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Modeling the Coupled Mass-Heat Transport in Lennard–Jones-Like Binary Mixtures
by Approach-to-Equilibrium Molecular Dynamics
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1Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
*corresponding author: claudio.melis@dsf.unica.it

We present a generalization of AEMD approach, routinely applied to estimate thermal conduc-
tivity, to the more general case in which Soret and Dufour effects determine a coupled heat-mass
transfer. We show that, by starting from microscopical definitions of heat and mass currents, conser-
vation laws dictates the form of the differential equations governing the time evolution. In particular,
we focus to the well specific case in which a closed-form solution of the system is possible and de-
rive the analytical form of time-evolution of temperature and concentration scalar fields in the case
in which step-like initial profiles are imposed across a rectangular simulation cell. The validity of
this new generalized expression is finally validated using as benchamrk system a two-component
Lennard-Jones liquid system, for which generalized diffusivities are estimated in different reduced
temperature and density region of phase diagram.

I. INTRODUCTION

Thermal transport in fluids is a subject of great in-
terest, both for fundamentals physics and applications
[1, 2]. In particular, whenever thermal and mass fluxes
occur simultaneously a coupled transport regime is estab-
lished, as reported since the nineteen century (with the
process of thermal diffusion, known as the Ludwig-Soret
effect, first observed in 1856 [3, 4]) and rationalized by
Non-Equilibrium Thermodynamics [5, 6].

Several computational techniques have been devised
to the aim of quantifying the magnitude of thermal and
mass coupling transport coefficients, hereafter referred to
as Soret and Dufour coefficients, based on Equilibrium or
Non-Equilibrium approaches and formulated in terms of
Onsager coefficients. In the first case, by properly taking
into consideration the microscopically observed correla-
tion between mass and heat fluxes, Green-Kubo based
approaches have been successfully used to estimate the
coupling parameters [7]. Alternatively, non-equilibrium
simulations have been used by imposing a thermal gra-
dient and next analyzing the steady state mass concen-
tration profile [8]. One of the major bottleneck of these
techniques, however, is related to the fact that very long
simulation times are indeed needed in order to obtain re-
liable data, an issue especially challenging if the size of
the system is large [9–11].

In this study, we present a novel approach not requir-
ing long simulations based on a generalization of the
well-established Approach to Equilibrium methodology
extensively used for thermal conductivity calculations in
solid systems. We focus on the simultaneous diffusion of
mass and thermal energy in a model binary mixture, and
we provide a physically sound formal device, which we
prove to be theoretically robust, easy to implement, and
computationally efficient to estimate coupling transport
coefficient.

We proceed under the less restrictive conditions to es-
tablish a formal description of the relaxation towards
equilibrium of an initial non-equilibrium profile of tem-

perature and mass density. By generating the relax-
ation dynamics through a computer simulation, we get
information on the coefficients governing the strength of
heat/mass coupling. Our model binary mixture is de-
scribed by the Lennard-Jones (LJ) potential, which is
general enough to cover a plethora of possible real liquid
mixtures.

The paper is structured as follows. In Section II
the phenomenological picture of the transport phenom-
ena (Fourier regime, Fick regime, Soret/Dufour coupled
regimes) is sketched, and the constitutive hypothesis of
our model, with no assumptions except for the liquid and
binary nature of the mixture, are presented. In Section
III, the very general hypothesis previously stated are used
in order to describe the relaxation of an imposed step-
like temperature and density gradient in a Lennard-Jones
binary liquid. The conditions and approximations intro-
duced to formally treat the coupled regime are kept at
minimum, with the only aim to allow the derivation of
an analytical form for the solutions. By introducing the
concept of generalized diffusivity a decoupling of the par-
tial differential equations is eventually achieved. In this
context, the solution for the transient evolution of the
spatially averaged temperature difference and concentra-
tion differences is worked out. In Section IV the com-
putational framework allowing the actual generation of
temperature and concentration profiles is presented: the
numerical implementation is performed using an equimo-
lar mixture of LJ fluids as benchmark system.

Here we as well present and discuss the results of
our simulations, namely the estimate of thermal diffu-
sivities, diffusion coefficients and the coupling parame-
ters: as byproduct of the assessment of the method, the
demonstration of the absence of a rectification effect in a
Lennard Jones liquid mixture is eventually achieved.
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II. PHENOMENOLOGICAL PICTURE

The phenomena we address in this paper are namely
the Soret and Dufour effects. We understand that we
will consider fluid systems, i.e. systems that can carry a
mass current.

It is common knowledge that if a temperature gradi-
ent is present in a homogeneous and isotropic sample, a
corresponding heat flux is established and the relation

linking the temperature gradient ∇⃗T to the correspond-

ing heat current J⃗q is linear

J⃗q =
dQ

dAdt
n̂ = κ∇⃗T (1)

where dQ represents the amount of heat flowing from
high to low temperature regions per unit cross section dA
in unit of time dt along the direction marked by the unit
vector n̂. When this equation is obeyed we will address
the situation as Fourier regime where the coefficient κ is
the thermal conductivity of the system.

A similar relation exists in the case of a non-
homogeneous system, at constant temperature, if the
mass density ρ is non uniformly distributed: in this case,

a mass current J⃗m arises, taking the form

J⃗m = ρv⃗ = D∇⃗ρ (2)

where v⃗ is the velocity in the fluid with local ρ den-
sity. When this equation is obeyed, we will refer to Fick
regime. More interestingly, in fluid systems, it is found
that a heat current arises if a density gradient is present,
as well as a mass current can take place if a temperature
gradient exists. This is tantamount to state that heat
and mass transport are not independent but coupled. In
the first case, the effect is called Dufour effect, in the sec-
ond one, Soret effect. The magnitude of these effects is
usually very small and they are in fact very difficult to ob-
serve experimentally since other phenomena, like natural
convection [12], is usually strong enough to cancel their
contributions. It is thus of great interest to determine
a computational procedure to determine the coefficients
describing these two effects. In this Section we will clar-
ify the specific characteristics of the systems of interest,
its phenomenology, and the fundamental constitutive as-
sumptions underlying the following derivation.

Our object of study, consists in non-reactive [13] bi-
nary mixtures in the liquid phase. Therefore, consider-
ing a fixed volume Ω, it is assumed that two chemical
species, hereafter referred to as species 1 and species 2,
are contained within it. Thus, for the i-th species, the
number Ni of particles with mass mi is fixed. Next, we
define the number density of particles ni and the mass
density ρi = mini as follows:

ni =
Ni

Ω
, ρi = mini =

Mi

Ω
(3)

where Mi = miNi is the total mass of the i-th species
contained in the volume Ω, both densities remain con-
stant over time.
Since the system is in the liquid phase, each particle

has non-zero velocities v⃗i. Therefore, given a closed sur-
face Σ completely contained within the volume Ω, we

define the mass flux J⃗m,i due to the i-th species through
the surface in terms of the mass density ρ′i in the volume
V ′ enclosed by Σ. It is straightforward to show that a
conservation law must hold

∂ρ′i
∂t

+ ∇⃗ · J⃗m,i = 0 (4)

Similarly, because of the particle motion, a flux of kinetic

energy (which is to say, a heat flux J⃗q,i) is strictly related
with the mass flux: by defining the specific heat capacity
of the i-th species as Cv,i, a second conservation law is
thus found

∂ρ′q,i
∂t

+ ∇⃗ · J⃗q,i = 0 (5)

where ρ′i,q = Cv,iρiT is the heat density related to the
flux of the i-th species.
Eqs. (4),(5) represent very general conditions, hold-

ing in both equilibrium and non-equilibrium conditions.
In the case of an equilibrium condition, they are triv-
ially satisfied, since ρ′i, ρ

′
q,i must be stationary and no

fluxes are present. Among non-equilibrium conditions,
two different regimes are to be considered: (a) a steady-
state condition, where no time-dependence of the in-
volved fields is present (therefore eqs. (4),(5) just dictate

that both J⃗m,i and J⃗q,i are solenoidal) and (b) a non-
steady state condition, where time-evolution of the fields
must be instead considered.
Stressing the fact the in this study we will focus on

case (b), it is apparent that in order to obtain a set of
equations describing the dynamics of relaxation toward

equilibrium, explicit expressions for the fluxes J⃗q,i, J⃗m,i

in terms of observable, macroscopic variables must be
adopted. To this aim, by non-equilibrium thermodynam-
ics arguments developed in the linear response regime,
Onsager demonstrated [5, 6] that the heat and mass cur-
rents can be expressed as linear combinations of general-

ized forces given by ∇⃗(1/T ) and (∇⃗µ)/T which enter in
a system of coupled equations

J⃗q,i = −Lqq,i

T 2
∇⃗T −

2∑
j=1

Lqµ,ij

T
∇⃗µj

J⃗m,i = −Lµq,i

T 2
∇⃗T −

2∑
j=1

Lµµ,ij

T
∇⃗µj

(6)

where Lqq, Lqµ, Lµµ are the Onsager coefficients, while µi

is the chemical potential associated with the i-th species.
In general, the chemical potential µi is a function of the ρ′i
and can thus vary in time as well as in space. However the
exact form of this dependence crucially depends on the
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specific interaction among the components of the system,
and must thus be assumed depending on the case. We
will this issue below.

In the case of a binary mixture, the system in eq.(6)
can be rewritten in a more compact form by noticing
that, since the labelling of a species as 1 or 2 is arbitrary,
the process of heat and mass diffusion can be studied in
terms of just species, say i = 1, diffusing in the (dynamic)
environment represented by the other species. Moreover,
if the concept of mass fraction [5]

wi =
Mi

2∑
i=1

Mi

(7)

is introduced, the constraint w1 = 1 − w2 must hold.
Therefore, as also reported by Zimmermann [12], the dy-
namics expressed in eq.(6) is completely summarized by

focusing on the study of just J⃗q,1 and J⃗m,1. Neglecting
the i = 1 index, we thus have [12]

J⃗q = −Lqq

T 2
∇⃗T − Lqµ

∂µ

∂w1

1

(1− w1)T
∇⃗w1

J⃗m = −Lµq

T 2
∇⃗T − Lµµ

∂µ

∂w1

1

(1− w1)T
∇⃗w1

(8)

From a phenomenological point of view, an equivalent
but more informative formulation of the eq.(8) was de-
rived by Trimble and Deutch [14] in the case of a liquid
binary mixture, explicitly containing the thermodiffusion
coefficient DT , the diffusion coefficient D and the ther-
mal conductivity κJ⃗q = −κ∇⃗T −DTT ∇⃗

(µ
T

)
J⃗m = −DT

T
∇⃗T −DT ∇⃗

(µ
T

) (9)

In this derivation, the chemical potential µ is the chem-
ical potential of the binary mixture, defined as µ =
µ1/m1−µ2/m2. We stress here, since it will be important
in what follows, that µ vanishes if ρ1+ρ2 is homogeneous
[14]. The link existing between the experimental acces-
sible quantities and the Onsager coefficient is expressed
by

κ =
Lqq

T 2

D =
Lµµ

ρ(1− w1)T

∂µ

∂w1

DT =
Lµq

ρw1(1− w1)

∂µ

∂w1

(10)

The physical meaning of each coefficient is enlightened
by examining some specific limiting situations. If no
chemical forces are present, but a temperature gradient
is applied, the system eq.(9) predicts a thermal current
corresponding to the Fourier regime and a mass current,
deriving from the thermal motion, clarifying the origin
of thermodiffusion coefficient name for DT . Instead, in

the cases in which the temperature is homogeneous but
a spatial variation of chemical potential is present, it is
immediate to verify that a mass current as described by
Fick law appears, depending on the diffusion coefficient:
the motion of the particles leads, in this case, to a corre-
sponding flux of heat.
It is thus clear that DT has a critical role in determin-

ing a coupling between mass and heat transfer: this is
particularly evident in non-equilibrium steady state sit-
uations where a temperature gradient is fixed among the
mixture but the mass fluxes are free to relax. Under
this hypothesis, provided that mass density is homoge-

neous, at equilibrium J⃗m = 0⃗ and from eq.(9) it is found
that the magnitude of chemical potential gradient and
the temperature gradient are directly proportional

|∇⃗µ|
|∇⃗T |

=
DT

TD
=

S
T

(11)

where S is called the Soret coefficient. Physically, the
Soret coefficient determines the magnitude of the concen-
tration gradient arising from the presence of the imposed
temperature gradient (Soret effect). It is also found that
a reciprocal effect, i.e. the inset of a temperature gra-
dient as response for an imposed concentration gradient
can be observed: this effect, which is the necessary con-
sequence for the presence of a coupling term, is called
Dufour effect.

III. DERIVATION

The starting point for the transient analysis of the tem-
perature T (r⃗, t) and density field ρ′(r⃗, t) in the case of a
coupled mass and heat transfer is the formulation of ther-

mal current J⃗q and diffusion current J⃗m as derived by
Trimble and Deutch [14], reported in eq. (9). As stated
in Section II, we will focus only on the dynamic of one of
the species.
In principle, the evaluation of the parameters involved

in eq.(9) is feasible if four quantities are known for every

point r⃗ and time t: the two currents J⃗m(r⃗, t) and J⃗q(r⃗, t)
as well as the scalar fields T (r⃗, t) and µ(r⃗, t). This ap-
proach, however, is particularly difficult to implement,
since the time evolution of currents is affected by ther-
modynamic noise due to the energy and density fluctu-
ations of the system. In addition, it was pointed out in
relatively recent papers that the definition itself of ther-
mal energy current is tricky if manybody potential are
used to simulate the interactions [15].
By combining the conservation laws stated in eq.(4)

and eq.(5) with the form of currents in eq.(9), a system
of two partial differential equations (PDE) is obtained

∂T

∂t
= αT∇2T +

DT

Cvρ

[
∇⃗T · ∇⃗

(µ
T

)
+ T∇2

(µ
T

)]
∂ρ′

∂t
=

DT

T
∇2T − DT

T 2
(∇⃗T )2 +D∇⃗T · ∇⃗

(µ
T

)
+DT∇2

(µ
T

)
(12)
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where αT = κ/Cvρ′ is the thermal diffusivity.
In order to obtain the evolution of the mass density

field, an expression for the chemical potential must be
adopted. Here we use the fact that the system we are
treating is a Lennard-Jones liquid. Assuming the leading
order of all the main possible models [16], the dependence
of chemical potential µ from ρ′ can be stated in the form

µ = µ0 +RT ln

(
ρ′

ρ′0

)
(13)

where R is the gas constant while µ0 and ρ′0 refer to
the chemical potential and mass density evaluated at an
arbitrary reference point (µ0 can be eventually also set
to zero).

Under eq.(13) assumption, eq.(12) can be rewritten in

terms of ρ′. In fact, since ∇⃗(µ/T ) = R∇⃗ρ′/ρ′, we have
for the evolution of temperature field

∂T

∂t
= αT∇2T +

RDT

Cvρ′2

[
∇⃗T · ∇⃗ρ′ + T∇2ρ′ + T

(∇⃗ρ′)2

ρ′

]
(14)

while the evolution of concentration field is

∂ρ′

∂t
=

DT

T
∇2T − DT

T 2
(∇⃗T )2 +

DR

ρ′
∇⃗T · ∇⃗ρ′+

RDT

ρ′

(
∇2ρ′ − (∇⃗ρ′)2

ρ′

) (15)

In the most general case, the system formed by eq.(14)
and eq.(15) has not a closed-form solution. A general
method to find this class of solutions is possible if the
system is in the form

∂T

∂t
= αT∇2T + β1∇2ρ′

∂ρ′

∂t
= β2∇2T + αD∇2ρ′

(16)

where αT is the thermal diffusivity, αD = D is the mass
diffusivity (or diffusion coefficient), while β1, β2 can be
properly defined as coupling parameters responsible for
Soret and Dufour effect, respectively. Indeed, the sys-
tem formed by eq.(14) and eq.(15) can be recast in the
form (16) if only the linear terms in each expression are
retained. This approximation is in line with the assump-
tion of a linear response regime constituting the bedrock
of the expression for the fluxes adopted.

The basic idea at this point, is to proceed using a stan-
dard analytic technique allowing to restate the eqs.(16)
in a decoupled form, where the presence of coupling is
transferred in the coefficients appearing in the new de-
coupled system.

This is done by defining the w⃗ vector (T (r⃗, t), ρ′(r⃗, t)):
the system in eq.(16) is eventually written as

∂w⃗

∂t
= A∇2w⃗ (17)

where Amatrix of coefficients can be diagonalized by per-
forming the transformation D = S−1AS. By indicating
with λ1, λ2 the eigenvalues of A and with v the vector
resulting from S−1w, eq.(16) reduces to

∂v1
∂t

= λ1∇2v1
∂v2
∂t

= λ2∇2v2

(18)

where the eigenvalues are in the form

λ1,2 =
(αT + αD)±

√
(αT − αD)2 + 4β1β2

2
(19)

Under the hypothesis of a uni-dimensional heat/mass
transport (which, without loss of generality, we assume
along the x axis) in a rectangular simulation cell with
length L simulated in periodic boundary conditions in all
the three dimensions, the separation of variable methods
allows to found a solution for v1,2(r⃗, t) in the form

v1,2(r⃗, t) =

∞∑
m=1

exp

(
−4m2π2λ1,2

L2
t

)
×[

c1(m) sin

(
2πm

L
x

)
+ c2(m) cos

(
2πm

L
x

)] (20)

where c1,2(m) coefficients are fixed by the initial profile
v⃗(r⃗, 0).
A natural choice is to build the initial v1,2(r⃗, 0) by

imposing across the simulation cell step-like temperature
and concentration profiles. Formally, we thus have

w⃗(r⃗, 0) =
1

2

(
(T1 + T2) + (T1 − T2)sign(x)

1 + sign(x)

)
(21)

where the concentration of species 1 is normalized to 1.
The initial conditions set for w⃗ are then imposed to v⃗

by performing the linear transformation v⃗ = S−1w⃗. At
this stage, coefficients c1,2(m) are then fixed by using the
Fourier series expansion of sign(x)

sign(x) =
4

π

∞∑
m=0

1

(2m+ 1)
sin

(
2π

2m+ 1

L
x

)
(22)

allowing to define an analytical expression for the evolu-
tion of the temperature and density time evolution. In
particular, the evolution of the temperature and concen-
tration differences between the two regions [−L/2, 0] and
[0, L/2] of the simulation box are

⟨∆T (t)⟩ = 8∆T (0)

π2

[ ∞∑
m=0

1

a(m)2
exp

(
−4π2a(m)2

L2
λ1t

)]

⟨∆ρ′(t)⟩ = 8ρ′(0)

π2

[ ∞∑
m=0

1

a(m)2
exp

(
−4π2a(m)2

L2
λ2t

)]
(23)
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where ∆T (0), ρ′(0) denote the initial temperature and
concentration difference, respectively, and a(m) = 2m+
1.

It is worth to note the strict analogy of the result-
ing equation for T in eq.(23) with the corresponding and
well-established formulation derived in AEMD theoreti-
cal framework [17–19]. In fact, if no coupling is present
and mass diffusivity is negligible (as in solids [19, 20]) it
is immediately to recognize that λ1 = αT , leading to a
perfect correspondence to the new result we found with
the usual AEMD formulation. Moreover, if no coupling is
assumed and no thermal gradient is imposed, a striking
analogy between temperature evolution and concentra-
tion evolution is found. We interpret this result as a con-
sequence of the fact that Fourier and Fick law, under the
constraints dictated by the conservation laws, determine
the same PDE describing the evolution of a temperature
and concentration field, respectively.

In this perspective, the eigenvalues λ1,2 of the A trans-
port coefficients matrix can be physically interpreted, if
a coupling is present, in terms of generalized heat/mass
diffusivities.
A possible way to link this formal picture with the phe-

nomenological Soret coefficent S, describing the strength
of thermophoresis phenomenon, is to recast the system
in eq.(9) as 

∇⃗
(
1

T

)
= rqqJ⃗q + rqmJ⃗m

−∇⃗µ

T
= rqmJ⃗q + rmmJ⃗m

(24)

where rqq, rµµ, rqµ are the Onsager resistivities, which
can be easily worked out from eq.(8) algebraically.

In this framework, the Soret coefficient is written as
the ratio between the thermodiffusion coefficient DT and
mass diffusivity Dm in the steady state regime

S =
DT

Dm
= −rmq

rqq

1

cmT (∂µ/∂ρ′)
(25)

Under the approximations previously stated on (i) the
form of chemical potential and (ii) the form of the system
(16), the approximate form is found

|S| = |β|
ρ′T 2

(26)

IV. COMPUTATIONAL SETUP

Classical molecular dynamics (MD) simulations were
performed using the LAMMPS software package. The
system of interest is an equimolar Lennard-Jones liquid
mixture composed of component 1 and 2, differing for the
values of the LJ potential parameters (ϵ1, ϵ2, σ1, σ2) and
the masses m1,m2. The values of the parameters and the
masses are chosen in order to assure that both the pure
phases as well as the mixture could simultaneously exists

in liquid phase. Six different combination of mixtures are
evaluated, as listed in Table I.
The system contained a total of 86,000 atoms setting

the initial density to ρ∗ = 0.8. An equal number of com-
ponent 1 and 2 atoms were created in order to obtain a
step-like concentration profile along the Lx direction of
the rectangular simulation cell. Periodic boundary con-
ditions were applied in all directions but Lx. In order to
prevent mass and heat diffusion before a complete equi-
libration of the system, two regions with width 2σ1 and
encompassing the entire cross section of the simulation
cell were created at the interfaces of component 1 and 2.
Velocities and forces acting on the particle inside these
two regions were kept to zero during the equilibration,
which proceeded as follows.
The initial configuration is generated in its solid fcc

phase and then minimized using the conjugate gradient
(CG) algorithm until the pressure is 0. The bi-component
system is then liquefied by a 10,0000-step NVE run at
T ∗ = 5. Subsequently, a 500,000-step NPT run is per-
formed using Nosé-Hoover thermostat and barostat un-
til average temperature and density are equilibrated at
T ∗ = 0.8, ρ∗ = 0.8, respectively.
The step-like temperature gradient is finally created

by a 100,000 step NVT run. After this stage, which
closes the equilibration run, all the atoms in the simu-
lation cell are evolved in a NVE run. The number of
steps was chosen to be sufficient to obtain a significant
reduction of ⟨ρ1,2⟩ and ⟨T ⟩, being both these quantities
evaluated during the run. The thermal and mass diffu-
sivities were calculated by fitting the concentration and
temperature profiles obtained from the AEMD simula-
tions using Eq.(23).
In order to better estimate the β values, for each mix-

ture two additional separate runs were performed by set-
ting (a) no initial thermal gradient (Fick regime) and
(b) no initial concentration gradient (Fourier regime),
the latter condition being realized by simply allowing a
complete spatial randomization of the two components
before monitoring.
In order to increase statistical significance of the ob-

tained results, ten simulation for each mixture and for
each transport regime were performed by varying the ini-
tial velocities and thermostatation run length.

V. RESULTS

The monitored time evolution of the average temper-
ature and concentration differences (in adimensional LJ
units) are schematically depicted in Fig.2 for the paradig-
matic case of mixture 1. In the same Figure, the analyt-
ical solutions Eq.(23) fitted on the simulation results are
represented, revealing an excellent agreement between
the observed results. Results from fit for all the six mix-
ture investigated are listed in Table I.
From analysis of Fig.2 several interesting conclusions

can be extracted. As starting point, we observe that
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”DB”
Mixture ϵ1 ϵ2 σ1 σ2 m1 m2 αT αD |β|

1 1.0 0.6 1.0 1.1 1.0 0.89 1.727 0.0659 0.65± 0.9
2 1.0 1.1 1.0 0.9 1.0 1.1 1.459 0.0745 1.10± 0.8
3 1.0 0.8 1.0 1.1 1.0 1.33 1.755 0.0855 0.32± 0.60
4 1.0 0.9 1.0 1.1 1.0 1.33 2.898 0.0964 1.39± 0.72
5 1.0 0.9 1.0 1.5 1.0 1.33 2.889 0.543 0.38± 0.02
6 0.8 0.6 1.1 1.0 1.33 0.89 1.653 0.166 0.54± 0.08

”RB”
Mixture ϵ1 ϵ2 σ1 σ2 m1 m2 αT αD |β|

1 1.0 0.6 1.0 1.1 1.0 0.89 1.71 0.03 0.60± 0.9
2 1.0 1.1 1.0 0.9 1.0 1.1 1.461 0.09 1.12± 0.9
3 1.0 0.8 1.0 1.1 1.0 1.33 1.721 0.1 0.27± 0.75
4 1.0 0.9 1.0 1.1 1.0 1.33 2.91 0.10 1.35± 0.81
5 1.0 0.9 1.0 1.5 1.0 1.33 2.89 0.57 0.31± 0.05
6 0.8 0.6 1.1 1.0 1.33 0.89 1.61 0.2 0.50± 0.06

TABLE I: Simulation parameters for the six adopted
equimolar liquid LJ mixtures, reported with the
corresponding αT , αD and |β| values obtained using AEMD.
”DB” and ”RB” refers to direct and reverse temperature
bias, respectively.

exponential decay prescribed by Eq.(23) is substantially
obeyed, providing a strong computational support for the
theoretical derivation discussed in detail in Sec.III. The
most evident deviation from the predicted exponential
decay is represented by the presence of a clear sinusoidal
overtone. This persistent feature is physically associated
by a mechanical relaxation of the system strictly linked
with the presence of the step-like temperature profile, de-
termining a corresponding and unavoidable pressure gra-
dient. In principle, this should require a re-setting of the
theoretical background invoked to derive Eq.23, includ-
ing the stress tensor contribution to the mass motion. In
practice, we observe that the good agreement between
the derived concentration and temperature trend can be
read as an indication that in our investigated systems
the mechanical contribution is sufficiently small to be
neglected. This observation is also supported by two cir-
cumstances observed during the NVE run: (i) no signif-
icant increase of the average temperature of the system,
indicating that the energy dissipated by the motion is
negligible compared to the initial thermal energy of the
system, (ii) direct inspection of the time evolution of av-
erage concentration differences reveal, in all the cases of
study, a clear exponential decay.

The results obtained for mixture 1, using the same
parametrization of Zimmermann et al. [12], are in ac-
cordance with their calculations: in particular, our val-
ues of thermal and mass diffusivity are respectively of
0.56± 0.11 and 0.11± 0.2, in good agreement with Zim-
mermann results (0.48± 0.04 and 0.087± 0.002).

By repeating the set of calculation using the same ini-
tial concentration profile but with initial T1, T2 reversed
(i.e. setting as cold the simulation half-cell that was set
hot in the calculation for obtaining data in Table I), a set
of diffusivity and coupling parameter was obtained, with
magnitude perfectly compatible with the ones previously

calculated.

VI. CONCLUSIONS

In this paper, we reported a derivation of an approach
to equilibrium method to estimate the coupling param-
eters of a binary LJ liquid. We have shown that, by
combining the very general mass and energy conserva-
tion laws with the thermodynamics of non-equilibrium
forms of heat and mass currents, a general system to for-
mally decouple the transport phenomena can be found,
if generalized diffusivity are introduced. Moreover, in
the context of uni-dimensional flows and step-like initial
profiles of temperature and mass density, a very simple
solution for the evolution of the profiles can be found in
terms of a sum of exponential. By applying this method
to a LJ binary mixture, we provided a sound assessment
of the method, comparing the results with the ones ob-
tained with non-equilibrium techniques, and obtained as
well the demonstration that no rectification effects seems
to arise if initial temperature gradient is switched.
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FIG. 1: The four possible cases: no temperature and no mass density gradient; temperature gradient and no mass density
gradient, pure Fourier regime; no temperature gradient, mass density gradient, pure Fick regime, temperature and mass
density gradient simultaneously present, coupled regime
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FIG. 2: Evolution of average temperature difference (left y-axis) and concentration difference (right y-axis) during the NVE
run in the case of pure diffusion (Fick regime, blue), heat transport without concentration gradient (Fourier regime, red) and
in the case of heat-mass coupled transport (black line). Instantaneous temperature and concentration differences monitored
during the simulation are displayed as points, while the fitted trends are represented with solid yellow lines


