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Abstract—Railways are a well-recognized sustainable 

transportation mode that helps to satisfy the continuously growing 

mobility demand. However, the management of railway traffic in 

large-scale networks is a challenging task, especially when both a 

major disruption and various disturbances occur simultaneously. 

We propose an automatic rescheduling algorithm for real-time 

control of railway traffic that aims at minimizing the delays 

induced by the disruption and disturbances, as well as the 

resulting cancellations of train runs and turn-backs (or short-

turns) and shuntings of trains in stations. The real-time control is 

based on the Model Predictive Control (MPC) scheme where the 

rescheduling problem is solved by Mixed Integer Linear 

Programming using macroscopic and mesoscopic models. The 

proposed resolution algorithm combines a distributed 

optimization method and a bi-level heuristics to provide feasible 

control actions for the whole network in short computation time, 

without neglecting physical limitations nor operations at disrupted 

stations. A realistic simulation test is performed on the complete 

Dutch railway network. The results highlight the effectiveness of 

the method in properly minimizing the delays and rapidly 

providing feasible feedback control actions for the whole network.  

 
Index Terms— Rescheduling algorithms, Model Predictive 

Control, Mixed Integer Linear Programming, Railway traffic 

disruption. 

 
Note to Practitioners— This paper aims at contributing to the 

enhancement of the core functionalities of Automatic Train 

Control (ATC) systems and, in particular, of the Automatic Train 

Supervision (ATS) module, which is included in ATC systems. In 

general, the ATS module allows to automate the train traffic 

supervision and consequently the rescheduling of the railway 

traffic in case of unexpected events. However, the implementation 

of an efficient rescheduling technique that automatically and 

rapidly provides the control actions necessary to restore the 

railway traffic operations to the nominal schedule is still an open 

issue. Most literature contributions fail in providing rescheduling 

methods that successfully determine high-quality solutions in less 

than one minute and include real-time information regarding the 

large-scale railway system state. This research proposes a semi-
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heuristic control algorithm based on MPC that, on the one hand, 

overcomes the limitations of manual rescheduling (i.e., 

suboptimal, stressful, and delayed decisions), and on the other 

hand, offers the advantages of on-line and closed-loop control of 

railway traffic based on continuous monitoring of the traffic state 

to rapidly restore railway traffic operations to the nominal 

schedule. The semi-heuristic procedure permits to significantly 

reduce the computation time necessary to solve the rescheduling 

problem compared to an exact procedure; moreover, the use of a 

distributed optimization approach permits the application of the 

algorithm to large instances of the rescheduling problem, and the 

inclusion of both the traffic and rolling stock constraints related to 

the disrupted area. The method is tested on a realistic simulation 

environment, thus still requires further refinements for the 

integration into a real ATS system. Further developments will also 

consider the occurrence of various simultaneous disruptions in the 

network.  

I. INTRODUCTION 

AILWAYS are a well-recognized sustainable 

transportation modality and are among the most carbon-

efficient modes of mass transportation, exhibiting the highest 

share of electrification [1]. Consequently, it is fundamental for 

railway companies to offer high-quality service standards that 

allow driving towards railways the modal shift of customers 

that care for sustainability.  

This article focuses on railway traffic rescheduling in large-

scale systems when both a disruption, i.e., a long interruption in 

the railway service, and short delays suddenly occur. In the 

related literature, the problem of railway traffic rescheduling 

has been extensively discussed [2] [3] [4] [5] [6], leading to the 

development of decision support systems that can model 

specific situations, compute optimal solutions in real time, and 

suggest proper control actions. However, most of the available 

contributions focus on the rescheduling in case of short delays 

(also called disturbances) [4], [5], while few works consider the 

problem of long unexpected disruptions of the service, which 
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are less frequent but significantly decrease the system 

performance [7]. Furthermore, most contributions consider the 

application of only one type of control action (e.g., cancelling 

of train runs) or simple combinations of a few of the available 

ones [8] [9] [10]; finally they typically use either macroscopic 

[9], [11], [12] or microscopic models [13], [14], where 

macroscopic models allow the representation of large areas 

neglecting important physical limitations of the network so as 

to reduce the problem complexity, while microscopic models 

keep into account a lot of details, resulting in a huge number of 

variables and constraints. 

Here, we focus on real-time management of railway traffic in 

large-scale networks in case of both a disruption and small 

disturbances. In particular, we consider the problem of 

automatically rescheduling the railway traffic when a full 

blockade occurs between two consecutive stations, thus 

preventing the circulation of trains in both directions, while 

small disturbances are still present and interfere with the 

nominal scheduling for the whole network. Our approach 

differs from the state of the art on railway traffic management 

that mainly provides open-loop control techniques for the 

railway traffic management and looks at the global optimality 

instead of global feasibility of the solutions [15]. Indeed, our 

purpose is to reschedule on-line and in closed loop the railway 

traffic in a large-scale network without neglecting the capacity 

limitations and the actual operations to be performed in the 

stations at the ends of the disrupted railway section. To this aim, 

we present an automatic rescheduling algorithm that combines 

Model Predictive Control (MPC) with an integrated 

methodology based on a distributed optimization algorithm and 

a bi-level heuristics. The integrated methodology performed in 

the control scheme is based both on a macroscopic and a 

mesoscopic Mixed Integer Linear (MIL) model that properly 

represent the network and its behaviour in nominal, disturbed, 

and disrupted modes. In the on-line feedback control scheme, 

the algorithm iteratively solves a distributed optimization 

problem based on the two MIL models together with a linear 

cost criterion, i.e., a MIL Programming (MILP) problem, and 

provides in real time updated control actions to be implemented 

in the network. The setting of the distributed optimization 

problem varies with each iteration of the algorithm, thus 

depending on the state of the network (i.e., nominal, disturbed, 

or disrupted) and on the state of the zones of the network (i.e., 

disrupted or non-disrupted). The bi-level heuristics acts only 

when it is necessary to reschedule traffic in the disrupted zone. 

In particular, the algorithm first solves the macroscopic MILP 

sub-problem related to the disrupted zone and then, based on 

the obtained results, solves the corresponding mesoscopic 

MILP sub-problem. This approach allows limiting the 

computational burden of the control scheme without neglecting 

physical limitations and operations to be performed at disrupted 

stations. 

Summing up, the main contributions of this paper are: (1) the 

development of a bi-level heuristics for fast solution of a 

mesoscopic MILP rescheduling problem in case of full 

blockade; (2) the integration of the bi-level heuristics in a 

distributed optimization algorithm for fast solution of a large-

scale rescheduling problem; (3) the implementation of an 

automatic technique that allows on-line feedback control of a 

large-scale railway system when both a disruption and various 

unexpected disturbances occur, thanks to the integration of the 

distributed optimization algorithm and the bi-level heuristics in 

an MPC control scheme.  

The effectiveness of the proposed technique is tested in a 

simulation environment on a complex real case-study. More in 

detail, we apply the method to the national Dutch railway 

network, where we use the real timetable consisting of all train 

lines that run in the whole country during the afternoon of a 

weekday. We simulate the presence of a full blockade between 

two consecutive stations and the presence of randomly 

generated small disturbances in the rest of the network in 100 

different instances. The obtained results show that the proposed 

method provides feasible control actions in less than 1 minute, 

i.e., respecting the sampling time limit of the MPC procedure, 

and being fully in accordance with the real-time train 

dispatching rules. Furthermore, performance indices highlight 

that the method ensures a low percentage of delayed train runs 

as well as average and maximum arrival delays that are 

significantly lower than the standard limits of the railway 

companies.  

The paper remainder is structured as follows. Section II 

recalls the related state of the art and positions the paper within 

it. Section III presents the MILP formulation of the 

rescheduling problem. Section IV describes the distributed 

optimization algorithm for solving the large-scale MILP 

problem including the bi-level heuristics. Section V describes 

the automatic feedback control algorithm and Section VI 

reports the results obtained by applying the method to the case 

study. Finally, Section VII summarizes the contribution of the 

work and the possible further developments.  

II. STATE OF THE ART 

A. Real-time management of railway traffic 

Real-time railway traffic management is a well-studied 

problem in the context of railway transportation, due to the 

substantial losses and/or gains that it can generate to companies 

and customers [4]. In general, the unexpected events affecting 

the nominal traffic can be roughly divided into two main 

categories: disturbances and disruptions [4]. Disturbances are 

defined as small perturbations that can cause short delays and 

consequently slightly defer the nominal arrivals and departures 

of multiple trains in the network. Such type of events can be 

caused, e.g., by a minor malfunctioning in the network. Their 

effects can be limited by small control actions, e.g., re-timing 

or reordering of trains in a station. On the other hand, 

disruptions are defined as long delays that can strongly affect 

the nominal circulation of trains in the network. For example, 

an interruption of the traffic at a certain track section can reduce 

the capacity of the network and necessitate drastic control 

actions, e.g., the cancellation of train runs. Two main categories 

of disruptions can be identified: full blockades and partial 

blockades. A full blockade consists in the complete interruption 

of the traffic between the stations at each end of the disruption, 



 3 

while a partial blockade consists in a reduction of the capacity 

of the tracks available for the circulation between the stations at 

each end of the disruption (hence, the number of the blocked 

tracks is smaller than the total number of the available tracks at 

the considered section). 

A further classification regards the main control actions that 

can be performed in case of disruptions: (1) short-turning, (2) 

shunting in stations, and (3) cancellation of train runs. More in 

detail, short-turning consists in a U-turn of the trains that enter 

the disrupted stations and then in the re-routing of the trains on 

their way back;  while for shunting, trains are moved from the 

stop platform in station to a dedicated yard in order to free the 

space in the station and to be used for later train runs when no 

other train is available. Cancellation obviously refers to the 

cancellation of some trains. Note that more formal definitions 

of short-turn and shunting are provided in the following Section 

III. 

Currently, in the Netherlands and in other countries like 

Germany, Switzerland, Denmark, and Japan, traffic controllers 

deal with disruptions by using predefined solutions, i.e., 

contingency plans, that are tailored to a precise disruption 

scenario in a precise location and that are designed manually by 

experienced human traffic controllers [8]. However, 

contingency plans cannot cover all the disruption cases and are 

suitable only for small portions of larger and more complex 

railway systems. In case no suitable contingency plan is 

available, human traffic controllers are required to promptly 

reach an agreement about a suitable plan and consequently are 

charged with a stressful and challenging workload. It appears 

then evident that there is a need for a method that supports 

human train controllers in rescheduling the railway traffic in 

real time, independently of the type of disruption, and that also 

provides feasible solutions for large-scale railway systems.  

The analysis of the related literature allows pointing out that 

in general the rescheduling problem is represented as an 

optimization problem and the main limitation in tackling real-

time rescheduling in case of disruptions and disturbances is the 

high level of complexity of the problem. The long computation 

time necessary for the solution of the problem makes the 

optimization-based method impractical for a real-time control 

environment. To avoid such an issue, on the one hand, some 

contributions (i.e., [9], [11], [16]–[20], [21], [22]) consider 

simplified models of the railway network, i.e., macroscopic 

models, so as to reduce the complexity of the problem and so as 

to properly represent larger areas of the network. However, 

such a representation increases the workload of train 

controllers, who have to readapt the rescheduled timetable 

before applying it to the real environment. On the other hand, 

other papers (e.g., [8], [23], [24]) propose detailed models, i.e., 

microscopic models that allow a realistic representation of the 

problem and the immediate applicability of the rescheduled 

timetable. However, in a real-time context, microscopic models 

limit the management to only small portions of the network. 

Hence, there is an urgent need to extend the research so as to 

fill the gap and to obtain a suitable technique for the 

rescheduling of railway traffic (1) in case of disruptions and 

disturbances, (2) based on realistic models, (3) in real time, and 

(4) for large-scale networks. 

B. MPC for real-time rescheduling in large-scale networks 

The various automatic real-time rescheduling approaches 

presented in the literature can be distinguished into static (or 

open-loop rescheduling) if the rescheduling is performed only 

once, with full information on the state of the system, and 

dynamic (or closed-loop rescheduling) if the rescheduling is 

iteratively performed and the information to use changes over 

time [10]. The second class of real-time control approaches are 

based on a general scheme that can be resumed as follows: 

selected data are gathered from the real world and passed to 

controllers that, based on certain models and rules, come up 

with proper control actions. The control actions are the input to 

steer the system to a certain desired state or performance. In 

general, such systems are included in iterative frameworks that 

adjust the forecast and the solution along time, in a closed-loop 

control setup inspired by rolling horizon optimization or model 

predictive control (MPC). Among the available dynamic real 

time approaches, here we focus on the MPC [25] scheme, which 

is effectively used to determine the optimal dispatching actions 

based on a prediction of the evolution of the system under 

control, using a model of that system [26].  

As shown in [27], for large-scale railway systems a 

centralized MPC scheme to control the entire system will 

exceed the allowable calculation time and is therefore 

infeasible. Especially for large networks, it is instead better to 

split the system into several smaller sub-areas and to control 

them individually. However, such a distributed approach can 

efficiently solve the real-time rescheduling problem for large-

scale railway systems only if it relies on macroscopic models of 

the railway system and operations. In case of microscopic 

models, the computational burden may become so significant 

that the real-time requirements cannot be fulfilled. It is also 

worth noting that the MPC scheme, both in its centralized and 

distributed version, has been mainly used to solve the 

rescheduling problem only in case of disturbances (see e.g., 

[27]–[31]). 

Considering the above state of the art, it is evidently 

important to develop a novel approach that allows the use of the 

MPC scheme in a distributed fashion in the context of 

disturbance and disruption management in large-scale railway 

networks.  

This article presents a novel rescheduling algorithm that 

allows traffic controllers to effectively cope with disturbances 

and disruptions in large-scale networks. The method 

successfully combines the bi-level resolution of a macroscopic 

and a mesoscopic MILP problem, representing the behaviour of 

a railway network affected by disturbances and disruptions, 

with the distributed optimization of the MPC scheme, so as to 

overcome the reported computational issues and to provide in 

real time a realistic and suitable rescheduled timetable to be 

used for the automatic train supervision.  

III. MACROSCOPIC AND MESOSCOPIC MODELS 

In this section, before introducing the MILP rescheduling 

problem, we provide the definition of short-turn and shunting 
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of rolling stock, which are common control actions in railway 

traffic management.  

Given the generic i-th train run as a pair (𝑑𝑖 , 𝑎𝑖) of departure-

arrival times between two consecutive stations (i.e., without any 

intermediate stop), short-turn and shunting are defined as 

follows: 

1) Short-turn consists in a turn-back of the trains that are 

directed to the blocked tracks. The short-turn is performed 

at the stations located at the ends of the full blockade. In this 

way trains are used to perform runs in the opposite direction 

of their nominal one. An example of short-turn is reported 

in Fig. 1 and Fig. 2. More in detail, Fig. 1 represents the 

normal behaviour of two trains arriving from opposite 

directions in station s. Consider two train runs i and j with 

the respective subsequent train run 𝜉−1(𝑖) and preceding 

train run 𝜉(𝑗). The train run i is combined with the 

subsequent train run 𝜉−1(𝑖) and the train run  𝜉(𝑗) is 

combined with the train run j as nominally scheduled. In 

practice, the two trains transit simultaneously or with a few 

minutes of delay, in opposite directions in the same station 

s. Conversely, in Fig. 2 the train run i is combined with train 

run j since train run 𝜉−1(𝑖) and train run 𝜉(𝑗) have been 

cancelled. In practice, the train arriving from the left to 

station s cannot proceed to the next station and then, after 

the short-turn, it performs the train run j as nominally 

scheduled in the opposite direction.  

2) Shunting consists in a shift of the trains from a platform in 

station to a separate shunting yard/track of the same station 

or vice-versa. The shunting can be performed in the stations 

at the two ends of the full blockade to: (1) avoid their 

congestion/block by releasing platforms, (2) use the trains 

in the shunting yard/track to perform train runs that would 

otherwise be cancelled. Examples of the two cases are 

reported in Figs 3 and 4. Figure 3 represents the case of a 

train that performs the run i but cannot proceed in its 

nominal direction, since the subsequent run 𝜉−1(𝑖) has been 

cancelled. Then the train is moved from the platform to the 

shunting yard in station s. Conversely, in Fig. 4 the run 

𝜉−1(𝑖) has been cancelled and the run j cannot be performed 

by the nominal train. Then, a train is moved from the 

shunting yard to a platform of the station s to perform the 

run j.  

Hereafter, we describe the formulations of the rescheduling 

optimization problems which are based on a macroscopic and a 

mesoscopic MIL model. Both optimization problems can be 

used in case of full blockade, delays, and simultaneous full 

blockade and delays. The macroscopic model mainly represents 

the railway network traffic, while the mesoscopic model 

includes also the rolling stock dispatching operations in the 

stations directly involved in the full blockade. For the sake of 

brevity, we provide only an intuitive insight of the 

mathematical formulations. For the formal definitions of the 

macroscopic and mesoscopic MIL models we refer the 

interested reader respectively to the works of Kersbergen et al. 

[27] and Blenkers [32] that, differently from this work, 

respectively provide a distributed MPC rescheduling scheme 

based on a macroscopic MIL model in case of delays, and a 

mesoscopic MIL model of the network in case of disruptions. 

Let us denote the discrete time instant as 𝑡(𝑘), with 𝑘 =

0,1, . . . ,K, the constant sampling time as Tstep, such that 𝑡(𝑘) =

𝑘Tstep, the time horizon as Thor = 𝑡(K) = KTstep, the continuous 

(binary) decision variables vector at time 𝑡(𝑘) as 𝐱(𝑘) (𝐯(𝑘)). The 

continuous decision variable vector 𝐱(𝑘)  contains all time 

variables (departure time and arrival time) for which the times 

are scheduled or expected to occur in the time horizon Thor at 

time instant 𝑡(𝑘). The binary decision variable vector 𝐯(𝑘) 

contains all the binary variables (i.e., cancellations, headway, 

short-turn, shunting, and ordering variables) at time instant 𝑡(𝑘) 

over the time horizon Thor. 

The rescheduling problem can be formulated as an MIL model 

together with a linear cost criterion, thus leading to a MILP 

problem in the standard form as follows: 

𝑚𝑖𝑛
𝒙(𝑘),𝒗(𝑘)

           𝐠𝒙(𝑘)
𝑇 𝒙(𝑘) + 𝒈𝒗(𝑘)

𝑇 𝒗(𝑘) 

    𝑠. 𝑡.             𝐀𝒙(𝑘)𝒙(𝑘) + 𝑨𝒗(𝑘)𝒗(𝑘) ≤ 𝒃(𝑘)         (1) 

The linear objective function 𝑓(𝒙(𝑘), 𝒗(𝑘)) = 𝒈𝒙(𝑘)
𝑇 𝒙(𝑘) +

𝒈𝒗(𝑘)
𝑇 𝒗(𝑘) is the sum of two terms:  

- the sum of the continuous decision variables vector 

𝐱(𝑘)weighted by the vector 𝒈𝒙(𝑘)
𝑇 ; 

- the sum of the binary decision variables vector 𝒗(𝑘) 

weighted by the vector 𝒈𝒗(𝑘)
𝑇 . 

The constraints set is presented in its matrix notation where: 

 
Fig. 1. Nominal traffic. 

 

 
Fig. 2. Short-turn. 

 
 

 
Fig. 3. Shunting a train from platform to shunting yard. 

 

 
Fig. 4.  Shunting a train from shunting yard to platform. 
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- 𝑨𝒙(𝑘)is the coefficient matrix of the continuous decision 

variables, 

- 𝑨𝒗(𝑘) is the coefficient matrix of the binary decision 

variables, 

- 𝒃(𝑘) is the constraint vector with known terms.  

In the macroscopic and in the mesoscopic MILP problems 

both the objective function and the constraints sets assume 

different formulations as follows. 

In the mesoscopic MILP problem, the continuous decision 

variables vector at time instant 𝑡(𝑘) is 𝒙(𝑘) = [𝒅𝑇(𝑘) 𝒂𝑇(𝑘)]𝑇 

while the binary decision variables vector is 𝒗(𝑘) =

[𝒄𝑇(𝑘) 𝒖𝑇(𝑘) 𝒔𝑇(𝑘)   𝐬𝑝
𝑇(𝑘) 𝒚𝑇(𝑘) 𝝎𝑇(𝑘)]𝑇. For the 

meaning of the decision variables the reader is referred to 

Table I. 

The constraints set can be divided into the following subsets 

(see [27] and [32] for the mathematical description of the 

constraints) according to their physical meaning: 

(a) Timetable constraints, imposing the rescheduled 

departure/arrival times to be equal to or higher than the 

nominal ones; 

(b) Running time constraints, imposing the fulfilment of the 

minimum run time duration for each train run;  

(c) Dwell time constraints, imposing the fulfilment of the 

minimum dwell time duration for each train stop in 

station; 

(d) Headway time constraints, imposing the fulfilment of 

the safety time between two consecutive departures in 

the same direction from the same station;  

(e) Short-turn constraints, allowing the combination of two 

consecutive train runs in opposite directions; 

(f) Shunting constraints, allowing the implementation of a 

shunting operation (from/to platform to/from shunting 

yard in the disrupted stations); 

(g) Capacity constraints, imposing the fulfilment of the 

capacity limits in the disrupted stations; 

(h) Ordering constraints, imposing the fulfilment of time 

order constraints for the trains assigned to the same 

platforms in the disrupted stations. 

Table II summarizes the railway traffic conditions that can be 

modelled with the mesoscopic MIL model, the type of control 

actions, and the subsets of constraints included. Hence, in the 

mesoscopic formulation the rescheduling problem is written as 

(1) subject to constraints (a)-(h) (see [32] for a detailed 

description of the constraints). 

In the macroscopic MILP problem, the continuous decision 

variables vector at time instant 𝑡(𝑘) is still 𝒙(𝑘) =

[𝒅𝑇(𝑘) 𝒂𝑇(𝑘)]𝑇 while the binary decision variable vector is 

𝒗′(𝑘) = [𝒄𝑇(𝑘) 𝒖𝑇(𝑘) 𝒔𝑇(𝑘) 𝒚𝑇(𝑘)]𝑇, which is a sub-vector of the 

vector used in the mesoscopic model 𝒗(𝑘), namely a vector only 

containing a subset of the components of 𝒗(𝑘). For the meaning 

of the decision variables refer again to Table I. The constraints 

set is composed by the subsets (a) to (f) as described in Table II 

(see also [27]).  

TABLE II 

MAIN FEATURES OF MACROSCOPIC AND MESOSCOPIC MODELS 

Type of model Railway traffic conditions  Type of control actions  Constraints involved 

Mesoscopic model Small disturbances, full blockade, and 

station capacity limits 
 Reordering of trains on tracks 

 Cancellations 

 Short-turn 

 Shunting 

 Platforms assignment in station 

 Ordering of trains in station 

(a) to (h) 

Macroscopic model Small disturbances and full blockade  Reordering of trains on tracks 

 Cancellations 

 Short-turn 

 Shunting 

(a) to (f) 

Macroscopic model Small disturbances  Reordering of trains on tracks  (a) to (d) 

 

 

 

TABLE I 

NOTATION  

Symbol Meaning  

INTEGER VARIABLES 

𝑡(𝑘) Time value at k-th sampling time 

𝑝 Index of the platform in station 

𝜉(𝑗)
 

Index of the train run preceding the j-th train run 

CONTINUOUS VARIABLES  

𝒅(𝑘) Rescheduled departure times vector at 𝑡(𝑘) 

𝒂(𝑘) Rescheduled arrival times vector at 𝑡(𝑘) 

𝒙(𝑘) Continuous variables vector at 𝑡(𝑘) 

BINARY VARIABLES  

𝒄(𝑘) Cancellation variables vector at 𝑡(𝑘) 

𝒖(𝑘)  Headway variables vector at 𝑡(𝑘) 

𝒔(𝑘) Short-turn variables vector at 𝑡(𝑘) 

𝒔𝑝(𝑘) Short-turn variables vector on platform p at 𝑡(𝑘) 

𝒚(𝑘) Shunting variables vector at 𝑡(𝑘) 

𝝎(𝑘) Ordering variables vector at 𝑡(𝑘) 

𝒗(𝑘) Binary variables vector for mesoscopic model at 𝑡(𝑘) 

𝒗′(𝑘) Binary variables vector for macroscopic model at 𝑡(𝑘) 

CONSTANT VALUES 

Tstep Sampling time 

Thor Duration of the time window – prediction horizon 

𝒈𝒙(𝑘) Weight vector of the continuous variables vector 𝒙(𝑘) 

𝒈𝒗(𝑘) Weight vector of the continuous discrete vector 𝒗(𝑘) 

𝒈𝒗′(𝑘) Weight vector of the continuous discrete vector 𝒗′(𝑘) 

𝑨𝒙(𝑘) Coefficient matrix of the continuous variables vector 𝒙(𝑘) 

𝑨𝒗(𝑘) Coefficient matrix of the continuous discrete vector 𝒗(𝑘) 

𝑨𝒗′(𝑘) Coefficient matrix of the continuous discrete vector 𝒗′(𝑘) 

𝒃(𝑘)
 

Constraint vector with known terms at 𝑡(𝑘) 
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Table II, third and fourth rows, summarize the railway traffic 

conditions that can be modelled with the macroscopic MILP 

model, the type of control actions, and the subsets of constraints 

included. Note that, although the macroscopic model allows to 

represent the short-turn and shunting actions, it does not 

consider the capacity limits of the stations and the time ordering 

of trains on the platforms, which are instead considered in the 

mesoscopic one. 

IV. THE DISTRIBUTED OPTIMIZATION ALGORITHM 

In this section we propose the integration of a bi-level 

heuristics in a distributed optimization scheme with the aim of 

solving the macro-mesoscopic MILP rescheduling problem for 

the large-scale railway network over the time horizon Thor. This 

integrated algorithm can be used only to control the system in a 

feedforward way, thus neglecting the real-time evolution of the 

system. To overcome such a limitation, in Section V we include 

this algorithm in an MPC scheme to obtain a feedback control 

approach.  

Let us consider a complex large-scale rescheduling MILP 

problem (1) for which the dimension of the vector 

[𝒙𝑇(𝑘) 𝒗𝑇(𝑘)]𝑇 is in the range [5000 - 15000], the dimension 

of the vector 𝒃(𝑘) is in the range [50000 - 150000], and the 

considered time horizon Thor ≤ 120𝑚𝑖𝑛. We set the sampling 

time Tstep = 1𝑚𝑖𝑛, which is the minimum time unit of the 

departure and arrival times, so as to have a sufficiently high 

resolution of the state of the system. We remark that the 

considered values of the time horizon and the time step are 

commonly accepted values of these parameters, see the 

discussion in [15]. Obviously, the proposed algorithm 

parameters may be straightforwardly changed if necessary. 

The proposed integrated algorithm, here named Distributed 

Optimization Algorithm, is based on an iterative procedure and 

consists in the following two subsequent phases: configuration 

and core algorithm. Hereafter, the algorithm is described in 

detail, while Fig. 5 shows the corresponding pseudocode.  

Phase 1 – CONFIGURATION  

P1.1 Global Macroscopic Problem Definition 

Configure the global macroscopic MILP problem: 

𝑚𝑖𝑛
𝒙(𝑘),𝒗′(𝑘)

   𝑓(𝒙(𝑘), 𝒗′(𝑘)) = 𝐠𝒙(𝑘)
𝑇 𝒙(𝑘) + 𝒈𝒗′(𝑘)

𝑇 𝒗′(𝑘) 

    𝑠. 𝑡.             𝐀′𝒙(𝑘)𝒙(𝑘) + 𝑨′𝒗′(𝑘)𝒗′(𝑘) ≤ 𝒃′(𝑘)     (2) 

with  

𝒙(𝑘) = [𝒅𝑇(𝑘) 𝒂𝑇(𝑘)]𝑇 ∈ ℝ𝑙𝑥1    

𝒗′(𝑘) = [𝒄𝑇(𝑘) 𝒖𝑇(𝑘) 𝒔𝑇(𝑘) 𝒚𝑇(𝑘)]𝑇 ∈ {0,1}𝑚𝑥1 

𝒈𝒙(𝑘) = 𝟏𝑙x1 

𝒈𝒗′(𝑘) = [𝝀  𝟎  𝟎  𝜸]𝑚x1 where |𝝀| = |𝒄(𝑘)| = 𝑚𝜆 and 𝝀 =

500 ⋅ 𝟏𝑚𝜆x1, while |𝜸| = |𝒚(𝑘)| = 𝑚𝛾 and 𝛾 = 1000 ⋅

𝟏𝑚𝛾x1. In other words, the weights are chosen to minimize 

the delays in the network, as well as the cancellations and 

the shunting actions due to their cost in terms of time and 

operators. The constraints set satisfies the specifications 

reported in the third row of Table II.  

The parameters of the MILP problem are set in accordance 

with the specifications of the real system, i.e., the nominal 

timetable, the headway time, the dwell time, the runtimes, 

the short-turn time, the shunting time, and the ordering 

time.  

P1.2 Macroscopic Problem Partitioning 

Partition the global macroscopic MILP problem into a 

number 𝛼 = |Z| of macroscopic MILP sub-problems, with 

Z the set of zones: 

𝑚𝑖𝑛
𝒙(𝑘),𝒗′(𝑘)

      𝐠𝒙(𝑘)
𝑇 𝒙(𝑘) + 𝒈𝒗′𝑧(𝑘)

𝑇 𝒗′𝑧(𝑘) + 𝒈𝒗′𝑧′(𝑘)
𝑇 𝒗′𝑧′(𝑘)   

    𝑠. 𝑡.     𝐀𝒙(𝑘)𝒙(𝑘) + 𝑨𝒗′𝑧(𝑘)𝒗′𝑧(𝑘) + 𝑨𝒗′𝑧′(𝑘)𝒗′𝑧′(𝑘) ≤ 𝒃(𝑘)     (3) 

with   𝑧 ∈ 𝑍  
Note that 𝒗′𝑧(𝑘) = [𝒄𝑧

𝑇(𝑘)𝒖𝑧
𝑇(𝑘)𝒔𝑧

𝑇(𝑘)𝒚𝑧
𝑇(𝑘)]𝑇 is the vector of 

the binary variables of zone z, and 𝝂′𝑧′(𝑘) = [𝒄𝑧′
𝑇 (𝑘)  𝐮𝑧′

𝑇 (𝑘)  

𝐬𝑧′
𝑇 (𝑘)  𝐲𝑧′

𝑇(𝑘)]𝑇 is the vector of the binary variables of all 

other zones 𝑧′ different from z. 

For the optimal partitioning of the global macroscopic 

MILP problem, we use the procedure by Kersbergen et al. 

[27]. This procedure consists in: i) grouping the variables 

and constraints of the global problem per track and choosing 

the number 𝛼 of zones; ii) solving a Mixed Integer 

Quadratic Programming problem that minimizes: (1) the 

number of constraints that couple the sub-problems, (2) the 

difference in the number of constraints among the sub-

problems, by keeping the disrupted area into a single zone. 

Note that there is no specific rule for the choice of  , but 

in general the higher the number of zones is, the lower the 

computation time needed to solve the MILP problem. For 

further details we refer the interested reader to [27]. 

P1.3 Mesoscopic Problem Definition 

Set the mesoscopic MILP sub-problem for the disrupted 

zone z : 

𝑚𝑖𝑛
𝒙(𝑘),𝒗(𝑘)

           𝐠𝒙(𝑘)
𝑇 𝒙(𝑘) + 𝒈𝒗𝑧(𝑘)

𝑇 𝒗𝑧(𝑘) + 𝒈𝒗𝑧′(𝑘)
𝑇 𝒗𝑧′(𝑘) 

    𝑠. 𝑡.             𝐀𝒙(𝑘)𝒙(𝑘) + 𝑨𝒗𝑧(𝑘)𝒗𝑧(𝑘) + 𝑨𝒗𝑧′(𝑘)𝒗𝑧′(𝑘) ≤ 𝒃(𝑘) (4) 

with   𝑧 ∈ 𝑍  

with 𝒗𝑧(𝑘) = [𝒄𝑧
𝑇(𝑘)  𝐮𝑧

𝑇(𝑘)  𝐬𝑧
𝑇(𝑘)  𝐬𝑝,𝑧

𝑇 (𝑘)   𝐲𝑧
𝑇(𝑘)   𝛚𝑧

𝑇(𝑘)]
𝑇
 

the vector of the binary variables for the disrupted zone z. 

The constraints set respects the specifications in Table II. 

P1.4 Stop Criterion Definition  

Let us define the iteration counter for the algorithm by n=1, 

2, …. The algorithm stops if (𝑛 ≥ Nmax)OR(Δ ≤

Δmax)OR(Ctime ≥ Cmax), where Δmax and Cmax provide an 

upper and a lower bound, respectively, to Δ and Ctime, which 

are defined as follows: Δ is the error between the solution of 

the global problem of phase P1.1 at the n-th generic iteration 

𝑓𝑛(𝒙(𝑘), 𝒗′(𝑘)) and the solution of the global problem of 

phase P1.1 at the previous n-1-th iteration 𝑓𝑛−1(𝒙(𝑘), 𝒗′(𝑘)); 

Ctime is the total computation time until now. In order to 

apply the algorithm in real time, reasonable values for the 

stopping criterion parameters are Nmax = 7, Δmax =

0.01, Ctime = 1min. 

Phase 2 – CORE ALGORITHM 

P2.1 Set Counters - Set Initial Solution 

Set the counter of the zones z=1 and the iteration counter 

n=1.  

Set the initial solution 

�̄�(𝑘) = [𝒅nom
𝑇 (𝑘) 𝒂nom

𝑇 (𝑘)]𝑇 and  �̄�′(𝑘) = 𝟎𝑚x1  
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Hence, we assign to the continuous decision variable the 

nominal departure and arrival times and to the binary 

variables the value 0, i.e., no control action is performed. 

P2.2 Distributed Optimization 

Iterate until (𝑛 ≥ Nmax)𝑂𝑅(𝛥 ≤ 𝛥max)𝑂𝑅(𝐶time ≥ 𝐶max) 

Iterate until 𝑧 < 𝛼  

P2.2.1 Check Zone 

If z is the disrupted zone, execute the BI-LEVEL 

HEURISTICS 

FIRST LEVEL 

Solve the macroscopic MILP sub-problem for zone z: 

𝑚𝑖𝑛
𝒙(𝑘),𝒗′(𝑘)

           𝐠𝒙(𝑘)
𝑇 𝒙(𝑘) + 𝒈𝒗′𝑧(𝑘)

𝑇 𝒗′𝑧(𝑘) + 𝒈𝒗′𝑧′(𝑘)
𝑇 𝒗′𝑧′(𝑘) 

    𝑠. 𝑡.             𝐀𝒙(𝑘)𝒙(𝑘) + 𝑨𝒗′𝑧(𝑘)𝒗′𝑧(𝑘) + 𝑨𝒗′𝑧′(𝑘)𝒗′𝑧′(𝑘) ≤ 𝒃(𝑘) 

                                    𝒗′𝑧′(𝑘) =  �̄�′𝑧′(𝑘)                                           (5) 
with �̄�′𝑧′(𝑘) the solution vector of the binary variables 

for the zones 𝑧′ obtained at the previous iteration n-1. 

At the first iteration �̄�′𝑧′(𝑘) is the zero vector.  

Let us denote the solution vector of the binary variables 

of (5) by �̂�′(𝑘). Then, we extract from �̂�′(𝑘) the sub-

vector of the cancellation variables �̂�(𝑘) and the sub-

vector of the short-turn variables �̂�(𝑘). 

END FIRST LEVEL 

SECOND LEVEL 

Solve the mesoscopic MILP sub-problem for zone z: 

𝑚𝑖𝑛
𝒙(𝑘),𝒗(𝑘)

           𝐠𝒙(𝑘)
𝑇 𝒙(𝑘) + 𝒈𝒗𝑧(𝑘)

𝑇 𝒗𝑧(𝑘) + 𝒈𝒗𝑧′(𝑘)
𝑇 𝒗𝑧′(𝑘) 

    𝑠. 𝑡.             𝐀𝒙(𝑘)𝒙(𝑘) + 𝑨𝒗𝑧(𝑘)𝒗𝑧(𝑘) + 𝑨𝒗𝑧′(𝑘)𝒗𝑧′(𝑘)

≤ 𝒃(𝑘) 
                                    𝒗′𝑧′(𝑘) =  �̄�′𝑧′(𝑘) 
                                  �̂�𝑧(𝑘) ∘ 𝒄𝑧(𝑘) = �̂�𝑧(𝑘)    

                                 (𝟏 − �̂�𝑧(𝑘)) ∘ 𝒔𝑧(𝑘) = 𝟎       (6) 

The added equality constraints imply that the 

cancellation variables set in the first-level in the 

macroscopic sub-problem are kept in the mesoscopic 

one and the non-feasible short-turns allowed in the 

macroscopic sub-problem are kept in the mesoscopic 

one. Note that the symbol  represents the element-wise 

product. 

END SECOND LEVEL 

Else solve the macroscopic MILP sub-problem for zone 

𝑧′. 
𝑚𝑖𝑛

𝒙(𝑘),𝒗′(𝑘)
      𝐠𝒙(𝑘)

𝑇 𝒙(𝑘) + 𝒈𝒗′(𝑘)𝑧

𝑇 𝒗′(𝑘)𝑧 + 𝒈𝒗′(𝑘)𝑧′

𝑇 𝒗′(𝑘)𝑧′   

    𝑠. 𝑡.          𝐀𝒙(𝑘)𝒙(𝑘) + 𝑨𝒗′(𝑘)𝑧
𝒗′

𝑧(𝑘) + 𝑨𝒗′𝑧′
𝒗′𝑧′(𝑘)𝑧′ ≤ 𝒃(𝑘) 

                                 𝒗′𝑧′(𝑘) =  �̄�′𝑧′(𝑘)          (7) 

Update n, 𝛥, and 𝐶time ; go to P.2.2. 

Return the solution vector [�̂�𝑇(𝑘)  �̂�𝑧
𝑇(𝑘)  �̂�′𝑧′

𝑇 (𝑘)] 𝑇 where 

�̂�𝑧
𝑇(𝑘) is the solution vector of the mesoscopic problem for the 

disrupted zone and �̂�′𝑧′
𝑇 (𝑘) is the solution vector of the 

macroscopic problem for all other zones. 

Note that the above procedure can also be used for the case in 

which only small disturbances are present by setting the global 

macroscopic MILP problem as specified in Table II.  

In the next section we describe the rescheduling algorithm 

that includes the above algorithm integrated in the MPC 

feedback control scheme. 

V. THE RESCHEDULING ALGORITHM   

This section presents the proposed automatic on-line 

feedback control algorithm. Differently from the state of the art 

that mainly provides open-loop control techniques and looks at 

the global optimality instead of global feasibility of the 

solutions [15], the proposed rescheduling algorithm permits the 

on-line feedback control of the railway traffic and ensures the 

feasibility of the dispatching plans.  

In particular, the algorithm allows to achieve the following 

three goals: 

1. On-line feedback control of the railway traffic in the event 

of a full blockade and various short delays in a large-scale 

network. Note that the full blockade and short delays can 

occur at any time and that the nominal timetable can be 

cyclic or acyclic;  

2. On-line computation of control actions that minimize the 

delays throughout the network as well as the cancellations 

of train runs and shunting actions; 

3. On-line computation, in a rolling horizon mode, of feasible 

dispatching plans that allow the global reordering of the 

traffic in the whole network and the local management of 

the rolling stock in the disrupted stations. 

For a detailed description of the fundamentals on MPC control 

the interested reader is referred to [33]. 

A. The structure of the MPC algorithm 

The algorithm is sketched in Fig. 6 and consists of 4 steps. 

Step 1 is an offline configuration of the algorithm; Steps 2 to 4 

perform the on-line feedback control of the system and are 

iteratively executed in accordance with the MPC scheme.  

 
 

Fig. 5.  The pseudocode of the distributed rescheduling algorithm. 
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Step 1 - Configuration 

In this preliminary step, the historical data regarding the 

unpredictable events that may affect the railway network are 

analyzed and the most common interruptions are identified 

and characterized in terms of duration and location in the 

railway network. Consequently, based on the performed 

analysis and on the company requirements and constraints 

(e.g., refresh rate of the current system state, communication 

systems, etc.) the following input parameters of the 

rescheduling algorithm are set:  

- sampling time Tstep ,i.e., the time step for the MPC 

procedure to update the railway state in the system 

model and compute the optimal control actions;  

- number of iterations 𝑘final=T-Tcurr/Tstep, where Tcurr is the 

time at which the algorithm starts and T corresponds to 

the daily timetable duration. Note that  𝑘 = 1, 2, . . . , 𝑘final 

represents the counter of iterations and at each iteration 

the time step is updated accordingly 𝑡(𝑘) = 𝑘 Tstep; 

- estimated duration of the disruption Tdisr; 

- number of partitioning zones  , i.e., the number of 

zones in which the whole network would be partitioned 

for the implementation of the distributed optimization; 

- prediction horizon Thor for the MPC procedure, which 

should be higher than or equal to the estimated duration 

of the disruption; 

- control horizon Tcontr, ; 

- transition period Ttr, i.e., the time necessary to restore 

the nominal traffic after the disruption; 

- objective of the rescheduling problem. 

Based on the above parameters, the global MILP problems, 

both for the cases of small disturbances and small 

disturbances and disruption, are set and Phase 1 of the 

integrated algorithm is executed. 

Step 2 – Update State 

At each time step 𝑡(𝑘) the current state of the system is 

measured (e.g., via the European Rail Traffic Management 

System) and the actual running times and dwell times are 

collected.  

Step 3 – Solve the Rescheduling Problem 

The state of the railway traffic is evaluated and only if delays, 

or a disruption or both are occurring, or if the system is in the 

transition phase (i.e., nominal traffic restoration after the 

disruption) the global rescheduling MILP problem is updated 

and solved over the prediction horizon horT . 

Step 4 – Control 

In this step, the control actions computed in Step 3 are applied 

for the current time step stepT and the prediction horizon is 

shifted of one time step, coherently with the MPC scheme. 

Note that if the railway traffic is in nominal conditions, no 

control action is applied. 

After executing Step 4 the iteration counter k is incremented 

by one and the steps from 2 to 4 are iterated until the counter k 

is lower than the assigned number of iterations 𝑘final.      

We now focus on Step 3, which is the fundamental part of 

the algorithm and is summarized in Fig. 7. In particular, at each 

time step of the MPC procedure it is necessary to verify the state 

of the network, which can be in one of these four modes: (0) 

Nominal schedule, (1) Delay, (2) Disruption, and (3) Transition 

(i.e., the phase of nominal traffic restoring after the end of the 

disruption). The flowchart in Fig. 7 shows the actions 

performed for every iteration by the control technique and is 

described hereafter.  

In mode (0), i.e., Nominal schedule, no control action must 

be performed and the nominal timetable is applied without any 

modification.  

In mode (1), i.e., Delay, the network is affected by small 

delays. In this case, no cancellations, short-turn, shunting, nor 

ordering actions are necessary. The rescheduled timetable for 

horT  is obtained by executing Phase 2 of the integrated 

algorithm presented in Section IV considering the Macroscopic 

MILP model for the small disturbances case. Note that no 

disruption is occurring, hence the BI-LEVEL HEURISTICS is 

not executed.  

In mode (2), i.e., Disruption, the network is affected by 

disruption and the rescheduled timetable for the prediction 

horizon is obtained by executing Phase 2 of the integrated 

algorithm presented in Section IV considering the macroscopic 

MILP model for the small disturbances and disruption case. In 

this mode the BI-LEVEL HEURISTICS is executed for the 

disrupted zone.  

Finally, in mode (3), i.e., Transition, the network is in a 

transition period immediately after the end of the disruption, 

where cancelling, short-turning, and shunting actions are still 

necessary to finally restore the nominal functioning. In this 

situation, the rescheduled timetable for the prediction horizon 

is obtained by executing Phase 2 of the integrated algorithm 

presented in Section IV considering the macroscopic MILP 

 
 

Fig. 6.  The integrated rescheduling algorithm. 
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model for small disturbances and the disruption case. 

VI. CASE STUDY AND SIMULATION RESULTS 

In this section, the proposed rescheduling algorithm is used 

to reschedule the railway traffic of the national Dutch railway 

network in case of disruptions and short delays (Fig. 8). A full 

blockade of the country network is considered on the track 

section between the stations Lage Zwaluwe (LZW) and 

Dordrecht (DD). The considered section includes the Moerdijk 

bridge, at which disruptions often occur due to adverse weather 

conditions. Moreover, this section of the network is part of one 

of three important train routes from North to South of the 

Netherlands. 

Figure 8 shows the main lines of the Dutch network and the 

zones in which the network is partitioned for the rescheduling 

(respectively represented in green, red, black, and blue colors). 

The disrupted area is represented in yellow in the green zone 

and the full blockade is indicated by an orange cross on the 

disrupted section. During the blockade, trains arriving from the 

south at LZW are short-turned and return to their starting 

destination. Similarly, trains arriving from the north at DD are 

short-turned and passengers continue their trip to LZW by bus. 

The short-turns of trains at stations DD and LZW may lead to 

local deviations from the nominal timetable that can cause 

 

Fig. 7.  Distributed optimization in one time step of the MPC procedure. 
 

mode(0)=Nominal schedule

mode(1)=Delay

mode(2)=Disruption

mode(3)=TransitionN Y

 
Fig. 8.  The Dutch railway network.  
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secondary delays for the rest of the network.  

The rescheduling algorithm is implemented in the Matlab 

(ver. R2020a) environment on an Intel core i7 processor with 8 

Gb memory, and the optimization problem is solved with the 

Gurobi solver (ver. 7.0.2).  

As performance indicators for the rescheduling algorithm we 

consider: 

(1) AvgAD, i.e., the average arrival delay; 

(2) MaxAD, i.e., the maximum arrival delay; 

(3) %DTR, i.e., the percentage of delayed train runs; 

(4) AvgCT, i.e., the average computation time per iteration in 

the MPC scheme; 

(5) StdAD, i.e., the standard deviation of the arrival delays; 

(6) StdCT, i.e., the standard deviation of the computation time 

per iteration in the MPC scheme. 

The approach proposed in this paper is applied to five 

scenarios considering randomly generated delays in the 

network and a disruption between Dordrecht and Lage 

Zwaluwe with five different durations.  

Scenario 1: Tdisr = 60min, Thor = 75min (i.e., longer than 

the duration of the disruption and sufficiently limited to avoid 

computation time issues).  

Scenario 2: Tdisr = 20min, Thor = 75min. 

Scenario 3: Tdisr = 30min, Thor = 75min. 

Scenario 4: Tdisr = 40min, Thor = 75min. 

Scenario 5: Tdisr = 50min, Thor = 75min. 

For all scenarios we perform 20 short delay instances: 

Scenario1.1 to Scenario 1.20; Scenario 2.1 to Scenario 2.20; 

Scenario3.1 to Scenario 3.20; Scenario 4.1 to Scenario 4.20; 

Scenario5.1 to Scenario 5.20 considering that 20% of the train 

runs is delayed by unexpected short delays that follow a 

uniform distribution on the interval [1, 15] minutes, with 20 

different seeds. Summarizing, we perform 100 different 

scenarios simulations to properly evaluate the proposed 

rescheduling algorithm.  

The input parameters for Step 1 – Configuration of the 

rescheduling algorithm are set as follows: 

- sampling time Tstep=1 min;  

- number of iterations 𝑘final=1440-Tcurr, where Tcurr is 

the time at which the algorithm starts the control and 

1440 corresponds to the daily timetable duration (in 

minutes); 

- estimated duration of the disruption Tdisr set depending 

on the considered Scenario; 

- number of zones for the partitioning of the network 𝛼 =
4, depicted in Fig. 8 as the red, the blue, the black, and 

the green zone; 

- prediction horizon Tdisr ≤ Thor ≤ 120min; 

- control horizon Tcontr=Thor; 

- transition period Ttr = 30min; 
Note that the transition period is set based on the suggestions 

by the train dispatchers. 

The results obtained for the performance indicators are 

represented by means of boxplots, where in each blue box the 

central red mark indicates the median value, and the bottom and 

top edges of the blue box indicate the 25th and 75th percentiles, 

respectively. Whiskers extend to the most extreme data points 

that are not considered outliers, and outliers are plotted 

individually using the '+' symbol. The boxplots are reported in 

Fig. 9, while the corresponding minimum, maximum, median, 

25th percentile, and 75th percentile values for each 

performance indicator and per each scenario are collected in 

Table III. The outcomes are as follows: 

- AvgAD index (i.e., the average arrival delay) varies in the 

interval [3.87,5.73] minutes for Scenarios from 1.1 to 1.20; 

[3.88,5.49] minutes for Scenarios from 2.1 to 2.20; 

[3.90,5.54] minutes for Scenarios from 3.1 to 3.20; 

[4.01,5.65] minutes for Scenarios from 4.1 to 4.20; and 

[4.15,4.79] minutes for Scenarios from 5.1 to 5.20. As shown 

by the boxplots and by the corresponding data reported in 

Table III, the algorithm performs best in Scenario 2, where 

the duration of the disruption is the shortest one, i.e., 20 

minutes. In effect, analysing the results in Table III the 

AvgAD presents the lowest values both for the 25th and the 

75th percentile of the instances in Scenario 2. Nevertheless, it 

can be observed that in all scenarios the AvgAD in the 75% 

of the total delay instances is lower than 5.4 minutes. 

Consequently, it can be asserted that the algorithm is not 

particularly influenced by the duration of the disruption and 

in the considered scenarios it allows ensuring AvgAD ≈
4.5 ± 1minutes;  

- MaxAD index (i.e., the maximum arrival delay) varies in the 

interval [14.24,22.34] minutes for Scenarios from 1.1 to 1.20; 

[14.24,26.33] minutes for Scenarios from 2.1 to 2.20; 

[14.28,27.84] minutes for Scenarios from 3.1 to 3.20; 

[14.27,27.84] minutes for Scenarios from 4.1 to 4.20, and 

[14.28,27.84] minutes for Scenarios from 5.1 to 5.20. 

Analysing the corresponding boxplots and the results reported 

in Table III, it can be observed that the value of the MaxAD 

index for the 25th percentile of the instances is lower than 

16.55 minutes for all scenarios. Moreover, it can be observed 

that for the 75th percentile of the instances, the value of the 

MaxAD is lower than 27.85 minutes for all scenarios. As for 

the AvgAD index, the MaxAD values are not particularly 

influenced by the duration of the disruption. Furthermore, it 

is noticeable that the maximum arrival delay for all of the 

instances is much lower than the maximum admissible delay 

beyond which customers can request a partial or total refund 

of the ticket (i.e., 30 minutes for a partial refund and 60 

minutes for a total refund).  

- %DTR index (i.e., the percentage of delayed train runs) varies 

in the interval [5.21,9.52] for Scenarios from 1.1 to 1.20; 

[5.28,9.33] for Scenarios from 2.1 to 2.20; [5.26,9.04] for 

Scenarios from 3.1 to 3.20; [5.20,9.03] for Scenarios from 4.1 

to 4.20; and [5.20,9.09] for Scenarios from 5.1 to 5.20. 

Analysing the corresponding boxplots and the results reported 

in Table III it can be observed that the value of the %DTR 

index for the 25th percentile of the instances is lower than 

6.60%. Moreover, it can be observed that for the 75th 

percentile of the instances, the value of the %DTR is lower 

than 8.06% for all scenarios. Thus, it can be observed that the 

percentage of delayed train runs is particularly low although 

the network is affected both by a disruption and delays.  

- AvgCT index (i.e., the average computation time per iteration 

in the MPC scheme) varies in the interval [26.43,40.70] 

seconds for Scenarios from 1.1 to 1.20; [25.24,35.93] seconds 

for Scenarios from 2.1 to 2.20; [22.93,37.42] seconds for 
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Scenarios from 3.1 to 3.20; [20.87, 40.62] seconds for 

Scenarios from 4.1 to 4.20; and [25.55,54.60] seconds for 

Scenarios 5.1 to 5.20. Analysing the corresponding boxplots 

and the results reported in Table III, it can be observed that 

the value of the AvgCT index for the 25th percentile of the 

instances is lower than 29.38 seconds. Moreover, it can be 

observed that for the 75th percentile of the instances, the value 

of the AvgCT is lower than 41.33 seconds for all scenarios. It 

is worth noting that the AvgCT remains lower than one 

minute (i.e., the time step of the MPC scheme) in all the 

considered instances while its variation depends on the 

disruption duration and short delay instance scenario. 

- StdAD index (i.e., the standard deviation of the arrival delays) 

varies in the interval [1.21,2.23] minutes for Scenarios from 

1.1 to 1.20; [1.25,2.07] minutes for Scenarios from 2.1 to 

2.20; [1.35,2.16] minutes for Scenarios from 3.1 to 3.20; 

[1.36,2.16] minutes for Scenarios from 4.1 to 4.20; and 

[1.36,2.16] minutes for Scenarios from 5.1 to 5.20. Analysing 

the corresponding boxplots and the results reported in Table 

III, it can be observed that the value of the StdAD index for 

the 25th percentile of the instances is lower than 1.49 minutes. 

Moreover, it can be observed that for the 75th percentile of 

the instances, the value of the StdAD is lower than 1.74 

minutes for all scenarios. This shows that the variation of the 

arrival delays with respect to the average value is particularly 

limited in all scenarios although the disruption duration varies 

from 20 to 60 minutes. 

- StdCT (i.e., the standard deviation of the computation time 

per iteration in the MPC scheme) varies in the interval 

[17.30,71.11] seconds for Scenarios from 1.1 to 1.20; 

[16.54,35.96] seconds for Scenarios from 2.1 to 2.20; 

[16.54,35.96] seconds for Scenario 3.1 to 3.20; [13.89,49.34] 

seconds for Scenarios from 4.1 to 4.20; and [21.89,56.66] 

seconds for Scenarios from 5.1 to 5.20. Analysing the 

corresponding boxplots and the results reported in Table III, 

it can be observed that the value of the StdCT index for the 

25th percentile of the instances is lower than 25.06 seconds. 

Moreover, it can be observed that for the 75th percentile of 

the instances, the value of the StdCT is lower than 35.87 

seconds for all scenarios. Consequently, the values obtained 

for the standard deviation of the computation time confirm 

that the proposed rescheduling algorithm allows the 

resolution of the rescheduling problem for the considered 

large-scale network in less than one minute in all the 

implemented scenarios. 

Note that for each time step the global MILP problem has 

11501 variables and 123773 constraints for the worst-case 

Scenario 1; while it has 10 559 variables and 113356 constraints 

for the best-case Scenario 2, which thus presents a lower 

complexity. 

With the aim of evaluating the effectiveness of the 

rescheduling algorithm not only in managing railway traffic but 

also in properly handling the rolling stock during the disruption, 

in Fig. 10 we graphically report the assignment of trains to the 

available platforms at the disrupted stations. The two graphs in 

Fig. 10 respectively show the assignment of the trains to the 

platforms in LZW and DD stations in the most critical Scenario 

1, i.e., when the duration of the disruption is equal to 60 

minutes. It can be observed that in both stations the algorithm 

properly assigns the trains to the available platforms, 

respectively 4 in LZW and 6 in DD, without violating the 

corresponding capacity constraints and avoiding accidents due 

to the overlapping of dwell times on the same platforms. This 

confirms the effectiveness of the algorithm in properly fulfilling 

the rolling stock constraints in a large-scale systems affected by 

a severe disruption and various delays. 

To further assess the outcomes of the proposed algorithm, we 

report the results obtained with a semi-heuristic algorithm that 

mimics the traditional control actions that can be performed in 

the two disrupted stations by a train dispatcher during the 

disruption. In particular, the heuristics considers a manual 

  
Fig. 9.  Boxplots of the performance indices for the 20 instances of Scenarios S1, S2, S3, S4 and S5: AvgAD, MaxAD; %DTR, AvgCT, StdAD, StdCT. 
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short-turning that combines each incoming train run with the 

first available outgoing train run, i.e., without any optimization. 

For the sake of brevity, we only report the results obtained for 

the worst-case and best-case scenarios with variable short 

delays, i.e., S1.1 to S1.20 and S2.1 to S2.20. In particular, the 

AvgAD index increases between 10% and 30%; the MaxAD 

index  increases between 10\% and 35%; the %DTR index 

increases between 35% and 50%; on the contrary the AvgCT 

index decreases between 20% and 30% with respect to the MPC 

approach. Consequently, the outcomes show that the choice of 

the heuristic traditional procedure for the assignment and 

ordering of train runs in the disrupted stations reasonably leads 

to the worsening of the arrival delays in the network and to an 

obvious reduction of the computation time necessary for the 

execution of the rescheduling algorithm, as compared to the 

performance of our algorithm. 

Finally, the proposed MPC-based rescheduling algorithm has 

been further tested in Scenario 1 considering the exact 

resolution of the mesoscopic problem for the disrupted zone, 

thus excluding the bi-level heuristics. On average the algorithm 

requires 20 minutes for each iteration of the MPC scheme, 

which is far higher than the expected 1 minute, thus confirming 

the suitability of the proposed algorithm to be applied in a real-

time feedback control environment. 

Concluding, we want to highlight that the obtained results are 

already very good in terms of applicability to real-time 

Centralized Traffic Control, but they can be obviously further 

improved considering a dedicated high-performance computer 

for the implementation of the algorithm. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we propose an innovative on-line feedback 

control algorithm for the rescheduling of railway traffic in case 

of a disruption and various delays in a large-scale network. Our 

method, based on the knowledge of the state of the network, 

provides dynamically in a rolling horizon control mode a 

feasible rescheduled timetable that includes the physical 

operations to be performed in the disrupted stations. The 

proposed technique is based both on a macroscopic and a 

mesoscopic mixed integer linear programming model, and 

combines the Model Predictive Control (MPC) approach with 

an integrated algorithm that merges a distributed optimization 

method with a bi-level heuristics.  

The integrated algorithm allows to reduce the computation 

time with respect to more classical algorithms that look at the 

optimality of the timetable but fail in providing feasible 

solutions for large-scale systems. The method has been tested 

on various disruption and delays scenarios for the real national 

Dutch railway network. The obtained outcomes highlight the 

effectiveness of the approach in minimizing the average and 

maximum arrival delays, the percentage of the delayed train 

runs, and the computation time, thus ensuring the time step 

constraint of 1 minute for the MPC approach (which is coherent 

with classical train dispatching specifications) without 

neglecting the physical limitations and the actual operations to 

be performed in the disrupted stations.  

TABLE III 
BOXPLOT VALUES OF THE PERFORMANCE INDICATORS FOR                           

SCENARIO 1.1 TO SCENARIO 5.20 

Performance 

indicators 

Scenario 

Sc. 1.1 
to 1.20 

Sc. 2.1 
to 2.20 

Sc. 3.1 
to 3.20  

Sc. 4.1 
to 4.20 

Sc. 5.1 
to 5.20 

Avg

AD 

[min] 

Min 3.87 3.88 3.90 4.01 4.15 

Medi

an 

4.56 4.63 4.77 4.76 4.70 

Max 5.73 5.49 5.54 5.65 4.79 

25% 4.45 4.37 4.79 4.57 4.51 

75% 4.77 4.77 5.02 5.04 4.78 

Max

AD 

[min] 

Min 14.24 14.24 14.28 14.27 14.28 

Medi
an 

18.44 18.00 18.50 19.00 19.13 

Max 22.34 26.33 27.84 27.84 27.84 

25% 16.55 16.55 16.39 16.39 16.51 

75% 20.00 20.00 21.00 20.50 20.00 

% 

DTR 

Min 5.21 5.28 5.26 5.20 5.20 

Medi
an 

6.92 7.03 7.08 6.97 7.08 

Max 9.52 9.33 9.04 9.03 9.09 

25% 6.41 6.60 6.52 6.45 6.48 

75% 7.51 8.06 7.54 7.48 7.70 

Avg
CT 

[s] 

Min 26.43 25.24 22.93 20.87 25.55 

Medi
an 

32.40 28.08 28.02 30.87 34.99 

Max 40.75 35.93 37.92 40.62 54.60 

25% 29.07 26.53 26.19 24.89 29.38 

75% 41.33 29.41 29.98 32.63 39.89 

Std 
AD 

[min] 

Min 1.21 1.25 1.35 1.36 1.36 

Medi

an 

1.53 1.58 1.54 1.55 1.52 

Max 2.23 2.07 2.16 2.16 2.16 

25% 1.41 1.44 1.49 1.46 1.43 

75% 1.66 1.70 1.73 1.74 1.68 

Std 

CT 
[s] 

Min 17.30 16.54 16.54 13.89 21.89 

Medi
an 

23.22 20.46 20.46 24.48 30.16 

Max 71.11 35.96 35.96 49.34 56.66 

25% 19.89 18.56 18.66 18.42 25.06 

75% 35.87 21.56 21.56 29.96 34.72 

 

 

 

 

 
Fig. 10.  Assignment of trains to platforms in the disrupted stations:                                

Lage Zwaluwe and Dordrecht. 
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Further research will explore the effect of different tunings 

of the objective function, the robustness of the technique with 

respect to multiple disruptions and uncertainty in the data, and 

the energy consumption optimization.  
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