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ABSTRACT

The accurate localization of gamma-ray bursts (GRBs) remains a crucial task. Historically, improved localizations have led to the dis-
covery of afterglow emission and the realization of their cosmological distribution via redshift measurements; however, a more recent
requirement comes with the potential of studying the kilonovae of neutron star mergers. Gravitational wave detectors are expected to
provide locations to not better than 10 square degrees over the next decade. With their increasing horizon for merger detections the
intensity of the gamma-ray and kilonova emission also drops, making their identification in large error boxes a challenge. Thus, a
localization via the gamma-ray emission seems to be the best chance to mitigate this problem. Here we propose to equip some of the
second-generation Galileo satellites with dedicated GRB detectors. This saves costs for launches and satellites for a dedicated GRB
network, the large orbital radius is beneficial for triangulation, and perfect positional and timing accuracy come for free. We present
simulations of the triangulation accuracy, demonstrating that short GRBs as faint as GRB 170817A can be localized to 1 degree radius
(1σ).
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1. Introduction

The coincident detection of gravitational waves (GWs) from
a binary neutron star merger with aLIGO/Virgo and short-
lived gamma-ray (GR) emission with Fermi-GBM (called GW
170817) in August 2017 is a milestone for the establishment of
multi-messenger astronomy (Abbott et al. 2017), which is the
measurement of electromagnetic radiation, gravitational waves,
and/or particles or neutrinos from the same astrophysical source.
Merging neutron stars (NSs) represent the standard scenario
(Eichler et al. 1989) for short-duration (<2 s) gamma-ray bursts
(sGRBs) which are produced in a collimated relativistically
expanding jet with an opening angle of a few degrees and a bulk
Lorentz factor Γ of 300–1000. While the aLIGO detection is con-
sistent with predictions, the measured faint gamma-ray emission
from GW 170817A is about 1000x less luminous than known
short-duration GRBs. Hence, the presence of this sGRB in the
local Universe is either a very rare event or points to a dramatic
misunderstanding of the emission properties of sGRBs outside
their narrow jets. By now we know that the jet in this GRB had
an opening angle of <5◦, but we observed it from ∼20–30◦ off-
axis (Mooley et al. 2018). In all previous models, no emission
was predicted to occur outside the opening angle.

Thus, the previous estimates of the volume density of NS-
NS mergers were also wrong, and need to be corrected (Burgess
et al. 2020). This has important implications for our understand-
ing of the chemical evolution of our Galaxy and the Universe, as

⋆ The work described in this document was done under ESA con-
tract with funding from the EU Horizon-2020 program (H2020-038.09).
Responsibility for the content resides in the author or organization that
prepared it.

NS-NS mergers are believed to be the main source of heavy ele-
ments (Kasen et al. 2017), known as r-process elements (like gold
and platinum). This material is expelled both during the tidal
disruption of the NSs and through winds during the subsequent
disk accretion onto the compact core. Further progress in our
understanding of NS-NS mergers will depend on measurements
in the electromagnetic regime, and these in turn will only be pos-
sible if the localizations of these events can be reduced to a few
square degrees on the sky. While there are several large-field-of-
view optical sky surveys, covering up to several thousand square
degrees, the challenge is to find the kilonova among the many
other transient sources. Future NS-NS mergers will likely all be
at a greater distance than GW 170817, and thus their kilonova
much fainter. Already the four NS-NS merger events from 2019–
2020 were three times more distant than GW 170817. None of
these was detected in gamma rays, and their expected optical
emission would have peaked at 23rd mag (if at the same luminos-
ity as GW 170817). Except for one particularly poor localization,
the error regions of the other three events encompass 2300–
14 700 square degrees each (Abbott et al. 2022). At the expected
optical brightness, there will be about 3–60 transient alerts per
square degree down to 21 mag (Masci et al. 2019), or estimated
5× more at 23rd mag, against which the kilonova will have to be
identified. Thus, a prerequisite to identify the kilonova is the fast
and precise localization of the GW/GR event.

Expectations for the fourth observing run O4 are 10+52
−10

BNS mergers, with a median 33+5
−5 square degrees localization.

Although it is not likely to occur before 2026 (Abbott et al.
2020), the GW detector network of LIGO, Virgo, and KAGRA
is looking forward to including LIGO-India, which promises a
reduction of the GW error regions to <10 square degrees. Further

A131, page 1 of 24
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model. Open access funding provided by Max Planck Society.

https://www.aanda.org
https://doi.org/10.1051/0004-6361/202142835
mailto:jcg@mpe.mpg.de
https://www.edpsciences.org/en/
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs


A&A 664, A131 (2022)

Table 1. Comparison of different γ-localization methods in the 200–2000 keV band.

Method Accuracy Comments E-range GRBs Example Sensitivity
(keV) (1 yr−1) (ph cm−2 s−1)

Triangulation Arcsec Cheap, all-sky 10–1000 20–50 IPN 2.0
Relative rates Degrees Cheap, half sky 8–500 300 BATSE, GBM 1.0, 3.0
Coded-mask Arcmin Small FOV 10–200 10–100 Swift/BAT, ISGRI 1.2, 0.6
Photon-by-Photon Degrees Heavy, big 100–2000 10–30 COMPTEL 180

Notes. The sensitivity column reports the peak flux threshold over the 1–1000 keV band (for a band function with α = −1, Epeak = 300 keV, β = −2)
of the listed detectors (Band 2003; Bošnjak et al. 2014).

reduction of the localization error is foreseen with the Einstein
Telescope in Europe, or the Cosmic Explorer in the USA, both
not earlier than the mid-2030s.

Thus, accurate localization of the GW events should be
sought elsewhere. Gamma rays provide an interesting alterna-
tive, at least for those NS-NS mergers whose jets would be
broadly pointed toward us. With γ-ray emission at large off-
axis angles as in GRB 170817A, up to 30% of mergers will be
simultaneously detectable in γ rays (Howell et al. 2019; Burgess
et al. 2020). Obviously, accurate measurements of many GRBs
will be beneficial for other science questions beyond kilonova
physics, such as (1) the structure of jets in GRBs (e.g., Janka
et al. 2006) and the origin of the off-axis emission, which is
distinctly different to on-axis emission (Begue et al. 2017), or
(2) the potential emission of high-energy neutrinos as measured
by IceCube (Aartsen et al. 2013), promising a potential triple
messenger (i.e., electromagnetic radiation, gravitational waves,
and particles). Kimura et al. (2017) estimated that GRB 170817A
could have been detectable by IceCube if the jet had been viewed
on-axis instead of ∼30◦ off-axis.

Here, we propose adding a GRB detector on some of the next
two dozen second-generation Galileo satellites (G2) in order to
improve the localization capability for short GRBs to the one-
degree level, reducing the error region by a factor of 100–1000.

2. Prospects of accurate GRB localization

2.1. Challenges of short GRBs

Short-duration GRBs (sGRB) have three properties which make
their localization in large numbers more difficult than that of
long-duration GRBs: (1) their short duration, on the order of
0.01–2 s, implies that their observable fluence is on the order of
5–50× smaller than in long-duration GRBs; (2) their peak fluxes
during their maximum spike are typically a factor of 2 smaller
than long-duration GRBs (though at very short timescales they
are similar), making the discrepancy from (1) even larger;
(3) sGRBs are also harder, with their spectral peak at higher
energies. This implies that the flux at soft gamma rays (20–
100 keV) is smaller than that in long-duration GRBs even if the
energy-integrated flux is equal.

These factors together imply detection and localization dis-
advantages in various detector types. In coded-mask imagers
like Swift/BAT or INTEGRAL/IBIS, the mask elements become
increasingly transparent at higher energy, leading to shadows that
are less “sharp”, and thus detection sensitivity. Thus, the ratio of
long to short GRBs in Swift/BAT is about 10:1, while it is 10:2.5
in Fermi/GBM. In counting experiments like Fermi/GBM, short
spikes can more easily be mistaken for noise spikes. Moreover,
at the higher photon energies, the cosine dependence of the

effective area is much less pronounced in detectors with slab-like
scintillators, due to the larger absorption probability at inclined
incidence angles.

2.2. Localization methods

Independent of the different γ-ray detection technology (gas
detectors, scintillation detectors, or solid-state detectors) are
the methods with which gamma rays can be localized. The
four main methods with their advantages and disadvantages
are described below (Table 1). The summarizing statement
is that large field-of-view (FOV) instruments with high GRB
detection rates operate at softer energies, not appropriate for
short-duration GRBs, while detectors at higher energies suffer
from either bad localization capabilities or low detection rates.
Over the last 20 years, all techniques except triangulation have
been used in space applications with the maximum possible
capability.

Triangulation. One of the first methods of localizing sources
in gamma-ray astronomy was triangulation, measuring the time
difference of a signal arriving at different detectors. This was
the method used by the Vela satellites in the 1960s to verify
the Nuclear Arms Treaty between the USA and Russia, which
then led to the discovery of GRBs. This method requires four
detectors or satellites, and accurate knowledge of the time and
the relative position of the detectors; it allows the whole sky
to be covered, and provides localizations in the arcsec–arcmin
range for widely spaced satellites (Hurley et al. 2017). However,
since GRB detectors on interplanetary spacecraft are auxil-
iary instruments, and thus small, triangulation offers substantial
improvements.

Orientation-dependent rate measurements. Measuring
relative rates of orientation-dependent γ-ray detectors, typically
scintillation crystals, was used for GRB localizations with the
BATSE instrument on the Compton Observatory, and is cur-
rently being used with the GRB Monitor (GBM) on Fermi. This
method requires from four to six detectors with different ori-
entations on the sky, and the localization accuracy is on the
degree-scale at best (Berlato et al. 2019).

Coded-mask imaging. Coded-mask imaging also allows a
2D reconstruction on the sky, and has frequently been used over
the last 30 yr (e.g., as Granat, Swift, and INTEGRAL). It also
requires large detector sizes (m3 scale) and has a restricted field
of view, but allows localizations in the arcmin range.

Photon-by-photon imaging. Photon-by-photon imaging
provides proper imaging (2D reconstruction) of individual
photons on the sky. This method was used by the COMPTEL
telescope in the 1990s. Improved versions require electron
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tracking, and thus will be appropriate for large and heavy
telescopes. However, the localizations (degrees) and fields of
view (up to 70◦ radius) are advantageous.

2.3. Missions with GRB capabilities

Except for planned missions beyond 2027, the near future can
be summarized by the following three strategies: (i) new large(r)
missions just represent a replication of existing missions, such
as GECAM (replicating Fermi/GBM) and SVOM (replicating
Swift); (ii) new small(er) missions are mainly driven by enhanc-
ing the sky coverage, not improving localizations; (iii) a euphoric
engagement in CubeSat swarms using triangulation, which will
not provide accurate (degree) localizations, due to their size and
low-Earth orbit (LEO). All of these strategies will not change
the lack of well-localized short-duration GRBs. The operational
and planned (to our knowledge) missions are briefly sketched out
below.

The dedicated GRB mission Swift (USA) uses a coded-
mask imager called the Burst Alert Telescope (BAT) in the
15–150 keV range for GRB localization, to an accuracy of
3 arcmin radius (Barthelmy et al. 2005). It has a 1.4 steradian
field of view (half-coded), and detects about 100 GRBs yr−1, pre-
dominantly as rate triggers (excess counts in the total rate of a
detector module). Due to the soft energy band and the combined
noise of the 32768 CdZnTe detector cells, the detection rate of
short-duration GRBs is only ∼10% (10 sGRBs yr−1).

The Fermi gamma-ray observatory (USA) features a
Gamma-ray Burst Monitor (Fermi/GBM) aimed at localizing
GRBs outside of the zenith-facing field of view of the prime
instrument, the Large Area Telescope (LAT; 100 MeV–10 GeV).
The GBM consists of two subsystems: a collection of 12 NaI
scintillation detectors for the energy range 8–500 keV, and two
thick BGO scintillation detectors for the high-energy range up
to 40 MeV (Meegan et al. 2009). It is currently the most pro-
lific GRB detector, with the detection and localization of about
240 GRBs yr−1, among those about 40 short-duration GRBs (von
Kienlin et al. 2020). The localization method used during the
lasts 30 years (based on orientation-dependent rates in different
detectors) came with large systematic errors (Connaughton et al.
2015). The cause of these systematics have recently been under-
stood (Burgess et al. 2018), but even after correction the typical
error regions have 5◦–10◦ radius (Berlato et al. 2019), with the
17◦ error radius for GRB 170817A completely dominated by the
statistical error.

The Interplanetary Network (IPN) is the logistic combina-
tion of different spacecrafts equipped with GRB detectors. The
locations of GRBs are determined by the comparison of the
arrival times of the event at the locations of the GRB detec-
tors. The precision is proportional to the distance of spacecraft
separations, so that the localization accuracy of a network with
baselines of thousands of light-seconds can be equal or supe-
rior to that of any other technique (Hurley et al. 2017). A major
disadvantage of the IPN method is the one to two day delay in
the downlink of the GRB data from the spacecraft. At present,
the main IPN contributors are Konus-WIND, Mars Odyssey,
INTEGRAL, RHESSI, Swift, AGILE, BepiColombo, and
Fermi/GBM.

The European gamma-ray satellite INTEGRAL can detect
GRBs with three of its instruments: in the field of view of ISGRI
(a 15–300 keV coded-mask imager with a few arcmin localiza-
tion accuracy) or SPI (a 200–8000 keV coded-mask imager with
degree localization accuracy but very high-energy resolution),
and the SPI anti-coincidence system ACS (working at >80 keV).

Due to the small field of view of ISGRI and SPI, their combined
GRB detection rate is only ∼10 GRBs yr−1 (Bošnjak et al. 2014).
The ACS detects about 150 GRBs yr−1, but has no localization
capability (Savchenko et al. 2012).

CALET (Japan), Insight-HXMT (China), and AstroSat/CZTI
(India) are operational satellite experiments with the capability
of detecting GRBs in their particle detectors or shields, without
localizations. Due to their low-Earth orbit, they do not provide
useful triangulation constraints, and thus are not (or very rarely)
used in the IPN.

GECAM (China). The Gravitational Wave Electromagnetic
Counterpart All-sky Monitor (GECAM) is a twin spacecraft mis-
sion to monitor GRBs coincident with GW events (Zheng &
Xiong 2019). With a dome-shaped distribution of multiple scin-
tillators it reaches an effective area (and energy range) similar
to that of Fermi/GBM. The planned main advantage was the
≈100% sky coverage due to the 180 deg phasing of the two
spacecrafts in their orbit. Launched on 2020 December 9, only
one of the spacecrafts returns data.

GRBAlpha (Hungary/Czech/Slovakia/Japan). GRBAlpha,
launched on 2021 March 22, is a 1U CubeSat demonstration mis-
sion (Pal et al. 2020) for a future CubeSat constellation (Werner
et al. 2018). The detector consists of a 75 × 75 × 5 mm3 CsI
scintillator read out by a SiPM array, covering the energy range
50–1000 keV.

BurstCube (USA) is a planned 6U CubeSat to be released into
low-Earth orbit from the ISS to detect GRBs. The instrument is
composed of four CsI scintillator plates, each 9 cm in diame-
ter, read out by arrays of silicon photo-multipliers (Smith et al.
2019). It reaches an effective area of 70% of Fermi/GBM at 15◦
incidence, but the localization accuracy is substantially worse,
with 7◦ radius at best for the brightest GRBs (launch 2022).

SVOM (China/France). The Space-based multi-band astro-
nomical Variable Objects Monitor (SVOM) is a Swift- and
Fermi-like mission with both, a wide-field-of-view γ-ray detec-
tor for GRB localization and a separate GRB detector for
15–5000 keV spectroscopy, and an X-ray and an optical tele-
scope for rapid follow-up of the GRB afterglow (Yu et al. 2020).
A total of 60 GRBs yr−1 will be localized to 10′ accuracy with a
coded-mask telescope with a 89◦× 89◦ field of view, working in
the 4–250 keV band. Due to this soft energy coverage the focus
is on high-redshift GRBs (launch late 2023).

HERMES (Italy) is an Italian-led project to launch 100 Cube-
Sats with X-ray/γ-ray detectors to localize GRBs, and to derive
limits on quantum gravity (Fuschino et al. 2019). Presently, six
3U CubeSats are funded for a two-year pathfinder mission, with
∼56 cm2 effective area per CubeSat in the 3–1000 keV band
(launch 2022). The anticipated localization accuracy for tran-
sients with millisecond (ms) variability is 3◦ for the pathfinder
and 10 arcsec for the full fleet in LEO (Fuschino et al. 2019;
Burderi et al. 2020, 2021), though this seems very optimistic
given the detection of 0.05 ph/s even for the brightest bursts per
CubeSat.

Glowbug (NASA) is a funded small (30 × 30 × 40 cm3) satellite
to detect GRBs and other transients in the 30 keV–2 MeV band
(Grove et al. 2020). With an effective area about 2.5× that of
Fermi/GBM, about 70 short GRBs are expected per year. The
localization accuracy is expected to be slightly better than GBM,
in the 5◦ (1σ radius) range. The nominal lifetime is 1 yr (launch
2023).
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POLAR-2 (China/Switzerland; launch 2024) is a dedicated
GRB polarimeter to be flown on board China’s space station.
With a field of view of half the sky, the position determination
will be a few degrees only. Detailed polarization measurements
are expected for 50 GRBs yr−1, though more GRBs are expected
to be detected (Kole 2019).

COSI (USA). The Compton Spectrometer and Imager is an
approved NASA/SMEX mission, working in the 0.2–5 MeV
band, and scheduled for launch in 2025. Its wide field of view
of 3 sr will allow the detection of 7–10 short GRBs per year, at
subdegree localization (Tomsick et al. 2021).

eXTP (China/ESA). The enhanced X-ray Timing and
Polarimetry mission (eXTP) will study the X-ray sky with
four different instruments, covering the 0.5–50 keV band. It
will likely be the first to simultaneously measure the spectral-
timing-polarimetry properties of cosmic sources (launch 2027).
Relevant for GRB detection is the Wide-field monitor (WFM):
with a field of view of 1 sr (fully coded) the detection of 16
GRBs/day is predicted (Zhang et al. 2017), the brighter ones
with 1 arcmin localization accuracy. While this GRB rate is
far above the predicted total number of GRBs in the Universe
(∼5×), the soft energy response of the WFM implies a small
fraction of short GRBs (5%–10%).

HSP (USA). The proposed High Resolution Energetic X-ray
Imager SmallSat Pathfinder (HSP) is a wide-field hard X-ray
(3–200 keV) coded aperture telescope with 1024 cm2 CdZnTe
detectors and a Tungsten mask (Grindlay 2020). With 4.′7 reso-
lution covering 36◦× 36◦ (full width at half maximum, FWHM),
HSP localizes transients and GRBs within <30′′ in less than
10 min. (launch >2025).

In summary, there is a need to more accurately localize short-
duration GRBs. We propose that GRB triangulation with the
Galileo satellite network provides such an opportunity.

3. The Galileo system as a perfect host for
triangulation

The Galileo Global Navigation Satellite System (GNSS) has five
parameters which makes it a nearly ideal satellite constellation
for triangulation: (i) all satellites are synchronized with a very
accurate atomic clock, ensuring time-stamps for the GRB sig-
nal at the 10−9 s level; (ii) the satellites are distributed over three
orbital planes, perpendicular to each other, making triangulation
positions close to round; (iii) the position knowledge of all satel-
lites is accurate to submeter levels, and thus does not contribute
to the error budget in realistic GRB measurements, similar to
the timing; (iv) the knowledge of the orientation of each satel-
lite is known to better than 1◦, removing any ambiguity in the
relative rate measurements for GRBs; (v) the orbital radius is
large enough that one can realistically expect subdegree localiza-
tions, but small enough that light travel time distances are short
and communication (data transfer) is quick. This differentiates it
from the canonical IPN, where the baseline is much longer, and
thus allows arcmin-scale localizations, but the triangulation can
only be done 1–2 days after the GRB.

The first satellites of the present Galileo constellation were
launched on 2011, October 21. Today, 26 satellites are in
orbit, two of which are unusable (one with technical problems,
one declared as spare due to issues with clocks) and two on
non-nominal orbits due to launch failure of the third rocket
stage but otherwise fully operational and usable. In December
2016, the Initial Service Declaration was announced. Currently
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Fig. 1. Histogram of pair-wise distances between Galileo satellites. The
peaks indicate constant distances between satellites in the same orbital
plane.

12 satellites, known as the Batch 3 satellites, are under pro-
duction; deployment started in 2021. As the design lifetime of
Galileo satellites is 12 yr, the constellation has to be replenished
in the coming years. The first satellites of this second generation
will then follow starting in 2024.

The Galileo constellation is a Walker constellation (Walker
1984). This constellation type is characterized by the three
numbers 24, 3, and 1:
n1: Total number of satellites (i.e., eventually 24 satellites),

equally distributed over the orbital planes;
n2: Number of equally spaced orbital planes (i.e., 3), with eight

satellites each;
n3: Relative spacing between satellites in adjacent planes. The

difference in argument of latitude (in degrees) for equivalent
satellites in neighboring planes is equal to n3 ∗ 360/n1.

The revolution period corresponds to 17 revolutions in 10 side-
real days (i.e., 14h04m). With a semimajor axis of 29.600 km,
the orbital inclination is 56◦. For current Galileo satellites the
eccentricity is below 0.0007 except for the two satellites on non-
nominal orbits that have an eccentricity of 0.166. Figure 1 shows
the histogram of pair-wise distances between Galileo satellites
in a Walker 24/3/1 constellation. The maximum distance is
59 000 km (i.e., the orbit diameter), while the mean distance
is 42 000 km. The peaks in the figure indicate the constant
distances between satellites in the same orbital plane.

Orbits and clock corrections for Galileo satellites are avail-
able with high precision in real time. While precise orbits at a
level of a few centimeters and clock corrections at below the
nanosecond level are available in postprocessing, submeter orbits
and clock corrections of a few nanoseconds are available through
the broadcast messages that are updated every 10 minutes. While
the eccentric satellites show slightly larger broadcast orbit errors,
mainly along-track, the rms of broadcast orbit errors for the other
satellites is at a level of 32 cm (12.5 cm radial, 25 cm along-track,
15 cm cross-track).

In contrast, the broadcast clock quality of eccentric Galileo
satellites is comparable to the other satellites. The rms of the dif-
ference is 0.50 ns. For GRB triangulation it can thus be assumed
that perfect positions and time tagging are known in real time at
any given time.

The attitude of the Galileo satellites is a nominal yaw steer-
ing in order to point the navigation antenna (body-fixed z-axis)
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to the center of the Earth, and the solar panel axis (y-axis) is
perpendicular to the direction of the Sun. The Sun is thus always
located in the body-fixed x− z plane. While the positive x-surface
is always illuminated by the Sun, the negative x-surface con-
stantly points to dark sky. The nominal attitude is controlled
by Earth and Sun sensors to below 0.◦1, except for non-nominal
noon and midnight yaw maneuvers, if the Sun is closer to the
orbital plane than about 2◦ for the 4 in-orbit verification satellites
(2011/2012) and about 4◦ for the other satellites (since 2014),
and the nominal yaw rate would exceed the maximum hardware
rate of 0.◦2 s−1. The negative z-axis is always pointing in zenith
direction with a precision below 0.◦1.

4. Triangulation: Methods and prospects

The triangulation method uses measurements of differences of
arrival times of the same signal (GRB) at different clocks (each
on a different satellite). In general, time differences between
three independent satellite pairs are needed to derive a unique
position on the sky, and not all these satellites will be in the same
plane.

The relation cos θ = c·t/d holds for the time difference of a
signal between two satellites. Under the simplifying assumption
of perfect satellite clocks and perfectly known satellite positions,
the width of the annulus ∆θ is obtained as the derivative of the
above equation; this means that it is just determined by the error
∆t with which the time delay t between the two signals (light
curves) can be measured:

∆θ =

∣∣∣∣∣∣∣ −1√
1 − (c · t/d)2

∣∣∣∣∣∣∣∆t ·
c
d
. (1)

There are two possible approaches to triangulation. In the first,
one can compare two light curves to find the time lag (i.e., a
simple cross-correlation of background subtracted time series)
(Hurley et al. 2013; Pal’shin et al. 2013). Each satellite pair
results in one time lag, and a corresponding triangulation ring.
Combining multiple (>3) pairs then provides a unique sky posi-
tion as the overlap of these triangulation rings. Cross-correlation
is computationally fast, but suffers from several drawbacks
(Burgess et al. 2021): (i) they only work for binned light curves,
at fixed binning; (ii) no mathematical method exists to estimate
the proper error of the cross-correlation; (iii) the approximation
of χ2 rarely holds, in particular when small bin sizes are chosen
in order to increase the temporal accuracy; (iv) the subtraction
of two Poisson rates results in Skellam rather than Poisson dis-
tributed data, often leading to over-confidence; (v) it cannot take
into account light curves taken at different energies. In the sec-
ond approach, one can forward-fold an identical model through
the (different) response of each detector and fit each observed
light curve (Burgess et al. 2021). This technique is computation-
ally expensive, but offers the major advantage that it produces
a complete posterior probability distribution allowing for a very
precise estimate of the uncertainty formally in ∆θ, but due to
the forward-folding directly in sky coordinates ∆RA, ∆Dec.
This nazgul code (Burgess et al. 2021) has been made publicly
available1.

5. Simulation setup

In order to test each of the localization methods and verify their
performance for different satellite configurations, we developed
1 https://github.com/grburgess/nazgul

a simulation framework utilizing the Python package PyIPN2.
This package allows for the generation of synthetic GRB light
curves as seen by detectors distributed within the solar systems.
We added a procedure to this framework to generate realistic
light curve shapes and detector configurations that mimic the
orbit of the Galileo constellation. Below we detail the setup and
procedure for the generation of mock data sets which allow us to
test our methods.

5.1. Simulating GRB light curves

The simulation of the triangulation capability of a network of
GRB detectors requires creating mock GRB light curves, which
then hit differently oriented detectors. These mock light curves
cover a peak flux range as bright as those seen with previ-
ous experiments (CGRO/BATSE, Swift/BAT, Fermi/GBM), and
down to our proposed sensitivity limit of 1 × 10−7 erg cm−2 s−1

in the 25–150 keV band. We pick the 256 ms timescale for the
peak flux as a compromise between being short enough to cover
spikes in short-duration GRBs and being general enough also for
long-duration GRBs.

Gamma-ray burst light curves are generally very complex,
and unique for each GRB. In many cases the variability timescale
is significantly shorter than the overall burst duration. Only in a
minority of GRB light curves there is only one peak, with no
substructure. The most straightforward way is to assemble GRB
light curves by the superposition of different pulses. We assume
that candidate pulses can be modeled with the Norris et al. (1996,
2005) empirical functional pulse form

I(t) = Aλe−τ1/(t−ts)−(t−ts)/τ2 cts s−1, (2)

where t is time since trigger, A is the pulse amplitude, ts is the
pulse start time, τ1 and τ2 are characteristics of the pulse rise
and pulse decay, and the constant λ = e2(τ1/τ2)1/2

. The pulse peak
occurs at time τpeak = ts +

√
(τ1τ2). Typically, the rise times in

individual GRBs are very short (steep rise), and the decay times
are substantially longer in most times. Thus, for single-pulse
GRBs, the decay time τ2 scales with the T90 duration of a GRB.

In order to implement the stochastic nature of the light
emission process, and to incorporate unavoidable background at
the measurement process, individual photon events are sampled
according to an inhomogeneous Poisson distribution following
the intrinsic pulse shape specified. The photon arrival times are
sampled via an inverse cumulative distribution function rejection
sampling scheme (Rubinstein & Kroese 2016). As the rate for
the signal evolves with time, a further rejection sampling step is
implemented that thins the arrival times according to the evolv-
ing light curve. This is done by first sampling a waiting time t
and computing the light curve intensity I(t). Another draw from
p ∈ {0, 1} is made and the sample is accepted if p <∼ I(t) (Burgess
et al. 2021).

The cross-correlation of two light curves depends crucially
on the intensity of the GRB above background, and the structure
of the light curves. We therefore need a sample of different light
curves. In order to create a realistic sample, we need to make sure
that we reproduce a rough –3/2 logN-logS intensity distribution
between the brightest GRBs seen so far (2× 10−4 erg cm−2 s−1)
and our aimed-at limit of 1 × 10−7 erg cm−2 s−1. For a canoni-
cal GRB spectrum below Epeak, meaning a power-law spectrum
with a slope in the range –0.9 to –1.1 (long/soft) and 0.0 to
–0.2 (short/hard), the following conversion holds for the 25–
150 keV band with a detector size of 3600 cm2 (see below):
2 https://github.com/grburgess/pyipn
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Fig. 2. Example mock light curves of the long-duration class created
with the pulse avalanche description of Norris-like pulses.

1× 10−7 erg cm−2 s−1 = 0.65± 0.10 ph cm−2 s−1. Thus, we substi-
tute the sampling over the 2× 10−4–1× 10−7 erg cm−2 s−1 range
by that over 1300–0.65 ph cm−2 s−1. We also need to reproduce
the observed T90 duration distribution of GRBs (Kouveliotou
et al. 1993) and some realistic distributions between single- and
multi-pulse light curve structures. We can assemble multi-pulse
light curves by overlapping multiple single pulses, each with the
shape used by Norris et al. (1996), but with different parameters
and properly delayed with respect to each other.

For the last we implemented a pulse avalanche, a linear
Markov process, as proposed by Stern & Svensson (1996) and
described in detail in Appendix A. Example light curves with
this simulation setup are shown in Fig. 2.

Energy-dependent effects in GRB light curves are ignored.
Conceptually, we treat our proposed energy band of 25–150 keV
as a mono-energetic band.

5.1.1. Light curve detectability by different detectors

The steps given above provide theoretical light curves of GRBs
(as emitted) that are representative in intensity distribution, dura-
tion distribution, and pulse structure of the GRBs as measured
over the last 30 yr. These light curves are now being measured by
identical detectors on a number of Galileo satellites. While the
details of the Galileo satellite network is described later, three
effects combine to establish the measured light curves. First,
since the detectors are oriented in different directions, each will
detect photons according to the cosine between the scintillator
normal (we adopt thin but large-area scintillator plates as the
baseline) and the GRB; second, the detector will measure quasi-
isotropic γ-ray background, which has the effect of washing out
low-intensity features; and third, in the case of multiple detector
plates per satellite, the sensitivity can be improved by co-adding
the data. However, this helps only for a certain incidence angle
range since the GRB signal varies with the incidence angle, but
the isotropic background does not.

An example of such a set of measured light curves for a given
GRB and differently-oriented detectors is given in Fig. 3. These
are the final measured light curves (in counts s−1) over a cer-
tain duration in the 25–150 keV band, which are then used for
triangulation.

5.1.2. Implementation of the discrete correlation function

A modified version of the discrete correlation function method
(Edelson & Krolik 1988) was implemented in PyIPN with the
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Fig. 3. Light curves of the same GRB as seen with a flat detector plate
from different incidence angles. The labels in each plot give the angle
under which the GRB impinges on the detector plane. With increasing
angle, the effective area shrinks with the cosine of the angle, while the
background remains the same. The “mother” light curve of this GRB
was generated with a pulse avalanche scheme (see Sect. 5.1.1).

following three parts. First, the model is initialized by setting a
GRB position and defining all detectors. The actual simulation
creates the GRB signal (light curve) and computes the arrival
times at the detectors as detailed above.

The final step performs the cross-correlation and computes
the center point and opening angle of the circle for a spec-
ified pair of detectors. Rather than relying on mathematical
covariance matrix estimations of uncertainty, cross-correlation
methods heuristically derive uncertainties in one of two ways.
First, the discretized time bins of the light curve yield discrete
estimates of the time lag between each pair of light curves. For
each value a pseudo-χ2 statistic3 is derived for a grid of values
which yield a rough parabolic shape. The minimum of these val-
ues is taken as the true time lag (best fit). The 1, 2, and 3σ
uncertainty regions are recovered by moving up the grid of statis-
tics at the appropriate levels and reading off the implied time
lags. This has several drawbacks. First, the best-fit time lag can
never be below the timing resolution of the light curve. Addi-
tionally, the uncertainties are locked to the resolution of the grid
and can thus easily be over- or underestimated. To get around
this, another heuristic can be introduced. One can fit this grid
of uncertainties with a parabolic shape to effectively interpolate
to finer timing resolution. While this alleviates the issues with
discretization in the previous method, it introduces the problem
that the interpolation has an associated uncertainty that is not
accounted for. Moreover, the chosen shape of this parabolic fit
cannot incorporate asymmetries in the grid and thus can easily
over- or underestimate the true uncertainty. However, given the
lack of a mathematically strict method, we use this procedure,
but keep the problems in mind.

5.2. Gamma-ray background in the Galileo orbit

The background that a γ-ray detector (whether scintillation
detector or other type) experiences in space is composed of sev-
eral different components (e.g., Weidenspointner et al. 2003,
2005; Wunderer et al. 2006; Cumani et al. 2019). In the 10–
250 keV band, the most important components are the extra-
galactic diffuse γ-ray background, Earth albedo photons (for

3 The pseudo-χ2 values are incorrect in the first place due to the lack
of fidelity in the low-count regime and because the count data are
fundamentally Poisson distributed.
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for different accuracies ∆t of 1, 3, 10 and 50 ms with which the time
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LEO), Galactic cosmic-ray protons, and radioactive decay of
activated detector and spacecraft material due to cosmic-ray
bombardment. For a satellite in MEO, the diffuse γ-ray back-
ground dominates below 100 keV, while at ∼200 keV the rising
proton contribution has reached the level of the diffuse γ-
ray background. We therefore just incorporate the extragalactic
diffuse γ-ray background in our simulations.

We adopt the following smoothly broken power law for the
diffuse background spectrum (Ajello et al. 2008)

E2 dN
dE
= E2 ×

C
(E/EB)Γ1 + E/EB)Γ2

(3)

with the following constants: C = 0.102± 0.008 ph cm−2

s−1 sr−1 keV−1, Γ1 = −1.32± 0.02, Γ2 = −2.88± 0.02, and a
break at EB = 30.0± 1.1 keV. Integrating over the 25–150 keV
energy range and the 2π sky coverage is consistent with both the
Konus-Wind (Aptekar et al. 1995) and the Fermi/GBM (Burgess
et al. 2018) measurements, and leads to ≈4 cts cm−2 s−1.
This background rate is then added to the scaled light curve
generated with the pulse avalanche method (see previous
subsection).

5.3. Required detector timing

With a dedicated GRB detector on the Galileo satellites, we can
dramatically improve the localization accuracy. Using the for-
mal triangulation error (see Eq. (1)), it is easy to compute the
required temporal resolution, usually the bin size in the classical
scheme, for a perfect system with satellites at known distances.
Figure 4 shows that sub-ms accuracy in the determination of the
time delay is required to reach subdegree localization accuracy
with two satellites at a distance of 42 000 km (which corresponds
to the mean for Galileo’s Walker constellation; see Fig. 1). For
comparison, the Anti-Coincidence system of the INTEGRAL
spectrometer (SPI-ACS; top curve) has a time resolution of
50 ms, and the shortest binning of Fermi-GBM is 64 ms, with
individual events time-tagged at 2µs.

Figure 4 only applies to a perfect system. As discussed
below, the classical triangulation method with its use of a cross-
correlation of binned data sets does not provide a mathematically
self-consistent error handling. In contrast, the alternative method
by Burgess et al. (2020) does, but lacks the beauty of a simple
equation. We therefore show below via simulations how close
this new method comes to the estimate of Eq. (1).

5.4. Required detector sensitivity

Good timing resolution provides a necessary but not yet suffi-
cient condition. The detector needs to be large enough to detect
a significant signal at these short timescales, to measure a signif-
icant signal independent on the arrival direction, and to provide
this high time resolution data for analysis, either on board or
on the ground, rather than binning it up to save telemetry
bandwidth.

A simple estimate of the minimum detector size can be
made by recognizing that short-duration GRBs have structure,
and have durations substantially longer than the 3 ms timescale
that Fig. 4 implies as a requirement for subdegree localization
accuracy. Assuming a canonical shape of a short GRB prompt
emission light curve, and knowing that for GRB 170817A a
single Fermi/GBM detector measured 20–30 cts/0.1 s in the 20–
500 keV band at peak against ∼30 cts rms from background
fluctuations, we estimate to need 2000 cts per short-duration (2 s)
GRB or 10 cts/1 ms at peak, so ∼30× the effective area of a single
GBM detector of 125 cm2, or 3500–4000 cm2. Incorporating the
correspondingly higher background rate at the Galileo orbit with
respect to the LEO of Fermi will modify this estimate, but for
the simulations presented here we consider a detector of 60 cm×
60 cm geometrical area.

5.5. Detector geometry

As we show, the generally preferred and assumed zenith-facing
detector is not a good choice. Since the best localization accuracy
is reached at the largest satellite separation and facing perpen-
dicular to the satellite-connecting line (see Eq. (1) and Fig. 4),
detectors sensitive sideward (i.e., 90◦ of zenith) are preferred.

Since the anticipated detector size has a ≈60 cm side length,
adding a cube of that size to the zenith-facing side of the Galileo
satellite might be challenging in terms of satellite momentum
balance or station keeping, thus we also consider configura-
tions where 1D detector plates are mounted on different sides of
the Galileo satellite (Fig. 5). Any such 3D detector has several
advantages. First, multiple detector units provide independent
measurements to be used in the cross-correlation. For the same
reason, a coincidence veto against particle hits can be imple-
mented, reducing the rate of false triggers. Finally, since 3D
detectors cover a field-of-view of more than 2π of the sky,
detectors on some “behind-the-Earth” Galileo satellites will be
able to detect the GRB, thus increasing not only the number
of measuring detectors, but more crucially extending the base-
line (maximum distance between detectors) for the time delay
measurement.

We consider nine different detector geometries (Fig. 5):
a single detector facing zenith (called detector 01), a hol-
low cube detector with 30 cm height on the zenith-facing side
(detector 02), four sideways-facing detector plates (detector 03),
two neighboring sideways-facing plates (+X, +Y; detector 04),
four sideways-facing plus a zenith-facing detector (detector 05),
two oppositely sideways-facing and one zenith-facing (+X, -X;
detector 06), one sideways-facing only (+X; detector 07), one
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Fig. 5. Different detector geometries simulated: detectors 1–3 (top row),
4–6 (middle row), and 7–9 (bottom row).

Fig. 6. Off-axis dependence of the different detector geometries.
The blue shaded range corresponds to the minimum–maximum range
according to azimuth angle for the cube detector. Beyond 90◦ the cube
detector offers continued effective area, but shadowing by the satel-
lite bus leads to a rapid drop. The green shaded area corresponds to
equal-size detectors on two neighboring sides, with the top boundary
corresponding to 45◦ view onto both, and the lower to 90◦ on only one
of the two detectors.

sideways-facing plus one zenith-facing (+X; detector 08), and
two oppositely sideways-facing detectors (+X, -X; detector 09).

All the sideways-facing plates are 60 cm × 60 cm in size and
1 cm thick. These configurations obviously change the zenith-
angle-dependent variation of the effective area (see Fig. 6);
the green area corresponds to two equal-size detectors on two
neighboring sides (Fig. 5). Two-dimensional versions of the-
ses dependences (including azimuthal variation) are shown in
Sect. 6.1.1.

5.6. Setup of GNSS configuration

Since we use an existing satellite network, only one more config-
uration choice needs to be considered in the simulations, namely
the number of satellites per orbital plane equipped with GRB
detectors to allow a 4π coverage of the sky. We use the notation
of [1] or [0] if a GRB detector is placed on a given satellite or not,
respectively. With eight satellites per orbital plane, and dealing

Table 2. Simulated detector configurations.

Sat Configuration Detectors

24 11111111 11111111 11111111 1,2,3,4,5,6,7,8,9
12 10101010 10101010 10101010 1,2,3,4,5,6
9 10010010 10010010 10010010 3,5

10010010 01001001 10100100 3,5
6 10001000 00100010 10001000 3,5

10001000 10001000 10001000 3,5
10010000 00010010 10010000 3,5

Fig. 7. Structure of the skycov tensor, i.e., sky maps for the combina-
tions of constellations and off-axis angle response. For this example a
step size (time step) of 5◦ is assumed, resulting in 360/5 = 72 sky maps.

with these planes consecutively, a configuration of every second
satellite equipped with a GRB detector would read [10101010
10101010 10101010]. The set of simulated configurations is given
in Table 2.

We compute two maps: one “instantaneous” snapshot and
one averaged over one orbital period. Simulations are done in
steps of 5◦, which provides 72 subsequent snapshots for a full
14h04m orbital revolution of the Galileo satellite network, mean-
ing that the averaged map is the average of these 72 snapshots.
GRBs are distributed on the sky on a 2◦ grid, thus providing a
full sky map for each snapshot.

In order to allow any arbitrary combination of Galileo satel-
lites to be chosen, a simulation tool has been set up (Rott 2020)
that allows the user to switch on or off single Galileo satel-
lites or detectors. This is implemented as a MATLAB function
galileo_skyCoverage.m, which computes the sky coverage of any
Galileo constellation and one or more given off-axis detector
response(s) (Fig. 7).

An example is shown in Fig. 8 for a flat GRB detector on
two Galileo satellites in separate orbital planes, for one sin-
gle snapshot of the constellation. Dark blue shows the sky area
not covered, light blue the sky covered by both detectors. Sum-
ming over one 14h04m period (i.e., 72 snapshots with 5◦ rotation
steps) results in Fig. 9, showing the mean sky coverage by two
satellites.

We note that the distribution of detectors over the satellites in
a given orbital plane, or also between orbital planes, has a sub-
stantial impact on the results. As a demonstration of the effect,
Fig. 10 shows two different constellations with the same num-
ber of satellites (with a GRB detector) per orbital plane, but
grossly different distributions: (1) one with equal distribution
(i.e., every second satellite has a GRB detector) and (2) all four
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Fig. 8. Example of interactive plot for the sky coverage achieved with
two Galileo satellites in separate planes, equipped with a flat GRB
detector. The slide bar moves through the 72 epochs at 5◦ steps.
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Fig. 9. Mean sky coverage, i.e., the sum of 72 epochs (as in Fig. 8). Only
50% coverage is achieved at the two poles of each of the two orbital
planes in which the detectors move.

satellites (with GRB detector) per orbital plane are centered over
one pole of the Earth at the start configuration (first epoch of the
72 epochs). The top panel shows the total coverage after 14h04m,
which is equal for both options as it depends only on the number
of satellites. The other two panels show the mean variance of the
coverage at any sky position. In the equal distribution, there is
no point on the sky that is covered by fewer than five or more
than six satellites, while in the one-sphere constellation large
regions of the sky are covered only with one or two satellites
at a given time, with the consequence that triangulation would
not be possible with this total number of satellites.

Since the Earth is not infinitely small, there is a 5% chance
that one Galileo satellite is Earth-occulted at any given time.
This is included in our computations.

6. Simulations

The simulations involve multiple steps. They are as follows:
1. Define the different detector geometries (Sect. 5.5);
2. Define the number of satellites and which satellites per

orbital plane are equipped (Sect. 5.6);
3. Compute the effective area per detector configuration

(Sect. 6.1.1);
4. Compute the accuracy of the localization via classical cross-

correlation, depending on the effective areas of the detectors
on separate satellites (Sect. 6.1.2);
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Fig. 10. Extreme example of the influence of the distribution of GRB
detectors over the orbital plane top: identical mean sky coverage, rang-
ing between 3.5 and ∼5.3; middle: all 12 detectors distributed over one
pole; and bottom: all 12 detectors equally distributed. The lower two
panels show the standard deviation for each point on the sky.

Table 3. Four GRB intensity intervals.

Intensity ID Peak count rate Peak flux bin
(ph cm−2 s−1) (10−7 erg cm−2 s−1)

1 1.5–2 2.3–3.0
2 2–3 3.0–4.6
3 3–6 4.6–9.2
4 6–100 9.2–154

5. Simulate the sky coverage and the GRB localization accu-
racy (Sect. 6.1.3).

In order to cover the range of GRB peak intensities (amplitude
A in Eq. (2)) four intensity intervals are created such that faint
intensity levels can be differentiated (see Table 3).

We fix the detector temporal resolution at 3 ms. Finally, we
use the present 24/3/1 walker configuration of the GNSS system,
and assume that satellites in all three orbital planes are indeed
equipped with a detector.

These simulations return sky maps that are used to verify
the extent to which 4π coverage is possible with a homoge-
neous localization accuracy over the sky, to verify the extent to
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which 4π coverage is possible with a homogeneous flux sensitiv-
ity level, to show the differences in sky coverage and localization
accuracy as a function of the different number of satellites to
be equipped with a detector and the detector geometry, and to
provide absolute values of the GRB localization accuracy (dis-
tribution) for both single snapshots and time-averaged over the
GNSS orbital period of 14h04m.

Given the CPU-intensive forward-folding triangulation tech-
nique, the full range of parameter testing in the simulation is
done by using the classical cross-correlation. Only one indi-
vidual setup is computed with the forward-folding triangulation
technique in order to obtain proper error estimates and compare
the absolute values of GRB location accuracy (distribution). We
note that in this case steps (3) and (4) above are not necessary
since this is part of the model forward-folding.

6.1. Classical scheme using cross-correlation

6.1.1. Lookup table for direction-dependent effective area

Depending on the placement of single-plate detectors on dif-
ferent sides of a Galileo satellite, the 3D distribution of the
effective area is grossly different. We illustrate these distribu-
tions in Fig. 11. The left panels show the effective area as a
function of azimuth and zenith angle between 0◦ (figure center)
to 180◦ (border of figure) of an illuminating source (GRB). The
right panels show the corresponding area of the detectors that are
illuminated (i.e., the area relevant for the noise). This is different
from the left column figures, since the measured GRB counts per
detector scale with the cosine of the incidence angle, while the
background (noise) is isotropic.

The corresponding 360 × 180 degree matrices are used as
detector lookup tables to identify the effective area for a given
illumination direction. The effective areas obtained in this way
from the two detectors of a baseline are used to access the lookup
table of the accuracy matrix (see next subsection). Using both
together, the different Galileo detector-equipment constellations
are computed.

6.1.2. Accuracy matrix

For the computation of the effects of the relative orientations of
different detectors on different Galileo satellites according to the
given satellite equipment scheme, we need to map the effect of
detector-related parameters on the localization accuracy in a way
that they can be efficiently used. Since this localization quality
depends on at least two angles (the relative orientation of the
detector normals of two detectors relative to the GRB direction)
and the total intensity, this is a matrix rather than a factor. It
is straightforward to realize that the cosine off-axis dependence
of the detector sensitivity is a geometrical effect similar to dif-
ferent detector geometries. Thus, instead of computing effective
area matrices per angle pair, we can incorporate the detector
geometry (in terms of total effective area per direction) and
compute the error of a delay measurement per angle pair. Such
an accuracy matrix was computed via both methods (Fig. 12),
and then serves as input to the Galileo satellite mapping
simulation.

6.1.3. Results with different detectors

In this section we present, for all different detector configurations
considered, the sky coverage (both, for one given moment and

Fig. 11. Two-dimensional variation of the effective area (left column)
and the illuminated area (right) for our proposed geometries (each
detector is 60 cm × 60 cm). Top row: flat detector, zenith-facing. Sec-
ond row: two detectors on two neighboring satellite surfaces. Third row:
two detectors on opposite sides and zenith. Fourth row: four detectors
on each side of the satellite, none toward zenith; Earth’s shadow is
included. Fifth row: five detectors, one on each side and one zenith-
facing. Bottom row: Zenith-facing cube with 30 cm height; shadow
included.
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Fig. 12. Distribution of the error of the time-delay (color-coded) for
different angles of two detectors (x- and y-axis) at the same posi-
tion (=satellite). This means the nominal time delay should be zero.
The matrices shown are the median of all simulated GRBs in the
bright fluence bin (#4 in Table 3), separately computed for the classical
cross-correlation method (top) and the forward-folding nazgul method
(bottom), and separate matrices for the other intensity bins. For identical
effective areas, i.e., the diagonal, nazgul recovers the nominal time delay
of zero, so it was set to 0.3 to avoid division by zero in the follow-up
steps. The placement on the same satellite also mimics (along the diago-
nal) the net effect on the accuracy of two identical detectors on different
satellites facing exactly toward the same sky location. Each pixel is the
median of the time-delay of many different GRB light curves. The time
resolution of the detector is assumed to be 3 ms. The effective area dis-
tribution mimics a 1D detector with 3600 cm2 seen at different off-axis
angles.

the average over one Galileo orbital period), and the mean local-
ization accuracy, separately for different intervals of the GRB
intensity.

Detector 1: Zenith-facing. We start with a single detector
plate, facing at zenith, with each of the 24 Galileo satellites, and
also every second satellite, equipped with one such detector. We
use this constellation to show the different aspects of the simu-
lated data; for the other detector geometries we primarily show
example distributions and summarize the results in a table.

Figure 13 shows the sky coverage for an instantaneous
moment (left) and averaged over the orbit (right) for the 24- and
12-satellite options, and Figs. 14 and 15 show the localization
accuracy for two different GRB flux intervals.

For the simple 1D detector plate facing toward the zenith, the
geometry of the satellite kinematics leads to a relation between
the distance of the Galileo satellites and the difference of their
zenith-pointing direction, as shown in the left panel of Fig. 16.
The larger the angle, the lower the area in the sky that the GRB

detectors on the two satellites jointly observe. More importantly,
since the sensitivity of triangulation is best for GRBs occurring
perpendicular to the connecting line of two satellites, zenith-
facing flat detectors will not make use of the maximum baseline
of the Galileo satellite system, but use at most 2/3 of it (<1.3
orbital radii). Our simulations over a full orbital cycle now return
the frequency of occurrence of these distances between pairs
of Galileo satellites for an isotropic distribution of GRBs. This
shows that for the maximum GRB detector equipment rate on the
GNSS (i.e., a GRB detector on each of the 24 Galileo satellites)
about half of the detector pairs occur at satellite separations of
<1.2 orbital radii (middle panel of Fig. 16). When reducing the
satellite equipment rate, this rate gets even worse (right panel of
Fig. 16). Thus, a single zenith-facing detector per satellite is far
from optimal.

Overview of all detector geometries. Before elucidating
the details of the other detector configurations, we start with
comparing the nine different GRB detector geometries by using
the maximum equipment rate in Fig. 17 (all 24 Galileo satel-
lites carrying a GRB detector): the sky coverage for any given
moment (left column), the average of the sky coverage over one
Galileo orbital period (middle), and the mean localization accu-
racy of the faintest GRB intensity bin (where our goal is to obtain
a subdegree localization).

The green filled circles in Fig. 17 make an interesting pattern
on the brown sky background in the left column for detectors 03,
05, 06, and 09. These detectors all cover the whole sky (ignoring
the cosine dependence of the effective area; see right column of
Fig. 11). The green circles reduce the coverage by one, due to
the shadowing of the Earth in nadir-direction, with a 12◦ radius.
Due to the three orbital planes being perpendicular to each other,
there are six positions on the sky where two satellites from two
orbital planes get close to each other, and their 12◦ radii overlap
to form a small region where the coverage is reduced by two
satellites (blue regions).

Another aspect is symmetry. While a single detector facing
toward zenith on all 24 satellites produces a homogeneous sky
coverage, this is not true for a single sideward-facing detector
(#07, #08) or an asymmetrical detector (#04); given the Sun-
pointing constraints of the Galileo system, their sky coverage
is very asymmetrical.

In the following subsections we describe most of these
configurations in more detail.

Detector 2. As a consequence of the average short baselines
for a flat zenith-facing detector (Fig. 16), we next test a cube
detector on the zenith-facing side of the Galileo satellites. These
detectors have the same area as detector 01 toward zenith, and
half of this (due to the height of only 30 cm) toward all four sides.
With more satellites at large baselines and the large effective area
available for large parts of the sky, this substantially improves
the localization accuracy of the zenith-facing flat detector (see
Figs. 18 and 19).

Figure 20 illustrates why the cube detector is so much better
in performance. The distribution of the mean baselines, which
are realized for given pairs of detectors, and their projected effec-
tive areas as determined by their viewing direction relative to a
GRB clearly shows that the long baselines for higher effective
areas dominate. Thus, we reach subdegree localization accuracy
for the brightest GRB intensity bin (though for the faintest it is
still on the order of 10◦).

Detector 3. Because the zenith-facing detectors are not opti-
mal, we now look at an arrangement where all four sides of a
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Fig. 13. Sky coverage for a zenith-facing detector each on 24 satellites (top) and 12 satellites (bottom; every second along each orbital plane) for
an instantaneous moment (left) and averaged over one orbit (right). The color-coding (with different scales) gives the number of satellites that see
a GRB depending on where the GRB happens on the sky.

Fig. 14. Localization accuracy for a zenith-facing detector on each of the 24 satellites for an instantaneous moment (left) and averaged over one
orbit (right), for GRBs in the brightest peak flux bin of 6–100 ph cm−2 s−1 (top row) and the faintest peak flux bin of 1.5–2 h cm−2 s−1 (bottom row).

Galileo satellite are equipped with a 60 cm × 60 cm detector,
with the nadir- and zenith-facing sides without GRB detector.
The localization accuracy is very good (see Fig. 22) even for this
faintest GRB intensity level. The averaged sky coverage shows
an identical sky pattern, independent of whether we equip 6, 9,
or 12 satellites with a GRB detector (see Fig. 21), but we note
the different color-coding normalization. When more satellites

are equipped with a detector, then there is a larger number of
satellites seeing a given GRB.

In Fig. 23 we show the effect of the “merged” configura-
tion, which is the temporal re-binning to 6 ms whenever the 3 ms
sampling combined with the small baselines performs worse.
This happens for a certain intensity range where the increased
S/N overcompensates the reduced temporal resolution of the
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Fig. 15. Same as Fig. 14 but for 12 satellites (every second along each orbital plane).
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Fig. 16. Geometrical properties of the Galileo network. Left: relation between distance between Galileo satellites and zenith pointing difference.
Middle: frequency of occurrence of satellite distances, averaged over one orbital cycle for an isotropic GRB distribution, if all Galileo satellites are
equipped with a GRB detector. Right: same, but for every second Galileo satellite equipped with a GRB detector.

detector. This is best shown with a single time slice, not the
orbit-averaged accuracy plot. The re-binning improves the bad
localization accuracy regions (red in the left panel of Fig. 23)
by about 20% (from 1.◦1 to about 0.◦9). For even fainter intensity
intervals the same happens for 9 ms, and so on. This holds for
any number of satellites equipped with a GRB detector.

Detector 4. With the intention to minimize the number of
detector plates on a given Galileo satellite, we included this
geometry with only two instead of four sides equipped with a
60 cm × 60 cm detector plate. The simulations show that the
sky coverage is substantially worse (Fig. 24), which is a con-
sequence of the “eyes” problem, meaning that the detector on
the y-side (together with a solar panel boom) will never look
toward the Sun. In addition, as a consequence of the yaw-steering
attitude, the detector mounted on the +X surface always looks
into the hemisphere containing the Sun, meaning that the direc-
tion toward the anti-Sun is not covered by any detector on any

satellite. The sky coverage and the localization precision thus
dramatically degrade toward this direction.

Detector 5. This is a kind of maximum detector concept
per satellite, and unsurprisingly the performance is very good
(Fig. 25). However, we see that it performs slightly worse than
the four-lateral-only detector geometry for fainter GRB inten-
sity levels (Table B.1). This is likely due to the fact that using
detectors at large inclination angles toward the GRB does not
help in improving the S/N since co-adding the background noise
of the second (or third) plate dominates over the gain in sig-
nal. Figure 27 shows the effect for a single plate, and the sum
of two and three perpendicular-oriented plates: at large inclina-
tion angles (i.e., small effective area due to the cosine effect) the
S/N after combining detectors does not improve. This calls for
an optimization of the co-adding of signals from multiple detec-
tor plates: it should not be performed on the satellite, but on the
ground, as it depends on the actual noise level for each satellite
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Fig. 17. Sky coverage for a single time slice (left) averaged over one Galileo orbit (middle) and the averaged localization accuracy for the faintest
GRB intensity bin (right) for detector geometries 1–9 (from top to bottom, as labeled in blue for each map).
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Fig. 18. Localization accuracy for a zenith-facing cube detector each on 24 satellites for an instantaneous moment (left) and averaged over one orbit
(right), for GRBs in the brightest peak flux bin of 6–100 ph cm−2 s−1 (top row) and the faintest peak flux bin of 1.5–2 ph cm−2 s−1 (bottom row).

Fig. 19. Same as Fig. 18, but for 12 satellites (every second satellite along each orbital plane).

(which we expect to vary along the orbit). Then, cutoff angles
can be applied, above which no co-addition is done. Also for this
detector we find eyes in the spatial distribution of localization
precision caused by the fact that a maximum of two (instead of
three) of the detector plates for any satellite can cover the Sun
and anti-Sun directions.

Detector 6. This three-element option, which leaves the
sides with the solar panels free, eliminates the bad localization

performance in the Sun and anti-Sun directions (eyes above).
However, the Sun-equator is less well covered (Fig. 26). Other-
wise, it provides a very uniform localization capability over the
sky, at substantially improved accuracy as compared to the case
of two neighboring detectors.

Detector 7–9. Detectors 07, 08, and 09 were included for
completeness and verification purposes, and the results are given
in the overview plot of Fig. 17.
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Fig. 20. Distribution of mean baseline lengths for combinations of effective areas for pairs of detectors seeing a GRB for the geometries of detector
01 (left), 02 (middle), and 03 (right).

Fig. 21. Sky coverage for four-side detectors on 6 (top), 9 (left and middle of bottom row), and 12 (lower right) satellites averaged over one
orbit (right). The satellites are distributed differently along each orbital plane, with three different options for the 6 satellites, and two options for
9 satellites. The color-coding provides the number of satellites that see a given GRB at a given time, averaged over one orbital period.

Fig. 22. Localization accuracy for a four-side detector each on 6 (top row), 9 (lower left and middle), and 12 satellites (lower right) for the faintest
intensity interval. The 6- and 9-satellite options are shown for two different configurations along the orbital plane.
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Fig. 23. Localization accuracy for a four-side detector on each of 12 satellites for the first time slice, and for the second highest intensity interval
for unbinned (left) and binned (right) accuracy matrix, i.e., when the 6 ms binned matrix performs better than the 3 ms matrix.

Fig. 24. Sky coverage (left) and localization accuracy (right; for the second-brightest GRB intensity interval) of 12 satellites equipped with two
detector plates on neighboring sides. The sky coverage is substantially worse than any previous detector geometry.

Summary of detector geometries. Table B.1 summarizes
the different detector geometries and satellite constellations con-
sidered, providing the all-sky averaged accuracy for each of the
four GRB intensity intervals in Table 3. Thus, it is clear that
the localization accuracy improves with the number of satel-
lites equipped since among the detectors seeing a GRB there
is a larger likelihood of having satellite pairs with a large dis-
tance (baseline); these are the ones that improve the localization
accuracy.

The placement of detectors on satellites positioned oppo-
site to each other in the orbital plane causes moving patterns on
the sky with reduced localization accuracy, and thus should be
avoided; this applies primarily for low equipment rates (e.g., the
versions with six and nine satellites).

An interesting feature is seen in the case with six satellites.
When the GRB detectors are distributed isotropically (i.e., two
per orbit at antipodal positions), there is a pattern on the sky
at which the localization is substantially worse (top left panel
in Fig. 22). This can be avoided by placing detectors not in
antipodal positions (top middle panel in Fig. 22).

One special effect to comment on are the two eyes in Fig. 22
(bottom row). These are due to the position of the Sun in the
simulation (α = 90◦, δ = 23◦) and the anti-Sun direction, and in
practice would move over the sky over the course of a year. These
are caused by the yaw-steering motion of the satellite guarantee-
ing pointing of the navigation antenna continuously to the Earth
and the solar panels to the Sun. As a consequence of this atti-
tude mode the +Y and-Y surfaces of the satellite where the solar

panel booms are mounted never look toward the Sun. The Sun
and anti-Sun directions are thus covered only by one detector
plate per satellite with varying orientation toward the Sun. The
result is a reduced localization precision in these directions. For
the GRB/GW application this is acceptable since optical follow-
up of the GRB or neutron star merger close to the Sun is not
possible from the ground.

To obtaining the localization accuracy in Table B.1, we aver-
aged over the full sky. However the various figures clearly show
that there are certain small regions on the sky (a few to 10% of
the sky) that are worse than the majority of the sky. We therefore
provide a more accurate accounting of the localization accuracy
for our best options in Table B.2. This provides the worst accu-
racy for the best 50 and 90% of the sky (i.e., the accuracy is
better than the specified value for that percentage of the sky), as
well as the best and the worst single GRB accuracy of the sky.
For the selected best detector and satellite configurations, we also
provide a graphical representation in Fig. 28 which provides the
accuracy for any fraction of sky coverage.

6.2. Bayesian scheme using nazgul

Due to the massive computation time requirements, a simu-
lation with nazgul was only done for one particular satellite
constellation (nine satellites, three in each orbital plane, equally
distributed) with one detector (#03, facing toward four sides). We
used the same setup as the one to reconstruct the time with the
cross-correlation algorithm. Instead of 1000 different GRB light
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Fig. 25. Localization accuracy of 12 (left) and 9 (right) satellites equipped with four lateral detectors and a zenith-facing detector, for the second-
brightest GRB intensity interval).

Fig. 26. Sky coverage (left) and localization accuracy (right; for the second-brightest GRB intensity interval) of 12 satellites equipped with two
opposite detectors plus one zenith-facing detector.
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Fig. 27. Accuracy of different detector configurations. As one adds
perpendicular-oriented detector plates, and since the background radi-
ation is isotropic and does not scale with the cosine of the incidence
angle, the S/N depends on the relative inclination angles of the detector
plates. It is best for a single plate (green), and gets worse for two plates
inclined by 90 degrees (blue), and even worse for three plates inclined
by 90 degrees (red; corresponding to the five-detector case for any given
GRB).

curves, we used only one light curve shape, with five different
flux normalizations. In addition, the triangulation was only com-
puted at 134 sky positions, instead of 10 000. From each fit we
obtained a distribution of the time delay, which was used to com-
pute both the best-fit value (the median in this case) and the 68%
probability uncertainties through the highest posterior density

interval (i.e., the shortest possible interval) necessary to accu-
mulate the chosen probability level. While the source position
distribution reconstructed by nazgul is not in general an annulus,
for the sake of a straightforward comparison with the classical
correlation method we computed an equivalent annulus from the
fitted time delay. The central ring of the annulus was computed
from the median of the time delay distribution, while the width
is given by the uncertainties in an analogous way to that done
for the correlation method (see, e.g., Pal’shin et al. 2013). This
methodology, although to some extent simplistic, allows us to
compare the characteristic widths of the positional distributions
fitted by nazgul and the correlation algorithm. The correspond-
ing map is shown in Fig. 29 for the faintest intensity interval,
together with the corresponding map from the cross-correlation
method. This shows that the two methods are nicely compatible
with each other.

A more quantitative comparison of the localization accuracy
is given in Fig. 30, showing the histogram of the 1σ localization
errors of nazgul versus the cross-correlation method. This shows
that the nazgul distribution is a factor of ∼2 narrower (FWHM
of about 4◦ vs. 8◦), and has much less GRB reconstruction in
the long tail. Thus, the nazgul method leads to overall improve-
ments, but is particularly superior at the faint end of the intensity
distribution.

6.3. Comparison to previous simulations

Recently, Hurley (2020) has combined a new localization
method with the simulation of a near-Earth network of GRB
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Fig. 28. Accuracy of different detector and satellite configurations per
sky fraction. Each curve shows the percentage of the sky for which
the accuracy is better than the corresponding y-axis in degrees. Top:
Faintest intensity bin for the 24-satellite equipment rate; bottom: Each
color represents one configuration from Table B.2 for detector 3, with
solid lines for the brightest GRB interval and dotted lines for the faintest.

detectors. The basic concept of this method is similar to ours,
namely avoiding cross-correlation and instead testing positions
on the sky via a likelihood method. While this method is a
substantial improvement over the classical cross-correlation, it
still suffers from drawbacks (iii) and (iv) in Sect. 4, which
is accounted for in our nazgul scheme (Burgess et al. 2021).
In his simulations, Hurley (2020) uses individual detectors of
100 cm2 effective area on a fleet of nine satellites, and derives
localization accuracies for three different GRB peak intensities.
His faintest and middle intensity intervals fall in our brightest
interval. In terms of sky coverage, Hurley (2020) reaches only
40%, so a single-plate detector on each of nine satellites is by
far too little to reach all-time, all-sky coverage. While we did
not simulate such a constellation, this result is consistent with
our picture (i.e., the need to look at multiple sides at this small
satellite number). The 1σ average localization for his faintest
fluence GRB (16 ph cm−2 s−1) is an ellipse with a dimension of
4.◦5× 17.◦0, corresponding to an effective radius (circle of same
area) of 4.◦5 (1σ). Our closest constellation is a one-side, zenith-
facing detector on 12 satellites, where our simulation for our
brightest intensity interval (6–100 ph cm−2 s−1) gives 2.◦9. The

difference between these two simulations is in effective area (100
vs. 3600 cm2), orbit radius (7000 vs. 29 000 km), and timing
accuracy (0.1 vs. 3 ms). Assuming the typical square-root depen-
dence on effective area, the combination of these three factors
suggests that our error should be 1/

√
36/29 ∗ 7 ∗ 30 = 1.2× that

of the Hurley (2020) simulation, quite close to what we obtain
(given that our intensity bin is very wide).

6.4. Potential for improvements

Given the comparison in the previous subsection, we asked
ourselves whether reducing the time resolution in our simula-
tions (fixed at 3 ms) would substantially improve our localization
accuracy. The answer is in theory yes, in practice likely not.
The simple reason is that the variability timescale in GRBs is
at the level of a few milliseconds (MacLachlan et al. 2013) and
not submilliseconds (Walker et al. 2000). Thus, it is necessary
to cross-correlate the rising edge of a pulse to better then the
rise time. This is complicated even more because the slopes of
the rise are energy dependent; this means that detectors like the
scintillator plates preferred here will see different slopes from
the same GRB as soon as the incidence angles on two detec-
tors are not exactly the same. This is the reason why for instance
co-adding light curves of different GBM detectors is not useful.

For configurations with more than one detector plate per
satellite, we co-added multiple single-plate detectors per satel-
lite. As described earlier, this does not automatically provide
better S/N since the background radiation is added in full, not
diminished with the cosine law as the source counts. There-
fore, some optimization for adding two or three detector plates
could be implemented. This affects mostly the faint end of the
GRB intensity distribution, and the optimization is expected to
improve the localization accuracy. On a practical note, the data
from different detector plates should thus not be combined on
board, but sent down to Earth separately. As a side effect, the
onboard triggering algorithm can make use of the separate light
curve measurements to filter out particle hits, thus dramatically
reducing false triggers.

There is yet another way to improve the accuracy distri-
bution, computed via the classical cross-correlation analysis,
namely systematically using a re-binning procedure (in a fre-
quentist approach, and the corresponding χ2 analysis). In prac-
tice, when moving from bright to fainter GRBs, there is a
transition region where re-binning from the original 3 ms time
resolution of the detector, for example toward 6 ms, provides a
gain over the noise fluctuations and leads to an improved local-
ization, as we show with our merged map for one case (Fig. 23).
However, moving down in intensity, the same happens for fur-
ther re-binning to 9 or 12 ms, and so on. The effect of this
re-binning is to optimize between noise in the light curve ver-
sus the best accuracy in the time delay measurement. Obviously,
it does not improve on the best accuracy side, but improves the
bad end by approximately 15–20%. This does not apply to our
forward-folding nazgul localization since this is Bayesian, and
the information in the low S/N bins is properly accounted for.

6.5. Inclusion of satellites beyond GNSS

The inclusion of any satellite farther out in space than the
Galileo satellites would help reduce the localization accuracy,
which shrinks linearly with the increase in the baseline. Poten-
tial options are a GRB detector on the Gateway4, a multi-purpose

4 https://en.wikipedia.org/wiki/Lunar_Gateway
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Fig. 30. Distribution of the absolute value of the difference between
simulated and reconstructed time delays for nazgul (blue) and the cross-
correlation method (green), again for detector 03 (four sides) and nine
satellites.

space station in a highly elliptical (3000 km × 70 000 km)
seven-day near-rectilinear halo orbit around the Moon, assembly
planned for 2024–2028, or on the Moon LCS (Lunar naviga-
tion and communication system), a network of 3–4 satellites
that would provide communications and navigation services to
support human and robotic exploration on the Moon. A GRB
detector in Lunar orbit would reduce the localization error by
a factor of ∼6 if the GRB detector has the same size as dis-
cussed here for the GNSS. Of course, this improvement would
only apply in one dimension of the error box, for GRBs coming
from a direction perpendicular to the Earth-Moon line.

7. GNSS system requirements

7.1. Communication speed

The GRB afterglow brightness fades by a factor of three during
the first 10 min after the burst, another factor of three during the
next 50 min, and another factor of three during the next 23 h. The
kilonova emission of short GRBs decays even faster. Moreover,
clarifying the most important open astrophysics questions of
merging neutron stars such as distinguishing the physical source

of energy input (e.g., from the central remnant or via radioac-
tivity) or associated processes (e.g., internal shock-reheating or
heating of the outer ejecta by free neutrons) requires ground-
based optical–near-infrared spectroscopy during the first 12 h
(Metzger 2020). Thus, rapid communication on a timescale of
minutes is required in order to support the identification of the
kilonova.

Gamma-ray bursts occur at unpredictable times and sky posi-
tions. For the GRB position to be determined via triangulation,
we need the measured data of each of the four (multiple) detec-
tors per satellite on one computer. In order to be scientifically
useful, the data should be downlinked within a few minutes.
Thus, we require that at any time every Galileo satellite should
be able to send off its measured data, either directly or via
another satellite to a ground-station. Since only six Telemetry,
Tracking and Control (TT&C) stations around the world are
responsible for collecting and sending the telemetry data that
was generated by the Galileo satellites, relaying data between
different Galileo satellites to the one (or more) that do have
ground contact is a viable solution. This should be done dynam-
ically, without the need of commanding; in other words, each
satellite (computer) should know at any time its acting relay
satellite.

We distinguish two data transmission rates: (i) full rate to
be downlinked to Earth within minutes; for a typical GRB this
implies sending 0.5–1 MB over a time period of a few minutes
(e.g., 4–8 kB s−1 over 2 min per satellite); (ii) reduced rate for
quick-look localization; as described above, this would reduce
the data amount by a factor of 100–1000.

The inter-satellite data transmission rate is likely slower
than a satellite-ground contact rate. Assuming four Galileo
satellites without ground-contact that send data to one other
satellite with ground-contact leads to a required transfer rate of
4 MB on a timescale of minutes. In an ideal case, this can be
done in parallel. If not, the above 4–8 kB s−1 are a minimum
requirement.

Rapid uplink capability is not needed since the GRB detec-
tors should be self-triggering.

7.2. Ground segment

The light curve data as measured by the multiple Galileo satel-
lites should be collected at one place on Earth, where the
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triangulation (and thus GRB localization) can be computed. We
suggest that the final localization be made publicly available
immediately; the GRB community has been using the Gamma-
ray Burst Coordinate Network (GCN) for this for decades. This
system would guarantee distribution to every interested user in
the world. This would typically happen automatically, but over-
sight through one or more GRB astronomers is certainly not a
bad idea. This could be organized via a small group of interested
scientists, similar to groups that collaborate in the follow-up
observations of GRBs at optical or radio observatories. In par-
allel, the raw data should also be made publicly available at the
shortest possible delay time, to allow other groups with poten-
tial access to other long-baseline GRB data to use the data. The
high-energy mission archive at ESA would be a logical place,
but other satellite data centers in Europe might be alternative
options.

8. Conclusions

The GNSS provides a nearly perfect satellite system for the local-
ization of GRBs via triangulation. It provides a very promising
compromise between satellite baselines (not too long to undergo
data transmission restrictions), number of satellites, and required
size of GRB detectors to reach subdegree localizations. It is the
combination of detector geometry (in how many of the six direc-
tions of the Galileo surfaces are the detectors facing) and the
number of satellites to be equipped that provides a scientifically
useful GRB triangulation network.

Sideways-facing detectors are a crucial ingredient. We sug-
gest equipping at least 12 satellites, four per orbital plane, with a
four-side facing (excluding nadir and zenith) detector, each side
with 3600 cm2 and 1 cm thickness. This will provide subdegree
localization of GRBs, in particular faint short-duration GRBs
such as GRB 170817A, as expected from binary neutron star
mergers to be routinely measured at a rate of dozens per year
in the upcoming runs of the worldwide gravitational wave detec-
tors. Instead, a flat zenith-facing detector provides only 10−20◦
localizations. Equipping only 9 Galileo satellites with such a
GRB detector leads to a 30% loss in localization accuracy, while
the 24-satellite solution improves it by a factor of 2.

This configuration should be feasible to implement given the
moderate requirements of mass (<20 kg) and power (∼20 W) of
a single detector plate (i.e., <80 kg and ∼80 W for the four-side
detector) compared to the overall budget of a Galileo satellite,
noting that this corresponds to about 10% of the satellite mass.
The realization of such a large-format GRB detector plate is also
technologically feasible: scintillators of the proposed type have
been flown for 40 years (TRL 9), and the Si detectors for read-out
have also seen their first space applications.

Equipping second-generation Galileo satellites with GRB
detectors would turn the navigation constellation into an obser-
vatory supporting the research on fundamental astrophysical and
cosmological problems.
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Appendix A: Implementation of simulated light curves

For a realistic distribution of single-pulse versus multi-pulse light curves, we implemented a pulse avalanche, a linear Markov
process, as proposed by Stern & Svensson (1996). Here each pulse acts as a “parent” pulse giving rise to a number of “baby” pulses
µb, sampled from a Poisson distribution p2(µb) = µ−1exp(−µb/µ), with the average number being µ. A baby pulse is assumed to
be delayed by a time ∆t with respect to the parent pulse. The probability distribution for the Poisson delay is parameterized as
p3(∆t) = (ατ)−1exp(−∆t/ατ), where τ is the time constant of the baby pulse and α is the delay parameter. From observed GRBs,
the time constant τ of baby pulses is of the same order of magnitude, but shorter than the time constant τ1 of the parent pulse.
This allows the process to converge since the pulse avalanche eventually reaches an arbitrarily short timescale, where a natural
frequency cutoff should exist. The corresponding probability distribution is considered to be uniform in log(τ/τ1), and parameterized
as p4[log(τ/τ1)] = |δ2 − δ1|−1 in the range [δ1, δ2] with δ1 < 0, δ2 >∼ 0, and |δ1| > |δ2|. The number of spontaneous pulses µs is
sampled from a Poisson distribution p5(µs) = µ−1exp(−µs/µo), with µs the average number of spontaneous pulses per GRB. Finally,
the probability distribution of the time constants τ0 of spontaneous pulses is taken as p(τ0) ∝ 1/τ0, corresponding to a 1/f flicker
noise spectrum. Observations imply a maximum τmax for τ0. We then sample logτ0 uniformly between τmin and τmax (i.e., p6(logτ0) =
(logτmax − logτmin)−1), where τmin should be smaller than the time resolution. Varying τmax rescales all average avalanche properties
in time. Since more than one parent pulse is allowed per GRB, these spontaneous primary pulses are all assumed to be delayed
with different time intervals t with respect to a common invisible trigger event. We parameterize the probability distribution for the
Poisson delay t of a given spontaneous pulse as p7(t) = (ατ0)−1exp(−t/ατ0), where α is the constant delay parameter used for all
pulses and τ0 is the time constant of the spontaneous pulse. Each spontaneous pulse gives rise to a pulse avalanche, and it is the
overlap of µs pulse avalanches that form a GRB. From the analysis of about 600 CGRO/BATSE GRBs, Stern & Svensson (1996)
suggest the following parameters: µ = 1.2, α = 4, δ1 = −0.5, δ2 = 0, µ0 = 1, τmax = 26 s. Differently from Stern & Svensson (1996),
we pick τmin = 0.2 s to allow for a better time resolution for the Galileo detector. We simulate short and long GRBs separately to
better tune some of the τi parameters (see the example light curves in Fig. 2).

Appendix B: Location accuracy

Table B.1. Average localization accuracy for different detector geometries on a differing number of satellites.

Detector geometry No. of Orbit configuration Error radius
Satellites (1σ, deg)

2.3–3 3–4.6 4.6–9.2 9.2–154
(10−7 erg/cm2/s)

01 – zenith-facing 24 11111111 11111111 11111111 26.2 11.7 3.9 1.0
12 10101010 10101010 10101010 63 31 11.0 2.9

02 – Cube at zenith 24 11111111 11111111 11111111 5.1 1.6 0.8 0.4
12 10101010 10101010 10101010 10.3 3.2 1.6 0.7

03 – 4 lateral sides 24 11111111 11111111 11111111 1.9 0.7 0.4 0.2
12 10101010 10101010 10101010 4.2 1.4 0.8 0.4
9 10010010 10010010 10010010 5.4 1.8 1.0 0.5
9 10010010 01001001 10100100 5.4 1.8 1.0 0.5
6 10001000 10001000 10001000 12.9 4.1 2.2 1.0
6 10001000 00100010 10001000 24.6 8.2 4.4 2.2
6 10010000 00010010 10010000 11.0 3.5 2.0 1.0

04 – 2 neighboring sides 24 11111111 11111111 11111111 28.2 16.2 6.5 1.9
12 10101010 10101010 10101010 57 34.4 14.7 4.4

05 – 5 sides 24 11111111 11111111 11111111 3.2 1.1 0.5 0.2
12 10101010 10101010 10101010 10.5 4.5 1.4 0.4
9 10010010 10010010 10010010 14.5 6.2 2.0 0.6
9 10010010 01001001 10100100 14.7 6.3 2.0 0.6
6 10001000 10001000 10001000 27.9 12.2 3.8 1.1
6 10001000 00100010 10001000 45 20.6 6.5 1.8
6 10010000 00010010 10010000 28.2 12.1 3.7 1.0

06 – 2 opposite sides & zenith 24 11111111 11111111 11111111 4.5 1.5 0.8 0.3
12 10101010 01010101 10101010 7.9 2.5 1.3 0.6

08 – 1 side & zenith 24 11111111 11111111 11111111 15.7 6.5 2.4 0.7
09 – 2 opposite sides 24 11111111 11111111 11111111 12.0 5.7 1.8 0.5
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Table B.2. Localization accuracy for selected detector geometries acc-
ording to fractional sky area (brightness bins as in Table 3, with 1 the
faintest and 4 the brightest).

Name Detector geometry No. of Orbit configuration Intens. precision <p[◦] for % of sky
Sats Intvl best 50% 90% worst

01 zenith 24 11111111 11111111 11111111 1 21.3 26.2 28.6 32.8
24 11111111 11111111 11111111 2 9.1 11.7 13.0 14.4
24 11111111 11111111 11111111 3 2.9 3.8 4.6 5.4
24 11111111 11111111 11111111 4 0.7 1.0 1.2 1.3

01 zenith 12 10101010 10101010 10101010 1 34.5 57.2 87.8 180
12 10101010 10101010 10101010 2 17.0 26.2 47.8 180
12 10101010 10101010 10101010 3 4.8 8.6 17.9 180
12 10101010 10101010 10101010 4 1.0 2.2 4.4 180

02 cube @ zenith 24 11111111 11111111 11111111 1 4.1 5.1 5.4 7.3
24 11111111 11111111 11111111 2 1.4 1.6 1.6 2.4
24 11111111 11111111 11111111 3 0.7 0.8 0.9 1.1
24 11111111 11111111 11111111 4 0.3 0.4 0.4 0.4

02 cube @ zenith 12 10101010 10101010 10101010 1 6.9 10.1 11.9 18.2
12 10101010 10101010 10101010 2 2.5 3.1 3.6 5.3
12 10101010 10101010 10101010 3 1.1 1.6 1.8 2.4
12 10101010 10101010 10101010 4 0.5 0.7 0.8 0.9

03 4 lateral sides 24 11111111 11111111 11111111 1 1.4 1.9 2.4 4.4
24 11111111 11111111 11111111 2 0.5 0.6 0.8 1.2
24 11111111 11111111 11111111 3 0.3 0.4 0.4 0.5
24 11111111 11111111 11111111 4 0.2 0.2 0.2 0.2

03 4 lateral sides 12 10101010 10101010 10101010 1 2.6 3.8 5.5 10.6
12 10101010 10101010 10101010 2 1.0 1.3 1.7 2.5
12 10101010 10101010 10101010 3 0.5 0.8 0.9 1.2
12 10101010 10101010 10101010 4 0.4 0.4 0.4 0.5

03 4 lateral sides 9 10010010 10010010 10010010 1 3.2 5.0 7.0 13.8
9 10010010 10010010 10010010 2 1.2 1.7 2.2 3.5
9 10010010 10010010 10010010 3 0.6 1.0 1.2 1.7
9 10010010 10010010 10010010 4 0.5 0.5 0.6 0.7

03 4 lateral sides 9 10010010 01001001 10100100 1 3.2 5.2 7.1 16.0
9 10010010 01001001 10100100 2 1.1 1.8 2.2 3.6
9 10010010 01001001 10100100 3 0.6 1.0 1.2 1.6
9 10010010 01001001 10100100 4 0.5 0.5 0.6 0.7

03 4 lateral sides 9 10010010 10010010 10010010 1 3.2 5.0 7.0 13.8
9 10010010 10010010 10010010 2 1.2 1.7 2.2 3.5
9 10010010 10010010 10010010 3 0.6 1.0 1.2 1.7
9 10010010 10010010 10010010 4 0.5 0.5 0.6 0.7

03 4 lateral sides 9 10010010 01001001 10100100 1 3.2 5.2 7.1 16.0
9 10010010 01001001 10100100 2 1.1 1.8 2.2 3.6
9 10010010 01001001 10100100 3 0.6 1.0 1.2 1.6
9 10010010 01001001 10100100 4 0.5 0.5 0.6 0.7

03 4 lateral sides 6 10010000 00010010 10010000 1 4.2 9.7 17.5 109
6 10010000 00010010 10010000 2 1.6 3.2 5.3 39.2
6 10010000 00010010 10010000 3 0.8 1.8 2.8 21.1
6 10010000 00010010 10010000 4 0.7 0.9 1.3 9.6

04 2 neighboring sides 24 11111111 11111111 11111111 1 3.5 12.2 80.5 180
24 11111111 11111111 11111111 2 1.1 4.5 41 180
24 11111111 11111111 11111111 3 0.5 1.9 11.8 180
24 11111111 11111111 11111111 4 0.2 0.6 3.0 180

04 2 neighboring sides 12 10101010 10101010 10101010 1 6.4 27.7 180 180
12 10101010 10101010 10101010 2 2.2 11.3 109 180
12 10101010 10101010 10101010 3 0.9 4.1 32.3 180
12 10101010 10101010 10101010 4 0.4 1.1 8.1 180

05 4 sides + zenith 24 11111111 11111111 11111111 1 1.9 3.0 3.7 5.9
24 11111111 11111111 11111111 2 0.7 1.1 1.3 2.0
24 11111111 11111111 11111111 3 0.4 0.5 0.6 0.7
24 11111111 11111111 11111111 4 0.2 0.2 0.2 0.2

05 4 sides + zenith 12 10101010 10101010 10101010 1 8.3 10.3 12.1 15.7
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Table B.2. continued.

Name Detector geometry No. of Orbit configuration Intens. precision <p[◦] for % of sky
Sats Intvl best 50% 90% worst

12 10101010 10101010 10101010 2 3.7 4.5 5.1 7.1
12 10101010 10101010 10101010 3 1.1 1.4 1.6 2.0
12 10101010 10101010 10101010 4 0.4 0.4 0.4 0.5

05 4 sides + zenith 9 10010010 10010010 10010010 1 10.1 14.3 16.8 25.0
9 10010010 10010010 10010010 2 4.5 6.1 6.4 10.7
9 10010010 10010010 10010010 3 1.5 1.9 2.0 2.9
9 10010010 10010010 10010010 4 0.5 0.6 0.6 0.8

05 4 sides + zenith 9 10010010 01001001 10100100 1 10.0 14.5 17.4 26.0
9 10010010 01001001 10100100 2 4.5 6.2 7.4 11.5
9 10010010 01001001 10100100 3 1.5 2.0 2.3 3.0
9 10010010 01001001 10100100 4 0.5 0.6 0.6 0.7

05 4 sides + zenith 6 10001000 10001000 10001000 1 13.2 23.9 38.4 180
6 10001000 10001000 10001000 2 6.0 10.2 16.5 180
6 10001000 10001000 10001000 3 1.8 3.2 5.0 180
6 10001000 10001000 10001000 4 0.6 0.9 1.4 180

05 4 sides + zenith 6 10001000 00100010 10001000 1 13.0 30.4 92.8 180
6 10001000 00100010 10001000 2 5.9 13.0 40.7 180
6 10001000 00100010 10001000 3 1.6 3.9 12.4 180
6 10001000 00100010 10001000 4 0.6 1.1 3.5 180

05 4 sides + zenith 6 10010000 00010010 10010000 1 12.0 26.2 39.5 180
6 10010000 00010010 10010000 2 5.3 11.2 16.8 110
6 10010000 00010010 10010000 3 1.7 3.9 5.2 39.8
6 10010000 00010010 10010000 4 0.7 1.1 1.4 11.7

06 2 opposite sides+zenith 24 11111111 11111111 11111111 1 2.2 4.7 5.9 6.9
24 11111111 11111111 11111111 2 0.8 1.5 1.9 2.4
24 11111111 11111111 11111111 3 0.4 0.8 1.0 1.2
24 11111111 11111111 11111111 4 0.2 0.4 0.4 0.6

06 2 opposite sides+zenith 12 10101010 01010101 10101010 1 4.5 10.5 17.4 38.4
12 10101010 01010101 10101010 2 1.5 3.2 5.3 17.1
12 10101010 01010101 10101010 3 0.8 1.6 2.6 9.3
12 10101010 01010101 10101010 4 0.5 0.7 1.1 6.6

07 1 side 24 11111111 11111111 11111111 1 4.0 45.6 180 180
24 11111111 11111111 11111111 2 1.8 23.8 180 180
24 11111111 11111111 11111111 3 0.7 7.0 180 180
24 11111111 11111111 11111111 4 0.2 1.8 180 180

08 1 side + zenith 24 11111111 11111111 11111111 1 2.2 14.0 29.4 39.5
24 11111111 11111111 11111111 2 0.8 5.3 13.0 16.7
24 11111111 11111111 11111111 3 0.4 2.3 4.5 6.2
24 11111111 11111111 11111111 4 0.2 0.7 1.2 1.6

09 2 opposite sides 24 11111111 11111111 11111111 1 4.0 10.6 21.5 24.6
24 11111111 11111111 11111111 2 2.0 5.7 10.9 13.3
24 11111111 11111111 11111111 3 0.7 1.5 3.3 4.3
24 11111111 11111111 11111111 4 0.2 0.4 0.8 1.2
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