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ABSTRACT. In this paper we investigate the numerical solution of Cauchy
bisingular integral equations of the first kind on the square. We propose
two different methods based on a global polynomial approximation of the un-
known solution. The first one is a discrete collocation method applied to
the original equation and then is a “direct”method. The second one is an
“indirect” procedure of discrete collocation-type since we act on the so-called
regularized Fredholm equation. In both cases, the convergence and the sta-
bility of the method is proved in suitable weighted spaces of functions, and
the well conditioning of the linear system is showed. In order to illustrate the
efficiency of the proposed procedures, some numerical tests are given.
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1. INTRODUCTION

Singular integral equations with Cauchy kernels arise in the mathematical mod-
elling of several problems of the Applied Sciences like aerodynamics, elasticity, fluid
flow problems and crack theory [11 111 B30].

For the univariate case, a general theory on such type of equations is well devel-
oped and described in the monographs [9, 271 28| [3T] and several numerical methods
have been extensively investigated [3] [5] [7, 2] T4l [15] 17, 18], 19 23] in terms of
stability, convergence, well-conditioning and accuracy of the results.

Concerning the multivariate case, the theoretical analysis of these equations
is well studied in the books [20] 26] and several authors focus their research on
bisingular integral equations arising from the 3D Helmholtz equations. An example
is the following bivariate singular integral equation of the first kind which is strictly
related to the stationary problem of a flow past a rectangular airfoil of large span

B
L Fay) s
w2 f—l ?{1 (x—t)(y —s) dzdy = g(t, ),

where here and in the sequel the symbol § means that the integral has to be
interpreted in the Cauchy Principal Value sense.
However, even if these equations are of applicative nature, according to our
knowledge, very few numerical methods are disposable in the literature [13] [16].
The principal aim of this paper is to investigate on the numerical treatment of
the more general bisingular integral equation of the first kind defined on the square
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S=[-1,1] x [-1, 1]

i M T X S €T X = S
1) ey [ k) P dedy = g(t.5),

where F' is the bivariate unknown function and k£ and ¢ are given functions defined
on S% and S, respectively.
According to [8, [12], the solution of the above equation can be singular along
two o more edges of the square S and the behavior of the singularities is known.
In this paper we consider the case when the solution turns to be unbounded at
x =y = —1 and thus [8, [12] it can be expressed as

Fa9) = feoy ey T

where f has to be determined. In a nutshell, the function F' has a behaviour similar
to that of the solution of the airfoil equation in the univariate case [31].
Hence, equation ([L.1]) can be rewritten as

(1.2) (D+K)f =g,

where D is the dominant operator

1 f(z,y) M-z [1—y
(13) Dfit,s) = ﬁj’i (x—t)(y—s) V1i+az 1—|—yd$dy

and K is the perturbation operator

(1.4) Kf(t,s) = /Sk(a:,y,t,s)f(x,y) 1/ 1;i 1/%dxdy.

In this paper, for the numerical treatment of , we propose two different
approaches, both based on a global polynomial approximation of the unknown
bivariate function f. The first one is a “direct” method since we act directly on the
equation, while the second one is an “indirect” procedure, since we go to solve an
equivalent regularized Fredholm equation.

In both cases, by using a suitable Lagrange interpolating operator, we project the
considered equation into the subspace of polynomials and we discretize the integrals
by using a suitable Gaussian cubature formula and by applying the fundamental
invariance property of D on the orthogonal polynomials. Then, by collocation on
suitable nodes, we end up with a linear system whose unknowns are the coefficients
of the polynomial approximating the exact solution.

For both methods, we give a complete analysis in suitable weighted L? spaces.
In details, we examine the stability, show the related convergence results and error
estimates, and discuss the condition numbers of the systems we get.

Comparing the presented two procedures, they are equivalent in terms of conver-
gence order and computational costs, at least when in the indirect approach we can
compute exactly the involved integrals. Otherwise the indirect procedure is more
expensive. Nevertheless the strategy of using the Fredholm equation equivalent to
the Cauchy singular one, can be much easier extended to other functional spaces.

We underline that in order to achieve such theoretical analysis, we needed to
prove some auxiliary results concerning the mapping properties of the involved in-
tegral operators and the bivariate Lagrange and Fourier operators. These auxiliary
results are new and can also be used elsewhere.

The paper is structured into six sections. In Section [2} once the function spaces
in which we address our investigation have been introduced, we give some prelim-
inary results concerning the bivariate Fourier and Lagrange operators as well as
the Gaussian cubature rule. In Section |3| we state the mapping properties of the
integral operators D and K. Sections [4 and [f] are devoted to the two different
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methods we propose and whose numerical tests are showed in Section [6] At the
end, in Section [7] we give the proofs of our results.

2. PRELIMINARIES

2.1. Function spaces. Let w(z,y) = wi(x)wa(y) the product of two Jacobi weights,
wi(2) = (1 = 2)% (14 2)%, a;, i > —1,i=1,2, z € (-1, 1).

We define the weighted Hilbert space L2 (S) as the set of all weighted square
integrable functions f : S — R equipped with the inner product

<f,g>w=/Sf(:ﬂ,y)9(w,y)w(x,y) dz dy

and the norm

11

For brevity, from now on we set || f|zz2 := || fllz2 (s)-
For more regular functions and for a positive integer r > 1, let us also consider
the following Sobolev-type subspace

Wi, ={f e Li(8): f'=1 € AC((=1,1)%), If lwy, = Il ]

where the superscript (r — 1) denotes the (r — 1)-th derivative with respect to each
variable, AC((—1,1)?) stands for the set of all functions f which are absolutely
continuous on every closed sub-domain of (-1, 1)?, and

2(s) = lfvVwlla = V{fs fuw-

w

2 +Mr(f7w) < OO}

w

" f(x 2 1/2
M, (f,w) = sup (/s wwr(zﬂ w(z,y)dr dy) 7
o 2 1/2

(/s J;(;T-’y)sﬁr(y) w(z,y) d:cdy)

with p(2) = V1 — 22.

2.2. Bivariate Fourier and Lagrange operators. Let {p,,(w;)}2>_, be the se-
quence of the orthonormal polynomials with positive leading coefficients, w.r.t. the
weight w;, 1 = 1,2, i.e.

P (Wi, 2) = ym (w;)2™ +  terms of lower degree, p,(w;) > 0.

For a function f € L2 (S), we define the bivariate Fourier sum as

3
L
3
L

(2.1) Sm,m(f,w,x,y) = Cij(faw)pi(wlax)pj(w%y)
i=0 j=0
where
(2.2) i) = [ fGog)pitwn, o)y s, )l y)de dy
s

are the Fourier coefficients.

The next two propositions show the behaviour of S, ,, in the case when f €
L2(S)or feW.

To this end, let us define the error of best polynomial approximation in L2 (S)
as

Em,m(f)w = PelIPr’lf Hf - P|

m,m

L2

w

where P, ,, denotes the set of all algebraic polynomials of two variables of degree
at most m in each variable.
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Moreover, in the sequel C denotes a positive constant which may have different
values in different formulas. We will write C(a,b,...) to say that C depends only
on the parameters a,b,... and C # C(a,b,...) to say that C is independent of the
parameters a,b, . ...

Proposition 2.1. Let f € L2/(S). Then

—

m—1m—1

(2.3) Ergn,m(f)w = Hf _Sm,m(f7w>||2qu = ||f||%12u - c?j(f w

=0 7=0

<

Thus, according to the previous result, as in the univariate case (see [25] and the
reference therein), S, ,, is the best polynomial approximation of f € L2 (S) and,
since the Weierstrass Theorem holds true, by (2.3) we get the Parseval identity

(2.4) 1A llez, = | D2 fw)

i=0 j=0

Em,m(f)w = Z Z C?j(fvw

i>mji>m

and

Proposition 2.2. Let f € W and r1 and r be two positive integers such that
r1 < r. Then there exists a positive constant C # C(m, f) such that the following
estimate holds true

C
Hf_Sm,m (faw)Hw;l < W ”fHW’ .

w

Now, for a function f € C((—1, 1)?) (i.e. f is continuous on every closed subset
of the open square (—1,1)?), let us consider the bivariate Lagrange polynomial

(25) ‘Cmm f,w X y ZZK w17 w27y)f(zi7yj)u

=1 j=1
where {z;}{*; and {y;}7", are the zeros of p,,(w1) and py,(ws), respectively and
li(wy,x) and Li(wa2,y) denote the i-th and j-th fundamental Lagrange polynomial,
respectively deﬁned as

pm (w1, ) Pm(w2,y)
P (w1, 2i) (2 — 2i) P (w2, 93) (5 — y5)
Hence L,, ,, is a polynomial of degree m — 1 in each variable and by its definition
it follows that L., (P, w,z,y) = P(x,y) it P € Py m—1.
Next proposition shows the weighted-L? convergence of the Lagrange interpo-
lating polynomial for every f € W .

(26) &(wl, !E) = ) E (w27 y)

Proposition 2.3. Let f € W . Then there exists a positive constant C # C(m, f)
such that the following estimate holds true

(2.7) 15 = Lo ()l gy < o 1l

w

2.3. Gaussian cubature rule. Let us now mtroduce the tensor-product Gauss
rule which will be essential for our aims. The Gaussian cubature rule reads as [29]

(2.8) / P e g)dedy =33 Alwn)Ay (w2 (26 5) + Romn(f)

i=1 j=1
where {2;}]2; and {y;}]., are the zeros of p,, (w1) and py, (ws), respectively, A;(w1),
Aj(we) are the correspondlng Christoffel numbers and R, . (f) denotes the remain-
der term. We point out that Ry, . (f) =01if f =P € Pay1 2m—1-
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3. MAPPING PROPERTIES OF THE OPERATOR D AND K

In this section we investigate on the mapping properties of the operators D and
K involved in equation (|1.2). To this end, let v be the product of two fourth kind
Chebyshev weight functions, i.e.

(3.1) v(z,y) = uw(@)u(y), with wu(z) =4/ 1 J_rj

According to the above notation, we rewrite the operator D introduced in (|1.3)) as
1 fx,y)
3.2 Df(t,s :—%71) x,y)dx dy.
(3.2) (t.5) = A P yr— (z,y)
By using standard arguments, it is not hard to prove that the adjoint operator
of D has the following form

A 1 f(ﬁ, y) -1
3.3 Df(t,s :—7{711 x,y) dx dy.
3 SRS A T T M
Now we recall the explicit expression for p,,(u) and p,,(u~') (the fourth and
third kind Chebyshev orthonormal polynomials with respect to the weights u and

u~!, respectively), namely [10} 21]

sin ((m + 1))

4 m ) = . I = I S S 9
(3.4) P (U, 2) sin (10) z=cosf, 0<6<m
and

‘ 1
(3.5) pm(u™t, 2) = COb((m(Te;)e), z=-cosf, 0<6<m.
cos (3

Next results state useful properties of the operators D, D and K which are basic
for our methods.

Lemma 3.1. Let u be the weight introduced in (3.1)), ¢m(t,s) = pm(u, t)pm(u, s)
and vy, (t,8) = pm (U™t t)pm(u™t,s). Then,

(3.6) Dqpn(t, ) = rm(t,s)
and
(3.7) Dron(t,8) = qml(t, s).

Proposition 3.2. Let D and D be the operators defined in (3.2) and (3.3), respec-
tively. Then

(3.8) D:W! =W,
is continuous and invertible and its two-sided inverse is the continuous operator
(3.9) D:W/, = W!.

From now on we denote by k(,,) and k() the kernel function k(x,y,t,s) in
(1.4) as a function of the only variables (¢, s) and (z,y), respectively.

Proposition 3.3. Let K be defined in (1.4) and let us assume that the kernel
function k satisfies the following conditions
(3.10) sup ||kt llwy < oo, sup |k y)llwr, < oo,

t,s)es (z.y)€ v
for some positive integers numbers v and r1. Then the perturbation operator K :
L3(S) — WL, is linear and bounded if ry < r. Moreover, K is a compact operator
forallry <r.
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Let us remark that, in virtue of Proposition [3.2] and we can claim that under
the assumptions and if the null space Ker{D + K} is trivial in L2(5), then
the operator

D+ K Wt — W',
is an invertible linear bounded operator for all 0 < r; < r. Hence, equation
has a unique solution f € W/, for each given right-hand side g € W2, .

4. A DIRECT NUMERICAL METHOD

The aim of this section is to present a “direct” numerical approach for the solution
of equation (|1.2)). Inspired by the discrete collocation method proposed for the
univariate case [I8] 23], we first approximate operator K by means of

(41) Kmf(t, S) = /Sﬂm,m (k(t,s)avax7y) f(x’y) ’U(.’L‘,y) dzx dy

Hence we project equation (|1.2)) with K, instead of K by means of the interpolating
operator L, (v=1) and we search for a polynomial solution f,, € Pr—1,m—1, i.e.
we solve the finite dimensional equation

Lon.m ((D + K fm, v 4t s) = Lom(g,v 11, 8),
namely
(4.2) Lom (D4 Kp)fm —g,0 ' t,s) =0.
Equation is equivalent in the weighted space Lz_l to
Hﬁm,m ((D =+ Km)fm - 97”71) HL?F1 =0
that is
/S ’Emm ((D + Km) fm — g,v_l,t,s)‘2 v(t,s)dtds = 0.

Thus, by approximating the integral by means of the Gaussian cubature rule
[2.8) with w; = u~!, i = 1,2, that in this case turns out to be exact, we have

(43) S AN @) L (D + Kin) fn — g0 tisty) [ =0

i=1 j=1

where [10] 21]
m—i+ 3w
t; = cos q , 1=1,...,m
m+§

are the nodes of the m-th third kind Chebyshev polynomial p,,(u~1) defined in

and

Nu )= " (1+t), i=1,...,m
m

1
2

are the corresponding Christoffel numbers.

From we deduce
(AN (u= DN (u= ) [D frn(tis t5)  + Ko fin(tis )]
= )\i(u—l)/\j(u—l)g(ti,tj), i,j:l,...,m.

Now we develop the terms D f,, (¢;,t;) and K,y fm (t;, t;) involved in the previous
equations, in order to construct the approximated polynomial solution f,, in the
form

(4'5) fm(t’s) = Em,m(fmavatas)-
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About the second term K, fr,(t;,t;), by using again the cubature formula ({2.8))
now with w; = u, ¢ = 1,2, which is once again exact , we have

(4.6)

m m
mfm tut ZZ)\h xhax/mtlvt )fm(xhaxk) iajzla"'amv
h=1k=1
where [10] 21]
—h+1
4.7 Tp = COS u h=1,...,m
( 1 ) ) )
m + b

are the nodes of the m-th fourth kind Chebyshev polynomial p,, (v) defined in ((3.4))
and
(4.8) M) = ——(1—=), h=1,...,m
are the corresponding Christoffel numbers.
Concerning to the first term D f,,(t;,t;), we have the following proposition.

Proposition 4.1. Let f,, be the polynomial defined in ([A.5) and let {t;};", and
{zp}, be the zeros of pm(u™t) and py,(u), respectively. Then,

m

(49) Dfm t“t 2 ZZ)\h f’rn (xhaxk:)

h=1k=1 wh_ti)(xk_tj)

fori,j=1,....m

Hence, by replacing (4.9) and ( in , we get
=2
\/)\ )\ f k P 7tiat'
V ZZ RN h—t)( ) (Th, Tk J) ank

h=1k=1
(4.10)

- )\Z(u_l))‘](u_l)g(tl7t])7 Z?J = 1,"'am7

where we set apy = \/)\h(u)/\k(u) fm(xhyxk)-

This is a linear system of m? equations in the m? unknown aj that, once solved,
allow us to approximate the solution we are looking for

Ly (u,t) Ly(u, s)
) -3 e e,
Wi VAR(W) Ak (u
Let us remark that system (4.10) is well-defined, since min |z, — t;| = O(1/m),
h,i=1,..., m, 23] , and that it can be rewritten in a matrix form as

(4.12) P,, (D, + K, Pra=P,, (gPm)"

Here P, is a m-blocks matrix in which each block is given by

P:diag(\/m,"',\/m>a

the matrices D,,, and K,,, are the m-blocks matrix defined as

D) D2 . pim) K@D K®&2 0 Kgdm)

D DL pE2 . pEm) K K@D K2 . KE2m)

Dom) D pimm KonD) K2 . Kmm)
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with
m -2
D"k = |pD"k) =V An(uw) A (u i ,
[ L,jzl n()Ak( >(g;h—t,-)(xk—tj)
Kk — [K(h’k)yn‘ ) = \//\h(u)/\k(u)k(xh,xk,ti,tj),
i,j=

and a € R™ and g€ R™ are the arrays of the unknown function and the right-
hand side which have been obtained by reordering column by column the matrices
G and A, respectively defined as

G =g ;=, = 9(ti ;) €R™™ A = [ang]), g = fn(@n, 2x) € R™T
namely,
gGi—1)m+i = Yij>  A(k—1)m+h = Ahk-

Next proposition, concerning with the operator introduced in (4.1)), is essential
for the analysis of the method.

Proposition 4.2. Under the assumptions (3.10), the estimate
_ C
1 F = Lo (Ko oo™ D2z, < —=1£l2z
holds true with C # C(m, f).

Next theorem assures that the proposed discrete collocation method is stable and
convergent. It also states that, in the case when the right-hand side g belongs to a
certain class of functions, namely the Sobolev-type space W/, then the solution f
of belongs to W, *. Moreover the theorem gives an estimate of the error of the
approximate solution. Finally it shows that the condition number in the spectral

norm of system (4.12))
Cond(Pm(Dm + Km)Pm) = ||PM<Dm + Km)Pmn ”(PM(DW + Km)Pm)_1||

is independent of the dimension of the matrix and uniformly bounded by the con-
dition number of the operator D + K.

Theorem 4.3. Assume that equation has a unique solution f € L? and the
kernel function k satisfies . Then, for sufficiently large m, say m > mg, the
system of equations (4.12)) has a unique solution f,,. Moreover if the right-hand
side g € W1, then the solution f € W] and the following estimate holds true

C
(113) 17 = Fullzz < Sl
with C # C(m, f,g). Furthermore,
(4.14) lim sup cond (P, (D, + Ki)Poy) < Ccond(D + K),

m

where here C # C(m).

5. AN INDIRECT NUMERICAL METHOD

In this section we propose an alternative numerical method still based on a
polynomial approximation of the unknown solution written in the form

fm(t,S) :Em,m(fmavatvs)v fm EPm—l,m—L

The method takes advantages of the smoothness properties of the operators D
and K stated in Section In fact, thanks to the compactness of K and the
invertibility of D, following [7], we can move from the equation into the
equivalent regularized Fredholm equation

(5.1) (I +DK)f = Dy,
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where I is the identity operator in L2.

Then, if we assume that the null space Ker{I + DK } is trivial, by applying the
Fredholm Alternative Theorem, equation has a unique solution for each given
right hand side Dg € L2.

For our convenience, let us rewrite as

(5.2) (I+K)f=g,
where G = ﬁg and K = DK i.c.

Kf(t,s) = /S o(6,m, 1, 3) (6, mv(&, ) dé di,
with

(5.3) d(&,1,t,5) = Dk p)(t, 5).

In order to approximate the solution of (|5.2)), let us project the equation on the
finite dimensional space P,;,—1 ,,,—1 by means of the interpolating operator L, ., (v)
and then let us consider the following finite dimensional equation

(54) £m,m ((I + K:m) fm7 v, t7 8) = ‘Cm,m (g; v, t7 S) P
where

nf(4:5) = [ Lonn (9(8:5),0.€00) £€ ol dE
Equation (5.4)), considered in L2, means that

/ Lowm (T 4+ Kon)fon — G 0,8, 9)|% w(t, ) dtds = 0
S
that is, for i, =1,...,m,

)\l(u))\j(u) [fm(xi,xj) + Kmfm<.’17¢7.’lﬁj)] = )\z(u)/\](u)g(x“xj),

where x; and \;(u) were introduced in (4.7) and (4.8)), respectively. Hence by
approximating the operator K, by means of the Gaussian cubature rule (2.8]) we
get the following linear system

(5:5) A@Xi) 3D [0+ V() W) (wn, wr, wi,5) | an

h=1k=1

= A (w)G(z,z5), 4,j=1,...,m,
1, i=h and j=k

where apr = /An(u) Mg (w) for (T, 1) and 5,ka = Vo, otherwise

Once solved (5.5)), the solution allows us to compute the approximate solution

Lhu,t) Ch(u, 5)
59 ) 3) SLURICLY
st 1 VAR(W) Ak (u

Note that the polynomial solution f,, just defined has the same expression of
the solution f,, given in (4.11)), obtained applying the method described in Section
4.

Let us also remark that in order to implement system (/5.5) we need to evaluate
the integrals

_ 1 k(z,y,&m)
P(&,m,t, ) = Hfg(sc—t)(y—s)v Ha,y) do dy

1 g(z,y) ’U71$ T
016 = 5 f, gty e e
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whose analytical expressions are not always known. Then, in the case when we do
not have such expressions, we propose to approximate the known involved functions
k and g with

k(.’L’, Y, 67 77) =~ ‘Cm,m (k(ﬁ,n)u v, T, y) ) g(xa y) =~ ‘Cm,m (97 v, T, y)

and then by proceeding as in the proof of Proposition .1} in virtue of Lemma [3.1]
we end up to approximate qb(f n,t,s) and G(t,s) with

_ 1y Kkt te, xn, ap)
(b (xhairk»xhxj 7'('2 Zz)\ 1 )\C 1)( )

=121 te—xi)(te — x)
and
— — g(tm tC)
g Ila Xy A 1 'U, 1) .
) WQ;CX‘: (te — ;) (t¢ — x;)
Let us now rewrite (5.5) in a matrix form as
(5.7) P Ly + K) P = Pon (6 Pm)"

where P, is a m-blocks matrix in which each block is given by

P = diag (V2(w), -+ VAn(W)

the matrices I,,, and K,,, are the m-blocks matrix defined as

I 0 ...0 ety 2 etm)
(2,1) (2,2) (2,m)

I, — 0 I ...0 K, = < /¢ ... K ’
0 0 . | K:(m,l) K:(m,Q) o ’C(m,m)

where I denotes the identity matrix of order m,

(k) — [IC (h, k)} \/7/\k¢ (Th, o1, 45 5)

7,7=1

and a € R™ and g€ R™ are the arrays of the unknown function and the right-
hand side which have been obtained by reordering column by column the matrices
G and A respectively

G = [gij]zljzl =G(z;,zj) e R™™, A= [ahk]hm,kzl = fm(xp, xp)RTX™
namely,
9G—1ym+i = Yijs  Ak—1)ym+h = Qhk-

Next proposition is essential for the stability and the convergence of the described
method stated in Theorem [5.2)

Proposition 5.1. Assume that kernel k satisfies the conditions (3.10]). Then

”Kf - 'Cm,m(lcmfv U)

where C # C(m).

Theorem 5.2. Assume that Ker{I + DK} = {0}, the assumptions of Proposition
are satisfied and the functwn g belongs to W'™,. Then, for sufficiently large
m, say m > mg, system (5.7)) has a unique solutzon fm and the following estimate
holds true

(5.8) If = fiml
with C # C(m, f,g). Moreover
lim sup cond(Pm, (L + IKCn)Pm) < C cond(I + K),

m

1
v
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TABLE 1. Numerical results of Example 1 via the direct method.

m €64,m(0.5,0.8) €54,m(0.1,—0.5) €64 (—0.6,0.7) cond(Pp,(Dym +Kp)Poy)

4 2.89e-03 1.27e-03 6.73e-03 1.3931498886229416e+01
8 1.19e-08 1.24e-07 2.53e-08 1.3931550518318879e+01
16 6.24e-15 4.88e-15 4.08e-15 1.3931550518335689e+01
32 8.73e-16 5.75e-15 4.80e-16 1.3931550518335690e+01

TABLE 2. Numerical results of Example 1 via the indirect method.

m  €64,m(0.5,0.8)  €64.m(0.1,—0.5) €64,m(—0.6,0.7) cond(Pm Ly + Km)Pm)

4 2.89e-03 1.27e-03 6.73e-03 1.3931498886229420e+-01
8 1.19e-08 1.24e-07 2.53e-08 1.3931550518318886e+-01
16 1.25e-16 3.50e-15 3.12e-15 1.3931550518335696e+-01
32 2.87e-15 2.38e-15 3.72e-15 1.3931550518335680e+-01

where C # C(m).

6. NUMERICAL TESTS

In this section, by means of some numerical tests, we show the performance of
the methods described in the previous sections. In each example, for the direct
method, we solve system and compute the approximate solution f,, given
in . For the indirect method through the unique solution of system we
compute f,, defined in .

Since the exact solutions of the equations we will consider are unknown, we
assume as exact those obtained for a fixed value of m = M that we will specify in
each test and we compute the relative errors

_ 1fr(ts5) = finlt )]
erm(t,s) = [ (t,s)]

in different points (¢, s) € S.
Example 1. Let us consider the equation

1 f(z,y)

7 Js (@ —1)(y — )

In Tables[I]and 2] we report, for increasing value of m, the relative errors we get in
three different points of the square and the condition number in the spectral norm
of the systems we solve. As we can see the convergence is very fast in virtue of the
smoothness properties of the kernel and right-hand side. Moreover, the sequence
{cond(P,(Dy, + K )P ) b as well as {cond (P, (L, + Kin) P ) b is convergent
as m goes to infinity.
Example 2. Let us apply our methods to the following equation

o, y)dady + [ log (4-+ sz -+ t9)f . p)o(o. dady = ¢
S

1/ flzy
2 f@— )
+/ xitf(x y)v(z,y)drdy = log(10 — s — t)

gh+yr+s2 ’ -

Table [3| and [4] show the numerical results we get. As in the previous example, in
virtue of the presence of a kernel and a right-hand side very smooth, by solving a
system with m = 32, we get very accurate results.

v(z,y)dz dy
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TABLE 3. Numerical results of Example 2 via the direct method.

m 6647”7,(0.77 02)

66477,,, (01, 705)

6647m(70.6, 07)

cond(P, (D, + Ky ) Pry)

4 2.14e-04 1.63e-06 4.76e-04 2.2455715459596859e+00
8 2.57e-06 1.62e-06 9.27e-07 2.2455977174082378e+00
16 6.13e-12 4.14e-16 3.58e-12 2.2455977175654063e+00
32 3.45e-16 0.00e+-00 3.20e-16 2.2455977175654054e+00

TABLE 4. Numerical results of Example 2 via the indirect method.

m 664,m(0-77 02)

664,m(0.1, —05)

e64,7n(_0'67 07)

cond('Pm (Im + ’CTYL),PWL)

4 2.14e-04 1.63e-06 4.76e-04 2.2455715459596877e+00
8 2.57e-06 1.62e-06 9.27e-07 2.2455977174082391e+00
16 6.13e-12 3.73e-15 3.58e-12 2.2455977175654072e+00
32 5.17e-15 1.24e-15 7.99e-16 2.2455977175654058e+00

TABLE 5. Numerical results for Example 3 via the direct method.

m 664,m(0-17_0~4) 664’m(0.3,—0.6) 664,m(_0-170~5) COnd(Pm(Dm—l-Km)Pm)

4 5.71e-04 1.33e-03 2.96e-04 9.4647134096191934e+01
8 1.02e-08 1.38e-08 1.25e-08 9.4646712492247204e+01
16 3.24e-15 3.21e-15 3.76e-16 9.4646712492247048e+01
32 1.80e-16 5.13e-16 1.25e-16 9.4646712492247090e+01

TABLE 6. Numerical results for Example 3 via the indirect method.

m  €sa,m(0.1,—0.4)  €64,m(0.3,—0.6) €6a,m(—0.1,0.5) cond(P (L, + Ki)Pm)

4 3.95e-04 2.62e-04 1.55e-03 9.4647134096192175e+01
8 6.74e-09 1.23e-08 5.76e-09 9.4646712492247545e+01
16 3.77e-15 3.58e-15 7.43e-16 9.4646712492246621e+01
32 2.32e-15 1.73e-15 8.91e-16 9.4646712492247204e+01

Example 3. Let us consider again an equation which present a kernel and a right-
hand side very smooth

% g % v(x,y)dz dy + /S "™ f(x, y)v(x,y)drdy = sin(3 + st).

In Tables [f] and [6] we give the relative errors and the condition number in the
spectral norm. Once again, we get very accurate results.
Example 4. Let us test the performance of our methods to the equation which
present a convolution kernel

1 f@y) o e
7 ) Yy

ets

—t] |y — s|* dody = :
# Loty = s oot pdedy = [ 55

As we can see through Tables [7| and |8} the numerical results confirm the theo-

retical estimates given in (4.13]) and (5.8).
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TABLE 7. Numerical results for Example 4 via the direct method.

m 6175,m(0-47 704) 6175,m(0.2, 706) 6175,m(70~15 08) COTLd(Pm (Dm + Km)Pm)
4 2.84e-01 7.73e-02 3.49e-01 5.8341767720850817e4-02
8 4.36e-04 1.75e-04 8.60e-04 5.4307032442099785e+-02
16 1.77e-05 9.38e-06 1.89e-05 5.4309967621958026e+-02
32 1.05e-06 6.28e-07 8.45e-07 5.4310149342166687e+-02
64 6.44e-08 3.99e-08 4.73e-08 5.4310161017935911e4-02
128 2.95e-09 1.84e-09 2.11e-09 5.4310161764433553e+02
TABLE 8. Numerical results for Example 4 via the indirect method.
m 61757m(0.47 —04) 6175’m(0.2, —06) 61757m(—0.1, 08) COﬂd(Pm(Im + Km)Pm)
4 2.85e-01 7.76e-02 3.50e-01 5.8341767720850714e+-02
8 4.37e-04 1.75e-04 8.62e-04 5.4307032442101217e+02
16 1.78e-05 9.38e-06 1.90e-05 5.4309967621958094e+-02
32 1.05e-06 6.28e-07 8.51e-07 5.4310149342166756e+02
64 6.46e-08 3.98e-08 4.77e-08 5.4310161017936002e+-02
128 2.96e-09 1.84e-09 2.13e-09 5.4310161764433508e+-02

TABLE 9. Numerical results for Example 5 via the direct method.

m 61757m(0.5, —07) 6175)m(0.3, 06) 61757m(0, O) cond(Pm(Dm + Km)Pm)

4 1.33e-02 3.74e-03 2.06e-02 1.3576451986839258e+-01
8 2.31e-04 6.08e-04 8.62e-04 1.3584012702947833e+-01
16 5.45e-07 1.21e-06 4.92e-06 1.3584041062960397e+-01
32 5.93e-09 1.46e-09 8.09e-08 1.3584041246139085e+-01
64 2.18e-10 2.17e-12 1.69e-09 1.3584041247052387e+-01
128 2.74e-12 8.31e-13 4.15e-11 1.3584041247056279e+4-01

Example 5. Let us test the performance of our method to the following equation
in which the kernel k(z,y,t, s) = | sin(xs)| 2 +yt belongs to the Sobolev-type space
of index r = 5,

1 f(z,y)
w2 Js(x =) (y — s)
—|—/S (| sin(xs)|z + yt) flz,y)v(z,y)dedy = cos(ts).

As shown in Tables [9] and [I0] the two methods are equivalent in terms of order
of convergence and the numerical evidence confirms our theoretical estimates.

v(z,y)dx dy

7. PROOFS

Proof. of Proposition[2.1, We only give the main idea of the proof since the thesis
can be proved, mutatis mutandis, in the same way of the univariate case (see [25]
and the reference therein).
Let Q—1,m—1 be an arbitrary polynomial of degree m — 1 in each variable:
—1m-—1

m
Qm-1,m-1(z,y) = > bij pi(wr, 2)p; (wa, y).
i=0 j=0
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TABLE 10. Numerical results for Example 5 via the indirect
method.

m 6175)m(0.5, —07) 6175,m(0.3, 06) 61757m(0, 0) cond(’Pm(Im + ’Cm)Pm)

4 1.33e-02 3.74e-03 2.06e-02  1.3576451986839267e-+01
8 2.31e-04 6.08e-04 8.62e-04  1.3584012702947835e+01
16 5.45e-07 1.21e-06 4.92e-06  1.3584041062960395e+01
32 5.93e-09 1.46e-09 8.09e-08  1.3584041246139078e+01
64 2.18e-10 3.11e-12 1.69e-09  1.3584041247052406e+-01
128 2.13e-12 4.18e-12 4.23e-11  1.3584041247056248e+01

Then, by standard arguments, we get

m—1m—1

If = Qm-tm-1llzz = [z, + 1Qm-1m-1llz =2 > > bijei;(f,w)

i=0 j=0

where ¢;;(f, w) are the Fourier coefficients of the function f defined in (2.2). In
virtue of the orthogonality of {p, (w1)}m and {pm(w2)}m, we have

m—1m—1

1Qm-—1mllfz =Y > b3

i=0 j=0

We can claim that

m—1m—1 m—1m—1
1f = Qmvm—tllzz = Fllza + D D (by — co(fw)* = i (f,w).
=0 j=0 i=0 j=0
Hence, by replacing b;; with ¢;;(f,w) we get the thesis. O

In order to prove Proposition 2.2 and let us note that the bivariate Fourier
and Lagrange operators defined in (2.1) and ({2.5]), respectively can be thought as
a composition of two univariate Fourier and Lagrange operators, namely

Sm7m (f) w,x,y) = S’m (S"L(fy)wla x)waa Z/) = Sm (Sm(f$7w27y)aw17x)

‘Cm,m (fa w, x, y) =Ln (‘Cm(fy’ wy, x)v w2, y) =Ln (‘Cm(fam w2, y)v Wi, l‘)
where S,, identifies the univariate Fourier sum, £,,, denotes the univariate Lagrange
polynomial and f, and f, denote the function f as a univariate function of the
variable y and x, respectively.

Let us also remind that if we consider a one dimensional function A belonging
to the one dimensional Sobolev space, for i = 1,2

Wy, =theLy, (-1,1)): A" DeAC((-1, 1), [Ihlwy, =kl 2, + A9 | 12 <oo},
the following estimates hold true [4 [6], 22]

C
(71) ||h - Sm(haw1)||W:U17 S mr—ri

(7.2) (1S (h = Sy wi).wi) vy, < € llh = S (o wi)l vy

Il o r<r,

(7.3)  Nh = L (h,wi)|

L, S = 1llwy,,
C

mT

(T4)  NCm(howdllzs, < 0z, + — Ihlwg,
(75) M= Lol w0 1z, < C (I g, + 7 b= Loy i)z, )

where in all the inequalities C # C(m, h).
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Proof. of Proposition[2.3 We write

Hff‘s‘m,m(f,w)nwgl
S ||f - Sm(fa WZ)HWlCl‘i‘”Sm(f, 'lUQ) — Sm(Sm(fy7w1),U/2)”W;1

' 1/2
([ 1t = Sl wr (o) o)
1/2

1
o (1t = Sulhwn. )l wn o) o)

Then, by applying (7.1]) to the norm of the first term, (7.2)) and again ([7.1)) to the
norm of the second one, we get
1/2

C 1
I = Smntblhws =~ ([ Il wn(o)a )

I /1||f||2 wa(y)d
mr—r1 . 210%% 2(y)ay

C
—— [fllw-

mr—r

1/2

IN

Proof. of Proposition[2.3 As in the previous proof, we begin by writing

||f_ £m,m(f7w)||LfU
S = Ln(fsw2)lls, + [[1£m (f, w2) = L (Lon (fy, wr), w2) 22,

1 1/2
= ([ W= oty (o)

1/2

1
(1t = Lt e wn(o)as

-1
Hence by using (7.3)) to the first term, (7.3), (7.4]) and (7.5]) to the second one, we

get

1/2

c 1
||f — Em,m(fa w)HLﬁ, < mr </ ||fx - Em(fxaMQ)”%/\;Ez w1(x) d:l?>

1
from which we deduce the thesis. O

Proof. of Lemma[3.d] Taking into account the definition of the dominant operator
D, we write

Dqp(t, s) = % %S % u(z) u(y) dr dy

_ LlT 7{_ 11 wu(x) dx} Llr 74_ 11 Mu(y) dy
= pm(u " ) pm(u!, 5)
ot s)

being [27), 1]

1 lpim(u,z)uz 2= pm(u!
~f Bt az = p ).
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Analogously,
~ 1 Tm (2, y . 1
Dro(t,s) = = ¢ — DY) =gy =1 (y) da dy
™ Js

— {_17{1 wu—l(@ dx} {_1%_1 wu—l(y) dy

1 (y—s9)

since |27, [31]
]- ! pm(uilwz) —1
—-= ————u (2)dz = pm(u,n).
L P = )
O

In order to prove Proposition let us note that the dominant operator D can
be rewritten in terms of the Hilbert transform of a 1D function h

Hwﬂzlflh@)m@m

T (z—1)

as follows

1 f(z,y)
2 Js (z = 1)(y — s)

_ 17{_1](1Wu(y)dy:H(H(f))(tvs)

T y—s)

Df(t,s) = v(z,y) dedy = %

where f, and f, denote the function f as a univariate function of the variable y and
x, respectively. Let us also remind that for a univariate function h the following
estimates hold true [24] 27]

(7.6) ICHR) D@ 2 < hllwg,  and  [Hhllgz | < [lhlz2.

Proof. of Proposition[3.3. At first we note that, by definition, the operator D is a
linear operator. Moreover, by (2.4)) we have

IDfI: =SS Df0) =303 () = Il < oo
i=0 j=0 i=0 j=0
being, in virtue of (3.7))
2
oo = ( / Df )™ i ) v ) dd )

/Sﬂgj{[ ) g m (n,ﬁ)dndE}m(u1,96)171(%6l,y)vl(ﬂa”,”LJ)tllxdy)2

(
- (/s flre) [w? ﬁ pi(qu —’f;)f;(f)’ W) e dy] o(n.€) dn d5)2
g

/S F01,€) paCae, ) py (0, €) v, €) dy ds) = &,(f.0).
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Moreover, by applying (7.6) and taking into account that (a + b)% <2(a? + b?) and
Va+b< \/64—\/5, we have

<// %Df’fs @' (1)
(L G
<o [l [,
e[ [ wo [/
c /u()(/

IRCIVREE R dt)st] 1o

which prove the boundedness of D : W — W/_, and consequently its continuity.
Now we show that ﬁ(Df) = f and D(ﬁf) = f. Let f € L2(S). By using
the Fourier sum, taking into account the linearity of the operators D and ﬁ, and
applying firstly and then , we have

1
2 2

“L(t,s)dt ds)

[N

2

) €9

uH(t)um(s) dt ds)
2 3
u”(t) dt ds)

2 1 2
u(t)dt+/ |f(t,s)|2u(t)dt] ds

o
otr

H(f)(t,5) ¢ (t)

Ea 2
ot"

IN

(t,s) " (t)

-1

1

9 2
u(t) dt) ds| +

T

otr

IA

f(t,s)@"(t)

+

=D z_: z_:cij(f, v)pi(uY)p;(u™t) :z_: z_: cii (f,w)pi(w)p;(u) = f.

i=0 j=0 i=0 j=0

Proceeding in the same way, we can show also that D(Bf) = f and hence D=D"1.
As regards to the mapping property (3.9) of D, this can be proved as done for the

property (3.8). O

Proof. of Proposition[3.3 The linearity of the operator K is a trivial consequence
of its definition (|1.4) while the boundedness follows by

(7.7) 1K fllwrs, = 1K fllze_, + Mo, (Kf,0™) <CIfl 22

In fact, by applying Schwarz’s inequality and taking into account the first hypothe-
ses on the kernel function &k, we have

1 A2 :/S|Kf(t,s)|2v—1(t75) dt ds

-,

<712, sup (s B / o (1, 5) dt ds
(t,s)eS S

<C||fll72-

2
v (t, s)dtds

[ Kt gdedy
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Moreover, by using again the Schwarz inequality we can write

2

‘B”(Kf)(tS)

2 o
otr B ‘

ot

[ Kt p ) o) dady

/ O k(z,y,t,5) |
»\ Js ot

v(x,y) dx dy)

from which we can deduce

/S o ([;t{z(t, s) o (1)

" k(z,y,t,s)
< Il (/ T )

B 0" k(z,y,t,s) o
= 11z (/ T

<Clfllzz sup ||k llwr -
z,y)€S Y

2
~L(t,s)dtds

(x, y)dmdy) O (v (¢, s) dt ds

2

1, s)dtds) v(z,y) dx dy

Analogously

J

The only point remaining concerns the compactness. To this end let us note that
we have

2
“Htys)dtds <Cl|fllz sup (K y)llw -
(z,y)eS v

o ([;Q(t, s) o (5)

C
Em m(Kf) " < ||Kf_Sm,m(KfaU)Hw"}l < W”Kfuw’}l

C
< W”f”L%-

Therefore, setting T'= {f € L2 : || f\/v]]2 < 1}, we have

limsup Epy m(f)y =0
m ferT

from which we deduce [32] that K : L2 — WL, is a compact operator for all
<. 0

Proof. of Proposition [{-1. By the definitions of the operator D and the function
fm, we get

i\ S -t _ fm(my) v(z x
Dinltins) w??gw—t-)(y—sj) ) deds

UL (u, x)l(u,y) wlz)u .
= 203 o) f, ¢ ) drdy
Moreover, by we have

(u, ) u(z) = Pm (u, 2)u(z)

(x —ti) Pra(u, 2p) (@ — 2p)(z — )

posluts) 1 1],

7p/m(u7xh)<xh_ti) T — Tp .’E—ti
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and similarly

fwy) ) = P (4, y)u(y)
(y —s5) P (W, Y ) (Y — yi) (Y — 85)
__ Pm(u,y)u(y) { 11 }
P (s yi) (e —55) Ly =y y—s5]°

Then, setting gm (t, s) = pm (u, )pm(u, 8), Tim(t, ) = pm (uilv t)pm(uila s) and tak-
ing into account Lemma[3.1] we can write
Dfm(thsj)
i i [fm (@hs y&) {Dgm (@h, Yr) — Dam(h, 55) — D (tis yi) }
Pyttt T (1> yi) (2 — ) (yr — ;)
fm (@h, yr) Dam (ti, s5) }
qin(l‘myk)(ﬂ?h = t:) (Y — 55)

_ S (@0, k) {rm (Th, Yr) — P (Thy 85) — P (ti, yr) + 7 (tis 55) }
hz;; T (@, y) (@n — i) (Y — 55)

and consequently,

Dfm tzasJ ZZ fm ‘/L'hvyk;)’f‘m(xh7yk)

he1 k=1 @ (@n, yi) (@n — ) (Y — 85)

Thus, the thesis can be deduced by observing that by using property (3.6, we have

T (Ths Yk) = Dgm(2h, i)

1 1
= Stlon) § tlw i bty

-1
1
= ﬁq;n(xhuyk))‘h(u))‘k(u)
where Ap(u) denotes the h-th Christoffel number w.r.t. the weight w. O

Proof. of Proposition[{.4 We start by writing
1K f = Lo (B f 0™ Dz, < [KS = Lo (K f0 ]2
#eman (K = K)o
=A+B.
By using Proposition and we can deduce that

C
A< m < W”f”ﬂ

Moreover, by using the Gaussian cubature rule (2.8)) with w; = w, ¢ =1, 2, we
have

1
2

— (/S Lo (K = Kn) foo b t,s) [ o7 (2, ) dtds)

2

= [ DN A (K = o) £, 1)

=1 j5=1
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Since one has
(K = Ku) f(t, )< |1 £117 /S [k(@,9,t,5) = Lo (ks vs2,9) | (e, y) daedy
= 1F117 [lKe.s) = Lo (k) 172

C 2 2
< — 112z kel

from the first assumption in (3.10)), it follows

N

c iy
Bl | 30D N () [l

i=1 j=1
1
C m :
2
< —|If sup ||k, .t . Xi(w™ DN (wt
Il (ti,tj)eSH oty ;; (A (™)
< Esey ([ oy ama :
- mr L72) g 7y y
c
< Il -

O

Proof. of Theorem[/.3 Taking into account Proposition[f.2] by standard arguments
(see, for instance, Theorem 3.3.1 in [2]), it follows that for sufficiently large m, say
m > myg, the operators D+ Ly, Ky, : L2 — L?_, exist and are uniformly bounded
being

- (D +K)~1|
D+ Lo mEKm) 7Y < <
H( m,m m) || =1 ”(D_’_K)le SBp ”K_ [’m’me” o0
m=mo
(where the notation || - || denotes the norm of the operators), i.e. the method is

stable. In order to prove the convergence estimate , we note that
F=fm =D+ LonmBn) ™" [(9 = Lo (9:071)) = (KF = Lo (K f,07))]

from which we deduce

If — meLZ <Cllg— Lnm (97“71) HL?ﬁl +[IKf— Lon,m (Kmfavil) ||Li7 .

1

Then, by applying Proposition 2.3] to the first term and Proposition [£.2] to the
second one we get (4.13). Let us now prove (4.14). To this end let us introduce

an arbitrary array ¢ = [c11, -+, Clmy -+ -5 Cmls -+ Cmm) . of length m?2, and let us
. 1/2

denote by ||c|l2 = ZZC%— its Euclidean norm. Then, the vector b =
i=1 j=1

[b115 -5 By -5 D1, -+ - bm| T satisfies the system P,,(D,, + K,,)P,,c = b if

and only if (D+ L, mKm) fm = gm where f,,, and g,,, are the bivariate polynomials
defined as

and
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Being
lgmllZ: | = /S g (£, 5) 2072 (¢, 8) dt ds = Z;Zl/\i(u‘l)kj(u_l)lgm(ti,tj)|2
i=1 j=
=D b5 = bl
i=1 j=1

and analogously || fm|lz2 = ||c||2, we have
[Py (D + K ) P2

1P (D, + K )P || = sup

e EE
c#0
(D + Em,me)fm||L271
= sup .
fn€Pm—1,m—1 ||fm||Lf,
Im#0

||D + Em,meHL%aLifl :
Then, in virtue of Proposition for m sufficiently large,
(7.8) [P (Do + K )P < €D+ Kz,
In the same way we can prove that
[P (Do + Ko )P) | = (D + LonnFn) 2 2

from which, by applying again Proposition [£.2] we deduce that, for m sufficiently
large,

(7.9) [P (D + K )Pr) | < CI(D + K) g2, sz
Hence, the thesis (4.14)) follows from ([7.8) and ((7.9). O

Proof. of Proposition[5.1, We can proceed analogously to the proof of Proposition
Therefore we only give the main sketch. We have

IKf - Lon,m (K fiv) ”L% <|IKf - Lop,m (/Cf,U)HL%
F 1 Lomm (K= K) f,0)ll 2 -

By noting that in virtue of Proposition one has Kf = (ﬁK)(f) € W and
taking into account (2.7)) and (3.10)), we get

C C
”Kf - ‘Cm,m (’Cf7v)||Lg < ﬁ”’cfHWv?l < mri Hf| L2-
Moreover,
C 2
(K = Km) S 9)” < 2 11173 o [l -
and by (5.3) and Proposition we can write
5 . 2
I9c.liv; = [Pkem],, < Tremlh,,.
Consequently, from the assumption (3.10)), we can deduce
3
C AL 2
1L (= Kan) £,0) 13 < — W Flla | 22D Xi(w)Ag () [kl
i=1 j=1 v
C
< 1l

from which the thesis follows. O
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Proof. of Theorem [5.3 In order to prove this theorem it is sufficient to proceed
as in the proof of Theorem [£.3 with I, K, G in place of D, K and g, respectively.
Moreover the thesis on the condition number can be proved as done for (4.14). O
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