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The success of machine learning is fueled by the increasing availability of computing power and large training datasets. The training
data is used to learn new models or update existing ones, assuming that it is sufficiently representative of the data that will be
encountered at test time. This assumption is challenged by the threat of poisoning, an attack that manipulates the training data
to compromise the model’s performance at test time. Although poisoning has been acknowledged as a relevant threat in industry
applications, and a variety of different attacks and defenses have been proposed so far, a complete systematization and critical review
of the field is still missing. In this survey, we provide a comprehensive systematization of poisoning attacks and defenses in machine
learning, reviewing more than 100 papers published in the field in the last 15 years. We start by categorizing the current threat models
and attacks, and then organize existing defenses accordingly. While we focus mostly on computer-vision applications, we argue that
our systematization also encompasses state-of-the-art attacks and defenses for other data modalities. Finally, we discuss existing
resources for research in poisoning, and shed light on the current limitations and open research questions in this research field.
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1 INTRODUCTION

The unprecedented success of machine learning (ML) in many diverse applications has been inherently dependent
on the increasing availability of computing power and large training datasets, under the implicit assumption that
such datasets are well representative of the data that will be encountered at test time. However, this assumption
may be violated in the presence of data poisoning attacks, i.e., if attackers can either compromise the training data,
or gain some control over the learning process (e.g., when model training is outsourced to an untrusted third-party
service) [43, 70, 126, 134]. Poisoning attacks are staged at training time, and consist of manipulating the training data to
degrade the model’s performance at test time. Three main categories of data poisoning attacks have been investigated
so far [39]. These include indiscriminate, targeted, and backdoor poisoning attacks. In indiscriminate poisoning attacks,
the attacker manipulates a fraction of the training data to maximize the classification error of the model on the (clean)
test samples. In targeted poisoning attacks, the attacker manipulates again a subset of the training data, but this time
to cause misclassification of a specific set of (clean) test samples. In backdoor poisoning attacks, the training data is
manipulated by adding poisoning samples containing a specific pattern, referred to as the backdoor trigger, and labeled
with an attacker-chosen class label. This typically induces the model to learn a strong correlation between the backdoor
trigger and the attacker-chosen class label. Accordingly, at test time, the input samples that embed the trigger are
misclassified as samples of the attacker-chosen class.

Although many different attacks can be staged against ML models, a recent survey shows that poisoning is the
largest concern for ML deployment in industry [68, 95]. Furthermore, several sources confirm that poisoning is already
carried out in practice [68, 119]. For example, Microsoft’s chatbot Tay1 was designed to learn language by interacting
with users, but instead learned offensive statements. Chatbots in other languages have shared its fate, including a
Chinese2 and a Korean3 version. Another attack showed how to poison the auto-complete feature in search engines.4

Finally, a group of extremists submitted wrongly-labeled images of portable ovens with wheels tagging them as Jewish
baby strollers to poison Google’s image search.5 Due to their practical relevance, various scientific articles have been
published on training-time attacks against ML models. While the vast majority of the poisoning literature focuses on
supervised classification models in the computer vision domain, we would like to remark here that data poisoning
has been investigated earlier in cybersecurity [126, 134], and more recently also in other application domains, like
audio [1, 91] and natural language processing [34, 206], and against different learning methods, such as federated
learning [4, 191], unsupervised learning [17, 41], and reinforcement learning [10, 205].

1https://www.theguardian.com/technology/2016/mar/26/microsoft-deeply-sorry-for-offensive-tweets-by-ai-chatbot
2https://www.khaleejtimes.com/technology/ai-getting-out-of-hand-chinese-chatbots-re-educated-after-rogue-rants
3https://www.vice.com/en/article/akd4g5/ai-chatbot-shut-down-after-learning-to-talk-like-a-racist-asshole
4http://www.nickdiakopoulos.com/2013/08/06/algorithmic-defamation-the-case-of-the-shameless-autocomplete/
5https://www.timebulletin.com/jewish-baby-stroller-image-algorithm/
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Wild Patterns Reloaded 3

Within this survey paper, we provide a comprehensive framework for threat modeling of poisoning attacks and
categorization of defenses. We identify the main practical scenarios that enable staging such attacks on ML models,
and use our framework to properly categorize attacks and defenses. We then review their historical development, also
highlighting the main current limitations and the corresponding future challenges. We do believe that our work can
serve as a guideline to better understand how and when these attacks can be staged, and how we can defend effectively
against them, while also giving a perspective on the future development of trustworthy ML models limiting the impact
of malicious users. With respect to existing surveys in the literature on ML security, which either consider a high-level
overview of the whole spectrum of attacks on ML [19, 26], or are specific to an application domain [159, 187], our work
focuses solely on poisoning attacks and defenses, providing a greater level of detail and a more specific taxonomy. Other
survey papers on poisoning attacks do only consider backdoor attacks [59, 88, 103], except for the work by Goldblum
et al. [64] and Tian et al. [164]. Our survey is complementary to recent work in [64, 164]; in particular, while in [64, 164]
the authors give an overview of poisoning attacks and countermeasures in centralized and federated learning settings,
our survey: (i) categorizes poisoning attacks and defenses in the centralized learning setting, based on a more systematic
threat modeling; (ii) introduces a unified optimization framework for poisoning attacks, matches the defenses with
the corresponding attacks they prevent, and (iii) discusses the historical timeline of poisoning attacks since the early
developments in cybersecurity applications of ML, dating back to more than 15 years ago.

We start our review in Sect. 2, with a detailed discussion on threat modeling for poisoning attacks, and on the
underlying assumptions needed to defend against them. This includes defining the learning settings where data
poisoning attacks (and defenses) are possible. We further highlight the different attack strategies that give us a scaffold
for a detailed overview of data poisoning attacks in Sect. 3. Subsequently, in Sect. 4, we give an overview of the main
defense mechanisms proposed to date against poisoning attacks, including training-time and test-time defense strategies.
While our survey is mostly focused on poisoning classification models for computer vision, which encompasses most
of the work related to poisoning attacks and defenses, in Sect. 5 we discuss related work that has been developed in
different contexts. In Sect. 6, we discuss poisoning research resources such as libraries and dataset containing poisoned
models. Finally, in Sect. 7 we review the historical development of poisoning attacks and defenses. This overview serves
as a basis for discussing ongoing challenges in the field, such as limitations of current threat models, the design of more
scalable attacks, and the arms race towards designing more comprehensive and effective defenses. For each of these
points, we discuss open questions and related future work.

To summarize, this work provides the following contributions: (i) we propose a unifying framework for threat
modeling of poisoning attacks and systematization of defenses; (ii) we categorize around 45 attack approaches in
computer vision according to their assumptions and strategies; (iii) we provide a unified formalization for optimizing
poisoning attacks via bilevel programming; (iv) we categorize more than 70 defense approaches in computer vision,
defining six distinct families of defenses; (v) we take advantage of our framework to match specific attacks with
appropriate defenses according to their strategies; (vi) we discuss state-of-the-art libraries and datasets as resources for
poisoning research; and (vii) we show the historical development of poisoning research and derive open questions,
pressing issues, and challenges within the field of poisoning research. Finally, we also derive a unified formalization for
optimizing poisoning attacks via bilevel programming, and investigate in the supplementary material in which other
domains poisoning attacks and defenses have been developed.

Manuscript submitted to ACM
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4 Cinà, Grosse, et al.

Table 1. Notation and symbols used in this survey.

Data Model Noise

D Clean samples in training set 𝜽 Model’s parameters 𝒕 Test data perturbation
D𝑝 Poisoning samples in training set 𝜙 Model’s feature extractor 𝜹 Training data perturbation
D ′ Poisoned training set (D ′ = D ∪D𝑝 ) 𝑓 Model’s classifier Δ Set of admissible manipulations for 𝜹

Training Attack Strategy

V Clean samples in validation dataset M Machine learning model BL Bilevel
V𝑡 Attacker target samples in validation dataset W Learning algorithm FC Feature Collision

𝐿 Loss function T𝑃 Patch Trigger
T Test samples L Training loss (regularized) T𝑆 Semantical Trigger
𝑝 Percentage of poisoned data T𝐹 Functional Trigger

2 MODELING POISONING ATTACKS AND DEFENSES

We discuss here how to categorize poisoning attacks against learning-based systems. We start by introducing the
notation and symbols used throughout this paper in Table 1. In the remainder of this section, we define the learning
settings under which poisoning attacks have been investigated. We then revisit the framework by Muñoz-González et al.
[124] to systematize poisoning attacks according to the attacker’s goal, knowledge of the target system, and capability
of manipulating the input data. We conclude by characterizing the defender’s goal, knowledge, and capability.

2.1 Learning Settings

We define here the three main scenarios under which ML models can be trained, and which can pose serious concerns in
relationship to data poisoning attacks. We refer to them below respectively as (i) training-from-scratch, (ii) fine-tuning,
and (iii) model-training. In Fig. 1, we conceptually represent these settings, along with the entry points of the attack
surface which enable staging a poisoning attack.

Training from Scratch (TS) and Fine Tuning (FT). In the training-from-scratch and fine-tuning scenarios, the user
controls the training process, but collects the training data from external repositories, potentially compromised by
attackers. In practice, these are the cases where data gathering and labeling represent time-consuming and expensive
tasks that not all organizations and individuals can afford, forcing them to collect data from untrusted external sources.
The distinction between the two scenarios hinges on how the collected data are employed during training. In the
training-from-scratch scenario, the collected data is used to train the model from a random initialization of its weights.
In the fine-tuning setting, instead, a pretrained model is typically downloaded from an untrusted source, and used to
map the input samples on a given representation space induced by a feature mapping function 𝜙 . Then, a classification
function 𝑓 is fine tuned on top of the given representation 𝜙 .

Model Training (MT). In themodel-training (outsourcing) scenario, the user is supposed to have limited computational
capacities and outsources the whole training procedure to an untrusted third party, while providing the training dataset.
The resulting model can then be provided either as an online service which the user can access via queries, or given
directly to the user. In this case, both the feature mapping 𝜙 and the classification function 𝑓 are trained by the attacker
(i.e., the untrusted party). The user, however, can validate the model’s accuracy on a separate validation dataset to
ensure that the model meets the desired performance requirements.
Manuscript submitted to ACM
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Wild Patterns Reloaded 5

Fig. 1. Training (left) and test (right) pipeline. The victim collects a training dataset D′ from an untrusted source. The training or
fine-tuning algorithm uses these data to train a model M, composed of a feature extractor 𝜙 , and a classification layer 𝑓 . In the
case of fine-tuning, only 𝑓 is modified, while the feature representation 𝜙 is left untouched. At test time, some test samples may be
manipulated by the attacker to exploit the poisoned model and induce misclassification errors.

2.2 Attack Framework

2.2.1 Attacker’s Goal. The goal of a poisoning attack can be defined in terms of the intended security violation, and
the attack and error specificity, as detailed below.

Security Violation. It defines the security violation caused by the attack, which can be: (i) an integrity violation, if
malicious activities evade detection without compromising normal system operation; (ii) an availability violation, if
normal system functionality is compromised, causing a denial of service for legitimate users; or (iii) a privacy violation,
if the attacker aims to obtain private information about the system itself, its users, or its data.

Attack Specificity. It determines which samples are subject to the attack. It can be: (i) sample-specific (targeted), if a
specific set of sample(s) is targeted by the attack, or (ii) sample-generic (indiscriminate), if any sample can be affected.

Error Specificity. It determines how the attack influences the model’s predictions. It can be: (i) error-specific, if the
attacker aims to have a sample misclassified as a specific class; or (ii) error-generic, if the attacker attempts to have a
sample misclassified as any class different from the true class.

2.2.2 Attacker’s Knowledge. The attacker may get to know some details about the target system, including information
about: (i) the (clean) training data D, (ii) the ML modelM being used, and (iii) the test data T . The first component
considers how much knowledge the attacker has on the training data. The second component refers to the ability of
the attacker to access the target model, including its internal (trained) parameters 𝜽 , but also additional information
like hyperparameters, initialization, and the training algorithm. The third component specifies if the attacker knows
in advance (or has access to) the samples that should be misclassified at test time. Although not explicitly mentioned
in previous work, we have found that the knowledge of test samples is crucial for some attacks to work as expected.
Clearly, attacks that are designed to work on specific test instances are not expected to generalize to different test
samples (e.g., to other samples belonging to the same class). Depending on the combination of the previously-defined
properties, we can define two main attack settings, as detailed below.

White-Box Attacks. The attacker has complete knowledge about the targeted system. Although not always repre-
sentative of practical cases, this setting allows us to perform a worst-case analysis, and it is particularly helpful for
evaluating defenses.

Black-Box Attacks. Black-box attacks can be subdivided into two main categories: black-box transfer attacks, and
black-box query attacks. Although generally referred to as a black-box attack, black-box transfer attacks assume that the

Manuscript submitted to ACM
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Patch Feature CollisionSemantical BilevelFunctional
Signal Blending Warping

clean sample trigger δ backdoor sample clean sample trigger δ backdoor sample

h( , )

Fig. 2. Visual examples of data perturbation noise (𝜹 ) categories. The first five figures show some examples of patch, functional,
and semantical triggers. For functional triggers we consider signal [8], blending [33], and warping [129] transformations. The
remaining two depict poisoning samples crafted with a bilevel attack with visible noise, and a clean-label feature collision attack with
imperceptible noise. The second row shows the backdoor image generation process with patch and functional blending triggers. For
the latter, a ℎ manipulation function blends the original image and the backdoor trigger according to a certain ratio.

attacker has partial knowledge of the training data and/or the target model. In particular, the attacker is assumed to be
able to collect a surrogate dataset and use it to train a surrogate model approximating the target. Then, white-box attacks
can be computed against the surrogate model, and subsequently transferred against the target model. Under some mild
conditions, such attacks have been shown to transfer successfully to the target model with high probability [45]. It is
also worth remarking that black-box query attacks can also be staged against a target model, by only sending input
queries to the model and observing its predictions to iteratively refine the attack, without exploiting any additional
knowledge [31, 132, 167]. However, to date, most of the poisoning attacks staged against learning algorithms in black-box
settings exploit surrogate models and attack transferability.

2.2.3 Attacker’s Capability. The attacker’s capability is defined in terms of how the attacker can influence the learning
setting, and on the data perturbation that can be applied to training and/or test samples.

Influence on Learning Setting. The three learning settings described in Sect. 2.1 open the door towards different
data poisoning attacks. In both training-from-scratch (TS) and fine-tuning (FT) scenarios, the attacker alters a subset of
the training dataset collected and used by the victim to train or fine-tune the machine learning model. Conversely, in
the model-training (MT) scenario, as firstly hypothesized by Gu et al. [70], the attacker acts as a malicious third-party
trainer, or as a man-in-the-middle, controlling the training process. The attacker tampers with the training procedure
and returns to the victim user a model that behaves according to their goal. The advantage for the attacker is the victim
will never be aware of the training dataset actually used. However, to keep their attack stealthy, the attacker must
ensure that the provided model retains high prediction accuracy, making sure to pass the validation phase without
suspicion from the victim user. The attacker’s knowledge, discussed in Sect. 2.2.2, is defined depending on the setting
under consideration. In the model-training and training-from-scratch settings, D ′ and M refer to the training data and
algorithm used for training the model from random initialization of its weights. Conversely, in the fine-tuning setting,
D ′ andM refer to the fine-tuning dataset and learning algorithm, respectively.

Data Perturbation. Staging a poisoning attack requires the attacker to manipulate a given fraction (𝑝) of the training
data. In some cases, i.e., in backdoor attacks, the attacker is also required to manipulate the test samples that are
Manuscript submitted to ACM
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under their control, by adding an appropriate trigger to activate the previously-implanted backdoor at test time. More
specifically, poisoning attacks can alter a fraction of the training labels and/or apply a (different) perturbation to each
of the training (poisoning) samples. If the attack only modifies the training labels, but it does not perturb any training
sample, it is often referred to as a label-flip poisoning attack. Conversely, if the training labels are not modified (e.g., if
they are validated or assigned by human experts or automated labeling procedures), the attacker can stage a so-called
clean-label poisoning attack. Such attacks only slightly modify the poisoning samples, using imperceptible perturbations
that preserve the original semantics of the input samples along with their class labels [148]. We define the strategies
used to manipulate training and test data in poisoning attacks in the next section.

2.2.4 Attack Strategy. The attack strategy defines how the attacker manipulates data to stage the desired poisoning
attack. Both indiscriminate and targeted poisoning attacks only alter the training data, while backdoor attacks also
require embedding the trigger within the test samples to be misclassified. We revise the corresponding data manipulation
strategies in the following.

Training Data Perturbation (𝜹). Two main categories of perturbation have been used to mount poisoning attacks. The
former includes perturbations which are found by solving an optimization problem, either formalized as a bilevel (BL)
programming problem, or as a feature-collision (FC) problem. The latter involves the manipulation of training samples
in targeted and backdoor poisoning attacks such that they collide with the target samples in the given representation
space, to induce misclassification of such target samples in an attacker-chosen class. When it comes to backdoor attacks,
three main types of triggers exist, which can be applied to training samples to implant the backdoor during learning:
patch triggers (T𝑃 ), which consist of replacing a small subset of contiguous input features with a patch pattern in
the input sample; functional triggers (T𝐹 ), which are embedded into the input sample via a blending function; and
semantical triggers (T𝑆 ), which perturb the given input while preserving its semantics (e.g., modifying face images
by adding sunglasses, or altering the face expression, but preserving the user identity). The choice of this strategy
plays a fundamental role since it influences the computational effort, effectiveness, and stealthiness of the attack.
More concretely, the trigger strategies are less computationally demanding, as they do not require optimizing the
perturbation, but the attack may be less effective and easier to detect. Conversely, an optimized approach can enhance
the effectiveness and stealthiness of the attack, at the cost of being more computationally demanding. In Fig. 2 we give
some examples of patch, functional, and semantical triggers, one example of a poisoning attack optimized with bilevel
programming, and one example of a clean-label feature-collision attack.

Test Data Perturbation (𝒕). During operation, i.e., at test time, the attacker can submit malicious samples to exploit
potential vulnerabilities that were previously implanted during model training, via a backdoor attack. In particular, as
we will see in Sect. 3.3, backdoor attacks are activated when a specific trigger 𝒕 is present in the test samples. Normally,
the test-time trigger is required to exactly match the trigger implanted during training, thus including patch, functional,
and semantical triggers.

2.3 Defense Framework

In this section, we introduce the main strategies that can be used to counter poisoning attacks, based on different
assumptions made on the defender’s goal, knowledge and capability.

2.3.1 Defender’s Goal. The defender’s goal is to preserve the integrity, availability, and privacy of their ML model, i.e.,
to mitigate any kind of security violation that might be caused by an attack. The defender thus adopts appropriate

Manuscript submitted to ACM
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countermeasures to alleviate the effect of possible attacks, without significantly affecting the behavior of the model for
legitimate users.

2.3.2 Defender’s Knowledge and Capability. The defender’s knowledge and capability determine in which learning
setting a defense can be applied. We identify four aspects that influence how the defender can operate to protect the
model: (i) having access to the (poisoned) training data D ′, and to (ii) a separate, clean validation setV , and (iii) having
control on the training procedure W, and on (iv) the model’s parameters 𝜽 . We will see in more detail how these
assumptions are matched to each defense in Sect. 4.

2.3.3 Defense Strategy. The defense strategy defines how the defender operates to protect the system from malicious
attacks before deployment (i.e., at training time), and after the model’s deployment (i.e., at test time). We identify six
distinct categories of defenses:

(1) training data sanitization, which aims to remove potentially-harmful training points before training the model;
(2) robust training, which alters the training procedure to limit the influence of malicious points;
(3) model inspection, which returns for a given model whether it has been compromised (e.g., by a backdoor attack);
(4) model sanitization, which cleans the model to remove potential backdoors or targeted poisoning attempts;
(5) trigger reconstruction, which recovers the trigger embedded in a backdoored network; and
(6) test data sanitization, which filters potentially-triggered samples presented at test time.

These defenses essentially work by either (i) cleaning the data or (ii) modifying the model. In the former case, the
defender aims to sanitize training or test data. Training data sanitization and test data sanitization as thus two strategies
adopted respectively at training and at test time to mitigate the influence of data poisoning attacks. Alternatively,
the defender can act directly on the model, by (i) identifying possible internal vulnerabilities and removing/fixing
components that lead to anomalous behavior/classifications, or by (ii) changing the training procedure to make the
model less susceptible to training data manipulations. The first approach is employed in model inspection, trigger
reconstruction and model sanitization defensive mechanisms. The second approach, instead, includes algorithms that
operate at the training level to implement robust training mechanisms.

2.4 Poisoning Attacks and Defenses

We provide in Fig. 3 a preliminary, high-level categorization of attacks and defenses according to our framework (while
leaving a more complete categorization of each work to Tables 2-3, respectively for attacks and defenses). This simplified
taxonomy categorizes attacks and defenses based on whether they are applied at training time (and in which learning
setting) or at test time; whether the attack aims to violate integrity or availability;6 and whether the defense aims to
sanitize data or modify the learning algorithm/model. As one may note, indiscriminate and targeted poisoning only
manipulate data at training time to violate availability and integrity, respectively, and they are typically staged in the
training-from-scratch (TS) or fine-tuning (FT) learning settings. Backdoor attacks, in addition, require manipulating the
test data to embed the trigger and cause the desired misclassifications, with the goal of violating integrity. Such attacks
can be ideally staged in any of the considered learning settings. For defenses, data sanitization strategies can be applied
either at training time or at test time, while defenses that modify the learning algorithm or aim to sanitize the model
can be applied clearly only at training time (i.e., before model deployment). To conclude, while being simplified, we do
believe that this conceptual overview of attacks and defenses provides a comprehensive understanding of the main

6To our knowledge, no poisoning attack violating a model’s privacy has been considered so far, so we omit the privacy dimension from this representation.
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Fig. 3. Conceptual overview of poisoning attacks and defenses according to our framework. Attacks are categorized based on whether
they compromise system integrity or availability. Defenses are categorized based on whether they sanitize data or modify the learning
algorithm/model. Training-time (test-time) defenses are applied before (after) model deployment. Training-time interventions are also
divided according to whether model-training (MT) is outsourced, or training-from-scratch (TS) / fine-tuning (FT) is performed.

(a) Indiscriminate attack.

clean target stop sign
classified as speedlimit

(b) Targeted attack.

backdoored stop 
signs classified as 
speedlimit

(c) Backdoor attack.

Fig. 4. Conceptual representation of the impact of indiscriminate, targeted, and backdoor poisoning on the learned decision function.
We depict the feature representations of the speed limit sign (red dots) and stop signs (blue dots). The poisoning samples (solid black
border) change the original decision boundary (dashed gray) to a poisoned variant (dashed black).

assumptions behind each poisoning attack and defense strategy. Accordingly, we are now ready to delve into a more
detailed description of attacks and defenses in Sects. 3 and 4.

3 ATTACKS

We now take advantage of the previous framework to give an overview of the existing attacks according to the
corresponding violation and strategy. A compact summary of all attacks from the vision domain is given in Table 2.

3.1 Indiscriminate (Availability) Poisoning Attacks

Indiscriminate poisoning attacks represent the first class of poisoning attacks against ML algorithms. The attacker aims
to subvert the system functionalities, compromising its availability for legitimate users by poisoning the training data.
More concretely, the attacker’s goal is to cause misclassification on clean validation samples by injecting new malicious
samples or perturbing existing ones in the training dataset. In Fig. 4a we consider the case where an attacker poisons a
linear street-sign classifier to have stop signs misclassified as speed limits. The adversary injects poisoning samples
to rotate the classifier’s decision boundary, thus compromising the victim’s model performance. In the following, we
present the strategies developed in existing works, and we categorize them in Table 2. Although they could also operate
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Table 2. Taxonomy of existing poisoning attacks, according to the attack framework defined in Sect. 2. The presence of the ✓ indicates
that the corresponding properties is satisfied by the attack. For the attacker’s knowledge we use: # when the attacker has knowledge
of the corresponding component; G# if the attacker uses a surrogate to mount the attack;  if the attacker does not require that
knowledge. In the attacker’s capabilities we use MT, TS and FT as acronyms for model-training, training-from-scratch, and fine-tuning
learning settings. , , represent the amount of poisoning: small (≤ 10%), medium (≤ 30%), or high percentage of the training
set. The columns 𝜹 and 𝒕 define the training and test strategies: optimized bilevel – BL, feature collision – FC and trigger – T.

Se
ct
io
n

Attacks Goal Knowledge Capability Strategy Model
Sample
Specific

Error
SpecificD M T Setting CleanLabel p 𝜹 𝒕 DNN

In
di
sc
rim

in
at
e
3.
1.
1 Biggio et al. [15], Xiao et al. [190], # # TS LF -Xiao et al. [189], Paudice et al. [133] # # TS

3.
1.
2

Biggio et al. [16], Xiao et al. [188] # # TS

BL -
Frederickson et al. [58]
BetaPoison [42], Ma et al. [116] ✓ # G# TS
Demontis et al. [45], Solans et al. [153] G# G# TS
Muñoz-González et al. [124], Yang et al. [194] G# G# TS ✓

3.
1.
3 Mei and Zhu [121] ✓ # # TS ✓

BL -Feng et al. [53] ✓ G# G# TS ✓ ✓
Fowl et al. [55] ✓ G# G# TS ✓ ✓

Ta
rg
et
ed
3.
2.
1 Koh and Liang [92] ✓ ✓ # # ✓ FT

BL -Muñoz-González et al. [124] ✓ ✓ G# G# TS ✓
Jagielski et al. [84] ✓ G# G# TS/FT ✓

3.
2.
2 PoisonFrog [148] ✓ ✓ # # ✓ FT ✓

FC -
✓

Guo and Liu [72], StingRay[158]
✓ ✓ G# G# ✓ FT ✓ ✓ConvexPolytope [212], BullseyePolytope [2]

3.
2.
3

Geiping et al. [62], MetaPoison [80] ✓ ✓ G# G# ✓ TS ✓ BL - ✓

Ba
ck
do

or
3.
3.
1 BadNet [70], LatentBackdoor [196] ✓ ✓ # # MT

T𝑃 T𝑃
✓

BaN [143] ✓ ✓ # # MT ✓
TrojanNN [110] ✓ ✓  # MT ✓

3.
3.
1

WaNET [129], Li et al. [99], DFST [36] ✓ ✓ # # MT

T𝐹 T𝐹
✓

Refool [111] ✓ ✓ # # TS ✓ ✓
SIG [8] ✓ ✓   TS ✓ ✓
Chen et al. [33], Zhong et al. [211] ✓ ✓   TS/FT ✓

3.
3.
1 FaceHack [145] ✓ ✓ # # MT

T𝑆 T𝑆
✓

Chen et al. [33] ✓ ✓   TS/FT ✓
Wenger et al. [179] ✓ ✓ #  FT ✓

3.
3.
2

Nguyen and Tran [128], LIRA [48] ✓ ✓ # # MT

BL T𝐹
✓

Li et al. [99] ✓ ✓  # MT ✓
Li et al. [101] ✓ ✓ # G# TS ✓
Zhong et al. [211] ✓ ✓ G# G# TS/FT ✓

3.
3.
3 HiddenTrigger [142] ✓ ✓ # # FT ✓ FC T𝑃 ✓

Turner et al. [169] ✓ ✓ G# G# TS ✓ ✓

3.
3.
4

Souri et al. [156] ✓ ✓ G# G# TS ✓ BL T𝑃 ✓
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on the fine-tuning (FT) scenario, existing works have been proposed only in the training-from-scratch (TS) setting.
By contrast, their application in the model-training (MT) scenario would not be feasible, as the model, with reduced
accuracy due to the attack, would not pass the user validation phase. Indiscriminate attacks, to be adaptable in the
latter scenario, must compromise the availability of the system but not in terms of increasing the classification error.
This has been recently done by Cinà et al. [38], who proposed a so-called sponge poisoning attack aimed to increase the
model’s prediction latency.
3.1.1 Label-Flip Poisoning. The most straightforward strategy to stage poisoning attacks against ML is label-flip,
originally proposed by Biggio et al. [15]. The adversary does not perturb the feature values, but they mislabel a subset
of samples in the training dataset, compromising the performance accuracy of ML models such as Support Vector
Machines (SVMs). Beyond that, Xiao et al. [190] showed that random flips could have far-from-optimal performance,
which nevertheless would require solving an NP-hard optimization problem. Due to its intractability, heuristic strategies
have been proposed by Xiao et al. [190], and later by Xiao et al. [189], to efficiently approximate the optimal formulation.
3.1.2 Bilevel Poisoning. In this case, the attacker manipulates both the training samples and their labels. The pioneering
work in this direction was proposed by Biggio et al. [16], where a gradient-based indiscriminate poisoning attack is
exploited against SVMs. They exploited implicit differentiation to derive the gradient required to optimize the poisoning
samples by their iterative algorithm. Until convergence, the poisoning samples are iteratively updated following the
implicit gradient, directing towards maximization of the model’s validation error. Mathematically speaking, this idea
corresponds to treating the poisoning task as a bilevel optimization problem:

max
𝜹 ∈Δ

𝐿(V,M, 𝜽★) , (1)

s.t. 𝜽★ ∈ arg min
𝜽

L(D ∪ D𝜹
𝑝 ,M, 𝜽 ) . (2)

with Δ being the set of admissible manipulation of the training samples that preserve the constraints imposed by the
attackers (e.g., ℓ𝑝 , or box-constraints)7. We define with D𝑝 = {(𝒙𝑖 , 𝑦𝑖 )}𝑛𝑖=1 the training data controlled by the attacker,
before any perturbation is applied, being 𝑦𝑖 the pristine label of sample 𝒙𝑖 and 𝑛 the number of samples in D𝑝 . We
then denote with D𝜹

𝑝 the corresponding poisoning dataset manipulated according to the perturbation parameter 𝜹 .
The attacker optimizes the perturbation 𝜹 (applied to the poisoning samples D𝑝 ) to increase the error/loss 𝐿 of the
target model M on the clean validation samples V . Our formulation in Eqs. (1)-(2) encompass both dirty or clean-label
attacks according to the nature of D𝜹

𝑝 . For example, we can define D𝜹
𝑝 = {(𝒙𝑖 + 𝜹𝑖 , 𝑦′𝑖 )}

𝑛
𝑖=1

8, being 𝑦′
𝑖
the poisoning

label chosen by the attacker, with 𝑦′
𝑖
= 𝑦𝑖 for a clean-label attack and 𝑦′

𝑖
≠ 𝑦𝑖 for a dirty-label attack. Solving this

bilevel optimization is challenging, since the inner and the outer problems in Eqs. (1)-(2) have conflicting objectives.
More concretely, the inner objective is a regularized empirical risk minimization, while the outer one is empirical
risk maximization, both considering data from the same distribution. A similar approach was later generalized in
Xiao et al. [188] and Frederickson et al. [58] to target feature selection algorithms (i.e., LASSO, ridge regression, and
elastic net). Subsequent work tried to analyze the robustness of ML models when the attacker has limited knowledge
about the training dataset or the victim’s classifier. In this scenario, the most investigated methodology is given by the
transferability of the attack [45, 116, 153]. The attacker crafts the poisoning samples using surrogate datasets and/or
models, and then transfers the attack to another target model. This approach has proven effective for corrupting logistic

7For example, the attacker can constraint the perturbation magnitude of 𝜹 imposing ∥𝜹 ∥𝑝 ≤ 𝜖 with Δ = {𝜹 ∈ R𝑛×𝑑 | ∥𝜹 ∥𝑝 ≤ 𝜖 }.
8In this example we used 𝜹 as additive noise. To be more generic we can define a manipulation function ℎ parametrized by 𝜹 and the sample 𝒙 to perturb.
See example in Fig. 2 for functional blending trigger.
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classifiers [45], algorithmic fairness [153], and differentially-private learners [116]. More details about the transferability
of poisoning attacks are reported in Sect. 3.5.

Differently from previous work, Cinà et al. [42] observed that a simple heuristic strategy, together with a variable
reduction technique, can reach noticeable results against linear classifiers, with increased computational efficiency.
More concretely, the authors showed how previous gradient-based approaches can be affected by several factors (e.g.,
loss landscape) that degrade their performance in terms of computation time and attack efficiency.

Although effective, the aforementioned poisoning attacks have been designed to fool models with a relatively small
number of parameters. More recently, Muñoz-González et al. [124] showed that devising poisoning attacks against
larger models, such as convolutional neural networks, can be computationally and memory demanding. To this end,
Muñoz-González et al. [124] pioneered the idea to adapt hyperparameter optimization methods, which aims to solve
bilevel programming problems more efficiently, in the context of poisoning attacks. The authors indeed proposed
a back-gradient descent technique to optimize poisoning samples, drastically reducing the attack complexity. The
underlying idea is to back-propagate the gradient of the objective function to the poisoning samples while learning the
poisoned model. However, they assume the objective function is sufficiently smooth to trace the gradient backward
correctly. Accordingly with the results in [124], Yang et al. [194] showed that computing the analytical or estimated
gradient of the validation loss in Eq. (1) with respect to the poisoning samples can be as well computational and query
expensive. Another way explored in Yang et al. [194] was to train a generative model from which the poisoning samples
are generated, thus increasing the generation rate.
3.1.3 Bilevel Poisoning (Clean-Label). Previous work examined in Sect. 3.1.2 assumes that the attacker has access
to a small percentage of the training data and can alter both features and labels. Similar attacks have been staged by
assuming that the attacker can control a much larger fraction of the training set, while only slightly manipulating
each poisoning sample to preserve its class label, i.e., performing a clean-label attack. This idea was introduced by Mei
and Zhu [121], who considered manipulating the whole training set to arbitrarily define the importance of individual
features on the predictions of convex learners. More recently, DeepConfuse [53] and Fowl et al. [55] proposed novel
techniques to mount clean-label poisoning attacks against DNNs. In [53], the attacker trains a generative model,
similarly to [194], to craft clean-label poisoning samples which can compromise the victim’s model. Inspired by recent
developments proposed in [62], Fowl et al. [55] used a gradient alignment optimization technique to alter the training
data imperceptibly, but diminishing the model’s performance. Even though Feng et al. [53] and Fowl et al. [55] can
target DNNs, the attacker is assumed to perturb a high fraction of samples in the training set. We do believe that this is
a very demanding setting for poisoning attacks. In fact, such attacks are often possible because ML is trained on data
collected in the wild (e.g., labeled through tools such as a mechanical Turk) or crowdsourced from multiple users; thus,
it would be challenging for attackers in many applications to realistically control a substantial fraction of these training
data. In conclusion, the quest for scalable, effective, and practical indiscriminate poisoning attacks on DNNs is still open.
Accordingly, it remains also unclear whether DNNs can be significantly subverted by such attacks in practical settings.

3.2 Targeted (Integrity) Poisoning Attacks

In contrast to indiscriminate poisoning, targeted poisoning attacks preserve the availability, functionality and behavior of
the system for legitimate users, while causingmisclassification of some specific target samples. Similarly to indiscriminate
poisoning, targeted poisoning attacks manipulate the training data but they do not require modifying the test data.

An example of a targeted attack is given in Fig. 4b, where the classifier’s decision function for clean samples is not
significantly changed after poisoning, preserving the model’s accuracy. However, the model isolated the target stop
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sign (grey) to be misclassified as a speed-limit sign. The system can still correctly classify the majority of clean samples,
but outputs wrong predictions for the target stop sign.

In the following sections, we describe the targeted poisoning attacks categorized in Table 2. Notably, such attacks
have been investigated both in the training-from-scratch (TS) and fine-tuning (FT) settings, defined in Sect. 2.1.
3.2.1 Bilevel Poisoning. In Sect. 3.1.2, we reviewed thework inMuñoz-González et al. [124]. In addition to indiscriminate
poisoning, the authors also formulated targeted poisoning attacks as:

min
𝜹 ∈Δ

𝐿(V,M, 𝜽★) + 𝐿(V𝑡 ,M, 𝜽★) , (3)

s.t. 𝜽★ ∈ arg min
𝜽

L(D ∪ D𝜹
𝑝 ,M, 𝜽 ) . (4)

Within this formulation, the attacker optimizes the perturbation 𝜹 on the poisoning samples D𝑝 to have a set of target
(validation) samples V𝑡 misclassified, while preserving the accuracy on the clean (validation) samples in V . It is worth
remarking here that the attack is optimized on a set of validation samples, and then evaluated on a separate set of test
samples. The underlying rationale is that the attacker can not typically control the specific realization of the target
instances at test time (e.g., if images are acquired from a camera sensor, the environmental and acquisition conditions
can not be controlled), and the attack is thus expected to generalize correctly to that case.

A similar attack was introduced by Koh and Liang [92], to show the equivalence between gradient-based (bilevel)
poisoning attacks and influence functions, i.e., functions defined in the area of robust statistics that identify the most
relevant training points influencing specific predictions. Notably, these authors were the first to consider the fine-tuning
(FT) scenario in their experiments, training the classification function 𝑓 (i.e., an SVM with the RBF kernel) on top of a
feature representation 𝜙 extracted from an internal layer of a DNN. Although these two bilevel optimization strategies
have been proven effective, they remain too computationally demanding to be applied to DNNs.

Jagielski et al. [84] showed how to generalize targeted poisoning attacks to an entire subpopulation in the data
distribution, while reducing the computational cost. To create subpopulations, the attacker selects data samples by
matching their features or clustering them in feature space. The poisoning attack can be performed either by label
flipping, or linearizing the influence function to approximate the poisoning gradients, thus reducing the computational
cost of the attack. Muñoz-González et al. [124] and Jagielski et al. [84] define a more ambitious goal for the attack
compared to Koh and Liang [92], as their attacks aim to generalize to all samples coming from the target distribution or
the given subpopulation. Specifically, the attack by Koh and Liang [92] is tailored for misleading the model only for
some specific test samples, which means considering the test set T rather than a validation set V𝑡 in Eq. (3). However,
the cost of the attack by Muñoz-González et al. [124] is quite high, due to need of solving a bilevel problem, while the
attack by Jagielski et al. [84] is faster, but it does not achieve the same success rate on all subpopulations.
3.2.2 Feature Collision (Clean-Label). This category of attacks is based on a heuristic strategy named feature collision,
suited to the so-called fine-tuning (FT) scenario, which avoids the need of solving a complex bilevel problem to optimize
poisoning attacks. In particular, PoisonFrog [148] was the first work proposing this idea, which can be formalized as:

min
𝜹 ∈Δ

∥𝜙 (𝒙 + 𝜹) − 𝜙 (𝒛)∥22 . (5)

This attack amounts to creating a poisoning sample 𝒙 + 𝜹 that collides with the target test sample 𝒛 ∈ T in the
feature space, so that the fine-tuned model predicts 𝒛 according to the poisoning label associated with 𝒙 . To this end,
the adversary leverages the feature extractor 𝜙 to minimize the distance of the poisoning sample with the target
in the feature space. Moreover, the authors observed that, due to the complexity and nonlinear behavior of 𝜙 , even
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poisoning samples coming from different distributions can be slightly perturbed in the input space to match the feature
representation of the target sample 𝒛. To make the poisoning sample look realistic in input space and implement a
clean-label attack, the adversarial perturbation 𝜹 ∈ Δ is bounded by the attacker in its ℓ𝑝 norm [148] (e.g., ∥𝜹 ∥2 ≤ 𝜖).
Such box constraint can also be implemented as a soft constraint, as originally done by Shafahi et al. [148].9 Similarly,
Guo and Liu [72] adopted feature collision to stage the attack, but they extended the attack’s objective function to
further increase the poisoning effectiveness. Nevertheless, although this strategy turns out to be effective, it assumes
that the feature extractor is fixed and that it is not updated during the fine-tuning process. Moreover, StringRay [158],
ConvexPolytope [212], and BullseyePolytope [2] observed that when reducing the attacker’s knowledge the poisoning
effectiveness decreases. These works showed that feature collision is not practical if the attacker does not know exactly
the details of the feature extractor, as the embedding of poisoning samples may not be consistent across different
feature extractors. To mitigate these difficulties, ConvexPolytope [212] and BullseyePolytope [2] optimize the poisoning
samples against ensemble models, constructing a convex polytope around the target samples to enhance the effectiveness
of the attack. The underlying idea is that constructing poisoning samples against ensemble models may improve the
attack transferability. The authors further optimize the poisoning samples by establishing a strong connection among all
the layers and the embeddings of the poisoning samples, partially overcoming the assumption that the feature extractor
𝜙 remains fixed.

All these approaches have the property of creating clean-label samples, as first proposed in Shafahi et al. [148], to
stay undetected even when the class labels of training points are validated by humans. This is possible as these attacks
are staged against deep models, since for these models, small (adversarial) perturbations of samples in the input space
correspond to large changes in their feature representations.
3.2.3 Bilevel Poisoning (Clean-Label). Although feature collision attacks are effective, they may not result in the
optimal accuracy, and they do not minimize the number of poisoned points to change the model’s prediction on a
single test point. Moreover, they assume that the training process is not significantly changing the feature embedding.
Indeed, when the whole model is trained from scratch, these strategies may not work properly as poisoning samples
can be embedded differently. Recent developments, including MetaPoison [80] and the work by Geiping et al. [62],
tackle the targeted poisoning attack in the training-from-scratch (TS) scenario, while ensuring the clean-label property.
These approaches are derived from the bilevel formulation in Eqs. (3)-(4), but they exploit distinct and more scalable
approaches to target DNNs, and optimize the attack directly against the test samples T as done in [92]. More concretely,
MetaPoison [80] uses a meta-learning algorithm, as done by Muñoz-González et al. [124], to decrease the computational
complexity of the attack. They further enhance the transferability of their attack by optimizing the poisoning samples
against an ensemble of neural networks, trained with different hyperparameter configurations and algorithms (e.g.,
weight initialization, number of epochs). Geiping et al. [62] craft poisoning samples to maximize the alignment between
the inner loss and the outer loss in Eqs. (3)-(4). The authors observed that matching the gradient direction of malicious
examples is an effective strategy for attacking DNNs trained from scratch, even on large training datasets. Although
modern feature collision or optimized strategies are emerging with notable results for targeted attacks, their performance,
especially in black-box settings, still demands further investigation.

9The original formulation of feature collision in [148] adopts the ℓ𝑝 constraint as soft constraint up-weighted by a Lagrangian penalty term 𝛽 , which is
basically equivalent to our hard-constraint formulation for appropriate choices of 𝛽 and 𝜖 .
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3.3 Backdoor (Integrity) Poisoning Attacks
Backdoor poisoning attacks aim to cause an integrity violation. In particular, for any test sample containing a specific
pattern, i.e., the so-called backdoor trigger, they aim to induce a misclassification, without affecting the classification of
clean test samples. The backdoor trigger is clearly known only to the attacker, making it challenging for the defender to
evaluate whether a given model provided to them has been backdoored during training or not. In Fig. 4c we consider
the case where the attacker provides a backdoored street-sign detector that has good accuracy for classifying street
signs in most circumstances. However, the classifier has successfully learned the backdoor data distribution, and will
output speed-limit predictions for any stop-sign containing the backdoor trigger. In the following sections, we describe
backdoor attacks following the categorization given in Table 2. Notably, such attacks have been initially staged in the
model-training (MT) setting, assuming that the user outsources the training process to an untrusted third-party service,
but they have been then extended also to the training-from-scratch (TS) and fine-tuning (FT) scenarios.

3.3.1 Trigger Poisoning. Earlier work in backdoor attacks considered three main families of backdoor triggers, i.e.,
patch, functional, and semantical triggers, as discussed below.

Patch. The first threat vector of attack for backdoor poisoning has been investigated in BadNets [70]. The authors
considered the case where the user outsources the training process of a DNN to a third-party service, which maliciously
alters the training dataset to implant a backdoor in the model. To this end, the attacker picks a random subset of
the training data, blends the backdoor trigger into them, and changes their corresponding labels according to an
attacker-chosen class. A similar idea has been investigated further in LatentBackdoor [196] and TrojanNN [110], where
the backdoor trigger is designed to maximize the response of selected internal neurons, thus reducing the training
data needed to plant the trigger. Additionally, LatentBackdoor [196] designed the trigger to survive even if the last
layers are fine-tuned with novel clean data, while TrojanNN [110] does not need access to the training data as a
reverse-engineering procedure is applied to create a surrogate dataset. All these attacks assume that the trigger is always
placed in the same position, limiting their application against specific defense strategies [5, 28, 155]. To overcome this
issue, BaN [143] introduced different backdoor attacks where the trigger can be attached in various locations of the
input image. The underlying idea was to force the model to learn the backdoor trigger and make it location invariant.

Functional. The patch strategy is based on the idea that poisoning samples repeatedly present a fixed pattern as a
trigger, which may however be detected upon human validation of training samples (in the TS and FT scenarios, at least).
In contrast, a functional trigger represents a stealthier strategy as the corresponding trigger perturbation is slightly
spaced throughout the image or changes according to the input. Some works assume to slightly perturb the entire image
so that those small variations are not detectable by humans, but evident enough to mislead the model. In WaNET [129]
warping functions are used to generate invisible backdoor triggers (see Fig. 2). Moreover, the authors enforced the model
to distinguish the backdoor warping functions among other pristine ones. In Li et al. [99] steganography algorithms are
used to hide the trigger into the training data. Specifically, the attacker replaces the least significant bits to contain
the binary string representing the trigger. In DFST [36] style transfer generative models are exploited to generate and
blend the trigger. However, the aforementioned poisoning approaches assume that the attacker can change the labeling
process and that no human inspection is done on the training data. This assumption is then relaxed by Barni et al. [8]
and Liu et al. [111], where clean-label backdoor poisoning attacks are considered; in particular, Liu et al. [111] used
natural reflection effects as trigger to backdoor the system, while Barni et al. [8] used an invisible sinusoidal signal
as backdoor trigger (see Fig. 2). More practical scenarios, where the attacker is assumed to have limited knowledge,
have been investigated by Chen et al. [33] and Zhong et al. [211]. In these two works, the authors used the idea of
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blending fixed patterns to backdoor the model. In the former approach, Chen et al. [33] assume that the attacker blends
image patterns into the training data and tunes the blend ratio to create almost invisible triggers, while impacting the
backdoor’s effectiveness. In the latter, Zhong et al. [211] assume that an invisible grid pattern is generated to increase
the pixel’s intensity, and its effectiveness is tested in the TS and FT settings.

Semantical. The semantical strategy incorporates the idea that backdoor triggers should be feasible and stealthy. For
example, Sarkar et al. [145] used facial expressions or image filters (e.g., old-age, smile) as backdoor triggers against
real-world facial recognition systems. At training time, the backdoor trigger is injected into the training data to cause
the model to associate a smile filter with the authorization of a user. At test time, the attacker can use the same filter to
mislead classification. Similarly, Chen et al. [33] and Wenger et al. [179] tried to poison face-recognition systems by
blending physically-implementable objects (e.g., sunglasses, earrings) as triggers.
3.3.2 Bilevel Poisoning. Trigger-based strategies assume that the attacker uses a predefined perturbation to mount
the attack. However, an alternative strategy for the attacker is to learn the trigger/perturbation itself to enhance the
backdoor effectiveness. To this end, even backdoor poisoning can be formalized as a bilevel optimization problem:

min
𝜹 ∈Δ

𝐿(V,M, 𝜽★) + 𝐿(V𝒕
𝑡 ,M, 𝜽★) , (6)

s.t. 𝜽★ ∈ arg min
𝜽

L(D ∪ D𝜹
𝑝 ,M, 𝜽 ) . (7)

Here, the attacker optimizes the training perturbation 𝜹 for poisoning samples inD𝑝 to mislead the model’s prediction
for validation samples V𝑡 containing the backdoor trigger 𝒕 . In contrast to indiscriminate and targeted attacks (in
Sect. 3.1 and Sect. 3.2), the attacker injects the backdoor trigger in the validation samples 𝒕 to cause misclassifications.
Additionally, as for targeted poisoning, the error onV is minimized to preserve the system’s functionality.

One way to address this bilevel formulation is to craft optimal poisoning samples using generative models [48,
101, 128], as also done in [194] for indiscriminate poisoning. Nguyen and Tran [128] trained the generative model
with a loss that enforces the diversity and noninterchangeable of the trigger, while LIRA [48]’s generator is trained
to enforce effectiveness and invisibility of the triggers. Conversely, Li et al. [101] used a generative neural network
steganography technique to embed a backdoor string into poisoning samples. Another way is to perturb training
samples with adversarial noise, as done by Li et al. [99] and Zhong et al. [211]. More concretely, in the former approach,
the trigger maximizes the response of specific internal neurons, and a regularization term is introduced in the objective
function to make the backdoor trigger invisible. In the latter work, the attacker looks for the minimum universal
perturbation that pushes any input towards the decision boundary of a target class. The attacker can use this invisible
perturbation trigger on any image, inducing the model to misclassify the target class.
3.3.3 Feature Collision (Clean-Label). The backdoor trigger visibility influences the stealthiness of the attack. A
backdoor trigger that is too obvious can be easily spotted when the dataset is inspected [142]. However, Hidden
Trigger [142] introduced the idea of using the feature collision strategy, seen in Sect. 3.2.2 and formulated in Eq. (5),
to hide the trigger into natural target samples. Specifically, the attacker first injects a random patch trigger into the
training set, and then each poisoning sample is masked via feature collision. The resulting poisoning images are visually
indistinguishable from the target, and have a consistent label (i.e., they are clean-label), while the test samples with the
patch trigger will collide with the poisoning samples in feature space, ensuring that the attack works as expected.

Although the work in [142] implements an effective and stealthy clean-label attack, it is applicable only in the feature
extractor 𝜙 is not updated. Such a limitation is mitigated by Turner et al. [169] who exploit a surrogate latent space,
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rather than 𝜙 , to interpolate the backdoor samples, hiding the training-time trigger. Moreover, the attacker can tune the
trigger visibility at test time to enhance the attack’s effectiveness.
3.3.4 Bilevel Poisoning (Clean-Label). Inspired by recent success of the gradient-alignment technique in [62] for
targeted poisoning, Souri et al. [156] exploited the same bilevel-descending strategy to stage clean-label backdoor
poisoning attacks in the training-from-scratch scenario. Similarly to Saha et al. [142] the training and the test data
perturbations are different, enhancing the stealthiness of the attack and making it stronger against existing defenses.

3.4 Current Limitations
Although data poisoning has been widely studied in recent years, we argue here that two main challenges are still
hindering a thorough development of poisoning attacks.
3.4.1 Unrealistic Threat Models. The first challenge we formulate here questions some of the threat models considered
in previous work. The reason is that such threat models are not well representative of what may happen in many
real-world scenarios for the attackers. They are valuable because they allow system designers to test the system’s
robustness under worst-case scenarios, but their practicability and effectiveness against realistic production systems
are unknown. To give an accurate estimate of how poisoning attacks are effective against ML production systems, we
should consider assumptions that are less favorable to the attacker. For example, Fowl et al. [55] and Feng et al. [53]
assume that the attacker controls almost the entire training dataset to effectively mount an indiscriminate poisoning
attack against DNNs. While this may happen in certain hypothesized situations, it is also not quite surprising that a
poisoning attack works if the attacker controls a large fraction of the training set. We believe that poisoning attacks
that assume that only a small fraction of the training points can be controlled by the attacker are more realistic and,
therefore, viable against real production systems. We refer the reader to a similar discussion in the context of federated
learning poisoning in [150].

Another limitation of threat models considered for poisoning attacks is that, in some cases, exact knowledge of
the test samples is implicitly assumed. For example, [148] and [62] optimize a targeted poisoning attack to induce
misclassification of few specific test samples. In particular, the attack is both optimized and tested using the same test
samples, differently from work which optimizes the poisoning samples using validation data, and then tests the attack
impact on a separate test set [16, 124]. This evaluation setting clearly enables the attack to reach higher success rates,
but at the same time, there is no guarantee that the attack will generalize even to minor variations of the considered
test samples, questioning its applicability outside of settings in which the attacker has exact knowledge of the test
inputs. For instance, the attack may not work as expected in physical domains, where images are acquired by a camera
under varying illumination and environmental conditions. In such cases, it is indeed clear that the attacker can not
know beforehand the specific realization of the test sample, as they do not control the acquisition conditions. On a
similar note, only a few studies on backdoor poisoning have considered real-world scenarios where external factors
(such as lighting, camera orientation, etc.) can alter the trigger. Indeed, as done in [148] and [62], most papers consider
digital applications where the implanted trigger is nearly unaltered.

In conclusion, although some recent works seem to have improved the effectiveness of poisoning attacks, their
assumptions are often not representative of the actual production system or the attacker’s settings, limiting their
applicability only in the proposed context.
3.4.2 Computational Complexity of Poisoning Attacks. The second challenge we discuss here is related to the solution
of the bilevel programming problem used to optimize poisoning attacks. The problem, as analyzed by Muñoz-González
et al. [124], is that solving the bilevel formulation with a gradient-based approach requires computing and inverting the
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Hessian matrix associated to the equilibrium conditions of the inner learning problem, which scales cubically in time
and quadratically in space with respect to the number of model’s parameters. Even if one may exploit rank-one updates
to the Hessian matrix, and Hessian-vector products coupled with conjugate descent to speed up the computation of
required gradients, the approach remains too computationally demanding to attack modern deep models, where the
number of parameters is on the order of millions. Nevertheless, it is also true that that solving the bilevel problem is
expected to improve the effectiveness of the attack and its stealthiness against defenses. For example, the bilevel strategy
approach is the only one at the state of the art which allows mounting an effective attack in the training-from-scratch

(TS) setting. Other heuristic approaches, e.g., feature collision, have been shown to be totally ineffective if the feature
extractor 𝜙 is updated during training [62]. For backdoor poisoning, the recent developments in the literature show
that bilevel-inspired attacks are more effective and can better counter existing defenses [48, 128, 156]. Thus tackling the
complexity of the bilevel poisoning problem remains a relevant open challenge to ensure a fairer and scalable evaluation
of modern deep models against such attacks.

3.5 Transferability of Poisoning Attacks
Transferability is a characteristic of attacks to be effective even against classifiers the attacker does not have full
knowledge about. The term transferability was first investigated for adversarial examples in [66, 131, 132]. In case of
limited knowledge (i.e., black-box attacks), the attacker can use surrogate learners or training data to craft the attack
and transfer it to mislead the unknown target model. Nevertheless, the first to introduce the idea of surrogates for
data poisoning attacks were Nelson et al. [126] and Biggio et al. [16]. The authors claimed that if the attacker does
not have exact knowledge about the training data, they could sample a surrogate dataset from the same distribution
and transfer the attack to the target learner. In subsequent work, Muñoz-González et al. [124] and Demontis et al. [45]
analyzed the transferability of poisoning attacks using also surrogate learners, showing that matching the complexity
of the surrogate and the target model enhances the attack effectiveness. Transferability has also been investigated when
considering surrogate objective functions. More concretely, optimizing attacks against a smoother objective function
may find effective, or even better, local optima than the ones of the target function [45, 92, 116, 131]. For example,
optimizing a non-differentiable loss can be harder, thus using a smoothed version may turn out to be more effective [92].
More recently, Suciu et al. [158] showed that the attacker can leverage transferability even when the attacker has
limited knowledge about the feature representation, at the cost of reducing the attack effectiveness. However, Zhu et al.
[212] and Aghakhani et al. [2] independently hypothesize that the stability of feature collision attacks is compromised
when the feature representation in the representation space is changed. To mitigate this problem, they craft poisoning
samples to attack an ensemble of models, encouraging their transferability against multiple networks.

3.6 Unifying Framework
Although the three poisoning attacks are detailed in Sects. 3.1-3.3 aim to cause different violations, they can be described
by the following generalized bilevel programming problem:

max
𝜹 ∈Δ

𝛼𝐿(V,M, 𝜽★) − 𝛽𝐿(V𝒕
𝑡 ,M, 𝜽★) , (8)

s.t. 𝜽★ ∈ arg min
𝜽

L(D ∪ D𝜹
𝑝 ,M, 𝜽 ) , (9)

The optimization program in Eqs. (8)-(9) aims to accomplish the attacker’s goal, considering their capacity of tampering
with the training set and knowledge of the victim model, by optimizing the perturbation 𝜹 used to poison the training
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samples in D𝑝 . Additionally, as in Eqs. (1)-(7), the poisoning noise 𝜹 belongs to Δ which encompass possible domain
constraints or feature constraints to improve stealthiness of the attack (e.g., invisibility of the trigger). The test
data perturbation 𝒕 is absent (i.e., 𝒕 = 0), for indiscriminate and target poisoning. For backdoor poisoning, 𝒕 is pre-
defined/optimized by the attacker before training, unlike from adversarial examples [14, 66] where the perturbation 𝒕 is
optimized at test time. The coefficients 𝛼 and 𝛽 are calibrated according to the attacker’s desired violation. We can set:
(i) 𝛼 = 1(−1) and 𝛽 = 0 for error-generic (specific) indiscriminate poisoning; (ii) 𝛼 = −1 and 𝛽 = −1(1) for error-specific
(generic) targeted poisoning; (iii) 𝛼 = −1 and 𝛽 = −1(1) for error-specific (generic) backdoor poisoning.

In conclusion, although backdoor, indiscriminate and targeted attacks are designed to cause distinct security violations,
they can be formulated under a unique bilevel optimization program. Therefore, as we will explore in Sec. 7, solutions
for optimizing bilevel optimization programs fast can pave the way towards developing novel effective and stealthy
poisoning attacks capable of mitigating the scalability limit of current strategies.

4 DEFENSES
Many defenses have been proposed to mitigate poisoning attacks. In this section, we discuss each of the six defense
classes identified in Sect. 2.3. For each group, we review the related learning and defense settings, and the various
approaches suggested by prior works. Some defenses can be assigned to several groups. In these cases, we assigned a
defense to the most suitable group in terms of writing flow. A compact summary of all defenses is given in Table 3. We
further match attack strategies and defenses at training and test time in Table 4. Having reviewed all defense groups,
we conclude the section by discussing current defense evaluation issues, outlining three main open challenges.

4.1 Training Data Sanitization

These defenses aim to identify and remove poisoning samples before training, to alleviate the effect of the attack. The
underlying rationale is that, to be effective, poisoning samples have to be different from the rest of the training points.
Otherwise, they would have no impact at all on the training process. Accordingly, poisoning samples typically exhibit
an outlying behavior with respect to the training data distribution, which enables their detection. The defenses that
fall into this category require access to the training data D ′, and in a few cases also access to clean validation data
V , i.e., to an untainted dataset that can be used to facilitate detection of outlying poisoning samples in the training
set. No capabilities are required to alter the learning algorithmW or to train the model parameters 𝜽 . Theoretically,
these defenses can be applied in all learning settings. We can however not exclude the possibility in the model-training

setting that the attacker tampers with the data provided, which is beyond the defender’s control. We first discuss
defenses against indiscriminate poisoning. Paudice et al. [133] target label-flip attacks by using label propagation.
As Steinhardt et al. [157] show, the difference between poisons and benign data allows to use outlier detection as a
defense. Detection can also be eased by taking into account both features and labels, using clustering techniques for
indiscriminate [96, 162] and backdoor/targeted attacks [149]. Backdoor and targeted poisoning attacks can also be
detected using outlier detection, where the outlier is determined in the networks’ latent features on the potentially
tampered data [75, 135, 168]. An orthogonal line of work, by Xiang et al. [183, 186], reconstructs the backdoor trigger
and removes samples containing it. As shown in Table 4, training data sanitization has been applied against various
attack strategies. Attack strategies that have not been mitigated yet are only indiscriminate clean-label bilevel attacks,
semantical trigger backdoors and bilevel backdoors.

Manuscript submitted to ACM



989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Cinà, Grosse, et al.

Table 3. Overview of defenses in the area of classification.When several approaches are named, we order them according to publication
year and alphabetical order of the authors. For each paper we report the defender’s knowledge and capability required, consisting
in access to the training data D′, clean validation data V and access to the training procedure W and the model’s parameters
𝜃 . # indicates that the corresponding knowledge or capability is present,  that it is not. In 𝜃 , G# refers to the ability to fine-tune
the model. We further denote whether the approach provides a certification (Cert.), or it is suited to deep neural networks (DNN).
∗ intended as forensic tool to determine which points were poisoned in retrospect, not as a defense.

Defense strategy Defense D ′ V W 𝜽 Cert. DNN

In
di
sc
rim

in
at
e 4.1 Training Data Sanitization


Taheri et al. [162] # #   
Curie [96], Paudice et al. [133], Frederickson et al. [58] #    
Sphere / Slab Defense [157] #    ✓

4.2 Robust Training



RONI [125], Biggio et al. [15], Demontis et al. [44] #  # #
Sever [46], Jia et al. [86], Rosenfeld et al. [140] #  # # ✓
Hong et al. [77] #  # # ✓
(SS-)DPA [97] #   # ✓ ✓
Weighted Bagging [13] #   #
Diff. Private Learners [116], Chen et al. [32] Wang et al. [175] #   # ✓

Ba
ck
do

or
/T

ar
ge
te
d

4.1 Training Data Sanitization


Shan et al. [149]∗ #  # # ✓
Spectral Signatures [168], CI [183], Peri et al. [135] #    ✓RE [186], SPECTRE [75]

4.2 Robust Training


Du et al. [51], Hong et al. [77], Borgnia et al. [21], Geiping et al. [61] #  # # ✓ABL [102], Huang et al. [79], Sun et al. [160], Yang et al. [195]
DP-InstaHide [22], RAB [176] #  # # ✓ ✓

4.3 Model Inspection


AEGIS [155]  # # # ✓
Neuroninspect [81], Bajcsy and Majurski [5], L-RED [185]  #  # ✓
Activation Clustering [28], Tang et al. [163] #    ✓
MNTD [193], Litmus patterns [94], AEVA [71]  #   ✓
DeepInspect [30]     ✓

4.4 Model Sanitization



I-BAU [199]  # # # ✓
Yoshida et al. [197] #  # G# ✓
Cheng et al. [35], Zhao et al. [208], ANP [180], CLEAR [214]  #  # ✓
Re-training [112] #   # ✓
Liu et al. [107], Neural Attention Distillation [100]  #  G# ✓
DeepSweep [200] #   G# ✓

Ba
ck
do

or

4.5 Trigger Reconstruction


ABS [109], Neural Cleanse [173], Shen et al. [151]  #  # ✓
NEO [170], Hu et al. [78]
MESA [138], Gangsweep [213], Xiang et al. [184]  #   ✓TAD [204], AEVA [71], Xiang et al. [182]
Tabor [73], B3D-SS [50]     ✓

4.6 Test Data Sanitization



NNoculation [171]  # # G# ✓
Anomaly Detection [112] #   # ✓
Input Preprocessing [112], SentiNet [37], ConFoc [172],  #  # ✓CleaNN [85], Februus [47]
STRIP [60]  #   ✓
Li et al. [104], Sarkar et al. [144]     ✓

4.2 Robust Training

Another possibility to mitigate poisoning attacks is during training. The underlying idea is to design a training algorithm
that limits the influence of malicious samples and thereby alleviates the influence of the poisoning attack. Intuitively, as
reported in Table 3, all of these defenses require access to the training data D ′ and none to clean validation dataV .
Nonetheless, they require altering the learning algorithmW and access to the model’s parameters 𝜽 . Hence, robust
training can only be implemented when the defender trains the model, e.g., in the training-from-scratch or fine-tuning
setting. To alleviate the effect of indiscriminate poisoning attacks, the training data can be split into small subsets.
The high-level idea is that a larger number of poisoning samples is needed to alter all small classifiers. The defender
can build such ensembles using bagging [13, 97, 175] or voting mechanisms [86] or a combination thereof [32, 97]. An
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Table 4. Matching poisoning attack strategies and defenses. For each defense, we depict on which attack strategy (as defined in
Section 3) the defense was evaluated. We mark cells with ❙ if the corresponding defense category have not been investigated so far
for the corresponding attack. Conversely, we mark cells with ✗ if corresponding defense has no sense and cannot be applied.

Attack Defenses
Training Time Test Time

𝜹 𝒕 Clean
Label

Training Data
Sanitization

Robust
Training

Model
Inspection

Model
Sanitization

Trigger
Reconstruction

Test Data
Sanitization

In
di
sc
r. LF - [96, 133, 162] [15, 32, 44, 77, 97,

140, 175] ❙ ❙ ✗ ✗

BL - [58, 157] [13, 86, 116, 125] ❙ ❙ ✗ ✗

BL - ✓ ❙ ❙ ❙ ❙ ✗ ✗

Ta
rg
et
ed BL - [58] ❙ ❙ ❙ ✗ ❙

FC - ✓ [135, 149, 195] [22, 61, 77, 102] [163, 214] [214] ✗ ❙

BL - ✓ [149, 195] [21, 22, 61] ❙ ❙ ✗ ❙

Ba
ck
do

or

T𝑃 T𝑃 [75, 149, 168,
172, 183, 186]

[21, 51, 61, 79, 86,
102, 160, 176, 197]

[5, 28, 30, 71,
78, 94, 151,
155, 163, 182,
185, 193, 204]

[30, 100, 107,
138, 180, 197,
199, 200, 208,

213]

[35, 50, 71, 73,
78, 109, 138,
170, 173, 182,

186]

[37, 47, 60,
104, 137, 144,

171–
173, 200]

T𝑆 T𝑆 ❙ [79, 149] [71, 151] [107, 112, 199,
200] [71] [112, 171]

T𝐹 T𝐹 [75, 186] [79, 102, 176]
[78, 81, 151,
155, 163, 185,

193]

[100, 180, 199,
200, 213]

[78, 109, 184–
186, 213] [60, 200]

FC T𝑃 ✓ [75] [22, 61, 79, 102,
195] [71, 214] [100, 180, 213,

214] [71] [104]

BL T𝐹 ❙ ❙ [71, 151] [180] [213] [200]
BL T𝑃 ✓ ❙ [195] ❙ ❙ ❙ ❙

alternative approach by Nelson et al. [125] is to exclude a sample from training if it leads to a significant decrease in
accuracy when used in training. In addition, Diakonikolas et al. [46] apply techniques from robust optimization and
robust statistics, thereby limiting the impact of individual, poisonous points. Alternatively, the influence of poisons can
be limited by increasing the level of regularization [15, 44]. The alleviating effect of regularization against backdoors
has been described by Carnerero-Cano et al. [25], with a more detailed analysis by Cinà et al. [40]. The latter work
shows that hyperparameters related to regularization affect backdoor performance. Backdoor and targeted poisoning
attacks can also be mitigated using data augmentations like mix-up [21, 22], or based on the model’s gradients wrt. the
input [61]. Analogously, the data can be augmented using noise to mitigate indiscriminate [140] and backdoor [176]
attacks. Furthermore, differences in the loss between backdoored/targeted and clean data allow to unlearn [102] or
identify [195] poisons later in training. Alternatively, a trained preprocessor can alleviate the threat of backdoors [160].
Furthermore, Huang et al. [79] show that pre-training the network unsupervisedly (e.g., without wrong labels) can
alleviate backdoors. Finally, in both indiscriminate [77, 116] and backdoor/targeted [22, 51, 77] attacks, the framework of
differential privacy can be used to alleviate the effect of poisoning. The intuition behind this approach is that differential
privacy limits the impact individual data points have, thereby limiting the overall impact of outlying poisoning samples
too [77]. However, further investigation is still required to defend against some bilevel strategies, as visible in Table 4.
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4.3 Model Inspection

Starting with model inspection, we discuss groups of defenses operating before the model is deployed. The approaches
in these groups mitigate only backdoor and targeted attacks. In model inspection, we determine for a given model
whether a backdoor is implanted or not. The defense settings in this group are diverse, and encompass all combinations.
In principle, model inspection can be used in all learning settings, where exceptions for specific defenses might apply.
To inspect a model can be formulated as classifications tasks. For example, Kolouri et al. [94] and Xu et al. [193] show
that crafting specific input patterns and training a meta-classifier on the outputs of a given model computed on such
inputs can reveal whether the model is backdoored. Bajcsy and Majurski [5] follow a similar approach, using clean data
and a pruned model. A different observation is that when relying on the backdoor trigger to output a class, the network
behaves somehow unusual: it will rely on normally irrelevant features. Thus, outlier detection can be used. For example,
Zhu et al. [214] alternatively search for a set of points that are reliably misclassified to detect feature-collision attacks.
To detect backdoors and backdoored models, outlier detection can be used on top of interpretability techniques [81],
or latent representations [28, 155, 163]. Alternatively, Xiang et al. [185] show that finding a trigger that is reliably
misclassified indicates the model is backdoored. As reported in Table 4, model inspection has primarily been evaluated
on backdoor attacks with a predefined trigger strategy.

4.4 Model Sanitization

Once a backdoored model is detected, the question becomes how to sanitize it. Sanitization requires diverse defense
settings encompassing all possibilities. Model sanitization often involves (re-)training or fine-tuning. Depending on
the exact model-training setting, sanitizing the model might be impossible (e.g., if the model is provided as a service
accessible only via queries). To sanitize a model, pruning [35, 180], retraining [199], or fine-tuning [107, 112] can be
used. Given knowledge of the trigger, Zhu et al. [214] propose to relabel the identified poisoned samples after the trigger
is removed. Alternatively, approaches such as data augmentation [200] or distillation [100, 197] can augment small,
clean datasets. Finally, Zhao et al. [208] show that path connection between two backdoored models, using a small
amount of clean data, also reduces the success of the attack. As shown in Table 4, model sanitization has been evaluated
mainly against backdoor attacks. Extensions to other kinds of triggers and targeted attacks might however be possible.

4.5 Trigger Reconstruction

As an alternative to model sanitization, this category of defenses aim to reconstruct the implanted trigger. The
assumptions on the defender’s knowledge and capabilities are diverse, and encompass many possibilities, although the
learning algorithm W is never altered. As for model inspection, trigger reconstruction can in theory be used in all
learning settings, where exceptions for specific defenses might apply. While a trigger can be randomly generated [170,
204], the question remains on how to verify that the reconstructed pattern is a trigger. Many techniques leverage
the fact that a trigger changes the classifier’s output reliably. This finding has been in detail investigated by Grosse
et al. [69], who show that backdoor patterns lead to a very stable or smooth output of the target class. In other words,
the classifier ignores other features and only relies on the backdoor trigger. Such a stable output also enables to
reformulate trigger reconstruction as an optimization problem [173]. In the first approach of its kind, Wang et al.’s
Neural Cleanse [173] optimizes a pattern that leads to reliable misclassification of a batch of input points. The idea
is that if there is such a pattern, and it is small, it must be similar to the backdoor trigger. Wang et al.’s approach has
been improved in terms of how to determine whether a pattern is indeed a trigger [73, 184], how to decrease runtime
Manuscript submitted to ACM
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for many classes [78, 151, 182], how many triggers can be recovered at once [78], or how to reverse-engineer without
computing gradients [50, 71]. Zhu et al. [213] establish that not an optimization, but also a GAN can be used to generate
triggers. In general, a reconstruction can be based on the intuition that triggers themselves form distributions that can
be learned [138, 213]. Finally, Liu et al. [109] successfully use stimulation analysis of individual neurons to retrieve
implanted trigger patterns. Trigger reconstruction has been evaluated on almost all trigger-based backdoor attacks (see
Table 4), as their applicability is naturally limited to the existence of a trigger.

4.6 Test Data Sanitization

As the name suggests, this is the only group of defenses operating during test time, where the defender attempts to
sanitize malicious test inputs. The assumptions on the defender’s knowledge and capabilities, as in other cases, are
diverse and encompass all possible settings. Test data sanitization can be used in all learning settings, where exceptions
for specific cases might apply. This group can, in principle, be applied in all learning scenarios, but is the only sanitization
applicable if the model is only available as an online service, and accessible via queries. There are three strategies
overall when sanitizing test data. The first one boils down to removing the trigger [37, 47, 104]. For example Chou et al.
[37] use interpretability techniques to identify crucial parts of the input and then mask these to identify whether they
are adversarial or not. A second group is build on the agreement of ensembles on input [144, 171, 172]. In Sarkar et al.
[144], this ensemble results indirectly from noising the input, but can also be build with a second, retrained version
of the original model on different styles [172] or augmentations [171]. Finally, and as used for trigger generation, the
consistency of a classifier’s output can also help to detect an attack [60, 85]. While Gao et al. [60] superimpose images
to check the consistency, Javaheripi et al. [85] instead consider the consistency of noised images in the inner layers. As
shown in Table 4, test data sanitization has been tested only on trigger-based backdoor attacks. However, the latter
two strategies mentioned above do have the potential to also detect targeted poisoning attacks, as these lead to locally
implausible behavior. A detection of indiscriminate attacks at test time is however not possible.

4.7 Current Limitations

Although there is a large body of work on defenses, there are still unresolved challenges, as detailed in the following.

4.7.1 Inconsistent Defense Settings. The assumptions on the defender’s knowledge and capabilities reflect what is
required to deploy a defense. In indiscriminate defenses, or robust training and training data sanitization in general,
these are very homogeneous. When it comes to model inspection, trigger reconstruction, model sanitization, and
test data sanitization, there is a larger variation in both the defender’s knowledge and capabilities. In particular, we
lack understanding on the effect of individual capabilities or knowledge, for example not having direct access to the
model when provided as a service and interacting via queries. More work is required that enables comparison across
approaches here, and that sheds light on the individual components of the defense setting.

4.7.2 Insufficient Defense Evaluations. In Table 4, we match poisoning attack strategies and defenses by reporting in
each cell the defense papers that evaluate against the corresponding attack strategy. In some cases, indicated with a
cross (✗), a defense of this strategy is not possible as there is no trigger to reconstruct (indiscriminate or targeted) or the
test data is not altered by the attacker and can thus not be sanitized (indiscriminate attacks). Furthermore, Table 4 shows
that the amount of defenses per attack strategies varies greatly. Whereas for backdoor attacks using patch triggers
there are around fifty defenses, only eleven defenses have been considered against semantic triggers, one against
bilevel targeted attacks [58], one against bilevel patch backdoor attacks [195], and none against indiscriminate clean
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Table 5. Attacks breaking defenses in the areas of indiscriminate, targeted, and backdoor attacks. We provide the reference for the
adaptive attack, which defenses are broken, and a high-level description of the strategy of the adaptive attack.

Broken Defenses

Attack Indiscriminate Targeted Backdoor Strategy

Koh et al. [93] [141, 157] constrain poison point’s features
Shokri et al. [152] [28, 168, 173] regularize trigger pattern
Tang et al. [163] [28, 37, 60, 173] add trigger images with correct label
Lin et al. [105] [109, 173] add trigger images mixed from source and target

label bilevel attacks. With only a few defenses [163, 214], there is also a shortage of model inspection and sanitization
defenses when no trigger manifests in the model.
Beyond this shortage, there is a need to thoroughly test existing defenses using adaptive attacks, which are depicted in
Table 5. Adaptive attacks are tailor to circumvent one or several defenses. In other words, the attack identifies essential
components like for example a threshold within a defense and adapts the poisoning points to be below this threshold.
For example, Koh et al. [93] constrain the indiscriminate poisons features so that several points are in close vicinity to
avoid outlier detection. In the case of backdoors, Shokri et al. [152] regularize the trigger to be less detectable within
the network. Tang et al. [163] and Lin et al. [105] employ different strategies to make training data with trigger more
similar to benign data. Yet, as visible in Table 5, current adaptive backdoor attacks tend to break the same defenses.
More work is thus needed to understand all defenses’ limitations through adaptive attacks, even though systematizing
the design of such attacks and automating the corresponding evaluations is not trivial. To this end, it may be interesting
to design indicators of failure that automate the identification of faulty, non-adaptive evaluations for poisoning attacks,
as recently shown in [136] for adversarial examples.

4.7.3 Overly-specialized Defenses. Furthermore, few defenses (only roughly one sixth) have been evaluated against
different kinds of triggers. Only one defense in test data sanitization [200] and two defenses in trigger reconstruc-
tion [78, 109] have been evaluated against more than one trigger type. There are three defenses for each training data
sanitization [75, 149, 186], model sanitization [100, 199, 200] and robust training [22, 61, 102]. In model inspection,
five [71, 151, 155, 163, 193] defenses tests on more than one attack type. There are even more general defenses that
are able to handle multiple poisoning attacks, such as indiscriminate, targeted, and backdoor attacks, as for example
Geiping et al. [61] and Hong et al. [77] show.

5 POISONING ATTACKS AND DEFENSES IN OTHER DOMAINS

While in this survey we focus on poisoningML in the context of supervised learning tasks, andmostly in computer-vision
applications, it is also worth remarking that several poisoning attacks and defense mechanisms have been developed also
in the area of federated learning [4, 12, 23, 76, 161, 165, 191, 201–203, 210], regression learning [46, 54, 83, 106, 123, 177],
reinforcement learning [3, 6, 10, 52, 74, 82, 89, 115, 139, 174, 192, 205], and unsupervised clustering [17, 18, 41, 90, 141]
or anomaly detection [43, 141] algorithms. Furthermore, notable examples of poisoning attacks and defenses have also
been shown in computer-security applications dealing with ML, including spam filtering [13, 46, 58, 126, 133], network
traffic analysis [141], and malware detection [134, 147, 162], audio [1, 91, 107, 110, 193] and video analysis [168, 209],
natural language processing [29, 34, 110, 137, 206], and even in graph-based ML applications [20, 108, 181, 207, 215].
While, for the sake of space, we do not give a more detailed description of such research findings in this survey, we do
Manuscript submitted to ACM
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believe that the systematization offered in our work provides a useful starting point for the interested reader to gain a
better understanding of the main contributions reported in these other research areas.

6 RESOURCES: SOFTWARE LIBRARIES, IMPLEMENTATIONS, AND BENCHMARKS

Unified test frameworks play a huge role when evaluating and benchmarking both poisoning attacks and defenses. We
thus attempt to give an overview of available resources in this section. Libraries and available code ease the evaluation
and benchmarking of both attacks and defenses. Ignoring the many repositories containing individual attacks, to date,
only a few libraries provide implementations of poisoning attacks and defenses.10 The library with the largest number
of attacks and defenses is the adversarial robustness toolbox (ART) [130]. ART implements indiscriminate poisoning
attacks [16], targeted [2, 62, 148, 169] and backdoor attacks [70, 142], as well as an adaptive backdoor attack [152]. The
library further provides a range of defenses [7, 28, 60, 125, 168, 173]. Furthermore, SecML [122] provides indiscriminate
poisoning attacks against SVM, logistic, and ridge regression [16, 45, 188]. Finally, the library advBox [67] provides
both indiscriminate and backdoor attacks on a toy problem.

Beyond the typical ML datasets that can be used for evaluation, there exists a large database from the NIST compe-
tition,11 which contains a large number of models from image classification, object recognition, and reinforcement
learning. Each model is labeled as poisoned or not. The module further allows to generate new datasets with poisoned
and unpoisoned models. Schwarzschild et al. [146] recently introduced a framework to compare different poisoning
attacks. They conclude that for many attacks, the success depends highly on the experimental setting. To conclude,
albeit a huge number of attacks and defenses have been introduced, there is still a need of libraries that allow access to
off-the-shelf implementations to compare new approaches. In general, few works benchmark poisoning attacks and
defenses or provide guidelines to evaluate poisoning attacks or defenses.

7 DEVELOPMENT, CHALLENGES, AND FUTURE RESEARCH DIRECTIONS

In this section, we outline challenges and future research directions for poisoning attacks and defenses. We start
by discussing the intertwined historical development of attacks and defenses, and then highlight the corresponding
challenges, open questions, and promising avenues for further research.

7.1 Development Timelines for Poisoning Attacks and Defenses

We start by discussing the historical development of poisoning attacks (represented in Fig. 5), and afterwards that of
defenses (depicted in Fig. 6). In both cases, we highlight the respective milestones and development over time.

7.1.1 Attack Timeline. The attack timeline is shown in Fig. 5. To the best of our knowledge, the first example of
indiscriminate poisoning was developed in 2006 by Perdisci et al. [134], Barreno et al. [9], and Newsome et al. [127]
in the computer security area. Such attacks, as well as subsequent attacks in the same area [90, 141], were based on
heuristic approaches to mislead application specific ML models, and there was not a unifying mathematical formulation
describing them. It was only later, in 2012, that indiscriminate poisoning against machine learning was formulated for
the first time as a bilevel optimization [190], to compute optimal label-flip poisoning attacks. Since then, indiscriminate
poisoning has been studied under two distinct settings, i.e., assuming either (i) that a small fraction of training samples
can be largely perturbed [16, 45, 124]; or (ii) that all training points can be slightly perturbed [53, 55, 121].

10Analysis carried out in June 2022.
11https://pages.nist.gov/trojai/docs/index.html
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Fig. 5. Timeline for indiscriminate (blue), targeted (red) and backdoor (green) data poisoning attacks on machine learning. Related
work is highlighted with markers of the same color and connected with dashed lines to highlight independent (but related) findings.

Targeted and backdoor poisoning attacks only appeared in 2017, and interestingly, they both started from different
strategies. Targeted poisoning started with the bilevel formulation in Koh and Liang [92], but evolved in more heuristic
approaches, such as feature collision [72, 148, 212]. Only recently, targeted poisoning attacks were reformulated as
bilevel problems, given the limitation of the aforementioned heuristic approaches [62, 80]. Backdoor poisoning started
with the adoption of patch [70, 110] and functional [111, 128] triggers. However, in the last years, such heuristic choices
have been put aside, and backdoor attacks are getting closer and closer to the idea of formulating them in terms of a
bilevel optimization, not only to enhance their effectiveness, but also their ability to bypass detection [142, 156].

The historical development of the three types of attacks is primarily aimed at solving or mitigating as much as
possible the challenges highlighted in Sect. 3.4, i.e., (i) considering more realistic threat models, and (ii) designing more
effective and scalable poisoning attacks. In particular, recent developments in attacks seek to improve the applicability
of their threat models, by tampering with the training data as little as possible (e.g., a few points altered with invisible
perturbations) to evade defenses, and by considering more practical settings (e.g, training-from-scratch). Moreover, more
recent poisoning attacks aim to tackle the computational complexity and time required to solve the bilevel problem, not
only to improve attack scalability but also their ability to stay undetected against current defenses. In Sect. 7.2 we more
thoroughly discuss these challenges, along with some possible future research directions to address them.
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2020:  Model-agnostic input transformations to 
clean backdoored test data
- Li et al., arXiv, 2020
- Villarreal-Vasquez and Bhargava, arXiv 2020

2021: Zhu et al., ICCV 2021, 
first model sanitization for 
targeted attacks

2021: Zhu et al., ICCV 2021, 
first model inspection for 
targeted attacks

2019: Wang et al., IEEE S&P 2019, 
reconstruct trigger from a 
backdoored model 

2018: first defense to clean the 
model: fine-tuning
- Liu and Xie, ICCD 2017
- Liu et al, RAID 2018

2019: Wang et al., IEEE 
S&P 2019, clean a model 
by retraining on 
reconstructed trigger

2018: Model-specific backdoor 
detection as outliers in internal 
representations
- Chen et al., arXiv 2018
- Tang et al. arXiv 2019

2019: Wang et al., IEEE S&P 2019, 
Detect backdoored models based on 
their response to reconstructed 
trigger (model-specific)

2009: Pioneering work in classification 
security applications
- Nelson et al., ML  in Cyber Trust, 2009
- Biggio et al., Mult. Classifier Systems, 2011

2011: Regularization as a defense
- Biggio et al., ACML, 2011
- Carnereno-Cano et al., Security 
                        and Safety of ML@ICML, 2021

Robust Training

2019: Differential privacy as a defense
- Ma et al., IJCAI 2019
- Hong et al, arXiv 2020

Trigger Reconstruction
2019: GAN-based trigger generation
- Qiao et al., NeurIPS 2019
- Zhu et al., ICME 2020

2020: Kolouri et al., ICCV 
2020, model-agnostic 
classifier to detect 
backdoored models

Model Inspection

Model Sanitization
2020: Zeng et al, arXiv 2020, 
retrain using data aug-
mentation

Test Data Sanitization
2017: Outlier detection on model’s 
behavior or interpretability
- Liu et al., ICCD 2017
- Chou et al, S&P Workshops, 2018

2019: Wang et al., IEEE S&P 2019, 
use reconstructed trigger to 
identify backdoored test inputs

Backdoor PoisoningIndiscriminate Poisoning Targeted Poisoning                                     

Technical/conceptual similarity between approaches (or same work)Training Data Sanitization

2016: Remove outlying poisoning samples
- Laishram and Phoha, arXiv 2016
- Frederickson et al., IJCNN 2018
- Tran et al., NeurIPS, 2018

2019: Xiang et al., MLSP 2019,
detect and remove reconstructed 
trigger from training data  

2008: Pioneering work in 
security applications
- Cretu et al., IEEE S&P 2008

Fig. 6. Timeline of the six kinds of defenses described in Sect. 4. The dots remark against which class of attacks defenses have been
introduced, dashed lines denote related approaches, and thin gray lines connect the same work across defense groups.

7.1.2 Defense Timeline. The defense timeline is shown in Fig. 6. The first defenses, training data sanitization and robust
training variants, were introduced 2008 and 2009 in a security context [15, 43, 125]. Following works in training data
sanitization were based on outlier detection, and mitigated backdoor [168], indiscriminate [96] and targeted [58] attacks.
To train robustly, Biggio et al. [13] showed 2011 that regularization can serve as a defense, a finding recently confirmed
for backdoors [25]. In 2019, differential privacy was shown to be able to mitigate poisoning attacks [77, 116]. This
connection to privacy underlines the need to study poisoning also in relation to other ML security issues, as we will
discuss in Sect. 7.2.4. The remaining kinds of defenses are characterized by more diverse threat models, as we discussed
in Sect. 4.7.1. The type of attack mitigated is however less diverse, and focuses mainly on backdoors, as explained in
Sect. 4.7.3. We start with model inspection approaches, which were first introduced by Chen et al. [28] and were based
on outlier detection on latent representations. In 2020, Kolouri et al. [94] generalized the backdoor inspections to be
model independent using a meta-classifier. Recently, Zhu et al. [214] introduced a search-based approach to determine
whether a model suffers from targeted poisoning. The latter approach also proposed how to sanitize the model. The
first defenses for such model sanitization against backdoors were trigger agnostic and based on fine-tuning [107, 112]
and later on data augmentation Zeng et al. [200]. Another possibility, introduced by Wang et al. [173], is to retrain a
model based on a reconstructed trigger. Wang et al. [173] introduced the idea of reconstruction a trigger in 2019. They
generated a trigger based on optimization of a pattern that causes backdoor behavior, e.g., misclassification of many
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samples when added to them. More recent approaches improve trigger reconstruction by considering distributions
over triggers [138], not individual patterns. A reconstructed trigger can also serve to inspect a model [173], or serve to
sanitize test data [173]. However, the first approaches to sanitize test data in 2017 were based on outlier detection to
inspect the model inspection and sanitize training data. Analogous to model inspection, initial works relied on latent,
model specific features [112] whereas later works from 2020 use model-agnostic input transformations [104].

One historical development which is highly relevant but left out in both timeline figures is the study of adaptive
attacks against defenses to assess their robustness, as discussed in Sect. 4.7.2. We elaborate on this challenge in Sect. 7.2.3.

7.2 Challenges and Future Work
Building on the development timelines and the corresponding overview provided in Sect. 7.1, we formulate some future
research challenges for both poisoning attacks and defenses in the remainder of this section.

7.2.1 Considering Realistic Threat Models. One pertinent challenge arising from the discussion on poisoning attacks in
Sect. 3.4.1 demands considering more realistic threat models and attack scenarios, as also recently pointed out in [150].
While assessing machine learning models in real-world settings is not straightforward [154], the need to develop
realistic threat models is still an open question in machine learning security and has so far only received recognition
for test-time attacks [63]. Here we define some guidelines that can serve as a basis for future work that wants to assess
the real safety impact of poisoning versus real applications. First, limit the attacker’s knowledge of the target system
and their capacity to tamper during training. For example, an attack that assumes only a small percentage of control
over the training set can be broadly applied. Second, develop more stealthy poisoning strategies to avoid detection
against defenses. Some attack strategies, e.g., patch trigger or feature collision, are computationally efficient, but several
defensive countermeasures exist to detect them (see Table 4). Finally, evaluating poisoning attacks against real-world
applications and making them adaptive to the presence of a defender. Therefore, we invite the research community
to evaluate poisoning attacks with more realistic or less favorable assumptions for the attacker, which also take into
account the specific application domain.

7.2.2 Designing More Effective and Scalable Poisoning Attacks. The other challenge we highlighted in Sect. 3.4.2 is the
computational complexity of poisoning attacks when relying on bilevel optimization. However, the same limitation is
also encountered in other research domains such as hyperparameter optimization and meta-learning which naturally
are formulated within the mathematical framework of bilevel programming [57]. More concretely, the former is the
process of determining the optimal combination of hyperparameters that maximizes the performance of an underlying
learning algorithm. On the other hand, meta-learning encompasses feature selection, algorithm selection, learning
to learn, or ensemble learning, to which the same reasoning applies. Having formulated poisoning attacks within
the bilevel framework (see Sect. 3.6) hints that strategies developed to speed up the optimization of bilevel programs
involved in meta-learning or hyperparameter optimization taks can be adapted to facilitate the development of novel
scalable attacks. In principle, by imagining poisoning samples as the attacker-controlled learning hyperparameters,
we could apply the approaches proposed in these two fields to mount an attack. Notably, we find some initial works
connecting these two fields with data poisoning. For example, Shen et al. [151] rely in their approach on a k-arms
technique, a technique similar to bandits, as done by Jones et al. [87]. Further, Muñoz-González et al. [124] exploited
the back-gradient optimization technique proposed in [49, 117], originally proposed for hyperparameter optimization,
and subsequently, Huang et al. [80] inherited the same approach making the attack more effective against deep neural
networks. Apart from the work just mentioned, the connection between the two fields and poisoning is still currently
Manuscript submitted to ACM
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under-investigated, and other ideas could still be explored. For example, the optimization proposed by [114] can further
reduce run-time complexity and memory usage even when dealing with millions of hyperparameters. Or another
way might be to move away from gradient-based approaches and consider gradient-free approaches, thus overcoming
the complexity of the inverting the Hessian matrix seen in Sect. 3.4.2. In the area of gradient-free methods, the most
straightforward way is to use grid or random search [11], which can be sped up using reinforcement learning [98].
Also, Bayesian optimization has been used, given a few sampled points from the objective and constraint functions,
to approximate the target function [87]. Last but not least, evolutionary algorithms [198] as well as particle swarm
optimization [113] have shown to be successful.

In conclusion, we consider these two fields as possible future research directions to find more effective and scalable
poisoning attacks for assessing ML robustness in practice.

7.2.3 Systematizing and Improving Defense Evaluations. Regardless of future attacks, we need to systematize and
understand the limits of existing (and future) defenses better. As we have seen in Sect. 6, there is no coherent benchmark
for defenses. Such a benchmark exposes flawed evaluations and assesses the robustness of a defense per se or in
relation to other defenses (taking into account the defense’s setting, as discussed in Sect. 4.7.2). Jointly with benchmarks,
evaluation guidelines, as discussed for ML evasion by Carlini et al. [24], help to improve defense evaluation. More
specifically, these guidelines can encompass knowledge when attacks fail and why, similar to work on evasion attack
failure [136]. Crucial in this context is also, as discussed in Sect. 4.7.2, to expand our understanding of adaptive attacks.

An orthogonal question is how to increase existing knowledge about trade-offs between for example attack strength
and stealthiness for indiscriminate attacks [58] or backdoors [33, 143, 169]. Further trade-offs relate clean accuracy
and accuracy under the poisoning attack by hyperparameter tuning. More concretely, Demontis et al. [45] and Cinà
et al. [40] showed that more regularized classifiers tend to resist better to poisoning attacks, at the cost of slightly
reducing clean accuracy. Ideally, impossibility results further increase our knowledge about hard limitations. To the best
of our knowledge, the only impossibility results provided thus far for subpopulation poisoning attacks can be found
in [84], showing that it is impossible to defend poisoning attacks that target only a fraction of the data. Expanding our
knowledge about trade-offs and impossibilities will help to design and configure effective defenses.

7.2.4 Designing Generic Defenses against Multiple Attacks. Such effective defenses also need to overcome, as discussed
in the Sect. 4.7.3, that they often specialize and to on one or several poisoning attacks (for example backdoor and
targeted). Such one-sided evaluations introduce a bias, and the effect of this overfitting on biased datasets has been
recognized in image recognition [166], but received relatively little attention in security so far. Some defenses, however,
do evaluate several poisoning attacks [61, 77, 151], or even different ML security threats like backdoors and evasion [160]
or poisoning and privacy [77].

In addition to creating more robust defenses, such interdisciplinary works also increase our understanding of how
poisoning interferes with non-poisoning ML attacks [27, 178]. One attack is evasion, where a small perturbation is
added to a sample at test time to force the model to misclassify an output. Evasion is closely related, but different
from backdoors, which add a fixed perturbation at training time, causing an upfront known vulnerability at test time.
Only a few works study evasion and poisoning together. For example, Sun et al. [160] introduce a defense against both
backdoors and adversarial examples. Furthermore, Fowl et al. [56] show that adversarial examples with the original
labels are strong poisons at training time. In the opposite direction, Weng et al. [178] find that if backdoor accuracy is
high, evasion tends to be less successful and vice versa. Furthermore, Mehra et al. [120] study poisoning of certified
evasion defenses: using poisoning, they decrease the certified radius and accuracy. Two works, namely by Manoj and
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Blum [118] and Goldwasser et al. [65], relate evasion and backdoors in a theoretical way. Both share rigid assumptions,
however Manoj and Blum [118] show an impossibility results in terms of non-existence of backdoor for some natural
learning problems. Goldwasser et al. [65], on the other hand, show that backdoor detection might be impossible. In
relation to privacy or intellectual property, poisoning can be used to increase the information leakage from training
data at test time on collaborative learning [27]. Privacy can further be a defense against poisoning [22, 77], or poisoning
can be a tool to obtain [55]. Summarizing, there is little knowledge on how poisoning interacts with other attacks. More
work is needed to understand this relationship and secure machine learning models in practice against several threats
at the same time.

8 CONCLUDING REMARKS

The increasing adoption of data-driven models in production systems demands a rigorous analysis of their reliability
in the presence of malicious users aiming to compromise them. Within this survey, we systematize a broad spectrum
of data poisoning attacks and defenses according to our modeling framework, and we exploit such categorization
to match defenses with the corresponding attacks they prevent. Moreover, we provide a unified formalization for
poisoning attacks via bilevel programming, and we spotlight resources (e.g., software libraries, datasets) that may
be exploited to benchmark attacks and defenses. Finally, we trace the historical development of data literature since
the early developments dating back to more than 20 years ago and find the open challenges and possible research
directions that can pave the way for future development. In conclusion, we believe our contribution can help clarify
what threats an ML system may encounter in adversarial settings and encourage further research developments in
deploying trustworthy systems even in the presence of data poisoning threats.

ACKNOWLEDGMENTS

This work has been partly supported by: the PRIN 2017 project RexLearn (grant no. 2017TWNMH2), funded by the
Italian Ministry of Education, University and Research; the EU’s Horizon Europe research and innovation program
under the project ELSA, grant agreement No 101070617; the project “TrustML: Towards Machine Learning that Humans
Can Trust”, CUP: F73C22001320007, funded by Fondazione di Sardegna; the NRRP MUR program funded by the EU -
NGEU under the project SERICS (PE00000014); and the COMET Programme managed by FFG in the COMET Module
S3AI, funded by BMK, BMDW, and the Province of Upper Austria.

REFERENCES
[1] Hojjat Aghakhani, Thorsten Eisenhofer, Lea Schönherr, Dorothea Kolossa, Thorsten Holz, Christopher Kruegel, and Giovanni Vigna. 2020.

VENOMAVE: Clean-Label Poisoning Against Speech Recognition. arXiv:2010.10682 (2020).
[2] Hojjat Aghakhani, Dongyu Meng, Yu-Xiang Wang, Christopher Kruegel, and Giovanni Vigna. 2021. Bullseye polytope: A scalable clean-label

poisoning attack with improved transferability. In EuroS&P. 159–178.
[3] Chace Ashcraft and Kiran Karra. 2021. Poisoning Deep Reinforcement Learning Agents with In-Distribution Triggers. arXiv:2106.07798 (2021).
[4] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. 2020. How To Backdoor Federated Learning. In The 23rd

Int. Conf. on AI and Statistics, AISTATS. PMLR, 2938–2948.
[5] Peter Bajcsy and Michael Majurski. 2021. Baseline Pruning-Based Approach to Trojan Detection in Neural Networks. arXiv:2101.12016 (2021).
[6] Kiarash Banihashem, Adish Singla, and Goran Radanovic. 2021. Defense Against Reward Poisoning Attacks in Reinforcement Learning.

arXiv:2102.05776 (2021).
[7] Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Amir Safavi, and Rui Zhang. 2018. Detecting poisoning attacks on ML in iot environments. In

IEEE Int. congress on internet of things, ICIOT 2018. IEEE, 57–64.
[8] Mauro Barni, Kassem Kallas, and Benedetta Tondi. 2019. A New Backdoor Attack in CNNS by Training Set Corruption Without Label Poisoning. In

2019 IEEE Int. Conf. on Image Proc., ICIP 2019. IEEE, 101–105.

Manuscript submitted to ACM



1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Wild Patterns Reloaded 31

[9] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D. Tygar. 2006. Can ML be secure?. In ACM Symposium on Inf., Computer
and Communications Security, ASIACCS. ACM, 16–25.

[10] Vahid Behzadan and Arslan Munir. 2017. Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks. In ML and Data Mining in
Pattern Recognition - 13th Int. Conf., MLDM 2017. Springer, 262–275.

[11] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. Journal of ML research 13, 2 (2012).
[12] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin B. Calo. 2019. Analyzing Federated Learning through an Adversarial Lens.

In 36th Int. Conf. on ML, ICML 2019. PMLR, 634–643.
[13] Battista Biggio, Igino Corona, Giorgio Fumera, Giorgio Giacinto, and Fabio Roli. 2011. Bagging classifiers for fighting poisoning attacks in

adversarial classification tasks. In Int. workshop on multiple classifier Sys. Springer, 350–359.
[14] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion Attacks

against ML at Test Time. In ML and Knowl. Disc. in Databases - Eur. Conf., ECML PKDD 2013. Springer, 387–402.
[15] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2011. Support Vector Machines Under Adversarial Label Noise. In ACML2011. 97–112.
[16] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning Attacks against Support Vector Machines. In ICML 2012. icml.cc / Omnipress.
[17] Battista Biggio, Ignazio Pillai, Samuel Rota Bulò, Davide Ariu, Marcello Pelillo, and Fabio Roli. 2013. Is data clustering in adversarial settings

secure?. In 6th ACM Workshop on Art. Intell. and Sec., AISec 2013. ACM, 87–98.
[18] Battista Biggio, Konrad Rieck, Davide Ariu, Christian Wressnegger, Igino Corona, Giorgio Giacinto, and Fabio Roli. 2014. Poisoning behavioral

malware clustering. In 7th ACM Workshop on Art. Intell. and Sec., AISec 2014. ACM, 27–36.
[19] Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of adversarial ML. Pattern Recognition 84 (2018), 317–331.
[20] Aleksandar Bojchevski and Stephan Günnemann. 2019. Adversarial Attacks on Node Embeddings via Graph Poisoning. In ICML. 695–704.
[21] Eitan Borgnia, Valeriia Cherepanova, Liam Fowl, Amin Ghiasi, Jonas Geiping, Micah Goldblum, Tom Goldstein, and Arjun Gupta. 2021. Strong

data augmentation sanitizes poisoning and backdoor attacks without an accuracy tradeoff. In IEEE ICASSP 2021. IEEE, 3855–3859.
[22] Eitan Borgnia, Jonas Geiping, Valeriia Cherepanova, Liam Fowl, Arjun Gupta, Amin Ghiasi, Furong Huang, Micah Goldblum, and Tom Goldstein.

2021. DP-InstaHide: Provably Defusing Poisoning and Backdoor Attacks with Differentially Private Data Augmentations. arXiv:2103.02079 (2021).
[23] Di Cao, Shan Chang, Zhijian Lin, Guohua Liu, and Donghong Sun. 2019. Understanding Distributed Poisoning Attack in Federated Learning. In

IEEE Int. Conf. on Parallel and Distributed Sys. 233–239.
[24] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and

Alexey Kurakin. 2019. On evaluating adversarial robustness. arXiv:1902.06705 (2019).
[25] Javier Carnerero-Cano, Luis Muñoz-González, Phillippa Spencer, and Emil C Lupu. 2021. Regularization Can Help Mitigate Poisoning Attacks...

with the Right Hyperparameters. arXiv:2105.10948 (2021).
[26] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Debdeep Mukhopadhyay. 2018. Adversarial attacks and defences: A

survey. arXiv:1810.00069 (2018).
[27] Melissa Chase, Esha Ghosh, and Saeed Mahloujifar. 2021. Property Inference From Poisoning. arXiv:2101.11073 (2021).
[28] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian Molloy, and Biplav Srivastava. 2018.

Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering. arXiv:1811.03728 (2018).
[29] Chuanshuai Chen and Jiazhu Dai. 2020. Mitigating backdoor attacks in LSTM-based Text Classification Sys. by Backdoor Keyword Identification.

arXiv:2007.12070 (2020).
[30] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. 2019. DeepInspect: A Black-box Trojan Detection and Mitigation Framework for Deep

Neural Networks. In Int. Joint Conf. on AI, IJCAI 2019. 4658–4664.
[31] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017. ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep

Neural Networks Without Training Substitute Models. In 10th ACM Workshop on AI and Security (AISec ’17). 15–26.
[32] Ruoxin Chen, Zenan Li, Jie Li, Junchi Yan, and Chentao Wu. 2022. On Collective Robustness of Bagging Against Data Poisoning. In ICML.
[33] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted backdoor attacks on deep learning systems using data poisoning.

arXiv:1712.05526 (2017).
[34] Xiaoyi Chen, Ahmed Salem, Michael Backes, Shiqing Ma, and Yang Zhang. 2021. Badnl: Backdoor attacks against nlp models. In ICML Workshop on

Adversarial ML (2021).
[35] Hao Cheng, Kaidi Xu, Sijia Liu, Pin-Yu Chen, Pu Zhao, and Xue Lin. 2020. Defending against backdoor attack on deep neural networks.

arXiv:2002.12162 (2020).
[36] Siyuan Cheng, Yingqi Liu, ShiqingMa, and Xiangyu Zhang. 2021. Deep Feature Space Trojan Attack of Neural Networks by Controlled Detoxification.

In Thirty-Fifth AAAI Conf. on AI 2021. AAAI Press, 1148–1156.
[37] Edward Chou, Florian Tramer, and Giancarlo Pellegrino. 2020. Sentinet: Detecting localized universal attacks against deep learning systems. In

IEEE Security and Privacy Workshops, SPW 2020. IEEE, 48–54.
[38] Antonio Emanuele Cinà, Ambra Demontis, Battista Biggio, Fabio Roli, and Marcello Pelillo. 2022. Energy-Latency Attacks via Sponge Poisoning.

arXiv:2203.08147 (2022).
[39] Antonio Emanuele Cinà, Kathrin Grosse, Ambra Demontis, Battista Biggio, Fabio Roli, and Marcello Pelillo. 2022. Machine Learning Security

against Data Poisoning: Are We There Yet? CoRR abs/2204.05986 (2022).

Manuscript submitted to ACM



1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Cinà, Grosse, et al.

[40] Antonio Emanuele Cinà, Kathrin Grosse, Sebastiano Vascon, Ambra Demontis, Battista Biggio, Fabio Roli, and Marcello Pelillo. 2021. Backdoor
Learning Curves: Explaining Backdoor Poisoning Beyond Influence Functions. arXiv:2106.07214 (2021).

[41] Antonio Emanuele Cinà, Alessandro Torcinovich, and Marcello Pelillo. 2022. A black-box adversarial attack for poisoning clustering. Pattern
Recognition 122 (2022), 108306.

[42] Antonio Emanuele Cinà, Sebastiano Vascon, Ambra Demontis, Battista Biggio, Fabio Roli, and Marcello Pelillo. 2021. The Hammer and the Nut: Is
Bilevel Optimization Really Needed to Poison Linear Classifiers?. In Int. Joint Conf. on Neural Networks, IJCNN 2021. IEEE, 1–8.

[43] G.F. Cretu, A. Stavrou, M.E. Locasto, S.J. Stolfo, and A.D. Keromytis. 2008. Casting out Demons: Sanitizing Training Data for Anomaly Sensors. In
Security and Privacy, 2008. SP 2008. IEEE Symposium on. 81 –95.

[44] Ambra Demontis, Battista Biggio, Giorgio Fumera, Giorgio Giacinto, and Fabio Roli. 2017. Infinity-Norm Support Vector Machines Against
Adversarial Label Contamination. In ITASEC (CEUR Workshop Proceedings, Vol. 1816). CEUR-WS.org, 106–115.

[45] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio, Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. 2019. Why Do
Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks. In USENIX Sec. Symp. USENIX Association, 321–338.

[46] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, and Alistair Stewart. 2019. Sever: A robust meta-algorithm for
stochastic optimization. In Int. Conf. on ML. PMLR, 1596–1606.

[47] Bao Gia Doan, Ehsan Abbasnejad, and Damith C Ranasinghe. 2020. Februus: Input purification defense against trojan attacks on deep neural
network systems. In Computer Security Applications Conf. 897–912.

[48] Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. 2021. LIRA: Learnable, Imperceptible and Robust Backdoor Attacks. In IEEE ICCV. 11966–11976.
[49] Justin Domke. 2012. Generic Methods for Optimization-Based Modeling. In 15th Int. Conf. on Art. Intell. and Statistics, AISTATS 2012. JMLR, 318–326.
[50] Yinpeng Dong, Xiao Yang, Zhijie Deng, Tianyu Pang, Zihao Xiao, Hang Su, and Jun Zhu. 2021. Black-box Detection of Backdoor Attacks with

Limited Information and Data. In ICCV.
[51] Min Du, Ruoxi Jia, and Dawn Song. 2020. Robust anomaly detection and backdoor attack detection via differential privacy. In ICLR, 2020.
[52] Tom Everitt, Victoria Krakovna, Laurent Orseau, and Shane Legg. 2017. Reinforcement learning with a corrupted reward channel. In 26th Int. Joint

Conf. on AI, IJCAI 2017. 4705–4713.
[53] Ji Feng, Qi-Zhi Cai, and Zhi-Hua Zhou. 2019. Learning to Confuse: Generating Training Time Adversarial Data with Auto-Encoder. In NeurIPS.
[54] Jiashi Feng, Huan Xu, Shie Mannor, and Shuicheng Yan. 2014. Robust Logistic Regression and Classification. In Advances in Neural Inf. Proc. Sys.,

NIPS. 253–261.
[55] Liam Fowl, Ping-yeh Chiang, Micah Goldblum, Jonas Geiping, Arpit Bansal, Wojtek Czaja, and Tom Goldstein. 2021. Preventing unauthorized use

of proprietary data: Poisoning for secure dataset release. arXiv:2103.02683 (2021).
[56] Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojtek Czaja, and Tom Goldstein. 2021. Adversarial Examples Make Strong Poisons.

arXiv:2106.10807.
[57] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. 2018. Bilevel Programming for Hyperparameter

Optimization and Meta-Learning. In ICML, Vol. 80. PMLR, 1563–1572.
[58] Christopher Frederickson, Michael Moore, Glenn Dawson, and Robi Polikar. 2018. Attack strength vs. detectability dilemma in adversarial ML. In

Int. Joint Conf. on Neural Networks, IJCNN 2018. IEEE, 1–8.
[59] Yansong Gao, Bao Gia Doan, Zhi Zhang, Siqi Ma, Jiliang Zhang, Anmin Fu, Surya Nepal, and Hyoungshick Kim. 2020. Backdoor attacks and

countermeasures on deep learning: A comprehensive review. arXiv:2007.10760 (2020).
[60] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal. 2019. Strip: A defence against trojan attacks on

deep neural networks. In Computer Security Applications Conf. 113–125.
[61] Jonas Geiping, Liam Fowl, Gowthami Somepalli, Micah Goldblum, Michael Moeller, and Tom Goldstein. 2021. What Doesn’t Kill You Makes You

Robust (er): Adversarial Training against Poisons and Backdoors. arXiv:2102.13624 (2021).
[62] Jonas Geiping, Liam H. Fowl, W. Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller, and Tom Goldstein. 2021. Witches’ Brew: Industrial

Scale Data Poisoning via Gradient Matching. In ICLR 2021. OpenReview.
[63] Justin Gilmer, Ryan P Adams, Ian Goodfellow, David Andersen, and George E Dahl. 2018. Motivating the rules of the game for adversarial example

research. arXiv:1807.06732 (2018).
[64] Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song, Aleksander Madry, Bo Li, and Tom Goldstein. 2022.

Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses. IEEE Transactions on PAMI (2022), 1–1.
[65] Shafi Goldwasser, Michael P Kim, Vinod Vaikuntanathan, and Or Zamir. 2022. Planting undetectable backdoors in machine learning models.

arXiv:2204.06974 (2022).
[66] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and Harnessing Adversarial Examples. In ICLR 2015.
[67] Dou Goodman, Hao Xin, Wang Yang, Wu Yuesheng, Xiong Junfeng, and Zhang Huan. 2020. Advbox: a toolbox to generate adversarial examples

that fool neural networks. arXiv:2001.05574 (2020).
[68] Kathrin Grosse, Lukas Bieringer, Tarek Richard Besold, Battista Biggio, and Katharina Krombholz. 2023. Machine Learning Security in Industry: A

Quantitative Survey. IEEE Transactions on Information Forensics and Security (2023).
[69] Kathrin Grosse, Taesung Lee, Battista Biggio, Youngja Park, Michael Backes, and Ian Molloy. 2022. Backdoor Smoothing: Demystifying Backdoor

Attacks on Deep Neural Networks. Computers & Security (2022), 102814.
[70] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying vulnerabilities in the ML model supply chain. arXiv (2017).

Manuscript submitted to ACM



1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Wild Patterns Reloaded 33

[71] Junfeng Guo, Ang Li, and Cong Liu. 2022. AEVA: Black-box Backdoor Detection Using Adversarial Extreme Value Analysis. In ICLR,2022.
[72] Junfeng Guo and Cong Liu. 2020. Practical Poisoning Attacks on Neural Networks. In 16th Eur. Conf. on Com. Vis., ECCV 2020. Springer, 142–158.
[73] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. 2019. Tabor: A highly accurate approach to inspecting and restoring trojan

backdoors in AI Systems. arXiv:1908.01763 (2019).
[74] Yi Han, David Hubczenko, Paul Montague, Olivier De Vel, Tamas Abraham, Benjamin IP Rubinstein, Christopher Leckie, Tansu Alpcan, and Sarah

Erfani. 2020. Adversarial Reinforcement Learning under Partial Observability in Autonomous Computer Network Defence. In Int. Joint Conf. on
Neural Networks, IJCNN 2020. IEEE, 1–8.

[75] Jonathan Hayase, Weihao Kong, Raghav Somani, and Sewoong Oh. 2021. SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics.
In Int. Conf. on ML, ICML 2020. PMLR, 4129–4139.

[76] Jamie Hayes and Olga Ohrimenko. 2018. Contamination Attacks and Mitigation in Multi-Party ML. Advances in Neural Inf. Proc. Sys., NIPS 31
(2018), 6604–6615.

[77] Sanghyun Hong, Varun Chandrasekaran, Yiğitcan Kaya, Tudor Dumitraş, and Nicolas Papernot. 2020. On the effectiveness of mitigating data
poisoning attacks with gradient shaping. arXiv:2002.11497 (2020).

[78] Xiaoling Hu, Xiao Lin, Michael Cogswell, Yi Yao, Susmit Jha, and Chao Chen. 2022. Trigger Hunting with a Topological Prior for Trojan Detection.
In ICLR, 2022.

[79] Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui Ren. 2022. Backdoor Defense via Decoupling the Training Process. In ICLR, 2022.
[80] W. Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. 2020. MetaPoison: Practical General-purpose Clean-label Data

Poisoning. In Advances in Neural Inf. Proc. Sys., NeurIPS.
[81] Xijie Huang, Moustafa Alzantot, and Mani Srivastava. 2019. Neuroninspect: Detecting backdoors in neural networks via output explanations.

arXiv:1911.07399 (2019).
[82] Yunhan Huang and Quanyan Zhu. 2019. Deceptive reinforcement learning under adversarial manipulations on cost signals. In Int. Conf. on Decision

and Game Theory for Security. Springer, 217–237.
[83] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li. 2018. Manipulating ML: Poisoning attacks and

countermeasures for regression learning. In IEEE Symposium on Security and Privacy, S&P 2018. IEEE, 19–35.
[84] Matthew Jagielski, Giorgio Severi, Niklas Pousette Harger, and Alina Oprea. 2021. Subpopulation data poisoning attacks. In ACM SIGSAC Conf. on

Computer and Communications Security, CCS 2021. 3104–3122.
[85] Mojan Javaheripi, Mohammad Samragh, Gregory Fields, Tara Javidi, and Farinaz Koushanfar. 2020. CLEANN: Accelerated trojan shield for

embedded neural networks. In IEEE/ACM Int. Conf. On Computer Aided Design, ICCAD 2020. IEEE, 1–9.
[86] Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. 2020. Certified robustness of nearest neighbors against data poisoning attacks. arXiv (2020).
[87] Donald R Jones, Matthias Schonlau, and William J Welch. 1998. Efficient global optimization of expensive black-box functions. Journal of Global

optimization 13, 4 (1998), 455–492.
[88] Sara Kaviani and Insoo Sohn. 2021. Defense against neural trojan attacks: A survey. Neurocomputing 423 (2021), 651–667.
[89] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li. 2020. TrojDRL: evaluation of backdoor attacks on deep reinforcement learning.

In ACM/IEEE Design Automation Conf., DAC 2020. IEEE, 1–6.
[90] Marius Kloft and Pavel Laskov. 2010. Online Anomaly Detection under Adversarial Impact. In AISTATS 2010. JMLR, 405–412.
[91] Stefanos Koffas, Jing Xu, Mauro Conti, and Stjepan Picek. 2021. Can You Hear It? Backdoor Attacks via Ultrasonic Triggers. arXiv (2021).
[92] Pang Wei Koh and Percy Liang. 2017. Understanding Black-box Predictions via Influence Functions. In Int. Conf. on ML, ICML. PMLR, 1885–1894.
[93] Pang Wei Koh, Jacob Steinhardt, and Percy Liang. 2022. Stronger data poisoning attacks break data sanitization defenses. Machine Learning 111

(2022), 1–47.
[94] Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and Heiko Hoffmann. 2020. Universal litmus patterns: Revealing backdoor attacks in cnns. In

IEEE/CVF Int. Conf. on Computer Vision, ICCV 2021. 301–310.
[95] Ram Shankar Siva Kumar, Magnus Nyström, John Lambert, Andrew Marshall, Mario Goertzel, Andi Comissoneru, Matt Swann, and Sharon Xia.

2020. Adversarial ML-industry perspectives. (2020), 69–75.
[96] Ricky Laishram and Vir Virander Phoha. 2016. Curie: A method for protecting SVM Classifier from Poisoning Attack. arXiv:1606.01584 (2016).
[97] Alexander Levine and Soheil Feizi. 2021. Deep Partition Aggregation: Provable Defenses against General Poisoning Attacks. In ICLR 2021.
[98] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. 2017. Hyperband: A novel bandit-based approach to

hyperparameter optimization. The Journal of ML Research 18, 1 (2017), 6765–6816.
[99] Shaofeng Li, Minhui Xue, Benjamin Zhao, Haojin Zhu, and Xinpeng Zhang. 2020. Invisible Backdoor Attacks on Deep Neural Networks via

Steganography and Regularization. IEEE Trans. on Dependable and Secure Computing PP (09 2020), 1–1.
[100] Yige Li, Nodens Koren, Lingjuan Lyu, Xixiang Lyu, Bo Li, and Xingjun Ma. 2021. Neural Attention Distillation: Erasing Backdoor Triggers from

Deep Neural Networks. ICLR, 2021.
[101] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. 2021. Invisible Backdoor Attack With Sample-Specific Triggers. In

IEEE/CVF Int. Conf. on Computer Vision, ICCV 2021. 16463–16472.
[102] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. 2021. Anti-backdoor learning: Training clean models on poisoned data.

Advances in Neural Inf. Proc. Sys., NeurIPS 34.
[103] Yiming Li, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. 2020. Backdoor learning: A survey. arXiv:2007.08745 (2020).

Manuscript submitted to ACM



1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Cinà, Grosse, et al.

[104] Yiming Li, Tongqing Zhai, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shutao Xia. 2020. Rethinking the trigger of backdoor attack. arXiv (2020).
[105] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. 2020. Composite Backdoor Attack for Deep Neural Network by Mixing Existing Benign Features.

In SIGSAC Conf. on Computer and Communications Security, CCS 2020. 113–131.
[106] Chang Liu, Bo Li, Yevgeniy Vorobeychik, and Alina Oprea. 2017. Robust Linear Regression Against Training Data Poisoning. In 10th ACMWorkshop

on Art. Intell. and Sec., AISec 2017. ACM, 91–102.
[107] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2018. Fine-pruning: Defending against backdooring attacks on deep neural networks. In Int.

Symposium on Research in Attacks, Intrusions, and Defenses. Springer, 273–294.
[108] Xuanqing Liu, Si Si, Jerry Zhu, Yang Li, and Cho-Jui Hsieh. 2019. A Unified Framework for Data Poisoning Attack to Graph-based Semi-supervised

Learning. In Advances in Neural Inf. Proc. Sys., NeurIPS 2019. 9777–9787.
[109] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and Xiangyu Zhang. 2019. ABS: Scanning Neural Networks for Back-doors

by Artificial Brain Stimulation. In ACM SIGSAC Conf. on Computer and Communications Security, CCS 2019. ACM, 1265–1282.
[110] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang. 2018. Trojaning Attack on Neural Networks.

In Network and Distributed System Sec. Symp., NDSS. 45–48.
[111] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. 2020. Reflection Backdoor: A Natural Backdoor Attack on Deep Neural Networks. In Computer

Vision - ECCV 2020 - 16th Eur. Conf. Springer, 182–199.
[112] Yuntao Liu, Yang Xie, and Ankur Srivastava. 2017. Neural Trojans. In IEEE Int. Conf. on Computer Design, ICCD 2017. 45–48.
[113] Pablo Ribalta Lorenzo, Jakub Nalepa, Michal Kawulok, Luciano Sanchez Ramos, and José Ranilla Pastor. 2017. Particle swarm optimization for

hyper-parameter selection in deep neural networks. In the genetic and evolutionary computation conference. 481–488.
[114] Jonathan Lorraine, Paul Vicol, and David Duvenaud. 2020. Optimizing millions of hyperparameters by implicit differentiation. In Int. Conf. on AI

and Statistics. PMLR, 1540–1552.
[115] Yuzhe Ma, Kwang-Sung Jun, Lihong Li, and Xiaojin Zhu. 2018. Data poisoning attacks in contextual bandits. In Int. Conf. on Decision and Game

Theory for Security. Springer, 186–204.
[116] Yuzhe Ma, Xiaojin Zhu, and Justin Hsu. 2019. Data Poisoning against Differentially-Private Learners: Attacks and Defenses. In IJCAI. 4732–4738.
[117] Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. 2015. Gradient-based Hyperparameter Optimization through Reversible Learning. In

32nd Int. Conf. on ML, ICML 2015. JMLR, 2113–2122.
[118] Naren Manoj and Avrim Blum. 2021. Excess capacity and backdoor poisoning. Advances in Neural Inf. Proc. Sys., NeurIPS 34 (2021), 20373–20384.
[119] Sean McGregor. 2020. Preventing Repeated Real World AI Failures by Cataloging Incidents: The AI Incident Database. arXiv:2011.08512 (2020).
[120] Akshay Mehra, Bhavya Kailkhura, Pin-Yu Chen, and Jihun Hamm. 2021. How Robust are Randomized Smoothing based Defenses to Data Poisoning?.

In IEEE/CVF Int. Conf. on Computer Vision, ICCV 2021. 13244–13253.
[121] Shike Mei and Xiaojin Zhu. 2015. Using Machine Teaching to Identify Optimal Training-Set Attacks on Machine Learners. In AAAI. 2871–2877.
[122] Marco Melis, Ambra Demontis, Maura Pintor, Angelo Sotgiu, and Battista Biggio. 2019. secml: A Python Library for Secure and Explainable ML.

arXiv:1912.10013 (2019).
[123] Nicolas M. Müller, Daniel Kowatsch, and Konstantin Böttinger. 2020. Data Poisoning Attacks on Regression Learning and Corresponding Defenses.

In 25th IEEE Pacific Rim Int. Symposium on Dependable Computing, PRDC 2020. IEEE, 80–89.
[124] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee, Emil C. Lupu, and Fabio Roli. 2017. Towards

Poisoning of Deep Learning Algorithms with Back-gradient Optimization. In 10th ACM Workshop on Art. Intell. and Sec., AISec 2017. ACM, 27–38.
[125] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D Joseph, Benjamin IP Rubinstein, Udam Saini, Charles Sutton, JD Tygar, and Kai Xia.

2009. Misleading learners: Co-opting your spam filter. In ML in Cyber Trust. Springer, 17–51.
[126] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D. Joseph, Benjamin I. P. Rubinstein, Udam Saini, Charles Sutton, J. Doug Tygar, and Kai

Xia. 2008. Exploiting ML to Subvert Your Spam Filter. In USENIX Workshop on Large-Scale Exploits and Emergent Threats, LEET 2008. USENIX, 1–9.
[127] James Newsome, Brad Karp, and Dawn Xiaodong Song. 2006. Paragraph: Thwarting Signature Learning by Training Maliciously. In RAID 2006

(Lecture Notes in Computer Science, Vol. 4219). Springer, 81–105.
[128] Tuan Anh Nguyen and Anh Tran. 2020. Input-Aware Dynamic Backdoor Attack. In Advances in Neural Inf. Proc. Sys., NeurIPS.
[129] Tuan Anh Nguyen and Anh Tuan Tran. 2021. WaNet - Imperceptible Warping-based Backdoor Attack. In ICLR, 2021. OpenReview.net.
[130] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish Rawat, Martin Wistuba, Valentina Zantedeschi, Nathalie Baracaldo,

Bryant Chen, Heiko Ludwig, Ian Molloy, and Ben Edwards. 2018. Adversarial Robustness Toolbox v1.2.0. CoRR 1807.01069 (2018).
[131] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. 2016. Transferability in ML: from phenomena to black-box attacks using adversarial

samples. arXiv:1605.07277 (2016).
[132] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram Swami. 2017. Practical Black-Box Attacks

against ML. In ACM Asia Conf. on Computer and Communications Security, AsiaCCS 2017. ACM, 506–519.
[133] Andrea Paudice, Luis Muñoz-González, and Emil C Lupu. 2018. Label sanitization against label flipping poisoning attacks. In Joint Eur. Conf. on ML

and Knowledge Discovery in Databases. Springer, 5–15.
[134] R. Perdisci, D. Dagon, Wenke Lee, P. Fogla, and M. Sharif. 2006. Misleading worm signature generators using deliberate noise injection. In IEEE

Symposium on Security and Privacy, S& P 2006. 15 pp.–31.
[135] Neehar Peri, Neal Gupta, W Ronny Huang, Liam Fowl, Chen Zhu, Soheil Feizi, Tom Goldstein, and John P Dickerson. 2020. Deep k-NN defense

against clean-label data poisoning attacks. In Eur. Conf. on Computer Vision. Springer, 55–70.

Manuscript submitted to ACM



1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Wild Patterns Reloaded 35

[136] Maura Pintor, Luca Demetrio, Angelo Sotgiu, Giovanni Manca, Ambra Demontis, Nicholas Carlini, Battista Biggio, and Fabio Roli. 2021. Indicators
of Attack Failure: Debugging and Improving Optimization of Adversarial Examples. arXiv preprint arXiv:2106.09947 (2021).

[137] Fanchao Qi, Yangyi Chen, Mukai Li, Zhiyuan Liu, and Maosong Sun. 2020. ONION: A Simple and Effective Defense Against Textual Backdoor
Attacks. arXiv:2011.10369 (2020).

[138] Ximing Qiao, Yukun Yang, and Hai Li. 2019. Defending neural backdoors via generative distribution modeling. In NeurIPS. 14004–14013.
[139] Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu, and Adish Singla. 2020. Policy teaching via environment poisoning: Training-time

adversarial attacks against reinforcement learning. In Int. Conf. on ML, ICML 2020. PMLR, 7974–7984.
[140] Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico Kolter. 2020. Certified robustness to label-flipping attacks via randomized smoothing.

In ICML. PMLR, 8230–8241.
[141] Benjamin IP Rubinstein, Blaine Nelson, Ling Huang, Anthony D Joseph, Shing-hon Lau, Satish Rao, Nina Taft, and J Doug Tygar. 2009. Antidote:

understanding and defending against poisoning of anomaly detectors. In 9th ACM SIGCOMM Conf. on Internet Measurement. 1–14.
[142] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. 2020. Hidden Trigger Backdoor Attacks. In AAAI. AAAI Press, 11957–11965.
[143] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang. 2020. Dynamic backdoor attacks against ML models. arXiv (2020).
[144] Esha Sarkar, Yousif Alkindi, and Michail Maniatakos. 2020. Backdoor suppression in neural networks using input fuzzing and majority voting.

IEEE Design & Test 37, 2 (2020), 103–110.
[145] Esha Sarkar, Hadjer Benkraouda, and Michail Maniatakos. 2020. FaceHack: Triggering backdoored facial recognition Sys. using facial characteristics.

arXive:2006.11623 (2020).
[146] Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P Dickerson, and Tom Goldstein. 2021. Just how toxic is data poisoning? a unified

benchmark for backdoor and data poisoning attacks. In Int. Conf. on ML, ICML 2021. PMLR, 9389–9398.
[147] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea. 2021. Explanation-Guided Backdoor Poisoning Attacks Against Malware Classifiers. In

USENIX Sec. Symp.
[148] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras, and Tom Goldstein. 2018. Poison Frogs! Targeted

Clean-Label Poisoning Attacks on Neural Networks. In Advances in Neural Inf. Proc. Sys., NeurIPS 2018. 6106–6116.
[149] Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and Ben Y Zhao. 2022. Traceback of Targeted Data Poisoning Attacks in Neural Networks. In

USENIX Sec. Symp. USENIX Association.
[150] Virat Shejwalkar, Amir Houmansadr, Peter Kairouz, and Daniel Ramage. 2022. Back to the Drawing Board: A Critical Evaluation of Poisoning

Attacks on Federated Learning. In IEEE Symposium on Security and Privacy.
[151] Guangyu Shen, Yingqi Liu, Guanhong Tao, Shengwei An, Qiuling Xu, Siyuan Cheng, Shiqing Ma, and Xiangyu Zhang. 2021. Backdoor Scanning

for Deep Neural Networks through K-Arm Optimization. arXiv:2102.05123 (2021).
[152] Reza Shokri et al. 2020. Bypassing Backdoor Detection Algorithms in Deep Learning. In IEEE Euro S&P 2020. IEEE, 175–183.
[153] David Solans, Battista Biggio, and Carlos Castillo. 2020. Poisoning Attacks on Algorithmic Fairness. In ECML PKDD. Springer, 162–177.
[154] Robin Sommer and Vern Paxson. 2010. Outside the closed world: On using ML for network intrusion detection. In IEEE S&P 2010. IEEE, 305–316.
[155] Ezekiel Soremekun, Sakshi Udeshi, Sudipta Chattopadhyay, and Andreas Zeller. 2020. Exposing backdoors in robust ML models. arXiv (2020).
[156] Hossein Souri, Micah Goldblum, Liam Fowl, Rama Chellappa, and Tom Goldstein. 2021. Sleeper Agent: Scalable Hidden Trigger Backdoors for

Neural Networks Trained from Scratch. arXiv:2106.08970 (2021).
[157] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. 2017. Certified Defenses for Data Poisoning Attacks. In Neural Inf. Proc. Sys., NIPS. 3517–3529.
[158] Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume III, and Tudor Dumitras. 2018. When does ML {FAIL}? generalized transferability for

evasion and poisoning attacks. In USENIX Sec. Symp. 1299–1316.
[159] Lichao Sun, Yingtong Dou, Carl Yang, Ji Wang, Philip S Yu, Lifang He, and Bo Li. 2018. Adversarial attack and defense on graph data: A survey.

arXiv:1812.10528 (2018).
[160] Mingjie Sun, Zichao Li, Chaowei Xiao, Haonan Qiu, Bhavya Kailkhura, Mingyan Liu, and Bo Li. 2021. Can Shape Structure Features Improve

Model Robustness under Diverse Adversarial Settings?. In IEEE CVF Int. Conf. on Computer Vision. 7526–7535.
[161] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan. 2019. Can you really backdoor federated learning? arXiv (2019).
[162] Rahim Taheri, Reza Javidan, Mohammad Shojafar, Zahra Pooranian, Ali Miri, and Mauro Conti. 2020. On defending against label flipping attacks

on malware detection system. Neural Computing and Applications (2020), 1–20.
[163] Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan Zhang. 2021. Demon in the Variant: Statistical Analysis of {DNNs} for Robust Backdoor

Contamination Detection. (2021), 1541–1558.
[164] Zhiyi Tian, Lei Cui, Jie Liang, and Shui Yu. 2022. A Comprehensive Survey on Poisoning Attacks and Countermeasures in Machine Learning.

Comput. Surveys (2022).
[165] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. 2020. Data Poisoning Attacks Against Federated Learning Sytems. In Eur.

Symposium on Research in Computer Security, ESORICS. Springer, 480–501.
[166] Antonio Torralba and Alexei A Efros. 2011. Unbiased look at dataset bias. In CVPR 2011. IEEE, 1521–1528.
[167] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2016. Stealing ML Models via Prediction APIs. In USENIX Sec.

Symp. 601–618.
[168] Brandon Tran, Jerry Li, and Aleksander Mądry. 2018. Spectral signatures in backdoor attacks. In Conf. on Neural Inf. Proc. Sys., NIPS 2018. 8011–8021.
[169] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. 2019. Label-consistent backdoor attacks. arXiv:1912.02771 (2019).

Manuscript submitted to ACM



1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

36 Cinà, Grosse, et al.

[170] Sakshi Udeshi, Shanshan Peng, Gerald Woo, Lionell Loh, Louth Rawshan, and Sudipta Chattopadhyay. 2019. Model agnostic defence against
backdoor attacks in ML. arXiv:1908.02203 (2019).

[171] Akshaj Kumar Veldanda, Kang Liu, Benjamin Tan, Prashanth Krishnamurthy, Farshad Khorrami, Ramesh Karri, Brendan Dolan-Gavitt, and
Siddharth Garg. 2021. NNoculation: Catching BadNets in the Wild. In 14th ACM Workshop on AI and Security. 49–60.

[172] Miguel Villarreal-Vasquez and Bharat Bhargava. 2020. Confoc: Content-focus protection against trojan attacks on neural networks. arXiv (2020).
[173] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y Zhao. 2019. Neural cleanse: Identifying and

mitigating backdoor attacks in neural networks. In IEEE Symposium on Security and Privacy, S&P 2019. IEEE, 707–723.
[174] Jingkang Wang, Yang Liu, and Bo Li. 2020. Reinforcement learning with perturbed rewards. In AAAI Conf. on Art. Intell. AAAI Press, 6202–6209.
[175] Wenxiao Wang, Alexander J Levine, and Soheil Feizi. 2022. Improved Certified Defenses against Data Poisoning with (Deterministic) Finite

Aggregation. In ICML. PMLR, 22769–22783.
[176] Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang, and Bo Li. 2020. Rab: Provable robustness against backdoor attacks. arXiv:2003.08904 (2020).
[177] Jialin Wen, Benjamin Zi Hao Zhao, Minhui Xue, Alina Oprea, and Haifeng Qian. 2021. With Great Dispersion Comes Greater Resilience: Efficient

Poisoning Attacks and Defenses for Linear Regression Models. IEEE Trans. on Inf. Forensics and Security (2021).
[178] Cheng-Hsin Weng, Yan-Ting Lee, and Shan-Hung Brandon Wu. 2020. On the Trade-off between Adversarial and Backdoor Robustness. Neural Inf.

Proc. Sys., NeurIPS (2020).
[179] Emily Wenger, Josephine Passananti, Arjun Nitin Bhagoji, Yuanshun Yao, Haitao Zheng, and Ben Y. Zhao. 2021. Backdoor Attacks Against Deep

Learning Sys. in the Physical World. IEEE/CVF Int. Conf. on Computer Vision, ICCV 2021 (2021), 6202–6211.
[180] Dongxian Wu and Yisen Wang. 2021. Adversarial Neuron Pruning Purifies Backdoored Deep Models. In NeurIPS.
[181] Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. 2021. Graph Backdoor. In USENIX Sec. Symp. 1523–1540.
[182] Zhen Xiang, David Miller, and George Kesidis. 2022. Post-Training Detection of Backdoor Attacks for Two-Class and Multi-Attack Scenarios. In

ICLR,2022.
[183] Zhen Xiang, David J Miller, and George Kesidis. 2019. A benchmark study of backdoor data poisoning defenses for deep neural network classifiers

and a novel defense. In IEEE 29th Int. Workshop on ML for Signal Proc., MLSP 2019. IEEE, 1–6.
[184] Zhen Xiang, David J Miller, and George Kesidis. 2020. Detection of Backdoors in Trained Classifiers Without Access to the Training Set. IEEE

Trans. on Neural Networks and Learning Sys. (2020).
[185] Zhen Xiang, David J Miller, and George Kesidis. 2021. L-Red: Efficient Post-Training Detection of Imperceptible Backdoor Attacks Without Access

to the Training Set. In IEEE Int. Conf. on Acoustics, Speech and Signal Proc., ICASSP 2021. IEEE, 3745–3749.
[186] Zhen Xiang, David J Miller, and George Kesidis. 2021. Reverse engineering imperceptible backdoor attacks on deep neural networks for detection

and training set cleansing. Computers & Security 106 (2021), 102280.
[187] Chaowei Xiao, Xinlei Pan, Warren He, Jian Peng, Mingjie Sun, Jinfeng Yi, Mingyan Liu, Bo Li, and Dawn Song. 2019. Characterizing attacks on

deep reinforcement learning. arXiv:1907.09470 (2019).
[188] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and Fabio Roli. 2015. Is Feature Selection Secure against Training Data

Poisoning?. In 32nd Int. Conf. on ML, ICML 2015. JMLR, 1689–1698.
[189] Huang Xiao, Battista Biggio, Blaine Nelson, Han Xiao, Claudia Eckert, and Fabio Roli. 2015. Support vector machines under adversarial label

contamination. Neurocomputing 160 (2015), 53–62.
[190] Han Xiao, Huang Xiao, and Claudia Eckert. 2012. Adversarial Label Flips Attack on Support Vector Machines. In ECAI 2012 - 20th Eur. Conf. on AI.

Including Prestigious Applications of AI, PAIS-2012. IOS Press, 870–875.
[191] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2020. DBA: Distributed Backdoor Attacks against Federated Learning. In ICLR, 2020. OpenReview.
[192] Hang Xu, RundongWang, Lev Raizman, and Zinovi Rabinovich. 2021. Transferable Environment Poisoning: Training-time Attack on Reinforcement

Learning. In 20th Int. Conf. on Autonomous Agents and MultiAgent Sys. 1398–1406.
[193] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A. Gunter, and Bo Li. 2021. Detecting AI Trojans Using Meta Neural Analysis. In IEEE

Symposium on Security and Privacy, S&P. IEEE, 103–120.
[194] Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen. 2017. Generative Poisoning Attack Method Against Neural Networks. CoRR abs/1703.01340 (2017).
[195] Yu Yang, Tian Yu Liu, and Baharan Mirzasoleiman. 2022. Not All Poisons are Created Equal: Robust Training against Data Poisoning. In ICML.

PMLR, 25154–25165.
[196] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao. 2019. Latent backdoor attacks on deep neural networks. In ACM SIGSAC Conf. on

Computer and Communications Security, CCS 2019. 2041–2055.
[197] Kota Yoshida and Takeshi Fujino. 2020. Disabling Backdoor and Identifying Poison Data by using Knowledge Distillation in Backdoor Attacks on

Deep Neural Networks. In 13th ACM Workshop on AI and Security. 117–127.
[198] Steven R Young, Derek C Rose, Thomas P Karnowski, Seung-Hwan Lim, and Robert M Patton. 2015. Optimizing deep learning hyper-parameters

through an evolutionary algorithm. In Workshop on ML in High-Performance Computing Environments. 1–5.
[199] Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and Ruoxi Jia. 2022. Adversarial Unlearning of Backdoors via Implicit Hypergradient. In

ICLR, 2022.
[200] Yi Zeng, Han Qiu, Shangwei Guo, Tianwei Zhang, Meikang Qiu, and Bhavani Thuraisingham. 2020. DeepSweep: An Evaluation Framework for

Mitigating DNN Backdoor Attacks using Data Augmentation. arXiv:2012.07006 (2020).

Manuscript submitted to ACM



1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

Wild Patterns Reloaded 37

[201] Jiale Zhang, Junjun Chen, Di Wu, Bing Chen, and Shui Yu. 2019. Poisoning Attack in Federated Learning using Generative Adversarial Nets. In
IEEE Int. Conf. On Trust, Security and Privacy. IEEE, 374–380.

[202] Jiale Zhang, Di Wu, Chengyong Liu, and Bing Chen. 2020. Defending Poisoning Attacks in Federated Learning via Adversarial Training Method. In
Int. Conf. on Frontiers in Cyber Security. Springer, 83–94.

[203] Rui Zhang and Quanyan Zhu. 2017. A game-theoretic analysis of label flipping attacks on distributed support vector machines. In Conf. on Inf.
Sciences and Sys., CISS 2017. IEEE, 1–6.

[204] Xinqiao Zhang, Huili Chen, and Farinaz Koushanfar. 2021. TAD: Trigger Approximation based Black-box Trojan Detection for AI. arXiv (2021).
[205] Xuezhou Zhang, Yuzhe Ma, Adish Singla, and Xiaojin Zhu. 2020. Adaptive reward-poisoning attacks against reinforcement learning. In Int. Conf.

on ML, ICML 2020. PMLR, 11225–11234.
[206] Xinyang Zhang, Zheng Zhang, and Ting Wang. 2020. Trojaning Language Models for Fun and Profit. CoRR abs/2008.00312 (2020).
[207] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. 2021. Backdoor Attacks to Graph Neural Networks. In SACMAT ’21: The 26th

ACM Symposium on Access Control Models and Technologies. ACM, 15–26.
[208] Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan Ramamurthy, and Xue Lin. 2020. Bridging mode connectivity in loss landscapes and

adversarial robustness. In ICLR, 2021.
[209] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen, and Yu-Gang Jiang. 2020. Clean-Label Backdoor Attacks on Video Recognition

Models. In IEEE/CVF Int. Conf. on Computer Vision, ICCV 2020. IEEE, 14431–14440.
[210] Ying Zhao, Junjun Chen, Jiale Zhang, Di Wu, Jian Teng, and Shui Yu. 2019. PDGAN: a novel poisoning defense method in federated learning using

generative adversarial network. In International Conference on Algorithms and Architectures for Parallel Processing. Springer, 595–609.
[211] Haoti Zhong, Cong Liao, Anna Cinzia Squicciarini, Sencun Zhu, and David J. Miller. 2020. Backdoor Embedding in Convolutional Neural Network

Models via Invisible Perturbation. In CODASPY ’20: Tenth ACM Conf. on Data and Application Security and Privacy 2020. ACM, 97–108.
[212] Chen Zhu, W. Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer, and Tom Goldstein. 2019. Transferable Clean-Label Poisoning Attacks

on Deep Neural Nets. In 36th Int. Conf. on ML, ICML 2019. PMLR, 7614–7623.
[213] Liuwan Zhu, Rui Ning, Cong Wang, Chunsheng Xin, and Hongyi Wu. 2020. Gangsweep: Sweep out neural backdoors by gan. In 28th ACM Int.

Conf. on Multimedia. 3173–3181.
[214] Liuwan Zhu, Rui Ning, Chunsheng Xin, Chonggang Wang, and Hongyi Wu. 2021. CLEAR: Clean-Up Sample-Targeted Backdoor in Neural

Networks. In IEEE/CVF Int. Conf. on Computer Vision, ICCV 2021. 16453–16462.
[215] Daniel Zügner and Stephan Günnemann. 2019. Adversarial Attacks on Graph Neural Networks via Meta Learning. In ICLR, 2019. OpenReview.net.

Manuscript submitted to ACM


	Abstract
	1 Introduction
	2 Modeling Poisoning Attacks and Defenses
	2.1 Learning Settings
	2.2 Attack Framework
	2.3 Defense Framework
	2.4 Poisoning Attacks and Defenses

	3 Attacks
	3.1 Indiscriminate (Availability) Poisoning Attacks
	3.2 Targeted (Integrity) Poisoning Attacks
	3.3 Backdoor (Integrity) Poisoning Attacks
	3.4 Current Limitations
	3.5 Transferability of Poisoning Attacks
	3.6 Unifying Framework

	4 Defenses
	4.1 Training Data Sanitization
	4.2 Robust Training
	4.3 Model Inspection
	4.4 Model Sanitization
	4.5 Trigger Reconstruction
	4.6 Test Data Sanitization
	4.7 Current Limitations

	5 Poisoning Attacks and Defenses in Other Domains
	6 Resources: Software Libraries, Implementations, and Benchmarks
	7 Development, Challenges, and Future Research Directions
	7.1 Development Timelines for Poisoning Attacks and Defenses
	7.2 Challenges and Future Work

	8 Concluding Remarks
	Acknowledgments
	References

