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ABSTRACT 

A highly efficient and robust multiple scales in silico protocol, consisting of atomistic Molecular Dynamics (MD), 

coarse-grain (CG) MD, and constant-pH CG Monte Carlo (MC), has been developed and used to study the binding 

affinities of selected antigen-binding fragments of the monoclonal antibody (mAbs) CR3022 and several of its here 

optimized versions against 11 SARS-CoV-2 variants including the wild type. Totally 235,000 mAbs structures were 

initially generated using the RosettaAntibodyDesign software, resulting in top 10 scored CR3022-like-RBD 

complexes with critical mutations and compared to the native one, all having the potential to block virus-host cell 

interaction. Of these 10 finalists, two candidates were further identified in the CG simulations to be clearly best 

against all SARS-CoV-2 variants, and surprisingly, all 10 candidates and the native CR3022 did exhibit a higher 

affinity for the Omicron variant despite its highest number of mutations. The multiscale protocol gives us a powerful 

rational tool to design efficient mAbs. The electrostatic interactions play a crucial role and appear to be controlling 

the affinity and complex building. Studied mAbs carrying a lower total net charge show a higher affinity. Structural 

determinants could be identified in atomistic simulations and their roles are discussed in detail to further hint at a 

strategy towards designing the best RBD binder. Although the SARS-CoV-2 was specifically targeted in this work, 

our approach is generally suitable for many diseases and viral and bacterial pathogens, leukemia, cancer, multiple 

sclerosis, rheumatoid, arthritis, lupus, and more. 
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1 INTRODUCTION 

The world has been in the grip of the “Covid-19” 

pandemic, caused by the severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), for roughly 

two years and a half with no corner on Earth being 

saved. To date, more than 533 million cases and 6.3 

million deaths are reported with no end in sight 

[https://www.who.int/] at the time of writing. The 

pandemic has quickly mobilized the scientific 

communities, pharmacological companies, and 

governmental health agencies. Vaccines have been 

developed in the shortest possible time and 

manufactured in large quantities on a global scale 1. 

Yet, the number of people to be vaccinated remains 

quite large. How the pandemics will develop largely 

depends on the populations becoming vaccinated 

worldwide in combination with non-pharmacological 

measures. Unfortunately, on one hand, there is strong 

resistance to accepting the vaccine, and on the other 

hand, poor countries do not have supplies for their 

populations. This worsens the situation as it gives 

time for new mutations of the virus to develop with a 

relatively high potential for breakthrough cases 2. 

Consequently, it requires continuously new research 

and constantly new treatment strategies.  To be able 

to combat the infections, and hopefully to finally put 

an end to the pandemics, it is important to investigate 

the genomics, molecular structure and dynamics, 

mechanisms of binding, and the life cycle of the 

viruses. 

Coronaviruses have four types of glycoproteins all 

taking part in the pathogenesis: spike (S), membrane 

(M), nucleocapsid (N), and envelope (E). The S-

protein is a homotrimer sticking out of the viral 

surface. There is a specific site for the protease furin 

to cleavage it in the spike protein 5, and an open 

reading frame differentiating it from other RNA 

viruses. The furin site is particularly mutation-prone 
3. The spike protein is highly flexible, being even 

able to rotate and swing, and compared to other 

coronaviruses, where the spike protein is rather rigid, 

it is much more efficient in binding. At the top of the 

spike protein, there is the receptor-binding domain 

(RBD) which binds to the angiotensin-converting 

enzyme 2 (ACE2) receptor of the host cell to promote 

an entry to infect the human cell assisted with host 

factors such as the cell surface serine protease 

TMRSS2 or cathepsin L by fusing with the cellular or 

endosomal membrane 3,6–8]. Each chain of the S 

protein contains two subunits, S1 and S2. They are 

cleaved by TMPRSS2 and both have important roles 

in the fusion to the host cell. S1 subunit leaks out 

from the S2 unit facilitating the membrane fusion 

between viral and cell membranes by hydrophobic 

amino acids which become buried in the cell 

membrane of the host cell. Some studies show that 

SARS-CoV-2 has a much higher affinity and exhibits 

stronger interaction for ACE2 than the RBD of the 

previous SARS-CoV-1 9. Other works measured 

similar affinities 10.  Nevertheless, the RBD region of 

the S protein is obviously an ideal target for vaccines 

to induce host immune response and generate 

neutralizing antibodies 1,11. New variants tend to 

appear in the S1 subunit, for example, the Delta 

variant has several mutations there and also some 

specifically in RBD 12. The Alpha variant has ten 

changes in the spike protein sequence favoring its 

open state and making the RBD more accessible to 

ACE2 helping the virus to enter the cell. The trimeric 

spike has several conformations (open and closed) 

and orientations before fusion, and once bound it 

undergoes a structural transition forming a narrow 

bridge that also protects the virus from the immune 

defense 13. The probability to be in these two 

different conformational states (open and closed) is 

strongly dependent on the variants as revelead by 

experimental and theoretical works 14–16. There seems 

to be a correlation between this probability and the 

tendency of either asymptomatic or symptomatic 

clinical cases 14,17. 

There are several therapy strategies that in principle 

can be used to combat SARS-CoV-2 infections. For 

example, in developing the vaccines, the main 

choices space from mRNA vaccines releasing a 

synthetic mRNA sequence encoding the virus spike 

protein from a nano-particle to virus vector vaccines 

where DNA encoding the spike protein is embedded 

in a viral vector to enter the cell 1,11. Despite some 

promising medicines 18 including PAXLOVID, there 

is still no effective drug against Covid-19 and 

neutralizing monoclonal antibodies (mAbs) are 

currently the most attractive alternative. One 

approach that has been successfully used in the past 

to treat various infectious diseases is convalescent 

plasma therapy (CPT) 19. This treatment uses plasma 

collected from COVID-19 recovering patients (those 

that have been cured successfully) to be administered 

to recipient patients that still did not develop a 

protective immune response. Neutralizing antibodies 

(Abs) from the donor's plasma helps in reducing the 

viral load in the recipient. Apart from neutralization, 

other mechanisms may also be responsible for the 

protective effect of CPT. Some studies revealed the 

presence in the plasma of COVID-19 convalescent 

patients of Abs capable of inducing antibody-

dependent cell cytotoxicity (ADCC) 20, phagocytosis 
21, and complement activation 21. Despite its success, 

one important limitation of CPT in the treatment of 

COVID-19 is represented by the diversity of virus 
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variants found in the population which makes the 

selection of donors difficult. The large variation of 

Abs level in different plasma samples and serum 

incompatibility of recipients are yet another issue that 

has to be carefully evaluated when using CPT 22,23. 

On the other hand, mAbs or polyclonal antibody 

cocktails can be specifically engineered and 

biotechnologically produced to fight SARS-CoV-2. 

Spike protein is the primary target of these mAbs 

with four classes of them being described to date 

depending on the location of their target epitope on 

the S protein 24. Regardless of their source, either 

from convalescent blood or industrially produced, 

human mAbs are safe therapeutic tools and can be 

produced quickly. There are already more than 50 

commercially available mAbs approved for the 

treatment of other inflammatory and immune 

disorders and other infectious pathogens. Several 

candidates against SARS-CoV-2 are by now in 

different trial phases 25,26. Patents have already been 

deposited (e.g, US 2021/0292393, 

US20210388066A1), and some mAbs are approved 

by regulatory agencies such as the FDA 27,28.  

Among available mAbs, CR3022 is a class IV mAb 

that does not bind to an RBD epitope that overlaps 

the ACE2 binding site, but to a conserved region in 

RBD when the spike homotrimer is in “up” (or open) 

configuration exposing the RBD to interact with 

either ACE2 or binder molecules 14,29,30. Exploiting 

such conserved regions in RBD (despite requiring the 

spike protein to be at the up/open state), class IV 

mAbs have thus broad neutralizing activity against 

SARS-CoV-2, its variants, and other related 

coronaviruses (e.g. SARS-CoV) 29. The broad 

sarbecovirus neutralizing activity from CR3022 has 

already been confirmed even for the Omicron variant 
31. Due to the abrupt appearance of new variants of 

concerns (VOCs) 32 in a short time, improving a mAb 

that has its epitope on a conserved region of the RBD 

may constitute an advantage for developing 

biopharmaceuticals broadly effective against 

different variants of the virus. Moreover, attention 

has recently been turned again to the CR3022 

antibody as a promising candidate for COVID-19 

treatment and prevention as new experimental and 

computational evidence became available. The 

experimental study of Tian et al. 9 and the 

computational study of Nguyen et al. 33 showed that 

CR3022 binds RBD of SARS-CoV-2 with high 

affinity (KD ~ 6.3 to 3 nM) in contrast with the results 

of Yuan et al. 16 which gave a much lower affinity of 

binding (KD ~ 115 nM). Other theoretical works 

showed similar binding affinities with a tendency for 

stronger complexes formed with RBD SARS-CoV-1 
34. Despite these inconsistencies regarding the affinity 

of CR3022 for SARS-CoV-2 S-protein, this mAb is 

nevertheless an appealing candidate to be subjected 

to affinity maturation, especially due to its cross-

reactivity. Therefore, the CR3022 antibody has been 

chosen in this study and will be the central part of our 

discussions. 

Traditionally, mAbs production is based on 

immunization by hybridoma technology which uses 

an optimized immunogenic specific antigen to infect 

a host animal and then to isolate its short-lived 

mature B-cells from the spleen which can produce 

antigen-specific mAbs. These specific B-cells are 

then fused with immortal myeloma cells to obtain 

hybridomas which are able to secrete large amounts 

of the specific mAb 35,36. Promisingly, mAbs 

discovery for SARS-CoV-2 has benefited more 

recently also from in vitro approaches like phage 37 

and yeast display 38 technologies. Despite their 

tremendous positive impact on therapeutic mAbs 

development, all these techniques present also 

challenges and limitations whose description falls 

beyond the scope of this paper but can be found in 

two excellent recent reviews 39,40. Both hybridoma 

and in vitro techniques sometimes lead to mAbs with 

lower than expected affinity and specificity 41,42. To 

alleviate this drawback, supplementary in vitro 

affinity maturation is used to increase the potency of 

the designed antibodies resulting in lower injected 

doses and side effects 43,44. The two approaches in use 

today in this respect include random mutagenesis 45 

and chain shuffling/site-directed mutagenesis 46. Both 

of them introduce mutations in the complementarity-

determining regions (CDR) sequences (the part of the 

variable chains in immunoglobulins), either at 

random or at specific positions, followed by affinity 

screening of the expressed mutant using display 

technologies to select the best-improved antibody 47. 

Although there are successful studies that have used 

in vitro affinity maturation alone, several challenges 

related to display technologies may limit its efficient 

applicability. These include the limited sub-space of 

the possible mutations effectively accessible to 

display approaches 48, the time-consuming and 

laborious process of building sub-libraries,  the risk 

of non-specific binding or loss of stability 49 and not 

in the last place the long time needed and 

prohibitively expensive price to complete 

experiments. 

To successfully develop potent therapeutic Abs many 

recent studies employ, alongside experimental in 

vitro techniques, computational approaches which 

can provide detailed structural information on the 

atomic-scale regarding the antibody-epitope 

interactions and predict possible improvements 50. 
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Attempts to computationally optimize existing Abs 

for SARS-CoV-2 were already reported in the 

literature34,51 following the work of Giron and co-

authors that provided an optimized CR3022.34 A 

large number of such studies emphasize how 

computational tools are being routinely used for 

complementing experiments in the Ab design 

process. At present, a large diversity of algorithms 

for computational Ab studies are available, from 

those that predict the structure of an Ab based on its 

primary sequence only (i.e. antibody modeling) 52, to 

the ones that make use of detailed structural 

information from X-ray diffraction data to design 

improved antibodies from existent ones (i.e. antibody 

design) 53. Availability of experimental structural 

data regarding the complex between the Ab to be 

improved and its antigen (Ag) greatly improves the 

prediction accuracy although antibody-antigen (Ab-

Ag) computationally modeled structures could be 

used as well 54. In short, the general workflow of 

computational design of novel paratopes includes: (i) 

generation of new CDRs from experimental antibody 

databases and their grafting/modeling on the antibody 

framework, (ii) CDRs sequence redesign introducing 

mutations, (iii) antibody-antigen docking according 

to the known epitope and relative orientation of the 

partners, (iv) binding energy evaluation using a 

scoring function. Eventually, these steps are 

performed in many rounds to encounter a better 

binding antibody. The generally used algorithms 

available today include: RosettaAntibodyDesign 55, 

AbDesign 56, OptCDR 57, and OptMAVEn 58. In 

addition to this general protocol, other molecular 

modeling techniques can be applied to improve the 

accuracy of predictions. Molecular dynamics (MD) 

simulations, with more than 60 years of history 59,60, 

represent a well-established method for analyzing the 

physical movement of atoms and molecules, with a 

long history of applicability in biological sciences 61–

64. This method has the advantage of introducing the 

time dimension in the simulations, this way being 

able to capture a wide variety of biological processes 

like conformational changes or protein folding and 

how biological molecules will respond to post-

translational modifications or mutations. Atomistic 

MD has been successfully used in the past in Ab 

design studies for affinity maturation of camelid 

nanobodies against alpha-synuclein, a weak 

immunogenic antigen 65, of bevacizumab antibody 

for an increased affinity to vascular endothelial 

growth factor A (VEGF-A) 66, and of a toll-like 

receptor (TLR4) targeting Ab 67, to mention just a 

few examples. However, different steps of Ab-Ag 

interaction take place on different time scales, which 

cannot be effectively covered by conventional 

atomistic simulations only. 

In this paper, we propose a novel multiscale approach 

for in silico affinity maturation of the mAb CR3022 

against RBD of SARS-CoV-2 in order not only to 

improve binding but also to understand the molecular 

determinants on different time/length scales which 

can be exploited to further modify and modulate the 

binding affinity. Our approach did include an initial 

conventional Ab design stage followed by 

complementary evaluations of the best candidates 

using constant-pH Monte Carlo (MC) calculations, 

constant-charge coarse-grain (CG) MD calculations, 

and constant-charge atomistic MD simulations. We 

then selected, as the result of the affinity maturation 

process, the candidate that showed improved affinity 

in all four types of evaluations. A strong point in 

favor of our approach is that it uses complementary 

methods for binding affinity estimation, with 

different physical bases ranging from rigid-body 

long-range interaction assessment to local 

conformational rearrangements upon intimate Ab-Ag 

binding. Furthermore, our multiscale approach 

allowed us to test our candidates against 11 different 

strains of the SARS-CoV-2 virus. We identified key 

residues of the 6 CDRs in the light (L) and heavy (H) 

chains important for binding located either at the 

interaction interface or distant to it, together with 

mutations that improve binding like S35K (CDR L1), 

S72E (CDR L1), Y110R (CDR L3), and Y39W 

(CDR H1). Also, the total net charge of the mAb 

proved to be an important parameter that should be 

considered when aiming to design better binders for 

RBD of SARS-CoV-2. 

2 THEORETICAL METHODS 
Modern virology, immunology, and related fields are 

expanding their achievements by incorporating 

theoretical approaches in their daily practice 68–70. In 

fact, computer simulations have been playing a key 

role in the investigation of many biological systems 

including pharma and viruses 61,71,72. Examples are 

found in several study cases aimed at the 

understanding of a broad spectrum of phenomena, 

ranging from the elucidation of capsid formation to 

the design of antiviral molecules 73–79. Canonical 

simulation methods - well established in more 

fundamental scientific areas and material sciences - 

are now routinely used to enhance the understanding 

of the biomolecular interactions involved in 

infectious diseases. Following a biophysical 

approach, classical MD and MC methods are 

techniques that have a long history of successful 

applications in many scientific problems as 

standalone theoretical studies or in combination with 

experimental techniques 61,80–86. Other bioinformatics 

algorithms are completing theoretical resources and 
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helping to address challenging problems in the 

biomolecular world 68,87–89. 

 

Some previous theoretical studies with CR3022 

As mentioned above, CR3022 has been suggested as 

a promising therapeutic option to neutralize SARS-

CoV-2 9,16,29,90, and is often explored in theoretical 

studies 33,34,91,92. In a pioneer computational study at 

the very beginning of the pandemic 34, using 

constant-pH MC simulations, Giron, Laaksonen, and 

Barroso da Silva showed that CR3022 - known to 

bind to SARS-CoV-1 RBD - could also bind to 

SARS-CoV-2 RBD. They also mapped the epitopes 

and identified the importance of electrostatic 

interactions for the corresponding Ab-Ag interface 34. 

Following different routes, Ding et al. 91 have 

proposed an efficient and reliable computational 

screening method based on “Molecular Mechanics 

Poisson-Boltzmann surface area” (MM/PBSA) to 

estimate binding free energy between SARS-CoV-2 

RBD and ACE2 together with CR3022 and CB6 in 

good agreement with reported experimental values. 

Their scheme identifies the key residues that increase 

hydrophobicity and indicates that changing the sign 

of charged residues from positive to negative can 

increase the binding affinity. In comparison with 

standard MM/PBSA, their method is more accurate 

due to the introduction of electrostatic energy in the 

scheme. 

Lagoumintzis et al. 93 used in silico methods in their 

studies of the recent hypothesis that SARS-CoV2 

would interact with nicotinic acetylcholine receptors 

(nAChRs) and disrupt the regulation of nicotinic 

cholinergic system (NCS) and the cholinergic anti-

inflammatory pathway. They used ROSETTA and 

multi-template homology modeling to study a 

sequence from a snake venom toxin to predict the 

structure of the extracellular domains of nAChRs 

(“toxin binding site”). Using the “High Ambiguity 

Driven protein-protein DOCKing” (HADDOCK) 

approach 94, they found a protective role of nicotine 

and other cholinergic agonists and observed that 

CR3022 and other similar mAbs show an increased 

affinity for SARS-CoV-2 Spike glycoprotein. To 

study the molecular mechanisms in SARS-CoV-2 S 

protein binding with several mAbs, Verkhivker and 

Di Paola 95 performed all-atom and CG simulations 

with mutational sensitivity mapping, using the 

BeAtMuSiC approach and perturbation response 

scanning profiling of SARS-CoV-2 receptor-binding 

domain complexed with CR3022 and CB6 

antibodies, complementing it with a network 

modeling analysis of the residue interactions. Their 

results provide insight into allosteric regulatory 

mechanisms of SARS-CoV-2 S proteins, where the 

mAbs are modulating the signal communication. This 

provides a strategy to target specific regions of 

allosteric interactions therapeutically. Recently, Riahi 

et al. 96 presented a combined physics-based and 

machine learned-based computational mAb 

engineering platform to improve the binding affinity 

to SARS-CoV-2. They minimized (protonated, if 

needed) the Protein Data Bank (PDB) structures 97 

using the “Molecular Operating Environment” 

(MOE) program 98, and continued with ROSETTA 
52,99 and FastRelax ROSETTA 100 to later apply 

machine learning. MOE was used for residue 

scanning in combination with two machine learning 

models: TopNETTree (for local geometry of protein 

complexes) and SAAMBE3D (for a variety of 

chemical, physical as well as sequential, and 

mutation properties). CR3022 and two other mAbs 

(m396 and 80R) were used as templates for their 

diversified epitopes, complexed with SARS-CoV-2 

RBD. Their results suggest combining these three 

mAbs for higher neutralization activity. Nguyen et al. 
33 found electrostatic interactions explaining the 

higher binding affinity of CR3022 for SARS-CoV-2 

RBDwt than the 4A8 mAb in their all-atom and CG 

MD simulations (including steered MD). They used 

the Jarzynski equality to estimate the non-equilibrium 

binding free energy. They analyzed H-bonds and 

non-bonded contacts and used Debye-Hückel theory 

to model the electrostatic interactions for both RBD 

and N-terminal domain  binding sites containing 

charged residues. Their results indicate that effective 

mAb candidates should contain many charged amino 

acids in the regions binding to spike protein. As the 

important residues of the spike protein involved in 

the binding are positively charged (Lys and Arg), the 

mAbs should correspondingly contain negatively 

charged residues (Asp and Glu) as anticipated before 
34. Martí et al. 101 have applied classical MD 

simulations and accelerated MD (aMD) for enhanced 

sampling. They have included the complexes 

between the RBD of SARS-CoV-2 spike (S) 

glycoprotein and CR3022 or S309 antibodies and the 

ACE2 receptor. Using MD simulations, they 

calculated the potential of mean force to obtain the 

free energy profiles for the complexes with the RBD.. 

With their protocol, they could explore a large part of 

the conformational space accessible to RBD-

ACE2/CR3022/S309 complexes. They found the 

affinity in protein-protein complexes to follow the 

decreasing order: S/CR3022 > S/309 > S/ACE2. 

Shariatifar and Farasat 92 have also performed MD 

simulations for SARS-CoV-2 RBD complexed with 

CR3022 and its modifications and calculated the free 

binding energies. They used the FastContact software 

to select mutations favorable for the wild type to 
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produce two variants of CR3022 based on their 

amino acid binding conformations, showing a clear 

affinity enhancement compared to the wild type. 

 

Proposed framework for the current study 

Some of the methods mentioned above were 

combined in this work (see Figure 1), specifically:  

(a) a structural-bioinformatics-based methodology to 

explore macromolecules as potential candidates with 

higher RBD affinity using an existing experimental 

RBD-CR3022 complex as a template (steps 1 and 2 

in Figure 1), (b) classical MD simulations combined 

with an enhanced sampling to precisely quantify the 

free energy of interactions for the RBD-binder 

complexation (steps 3 and 5 in Figure 1), and (c) a 

quicker MC sampling of a more simplified protein-

protein model to investigate a larger number of 

complexes and search towards an optimal binder 

(steps 4, 7 and 8 in Figure 1). Additional atomistic 

simulations were also performed to explore more 

details of the Ab-Ag interface (step 6 in Figure 1). 

Such a combination of tools allows us to explore 

different aspects of the complex physical interactions 

involved in the Ab-Ag complexation process. The 

pros and cons of these approaches, together with the 

procedure in which they were combined here, are 

presented below. Being the Ab-Ag complexation at 

least a three-step process [(i) approximation of the 

two macromolecules (long-range interaction), (ii) 

structural rearrangements at short-range separation, 

and (iii) the “lock” phase at the close-contact level], 
102 the combination of these tools is useful to 

investigate all the involved phases. All the presently 

studied systems do not incorporate the conformation 

of the transition state between the open and closed 

states of the spike protein. It is assumed that the RBD 

is already available to interact with the other 

biomolecules 34.  

 

 

Figure 1: Scheme for the multiple scales in silico protocol, consisting of an initial structural-bioinformatics-based 

methodology to explore macromolecules as potential candidates (steps 1 and 2), constant protonation state CG MD 

(steps 3, and 5), constant-pH (variable protonation state) CG MC simulations (steps 4, 7, and 8), and an atomistic 

constant charge MD simulation. At the end of this cycle, an optimized mAb with a higher binding affinity is 

obtained. See the text for more details.  

 

Structural-bioinformatics-based approach 

RAbD approach 

The RosettaAntibodyDesign (RAbD) 55 tool was 

employed as the first step to suggest potential binders 
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candidates for the next phases (see Figure 1). The 

RAbD protocol consists of alternating outer and inner 

Monte Carlo design cycles. Each outer cycle consists 

of randomly choosing CDRs (L1, L2, L3, H1, H2, 

H3) from clusters in the RAbD database and then 

grafting that CDR’s structure onto the antibody 

framework in place of the existing CDRs 

(GraftDesign). The program then performs N rounds 

of the inner cycle, consisting of sequence design 

(SeqDesign) followed by energy minimization. Each 

inner cycle introduces mutations and structurally 

optimizes the backbone and repacks side chains of 

the CDR chosen in the outer cycle to optimize 

interactions of the CDR with the antigen and other 

CDRs. Through all the steps the Ab-Ag complex is 

modeled at the atomistic level. Considering that any 

antibody has 6 CDR's (i.e. L1, L2, L3 on the light 

chain and H1, H2, H3 on the heavy chain) one has to 

decide which of these CDR's should be modified with 

respect to the original structure (CR3022 as given by 

PDB id 6w41). We ran 3 sets of calculations: (A) all 

CDR's were considered for full design (GraftDesign 

and SeqDesign) 55; (B) all CDR's except L1 were 

considered for full design (GraftDesign and 

SeqDesign). L1 in the original fragment of CR3022 

mAb (for the sake of simplicity, we shall refer to the 

fragment of CR3022 simply as CR3022 from now 

on) is an extended loop that makes a large surface 

area contact with the RBDwt antigen 

(wildtype/Wuhan sequence) which stabilizes the Ab-

Ag interaction. So, L1 was subjected only to 

SeqDesign, not to GraftDesign as the latter one also 

modifies the length of the CDR; (C) all CDR's except 

L1 and H3 were considered for full design 

(GraftDesign and SeqDesign). L1 was modeled as in 

step (B). . Among the 6 CDR's, H3 - located in 

between the H and L chains - is the only one not 

canonical, i.e. it does not adopt classifiable 

conformations (clusters of conformations). When 

visually analyzing the RAbD generated 

conformations, it became obvious that some 

candidates with both very high scores and Ab-Ag 

interface surface areas were not realistic (Figure S1). 

For example, large Ab-Ag interface surface areas 

encountered in some cases were due to very long H3 

CDRs. However, care should be taken when 

predicting H3 CDR, especially for long ones. Thus, 

H3 was not subjected to GraftDesign or SeqDesign in 

this scenario.  

Poses from all three sets of calculations were 

considered for further evaluations, manually 

excluding the unrealistic ones. In total, we generated 

a number of 91,800 candidates for (A), 72,000 

candidates for (B), and 72,000 candidates for (C) 

scenarios. 

From the entire pool of candidates, we have selected 

the best improved mAbs using two criteria: (I) the 

complex must have an Ab-Ag interface score below -

150 REU (ROSETTA Energy Units) (the native 

interface score is -65 REU), and (II) an Ab-Ag 

interface surface area larger than 1900 Å2 (the native 

complex interface surface area is 2060 Å2). The 

interface surface area is important as a larger total 

surface area means a higher specificity due to shape 

complementarity. Similarly, a larger hydrophobic 

contact area means a higher affinity while a larger 

polar contact area means a higher specificity. There 

were 41 Ab-Ag complexes that fulfilled the imposed 

criteria (Table S1), which were considered for 

further evaluations, manually excluding the 

unrealistic ones. According to the ROSETTA scoring 

function, all these antibody-antigen complexes 

present better affinities for SARS-CoV-2 RBD (wild 

type sequence) than the original CR3022 antibody. 

The first 10 best candidates (P01 to P10) from the 

final RAbD list plus the native complex were 

considered for the next analyses.  

 

CG molecular dynamics (MD) with an enhanced 

sampling approach for free energy calculations 

Umbrella sampling (US) constant-protonation state 

MD simulations were employed to evaluate the free 

energy of binding of the WT and the top ten Ab-Ag 

complexes selected from the above described RAbD 

calculations (Step 3 in Figure 1). In these 

simulations, also known as constant-charge 

simulations, the protonation states of titratable groups 

are set at the beginning of the simulation and remain 

constant 61,103. For the efficiency of calculations, a 

reduced representation of the interacting partners and 

solvent was adopted, using the SIRAH 2.2 coarse 

grain (CG) force field (ff) 104. This approach was 

successfully used in the past for estimations of free 

energy of binding in the case of Ab-Ag complexes 
105. During the US procedure, the geometry of the 

mAb was restrained by applying weak harmonic 

position restraints (20 kJ mol−1nm−2 force constant) 

on the CG beads corresponding to the protein 

backbone. The distance between the center of mass 

(COM) of mAb and the RBD was considered as the 

reaction coordinate. Cylindrical positional restraints 

(as defined in the GROMACS 2019 suite 106,107) were 

applied on the RBD to allow for its movement 

relative to mAb along the reaction coordinate. A total 

number of 36 windows were used for US simulations 

which ensured a sufficient histogram overlapping for 

accurate results. Within each window, a US potential 

with a force constant of 1500 kJ mol−1nm−2 was 

applied to the COM of the RBD. Ab-Ag complexes 

were simulated for 16 ns in each US window, the first 

2 ns being excluded from the analysis. For each Ab-
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Ag candidate, US simulations were repeated 10 

times, which allowed for results averaging and errors 

estimation. The Potentials of Mean Force (PMF) 

profiles were constructed using Weighted Histogram 

Analysis Method (WHAM) 108. All simulations have 

been performed with the Wuhan sequence (wild-

type) at constant temperature (300K) and pressure (1 

atm) using GROMACS 2019.3 suite 106,107 on 

Beskow supercomputer at PDC Stockholm, Sweden. 

This set of simulations was carried out assuming pH 

7. Internal degrees of freedom were present in the 

model to allow for the molecular conformational 

adjustments upon the binding process. 

 

A fast constant-pH coarse-grained (CG) 

simulation approach for free energy calculations 

on a large scale 

The ten selected fragments of mAbs candidates 

obtained from the RAbD analysis were also 

submitted to exhaustive investigations utilizing a fast 

constant-pH CG biophysical model specially 

designed for protein-protein complexation 109–112 – 

see step 4 in Figure 1. With the term “constant-pH” 

we refer here to a class of simulation methods where 

the amino acid charge is allowed to change during the 

simulation run as a function of the variable 

surrounding at a given pH (given as input parameter) 
61,113. These cost-effective CG simulations are less 

expensive than the US calculations with the CG 

SIRAH ff described above and have the benefit to 

allow the description of amino-acid charge variations 

(due to protonation state variations) occurring at 

constant pH. This implies that important electrostatic 

interactions as the charge regulation mechanism are 

properly included in the model 114–118. This approach 

is aimed to capture only the main features of the 

complexation phenomena with a clear emphasis on 

the electrostatic interactions. Different studies have 

highlighted the importance of these interactions for 

the host-pathogen and antigen-specific antibody 

interfaces 33,34,78,119–122. Successful applications of this 

simplified model to several biomolecular systems 

have been previously reported in the literature 

including viruses proteins and the SARS-CoV-2 

RBD-mAb interactions 34,109–112,123,124. We shall refer 

to this electrostatic model as FORTE (Fast cOarse-

grained pRotein-proTein modEl). The core of such a 

model is the fast proton titration scheme (FPTS) 
125,126 combined with the possibility to translate and 

rotate the macromolecules using the Metropolis MC 

method 127. Charged and neutral spherical beads of 

different radii mimicking titratable and non-titratable 

amino acids, respectively, interact via Coulombic and 

van der Waals terms 109,110. Protein coordinates given 

by the structural-bioinformatics-based approach were 

directly converted into this amino acid model. Atoms 

not belonging to the protein and the solvent were 

removed from the input structures.  

Early ideas of such a model are rooted in the works 

of Marcus 128 and Jönsson and co-authors 113,129,130. 

The reduction in the degrees of freedom together 

with the description of the proteins at the mesoscopic 

level in a continuum solvent model is a clear 

advantage from a computational point of view. For 

instance, the smaller amino acid (glycine) is modeled 

by four sites in the SIRAH ff while a single bead is 

used in FORTE. The reduction is even more 

significant for larger residues such as aspartic acid 

where the drop is from 11 to 1. This can result in a 

decrease of the computing time by a factor of 112 

making it possible to apply it in a large-scale 

scenario. On the other hand, the main drawbacks are 

the assumption of a rigid body description to model 

the macromolecules and the ambiguity involved in 

the choices of the van der Waals contributions 34,109. 

Yet, to form the RBD-mAb complex, the two 

molecules have to come close before conformational 

changes happening at short-range separation 

distances can be important to add additional 

attraction and/or stabilize the formed complex 102. 

These limitations have not been critical in previously 

studied cases. The present outcome also contributes 

to this direction as discussed in the results section 

below. More details of this electrostatic protein-

protein model are given elsewhere 34,109,110. All 

calculations with FORTE were performed at pH 7, 

150mM of NaCl, and 298K. After equilibration, at 

least 3x109 MC steps were run during the production 

phases. Three replicate runs were carried out for each 

simulated system. They were also used to estimate 

the corresponding standard deviations.   

The main quantity of interest extracted from these 

biophysical simulations was the free energies of 

interactions (binding free energies), or PMF [βw(r), 

where β=1/KBT, KB = 1,380×10−23 m2 kg s−2 K−1 is 

the Boltzmann constant, and T is the temperature, in 

Kelvin], as a function of the macromolecules 

separation distances (r). They were directly 

calculated from their center-center pair radial 

distribution functions [βw(r)=-ln g(r)] and sampled 

using histograms during the production phase of the 

MC runs. For long enough simulations, βw(r) is 

typically obtained with good accuracy and is able to 

reproduce experimental trends 34. The relatively 

lower computation costs in comparison with other 

theoretical approaches allow the repetition of the 

calculations at different physical-chemical conditions 

(e.g. different solution pHs) and macromolecular 

systems (e.g. RBDs with several different mutations) 

using high-performance computers. This is a key 
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aspect to investigate the binding affinities for a set of 

several RBDs (with all possible mutations of 

interest), and different binder candidates and 

performing further optimization of the best ones. 

Many runs are needed which are prohibitive with 

more elaborated molecular models.  

Different sets of calculations were carried out with 

FORTE. Initially (see step 4 in Figure 1), the binding 

properties of the 10 best binder candidates (protein 

P01 to P10) that were obtained from the structural-

bioinformatics-based analysis (using RAbD) were 

tested to form complexes with the RBD from the wild 

type (wt) SARS-CoV-2 (Wuhan sequence): 

RBDwt+Px → RBDwtPx, where x ranges from 1 to 10 

(i.e., the ten top candidates). βw(r) was calculated for 

all systems. Simulations with the fragment of the 

original mAbs CR3022 (WT) were also performed 

for comparison using the coordinates from the PDB 

id 6w41 (X-ray data with a resolution of 3.08Å, pH 

4.6) 16. All these simulations were repeated for RBDs 

built up with sequences with different mutations (see 

step 7 in Figure 1) present in some  relevant VOCs: 

(a) N501Y (Alpha/B.1.1.7), (b) K417N, E484K and 

N501Y (Beta/B.1.351), (c) K417T, E484K and 

N501Y (Gamma/P.1),  (d) L452R, T478K and 

E484Q (Delta/B.1.617.2), (e) G339D, S371L, S373P, 

S375F, K417N, N440K, G446S, S477N, T478K, 

E484A, Q493R, G496S, Q498R, N501Y, Y505H 

(Omicron/B.1.1.529), and variants of interests (VOI) 
32: (a) L452R (Epsilon/B.1.427/B.1.429), (b) E484K 

(Eta/B.1.525), (c) E484K and N501Y (Iota/B.1.526 

NY), (d) L452R and E484Q (Kappa/B.1.617.1), and 

(e) Y453F (mink) 12,131–134. The input structures with 

the mutations in the SARS-CoV-2 RBDs were 

prepared with “UCSF Chimera 1.15” 135 by the 

simple replacement of the amino acid followed by a 

minimization with default parameters and 

considering the H-bonds 135. Structures obtained by 

this simple procedure seem to be equivalent to other 

available ones 34. For instance, a comparison between 

a recent RBD structure predicted by AlphaFold2 for 

the Omicron variant 134 with the one generated using 

“UCSF Chimera 1.15” gives a root-mean-square 

difference of 0.5 Å. This suggests that the mutations 

seen so far do not have a significant effect on the 

overall folded structure of the RBD.  

After confirming the outcome from the US 

calculations with FORTE, an optimization procedure 

was invoked to explore the possibility of further 

improving the binding features of the fragment of 

mAbs given by RAbD (step 8 in Figure 1). The two 

best binders classified as Pbest and Pbest-1 by FORTE 

with a higher chance to block the RBDwt were further 

submitted to a “theoretical alanine scanning” (TAS) 

34, a technique used here to determine the 

contribution of a specific amino acid to the RBD-

binding. In this process, an amino acid from a given 

binder was replaced by ALA, and the complexation 

simulation was repeated for this new possible binder. 

This mutation was done directly at the mesoscopic 

level of the proteins without the need to pre-generate 

its coordinates by the above-described procedures. It 

is assumed that the tested point mutations will have a 

minor effect on the overall folded structure of the 

mAb. The minima values of βw(r) for each new 

system (RBDwt interacting with the mAbs classified 

as Pbest or Pbest-1 carrying the ALA mutation) are 

recorded for comparison after all possible single 

replacements were fully explored one by one. This 

theoretical lead optimization protocol is 

schematically illustrated in Figure 1. 

A three-cycle process was followed in this 

optimization pipeline for mAb engineering with 

higher affinity. After all possible ALA substitutions 

were tested one per time, the best single mutation 

obtained from this first cycle was incorporated into 

the binder resulting in a binder’. This new protein 

binder’ contains a single ALA mutation in a specific 

position that resulted in the higher RBDwt affinity 

among all tested possibilities. The process was 

restarted with this new macromolecule (i.e. binder’) 

being subjected to another TAS loop. After this 

second loop, the new binder (binder’’) has a new 

amino acid substitution in its sequence together with 

the previous one already incorporated by the ALA 

single mutation in the first cycle (i.e. at this point, the 

binder’’ has two ALA replacements [A-A]). A third 

cycle of TAS was also done using the binder’’ with 

the double ALA mutation to explore the effect of an 

additional ALA replacement in its sequence (A-A-A). 

Besides TAS, equivalent tests were also done with 

the substitution of any residue by GLU in a 

“theoretical glutamic acid scanning”. This acid 

residue was chosen based on a previous work where 

we could observe some dependency on an increase in 

the binding affinities with a decrease in the total net 

charges of the binders 34. This process with three 

cycles was repeated for GLU as done with ALA. All 

these replacements by either ALA or GLU were 

combined in different ways (A-A-A, A-A-E, A-E-E, 

and E-E-E). Each possible combination was 

evaluated to guide the selection of the systems that 

improved the binding affinity for the RBDwt. Only up 

to three simultaneous substitutions in the wildtype 

mAb were tested to avoid a complete 

mischaracterization of the original template protein 

(for both mAbs candidates classified as Pbest or Pbest-

1). This could result in a complete unfolding of the 

macromolecule and/or an increase in the chances for 
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Ab-Ag aggregation. Moreover, at this point, the 

number of different simulated systems was too large, 

and the computational costs started to be prohibitive 

even for a relatively cheaper CG model. Finally, the 

most promising mAb (identified as Pbest in our 

classification) designed with these three engineering 

cycles, i.e. the one  with the higher RBDwt binding 

affinity, was tested with the other RBDs from the 

main VOCs and VOIs. Additionally, titration 

simulations employing the FPTS were used to 

provide the main physical-chemical properties of the 

individual macromolecules (all from the wild-type to 

P10 and each new macromolecule produced by the 

binding optimization technique with a single, double 

and triple mutation). In these runs, the total net 

charge numbers of these binders were computed in 

the absence of the RBD, i.e. the FTPS was employed 

for a single binder in an electrolyte solution. Such a 

large set of net charges data was used to further 

investigate the possible correlations between the 

binding affinities and the mAb´s net charge. This was 

useful to complement the previous initial analysis 

performed with a quite smaller number of pairs of 

RBD-binders in comparison with this larger data set 
34.  

 

 

Figure 2: Scheme for the procedure used for the 

theoretical electrostatic mAb optimization using 

TAS. A pair RBD-mAb is submitted to a constant-pH 

(CpH) complexation study using FORTE where the 

two macromolecules can titrate, translate and rotate 

in all directions. After each simulation run, the free 

energy of interaction is saved for comparison at the 

end of the full cycle. A substitution of an amino acid 

by ALA is introduced in the wt mAb. A new 

complexation run is carried out with this new binder 

(i.e. the wild type with a new single ALA mutation). 

The process is systematically repeated for all 

residues. Only one residue is replaced by ALA per 

time.  This procedure corresponds to step 8 in Figure 

1. 

 

Atomistic MD simulations 

In order to enhance our understanding of the intimate 

interactions of our best candidate with RBDwt, and to 

allow for local conformational re-arrangements at the 

interaction interface, we used high-resolution models, 

based on all-atom classical force fields, to simulate 

Ab-RBDwt complexes. Constraint-free MD 

simulations (with the constant-protonation state) of 

the wild-type CR3022-RBD (PDB id 6w41) and Pbest-

RBDwt (Pbest is generically used here to refer to the 

best mAb identified with Rosetta score and in the 

previous CG simulations) complexes have been 

performed using the Amber99SB-ILDN ff 136 for 

protein description and the TIP3P 137 model for water 

(step 6 in Figure 1). The Ab-RBDwt models have 

been solvated with a sufficient number of solvent 

molecules to ensure a minimum distance between 

periodic images of 2.2 nm. Ions have been added to 

neutralize the solvated systems. The length of the 

simulations was 50ns at constant pressure (1 bar) and 

temperature (298K). The GROMACS 2019.3 suite 107 

has been used for all atomistic MD simulations. 

 

3 RESULTS AND DISCUSSION 

ROSETTA-designed antibody structure: 

identifying the top best binder candidates 

The general workflow of the antibody design 

procedure consisted of generating a large number of 

Ab-Ag structures using RosettaAntibodyDesign 

software 55, followed by ranking of the generated 

models according to the ROSETTA scoring function. 

In short, the RAbD algorithm is meant to sample the 

diverse sequence, structure, and binding space of an 

antibody-antigen complex. We have generated 

235,000 candidates who were ranked according to the 

ROSETTA scoring function. From the total number 

of designed candidates, only 383 showed better 

affinities compared with the native CR3022-RBDwt 

complex (Figure 3). From this list, we choose 10 

complexes (according to the criteria described in the 

“Theoretical Methods” section) that were further 

evaluated by free energy (ΔG) calculations using 

both umbrella sampling (US) and FORTE (CDRs 

primary sequences are presented in Figure 4). We 

then considered, as the most promising mAbs 

candidates, the structures that give consensus results 

in all three types of evaluations.  
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Figure 3. 2D plot of RAbD score against antibody-

antigen interface SASA (solvent accessible surface 

area). The horizontal line corresponds to the 

CR3022/RBDwt complex RAbD score given in 

Rosetta Energy Units (REU). The green square 

indicates the area in the two-dimensional plot that 

corresponds to the mAb candidates' selection criteria. 

The P01, i.e. the best candidate according to the 

Rosetta score, is indicated in this plot with an arrow. 

 

Considering that any computational method has its 

limitations and accuracy, evaluating the Ab-Ag 

complexes with complementary computational 

approaches, and selecting the ones that are consistent 

in all evaluations, strongly increase the reliability of 

predictions. Thus, the observed improved affinity of 

the models could be considered to result from the real 

physics/chemistry of the complex interactions in the 

systems and not from any particular algorithm-related 

issues.  

 

 

 

 

 

 

 

Figure 4. Sequences of the CDRs (A) and the structures (B) of the 10 selected mAbs for evaluations using 

US/SIRAH and FORTE methods. Dots represent identities. Residue letters in (A) were colored according to 

similarity with their counterparts in the reference native CR3022 sequence. In (B) RBDwt (up) was colored in red 

and each candidate mAb (down) in a different color.   

 

RBDwt-mAb free energy of interactions explored 

with umbrella sampling CG simulations 

Free energy calculations using US MD calculations 

revealed that from the list of the top 10 best RAbD 
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candidates only P01, P05, P06, P09, and P10 showed 

better binding affinities to RBDwt  compared with the 

native CR3022 (see Figure 5 for their PMF profiles). 

Although all these candidates show statistically 

significant improved affinities compared with 

CR3022, the errors in estimating the binding free 

energies for P05, P06, P09, and P10 did not allow us 

to distinguish between them in terms of affinity. 

Among the candidates P01 seems the best, giving 

statistically significant better affinity of binding 

compared with both the native CR3022 and the P05, 

P06, P09, and P10 sets.  

However, caution must be taken when considering 

absolute values obtained by US-CG SIRAH to 

compare with more rigorous atomistic or 

experimental data. As the results of Patel et al. (2017) 

showed, only the ΔΔG = ΔGmutant - ΔGwild-type should 

be regarded quantitatively, as the granularity of the 

SIRAH-CG model may affect the absolute values of 

the calculated ΔG from the PMF profiles. On the 

other hand, ΔΔG computations based on SIRAH-CG 

did fit well with experimental data 105 and are much 

more efficient than atomistic US approaches, which 

of course give more precise absolute values for ΔG 
33. Therefore, it is meaningless to use the CG-US 

results for a direct comparison with experimental data 

like Kd. 

The free energy evaluations based on CG-US showed 

ΔΔG values of -18.3 kcal/mol for P01 and -7.1 

kcal/mol to -10.8 kcal/mol for P01-P05-P06-P09-P10 

group relative to the wt CR3022 antibody. These 

values are comparable to experimental kinetic data 

found in the literature for stabilizing mutations 

induced in Ab-Ag complexes 138–140. 

 

 

Figure 5. Averaged RBDwt-mAb PMF profiles for the 

candidates that give statistically significantly better 

binding affinity than CR3022 in the constant-

protonation state MD simulations with the SIRAH 

CG force field using the umbrella sampling method. 

The vertical bars represent the estimated standard 

deviations of the minimum of the PMF profiles. See 

the text for more details. 

 

RBD-mAb free energy of interactions explored 

with FORTE 

Despite its approximations, the simplified CpH CG 

protein-protein model can reproduce the main trends 

obtained from using the more elaborate models (see 

above). Figure 6 shows the minimum values of the 

free energy of interactions [βwmin] for the 

complexation between the SARS-CoV-2 RBDwt with 

the fragment of CR3022 and with all engineered 

mAbs given by RAbD from P01 to P10. These new 

mAbs candidates all have a higher RBDwt affinity as 

observed for the simulations with SIRAH ff too (see 

Figure 5). They can be ranked as P01/P06 > 

P02/P05/P08/P09/P10 > P04 > P03 > P05 in terms of 

their binding affinities. It is virtually impossible to 

distinguish the proteins within the groups P01/P06 

and P02/P05/P08/P09/P10 due to their estimated 

standard deviations. Conversely, there is no difficulty 

in determining that the two best candidates are P01 

and P06. Both proteins have virtually identical free 

energy profiles for their complexation with the 

RBDwt [-0.788(6)KBT and -0.790(6)KBT for P01 and 

P06, respectively). Yet, the mAb P01 was selected as 

Pbest to follow the consensus with the best binder 

found in the previous biophysical simulations with 

the SIRAH ff (see Figure 5). Since the physical 

description is not the same between the two models, 

this reinforces the conclusion that P01 has special 

features for a stronger binding with the RBDwt.  

Although P06 was not found equivalent to P01 

according to the PMF obtained with the US SIRAH 

MD (see Figures 5 and 6), FORTE calculations 

indicate that it could still be an interesting candidate 

since it scores as the best together with P01. 

Therefore, P06 was assumed as Pbest-1, i.e. the second-

best binder. The fact that FORTE provided these two 

binders (P01 and P06) with equivalent binding 

affinities instead of a single one as seen in the 

previous approach could be due to a couple of 

reasons: a) a smother energetic landscape in this CG 

model eventually is not able to describe the same 

roughness of the phase space, b) the presence of the 

charge regulation mechanism in the FORTE 

approach (absent in the constant-protonation state 

MD simulations) that give rise to an extra attraction, 

c) the lack of structural rearrangements in the 

FORTE approach. Nevertheless, even in the 

US/SIRAH ff approach,  P06 is a better binder than 

the native CR3022 (see Figure 5). 
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An interesting comment here is that both CG 

simulations revealed some subgroups of binders with 

similar binding free energies among the member of 

each subgroup (within the error estimation). This 

suggests that Abs produced from previous infections 

or by the seroconversion of a given vaccine could 

have a chance to neutralize more than one strain in 

agreement with clinical reports 141. It also illustrates 

that a weaker response can be obtained depending on 

the specific mutations as also expected. Equivalent 

reasoning can be done for therapeutic molecules 

designed to prevent the attachment of the spike 

protein via the RBD in the human cell. For instance, 

Wang and co-authors described a potent mAb from 

covalent patients that works well against 23 variants 
142.  

It is worth reminding that a limitation of this CG 

model is the precise quantification of the absolute 

numbers in the reported values for the PMF. It is 

especially difficult to quantitatively (not 

qualitatively) reproduce experimental Kd values 

and/or typically βw(r) values obtained by more 

detailed force field descriptions 34,109,110. The same 

problem described above for SIRAH ff might be 

more severe for FORTE due to its higher granularity. 

Yet, any ambiguity in the interpretation of the 

obtained data can be solved when results are 

interpreted in relative terms. For instance, comparing 

the measurements between a set of similar 

macromolecules under the same experimental 

conditions 34,109. This is exactly the case for this 

comparison between different pairs of RBDs and a 

putative binder. Both CG approaches are useful for 

distinguishing between stabilizing and destabilizing 

CDR modifications, for ranking different candidates 

relative to the wild-type and in-between them. 

Qualitative comparison can still be made as shown in 

Figure 6. 

 

 

Figure 6: Minima free energy of interactions values 

[βwmin] measured for the SARS-CoV-2 RBDwt-mAbs 

complexation at pH 7 and 150mM of NaCl by the 

CpH MC simulations (FORTE), CG-SIRAH 

Umbrella sampling (CG-SIRAH/US), and the RAbD 

scores, for the wildtype RBDwt and different 

fragments of mAbs candidates (P01 to P10). The 

reference (WT) is the data for the complexation with 

the native fragment of CR3022 (from the PDB id 

6w41). The error bars were calculated using the three 

replicates for each simulation system. The minima 

values obtained by classical MD with SIRAH ff are 

included in the figure for the sake of comparison. 

Values from the RAbD in REU are also reported for 

comparison.  

 

After validating the theoretical predictions obtained 

with FORTE by comparison with the results from US 

on CG simulations with the finer-grained SIRAH 

force field, we expanded its analysis and tested the 

binding affinities of these Rosetta-designed 

fragments of mAbs to the selected mutated form of 

SARS-CoV-2 RBDs. It is particularly interesting to 

assess if the engineered mAbs are good binders also 

for the present VOCs (Alpha, Beta, Gamma, Delta, 

and Omicron) and VOIs (Epsilon, Eta, Iota, Kappa, 

mink). Such information would be vital for any 

practical therapeutic applications of these mAbs in 

the future. The free energy data at the same 

experimental conditions as in Figure 6 for several 

pairs of RBDs and mAbs was compiled and 

displayed as a heatmap-style plot in Figure 7. In this 

Figure, the darkest blue is the case with the highest 

binding affinity. Conversely, the darkest red is given 

to the system with the lowest binding affinity. This is 

observed for the native CR3022 (referred to here as 

the WT mAb) interacting with any studied RBD. All 

putative Rosetta-designed mAbs improved the 

binding features in comparison with the native 

CR3022. As it can also be seen, the general behavior 

for all RBDs is similar to what was observed for the 

interaction with the SARS-CoV-2 RBDwt (see Figure 

6). All molecules P01 to P10 have the potential to 

block the interaction between virus and host cell 

preventing the RBD to be available to anchor ACE2. 

The two best candidates for all these RBDs identified 

by FORTE were P01 and P06. This reinforces the 

conclusions concerning their potential ability to 

neutralize both the wild-type SARS-CoV-2 virus and 

the main present variants. Considering the estimated 

error bars, all Rosetta-designed proteins follow the 

same trend seen in Figure 6 for RBDwt. They also 

tend to respond with similar affinities to all studied 

RBDs, i.e., a good binder for one specific RBD is a 

good binder for another RBD too. However, there are 

interesting exceptions. For example, P03 has a 

relatively lower affinity for RBDDelta, RBDEta, 

RBDKappa, and RBDmink in comparison with the 

RBDwt. Surprisingly, both the native CR3022 and all 
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Rosetta-designed binders show a higher affinity for 

RBDOmicron. This suggests that both CR3022 and its 

derived-mAbs have a good chance to neutralize the 

Omicron variant.  

 
Figure 7: Heatmap with the minima free energy of 

interactions values measured for the SARS-CoV-2 

RBD-mAbs complexation at pH 7 and 150mM of 

NaCl by the CpH MC simulations (FORTE) for the 

RBD of the main critical variants and different 

Rosetta-designer binder candidates (P01 to P10). The 

reference (WT) is the native fragment of CR3022. All 

values of βwmin are given in KBT units. The maximum 

estimate error is 0.01. See the text for a description of 

mutations considered in each case. 

 

RBD-Ab local interface interactions explored with 

atomistic MD simulations 

We will discuss in the following the structural 

determinants at close-contact distances, identified by 

atomistic simulations, responsible for the observed 

better affinity of P01 compared to CR3022 against 

RBDwt. Mutations designed in the P01 candidate 

were located in all six CDRs on both the light (L) and 

heavy (H) chains. These mutations improved 

specificity and affinity by favoring the formation of 
supplementary salt bridges and hydrogen bonds as 

well as hydrophobic interactions. Protein-protein 

interactions are complex processes that, at short 

distances, are dependent on the interface properties 

consisting of shape complementarity, size, short-

range electrostatic interactions, polar and 

hydrophobic interactions. Specificity in protein-

protein binding is mainly given by electrostatic 

interactions 143 while non-specific and van der Waals 

interactions are the driving force for increased 

affinity 144. We have used atomistic MD simulations 

to comparatively evaluate P01 with the wild-type 

CR3022 in terms of different interaction 

contributions to RBDwt-Ab binding. The simulations 

were analyzed for obtaining the probability 

distribution functions (PDF) of three interface 

interaction descriptors (see Figure 8), namely the 

number of i) Ab-Ag salt bridges, ii) non-polar 

contacts and iii) hydrogen bonds (between polar-

polar and polar-charged residues). Thus, for each 

saved MD trajectory frame the number of salt-bridges 

formed between charged residues of the mAb and 

RBDwt was calculated. A salt bridge was considered 

to exist between acidic/basic residues if the distance 

between the heavy atoms of the charged moieties (i.e. 

side-chain carboxyl and amino) was shorter than 3.5 

Å. Using the entire pool (full trajectory) of calculated 

salt-bridge numbers, a histogram was extracted with 

respect to the number of salt bridges (i.e. the 

distribution of a number of frames with a particular 

number of salt bridges). The histogram was then 

normalized considering the area under the curve to be 

1 to obtain the PDF of mAb-RDBwt salt-bridges 

number. The number of non-polar contacts was 

obtained by counting, for each frame, the 

hydrophobic residue atom pairs (mAb-to-RBDwt) 

within a distance shorter than 3.5 Å. A similar 

procedure as above was applied to calculate the 

histogram and PDF of non-polar contacts. For polar 

interaction histogram and PDF, we counted the 

number of hydrogen bonds between polar residues 

and polar to charged residues in the mAb-RBDwt pair. 

It can be seen from the plots in Figure 8 that the main 

contributions to the increased affinity of P01 to 

RBDwt, compared with the wild-type CR3022, come 

from an increased number of salt-bridges and a 

higher hydrophobic contact area to RBDwt. The 

average number of salt-bridges at the P01 interface to 

RBDwt is ~4 while for the wild-type CR3022 is ~3. 

The Lys35 residue, which replaced a Ser35 in the 

CR3022, is an important player in short-range 

electrostatic interactions at the P01-RBDwt interface 

as it is strategically placed on the tip of the L1 loop 

and has the optimum side-chain length to form a 

strong salt-bridge with the acidic Glu in position 516 

on the RBDwt. The average number of hydrophobic 

contacts between P01 and RBDwt (~95) is 

significantly bigger than for the CR3022-RBDwt pair 

(~125), which will result in a higher binding affinity. 

Four mutations in P01, that replace original residues 

in CR3022 with more hydrophobic ones, contribute 

to this increased hydrophobic contact area: W40F, 

S110A, G111A, I112L. They form a hydrophobic 

patch in the middle of the mAb–RBDwt interface that 

interacts with Lys378(4 methylene groups)-Tyr380-

Pro-384-Tyr369-Val382 on the RBDwt counterpart. 
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Figure 8. Molecular descriptors were used to analyze the contributions of different interaction types to RBDwt-P01 

binding: normalized probability distribution functions (PDF) of Ab-Ag salt-bridges (A), non-polar contacts (B), and 

hydrogen bond (C) numbers. 

 

 

To get a detailed picture of the RBDwt-P01 

interaction interface, we have analyzed the impact of 

the introduced mutations on the local molecular 

environment of the complex, which is discussed 

below for each CDR separately. 

 

L1 CDR design. The tyrosine residue in position 31 

in L1 CDR was replaced by Asn in P01, which easily 

participates in hydrogen bonding with both Thr430 

and Asp428 on RBDwt. The interaction of the native 

Tyr31 with Thr430 is impeded due to the longer side 

chain of tyrosine compared with asparagine. One key 

mutation present in L1 is S35K which replaces a 

neutral serine residue with a positively charged 

lysine. The original Ser35 residue is located on the 

tip of the L1 loop that penetrates deep into the Ab-Ag 

interface stabilizing the complex. Replacing the 

serine with lysine in this position provides a strong 

salt bridge formation between the long basic side 

chain of Lys35 and the acidic Glu in position 516 on 

the RBDwt, an interaction not present in the native 

CR3022. Replacement of Asn with Gln in position 37 

provided further stabilization as the longer side chain 

of glutamine compared with asparagine allowed for a 

new interaction of Gln37 on the antibody with 

His519 on the RBDwt. 

L2 CDR design. The replacement of the neutral 

hydrophilic Ser72 with an acidic Glu residue in P01 

introduces a strong salt bridge formation between 

Glu72 and the basic Lys386 on the RBDwt. 

L3 CDR design. Another mutation that increases 

binding specificity and affinity was introduced in the 

L3 loop replacing Tyr110 with Arg in P01. The 

substitution of neutral tyrosine with the positively 

charged arginine allows for a salt bridge formation 

with the neighboring Asp428 on RBDwt. The P01 

designed L3 CDR has two supplementary residues 

Pro135 and His136 compared with the native 

CR3022. This makes the L3 loop more extended 

towards RBDwt, increasing the Ab-Ag contact surface 

area. The L3 loop also contains the mutation of 

Thr112 to Tyr112 which, due to the new 

conformation of L3, allows for hydrogen bond 

formation between Tyr112 and three partners on 

RBDwt: the side chain of Glu414, the backbone 

carbonyl oxygen atom of Pro412, and the side chain 

of the acidic Asp427, interactions not present in the 

native CR3022. 

H1 CDR design. The Tyr residue in position 28 was 

replaced by Gly. This mutation seems advantageous 

because the smaller side chain of glycine and the 

particular conformation of the designed H1 loop 

allowed the side chain of Tyr369 from the RBDwt to 

become buried on the mAb surface. The hydroxyl 

moiety of Tyr369 can also participate in hydrogen 

bonding with the side chain -NH group of Trp39, a 

residue that represents another mutation in the 

Rosetta-designed H1 loop: Y39W. Trp40 was 

replaced by a more hydrophobic Phe residue, whose 

side-chain inserts between the cycle of Tyr380 and 

the long hydrocarbon chain of Lys387, thus 

hydrophobically stabilizing the Ab-Ag interaction. 

H3 CDR design. Serine in position 133 was mutated 

to a His residue which inserts in between G381 and 

Asp427 on the RBDwt, forming a hydrogen bond-

mediated bridge between the -NH group of G381 and 

the backbone -C=O group of Asp427. 
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Physical insights to design a more efficient 

monoclonal antibody for the RBD 

Individual residue electrostatic contributions to the 

complexation RBDwt-P01 were investigated through 

the TAS procedure described in Section 2. Each new 

protein produced with the ALA single mutation (i.e. 

binder’) is referred to here as P01’. All P01 ionizable 

residues were replaced by ALA one per time to give 

P01’, and the corresponding βw(r) functions for the 

complexation RBDwt-P01´ were estimated by the 

FORTE approach. The differences in the βwmin values 

observed for P01 and P01’ [ΔΔG=βwmin(P01’)-

βwmin(P01)] are portrayed in Figure 9. The purples 

lines indicate the maximum estimated errors (0.01 

KBT). Free energy shifts larger than 0.01KBT are 

considered significant. Positive shifts indicate 

mutations that negatively impact the complexation 

process. These amino acids (ASP-9.LC, GLU-17.LC, 

ASP-72.LC, ASP-88.LC, ASP-100.LC, GLU-11.HC, 

GLU-23.HC, GLU-67.HC, ASP-83.HC, and ASP-

137.HC) are critical for this molecular mechanism, 

i.e., replacing one of them with a neutral residue 

reduces the RBDwt affinity which is not good to block 

the virus-cell interaction. For instance, the 

substitution of the ASP residue in position 88 at the 

light chain (“ASP-88.LC” at L2) by ALA decreases 

the binding affinity by 0.03 KBT units. Conversely, 

negative values of ΔΔG correspond to mutations that 

can improve the capability of P01 to bind the RBDwt 

which is potentially useful to prevent the viral entry 

into the host cell. Note that most of the key amino 

acids that favor the RBDwt-P01 complexation are acid 

residues (ASP and GLU). There are just a couple of 

exceptions (e.g. ARG-77 at the light chain) but 

always with smaller differences than the estimated 

standard deviations (ΔΔG<0.01 KBT). The 

neutralization of a basic ionizable group (e.g. LYS-13 

at the heavy chain) implies a reduction of the total net 

charge of the binder and an improvement in its 

binding features (ΔΔGLYS-13.HC=-0.03 KBT). Indeed, it 

was noticed before that a decrease of the binder net 

charge gives a higher RBDwt affinity 34. This 

information is a useful insight to designing a more 

efficient therapeutic binder that can avoid the 

attachment of the RBD to the human cell.  

The most important cases where the single ALA 

mutation in P01 has a stronger influence on the 

SARS-CoV-2 RBDwt-P01 complexation were 

mapped in the molecular structure. This can be seen 

in Figure 10. Interestingly not only amino acids at the 

antigen-antibody interface are critical for the 

complexation. In fact, amino acids buried inside the 

protein structure can also have an important influence 

on the complexation due to the long-range nature of 

the electrostatic interactions and the electrostatic 

coupling between the titratable groups. This is in line 

with a broader view of epitopes (and paratopes) 

defined as “electrostatic epitopes” 78, where any 

ionizable group can affect the interactions and drive 

the complexation.  

 

 

 

 

 
 

Figure 9: Individual residue electrostatic contributions to the complexation RBDwt-P01 obtained with the theoretical 

ALA scanning procedure applied to P01. Acid and basic residues are represented by red and blue, respectively. Data 

for the amino acids belonging to the light (LC) and heavy (HC) chains are given in the left and right panels, 

respectively. Calculations were done with the FORTE approach. ΔΔG (in KBT units) is defined as the difference 

between the minimum value measured in βw(r) for the complexation RBDwt-P01’ [βwmin(P01’)] and the 

corresponding quantity for the original P01 [βwmin(P01)] for each new mutation. See the text for more details.  
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Figure 10: Molecular structure of the RBDwt 

complexed with P01. The RBDwt is represented in 

green. All ionizable residues from the binder P01 

whose single ALA mutation resulted in 

representative ΔΔGs (values larger than the estimated 

errors) are highlighted by blue (basic residues) and 

red (acid residues). The most important mutations 

(see Figure 9) are labeled and represented with vdW 

spheres. The letters L and H are used to refer to the 

light and heavy chain, respectively.  

 

The total net charge of the mAbs and their 

binding affinities 

As mentioned above and previously indicated 34, 

lower charged mAbs tend to have a higher RBD 

affinity. In Figure 11a, this correlation is explored for 

the WT and Px (x: 01 to 10). Although there is no 

perfect linear behavior, it can be seen that there is 

indeed this tendency. This is more clearly seen in 

Figure 11b, where the data from all single, double 

and triple mutations investigated by the theoretical 

ALA/GLU scanning is shown together. This data 

suggests that Coulombic forces are mainly 

responsible for driving the association of this antigen 

with the studied mAbs. As a matter of fact, there are 

now accumulative data on the importance of 

electrostatic interactions for this system 33,34,119,120. 

Certainly, other physical interactions can participate 

in this associative mechanism that is not solely but 

largely controlled by Coulombic forces. Therefore, 

the total net charge of the mAb is an important 

physical-chemical parameter to design better binders 

with higher affinity. This is what was next explored 

towards a more specific and efficient macromolecule 

capable of preventing viral infection.  

 

Additional optimization of the best RBD binder 

The two best candidates P01’’’ (LC: R18E and HC: 

K20E and K84A) and P06’’’ (HC: K20A, G61E, and 

K84A) obtained through the three cycles electrostatic 

optimization pipeline (based on the TAS procedure) 

were tested against the most common SARS-CoV-2 

VOCs and VOIs. This was done to assess if these 

macromolecules could have the potential to stop the 

virus from working efficiently targeting RBDs from 

common VOCs and VOIs. Figures 12a and b show 

the βwmin values for the complexes RBD-P01’’’ and 

RBD-P06’’’, respectively. The new optimized 

binders P01’ and P06’ are able to form stable 

molecular complexes with all studied RBDs. Due to 

the additional electrostatic optimization, they have 

improved RBD binding affinities in comparison with 

the initial template (P01 or P06) provided by the 

RAbD approach. Consequently, they have more 

chances for a successful neutralization in vitro/in vivo 

of the virus. Moreover, this result indicated that the 

integrated biophysical modeling multi-approach used 

here offers an efficient route to designing better 

macromolecular ligands. Intriguingly both putative 

mAbs P01’’’ and P06’’’ have a stronger affinity for 

some RBDs from variants that are threatening the 

immune response. For instance, P01’’’ has the 

highest affinity observed for both RBDDelta and 

RBDOmicron. This is a promising result to deal with the 

present crisis offering two ideal candidates to treat 

the pathogenic threats from different SARS-CoV-2 

variants. Quite recently, a pre-print work suggested 

cross-reactivity specifically between antibodies for 

Delta and Omicron variants 145. P01’’’ is slightly 

better than P06’’’ due to its higher RBD affinity for 

all mutants in general (e.g. βwmin=-0.96(1)KBT for 

RBDDelta-P01’’’, and βwmin=-0.92(1)KBT for 

RBDDelta-P06’’’). From a bioinformatics point of 

view, it is interesting to point out that an optimized 

mAb is solely obtained by the three cycles 

electrostatic optimization pipeline (CR3022’) 34 is not 

as good as the one achieved by the present strategy.   



  

Figure 11: Correlation between the total net charge number of each fragment of mAb and the corresponding βwmin 

values for their complexations with SARS-CoV-2 RBDwt. (a) Left panel: Data for each fragment of Rosetta-

designed mAb (P01 to P10). (a) Right panel: Data for each mutated fragment of P01 and P06 was obtained during 

the theoretical ALA scanning procedure. The data for the total net charge numbers were obtained from titration 

simulations with a single protein in the absence of the RBDwt by the FPTS at pH 7. All βwmin values were computed 

from RBDwt-complexation studies using FORTE at pH 7 and 150mM of NaCl. 

 

 

 

  

Figure 12: Binding RBD affinities for optimized mAbs obtained through the three cycles electrostatic optimization 

pipeline. (a) Left panel: mAb P01’’’ based on the Rosetta-designed P01. (b) Right panel: mAb P06’’’ based on the 

Rosetta-designed P06. Data from the estimated βwmin values for the molecular complexation between RBDs from 

different variants with P01’’’ (P01 with three mutations LC: R18E and HC: K20E and K84A) and P06’’' (P06 with 

three mutations HC: K20A, G61E, and K84A), respectively, are shown in blue bars. Data for the complexes with the 

original Rosetta-designed mAbs (RBDwt-P01 and RBDwt-P06) before the electrostatic optimization process and 

CR3022´ (RBDwt-CR3022´) are given in the purple and red bars, respectively, for comparison. The purple lines are 

drawn to guide the eyes for the comparison with the outcomes for the RBDwt. See the text for more details.  

 
4 CONCLUSIONS 

RosettaAntibodyDesign protocol was applied to 

sample the sequence, structure, and binding space of 

many anti-SARS-CoV-2 mAb-RBD complexes  A 

total of 235,000 candidates were obtained, and 

among these, those that showed a higher binding 

affinity compared to the native CR3022-RBDwt 

complex were identified, and finally, 10 complexes 

were chosen to be evaluated further in binding free 

energy calculations. Both Umbrella sampling with 
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SIRAH 2.0 coarse-grained force field and the in-

house Fast cOarse-grained pRotein-proTein modEl 

(FORTE) based on fast proton titration scheme 

(FPTS) were utilized both giving mutually consistent 

results. After compiling the results at similar 

conditions to experiments in a heat map we can 

observe that all the selected RAbD produced 

CR3022-RBD complexes show a stronger binding 

affinity compared to native CR3022 and a higher 

potential to block the interaction between the virus 

and the host cell. Further, two candidates, P01 and 

P06, show a clearly strongest interaction. 

In a closer analysis, we can find that amino acids 

both at the surface and also deeper inside the protein 

structure are critical for the complexation through 

electrostatic coupling between titratable groups and 

are characterized as “electrostatic epitopes”. 

Furthermore, we can observe that the net charge of 

the mAbs is one important determinant in binding 

affinity and there is a clear nearly linear tendency for 

lower charged mAbs to exhibit higher affinity to 

RBD. The Coulombic forces are driving the antigen-

antibody association, as also observed in previous 

studies 33,34, while other short-range interactions are 

important in the close-range association as well. 

We have performed atomistic simulations for the best 

candidates to study the structural determinants behind 

the strong affinity of P01 to RBD. The mutations in 

P01 were in all six complementarity-determining 

regions (CDR) sequences on both light and heavy 

chains, improving both the specificity and affinity in 

favoring the formation of supplementary salt-bridges 

and H-bonds, as well as through hydrophobic 

contacts. The two best candidates P01 and P06 were 

tested against to most common SARS-CoV-2 

mutations to hinder the virus targeting RBDs. We 

could see they both can form stable complexes with 

all RBDs included in our study thereby having the 

potential to neutralize the virus both in vitro and in 

vivo. 

Our combined multi-scale approach is found to be a 

fast, robust, and reliable tool to design better 

macromolecular ligands allowing us to identify the 

best candidates for the different variants of SARS-

CoV-2 including Omicron. It is a pragmatic approach 

for a short development cycle for SARS-CoV-2 

diagnosis, treatment, and prevention. 

This multi-approach is a general theoretical 

framework towards high specific antibodies for 

SARS-CoV-2 and can be extended to other diseases 

(e.g. other viral and bacterial pathogens, leukemia, 

cancer, multiple sclerosis, rheumatoid arthritis, lupus) 

both for diagnosis and therapeutic purposes. 
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