x) logit score of class i for sample x

R(x) RGB-D features of RCFusion for input x γ the predicted label of RCFusion

x̃k k-th training sample Cγ(x̃k) centroid for the γ-th class

nγ number of samples that belonging to class-γ E(x) anomaly score for input x

S ′(x) softmax output layer for input x with rejection class Ld adaptive adversarial loss

β rejection threshold ρ β optimal value search step size
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