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Fredholm integral equations of the second kind that are defined on a finite or infinite interval 
arise in many applications. This paper discusses Nyström methods based on Gauss quadrature 
rules for the solution of such integral equations. It is important to be able to estimate the error 
in the computed solution, because this allows the choice of an appropriate number of nodes in 
the Gauss quadrature rule used. This paper explores the application of averaged and weighted 
averaged Gauss quadrature rules for this purpose and introduces new stability properties of them.

1. Introduction

Fredholm integral equations of the second kind,

𝑓 (𝑦) + ∫


𝑘(𝑥, 𝑦)𝑓 (𝑥)𝑑𝜇(𝑥) = 𝑔(𝑦), 𝑦 ∈, (1)

where the kernel 𝑘 and right-hand side function 𝑔 are given, the function 𝑓 is to be determined, and 𝑑𝜇(𝑥) is a nonnegative measure 
supported on a bounded or unbounded domain , arise in many applications including image restoration (when applying Tikhonov 
regularization) [1], conformal mapping [2], frequency analysis [3], and tomography [4]; see also Atkinson [5] and Kress [6] for 
discussions on further applications. The present paper considers equations of the form (1) when  is a bounded or infinite interval 
on the real axis, and the integral operator

(𝐾𝑓 )(𝑦) = ∫


𝑘(𝑥, 𝑦)𝑓 (𝑥)𝑑𝜇(𝑥)

is a compact map from  to  , where  is a suitable weighted Banach space; see Section 2 for its definition. Suitable assumptions 
on the kernel and on the measure can be made to guarantee compactness of the integral operator 𝐾 . Detailed results on this topic 
are available in [7, Chapter 5].
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The Nyström method is one of the most popular approaches to compute an approximate solution of Fredholm integral equations 
of the second kind; see, e.g., Atkinson [5] or Kress [6]. The method is easy to implement and use: the integral in (1) is replaced by 
an interpolatory quadrature rule 𝐾𝑚 with 𝑚 nodes 𝑥1 < 𝑥2 <⋯ < 𝑥𝑚 on the interval , and the equation

(𝐼 +𝐾𝑚)𝑓𝑚 = 𝑔, (2)

where 𝐼 is the identity operator and 𝑓𝑚 is the unknown interpolant, is required to hold at the nodes 𝑦 = 𝑥𝑖, 𝑖 = 1, 2, … , 𝑚. This yields 
the linear system of equations

𝑚∑
𝑗=1

[𝛿𝑖𝑗 + 𝑐𝑗𝑘(𝑥𝑗 , 𝑥𝑖)]𝑎𝑗 = 𝑔(𝑥𝑖), 𝑖 = 1,2,… ,𝑚, (3)

with a coefficient matrix of order 𝑚. Here the 𝑐𝑗 are coefficients of the chosen quadrature rule, 𝑎𝑗 = 𝑓𝑚(𝑥𝑗 ), and 𝛿𝑖𝑗 is the Kronecker 
𝛿-function, i.e., 𝛿𝑖𝑖 = 1 and 𝛿𝑖𝑗 = 0 for 𝑖 ≠ 𝑗. Assume that the integral equation (1) has a unique solution in  . This is the case when 
the null space of the corresponding operator is trivial, that is when  (𝐼 +𝐾) = {0}. Then, when 𝑚 is sufficiently large, the matrix 
of the linear system of equations (3) is nonsingular and its condition number can be bounded independently of 𝑚; see [5] for details.

Having computed the solution [𝑎1, 𝑎2, … , 𝑎𝑚]𝑇 ∈ℝ𝑚 of the linear system of equations (3), the Nyström interpolant

𝑓𝑚(𝑦) = 𝑔(𝑦) −
𝑚∑
𝑗=1

𝑐𝑗𝑘(𝑥𝑗 , 𝑦)𝑎𝑗 , 𝑦 ∈, (4)

provides an approximate solution 𝑓𝑚(𝑦) of (1) that can be evaluated at any 𝑦 ∈. The Nyström interpolant (4) is known to converge 
to the exact solution 𝑓 (𝑦) of (1) with the same rate of convergence as the quadrature rule used; see, e.g., [5] for details.

An important aspect of the Nyström method is the choice of the quadrature formula. We would like the quadrature rule to be 
convergent in the weighted function space  determined by the measure 𝑑𝜇(𝑥). For this reason, Nyström methods often are based 
on Gauss quadrature rules, for which there exists a wide literature. Indeed, Gauss quadrature formulas associated with different 
measures have been applied to Nyström methods, both for a single Fredholm integral equation of the second kind [8–11] and for 
systems of such equations [12,13] in function spaces suited to handle possible pathologies of the solution of (1).

In a sequence of papers Laurie [14] and Spalević with collaborators [15–18] developed averaged and weighted averaged Gaussian 
quadrature rules. These rules are convex combinations of two quadrature rules 𝐺𝑚 and 𝐺+

𝑚+1 with 𝑚 and 𝑚 + 1 nodes, respectively, 
where 𝐺𝑚 is an 𝑚-point Gauss rule and 𝐺+

𝑚+1 is an (𝑚 + 1)-node quadrature rule that is related to 𝐺𝑚. Averaged and weighted 
averaged rules have been applied to estimate the quadrature error in Gauss rules. It is the purpose of the present paper to explore 
their application to estimate the error in Nyström interpolants (4).

The averaged and weighted averaged rules have 2𝑚 +1 nodes and weights, their straightforward application in a Nyström method 
requires the solution of a linear system of equations with a (2𝑚 +1) × (2𝑚 +1) matrix. We will explore the possibility of reducing the 
computational effort required when using these rules.

The averaged rule introduced by Laurie [14] is the average of an 𝑚-point Gauss rule and an (𝑚 + 1)-point anti-Gauss rule. The 
application of pairs of Gauss and anti-Gauss rules to the estimation of the error in Nyström interpolants has recently been described 
in [19].

In the beginning of this paper, we analyze the weighted averaged rules described in [17,18,20] and show their stability and 
convergence in weighted function spaces. These results extend those shown for anti-Gauss rules in [19] in that they involve more 
general quadrature rules, weight functions, and domains. Moreover, our results are shown under less restrictive assumptions than 
those in [19], and include the latter results. In the second part of the paper, our discussion focuses on the use of averaged rules 
of Laurie [14] and weighted averaged rules of Spalević [17,18] to estimate the error in the Nyström interpolant (4). Finally, new 
iterative methods are developed to solve the linear systems of equations associated with Nyström’s method. These methods exploit 
the structure of the coefficient matrix, and their convergence is studied. To the best of our knowledge, this is the first time that such 
methods are proposed.

This paper is organized as follows. Section 2 reviews averaged and weighted averaged Gaussian quadrature rules. New stability 
results are shown. Illustrations of their performance for some classical measures are presented in Section 3. The application of 
averaged and weighted averaged Gauss rules to the estimation of the error in Nyström interpolants is discussed in Section 4, and 
several iterative methods for the computation of Nyström interpolants are described in Section 5. Computed examples are presented 
in Section 6, and concluding remarks can be found in Section 7.

2. Averaged and weighted averaged Gauss quadrature rules

Let

𝐼(𝑓 ) = ∫


𝑓 (𝑥)𝑑𝜇(𝑥) (5)

for some nonnegative measure 𝑑𝜇 with infinitely many points of support, and let {𝑝𝑘}∞𝑘=0 be the sequence of monic orthogonal 
2

polynomials associated with this measure, i.e., 𝑝𝑘 is a polynomial of degree 𝑘 with leading coefficient one such that
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⟨𝑥𝑗 , 𝑝𝑘⟩𝜇 ∶= ∫


𝑥𝑗𝑝𝑘(𝑥)𝑑𝜇(𝑥) = 0, 𝑗 = 0,1,… , 𝑘− 1. (6)

The above inner product defines a Hilbert space 𝐿2
𝜇 with induced norm ‖𝑓‖𝜇 = ⟨𝑓, 𝑓⟩1∕2𝜇 .

It is well known that the polynomials 𝑝𝑘 satisfy a recurrence relation of the form{
𝑝−1(𝑥) = 0, 𝑝0(𝑥) = 1,
𝑝𝑘+1(𝑥) = (𝑥− 𝛼𝑘)𝑝𝑘(𝑥) − 𝛽𝑘𝑝𝑘−1(𝑥), 𝑘 = 0,1,2,… ,

(7)

where the recursion coefficients are given by

𝛼𝑘 =
⟨𝑥𝑝𝑘, 𝑝𝑘⟩𝜇⟨𝑝𝑘, 𝑝𝑘⟩𝜇 , 𝑘 ≥ 0,

𝛽𝑘 =
⟨𝑝𝑘, 𝑝𝑘⟩𝜇⟨𝑝𝑘−1, 𝑝𝑘−1⟩𝜇 , 𝑘 ≥ 1, 𝛽0 = ⟨𝑝0, 𝑝0⟩;

see, for instance, [21, Theorem 1.27].

The zeros of each polynomial 𝑝𝑘, 𝑘 ≥ 1, live in the convex hull of the support of 𝑑𝜇 and are distinct; see, e.g., [21]. Let us denote 
the zeros of 𝑝𝑚 by 𝑥(𝐺)1 < 𝑥

(𝐺)
2 <⋯ < 𝑥

(𝐺)
𝑚 . They are known to be the eigenvalues of the symmetric tridiagonal matrix

𝐽𝑚 =

⎡⎢⎢⎢⎢⎢⎣

𝛼0
√
𝛽1√

𝛽1 𝛼1
√
𝛽2√

𝛽2 𝛼2 ⋱
⋱ ⋱

√
𝛽𝑚−1√

𝛽𝑚−1 𝛼𝑚−1

⎤⎥⎥⎥⎥⎥⎦
;

see [21]. This matrix has orthogonal eigenvectors. Let 𝑣𝑘,1 denote the first component of a normalized real eigenvector associated 
with the eigenvalue 𝑥(𝐺)

𝑘
. Then the 𝑚-point Gauss rule associated with the measure 𝑑𝜇 is given by

𝐺𝑚(𝑓 ) =
𝑚∑
𝑘=1

𝜆
(𝐺)
𝑘
𝑓 (𝑥(𝐺)

𝑘
), (8)

where the weights 𝜆(𝐺)
𝑘

(also known as Christoffel numbers) can be determined as 𝜆(𝐺)
𝑘

= 𝛽0𝑣
2
𝑘,1; see [21,22]. The rule (8) is known 

to be exact for all polynomials in ℙ2𝑚−1; see, e.g., [21]. Here and throughout this paper ℙ𝑘 denotes the set of polynomials of degree 
at most 𝑘.

Consider the extended symmetric tridiagonal matrix

𝐽𝑚+1 =
[

𝐽𝑚
√
2𝛽𝑚𝐞𝑚√

2𝛽𝑚𝐞𝑇𝑚 𝛼𝑚

]
,

where 𝐞𝑘 = [0, … , 0, 1, 0, … , 0]𝑇 stands for the 𝑘th axis vector of suitable dimension. Let {𝑥𝑘}𝑚+1𝑘=1 denote the eigenvalues of 𝐽𝑚+1. 
They are real and distinct, but they are not guaranteed to live in the convex hull of the support of the measure 𝑑𝜇; see, e.g., [14] for 
a discussion. Let 𝑣𝑘,1 denote the first component of a normalized real eigenvector associated with the eigenvalue 𝑥𝑘. Then the 𝑥𝑘 are 
the nodes and the 𝜆𝑘 = 𝛽0𝑣

2
𝑘,1 are the weights of the (𝑚 + 1)-point anti-Gauss rule

𝐺𝑚+1(𝑓 ) =
𝑚+1∑
𝑘=1

𝜆𝑘𝑓 (𝑥𝑘) (9)

introduced by Laurie [14]. This rule satisfies

(𝐼 −𝐺𝑚+1)(𝑝) = −(𝐼 −𝐺𝑚)(𝑝), ∀ 𝑝 ∈ ℙ2𝑚+1; (10)

see [14] for details. The degree of exactness of the anti-Gauss rule 𝐺𝑚+1 is at least 2𝑚 − 1. This follows from (10).

Laurie [14] also introduced the averaged rule

𝐴2𝑚+1(𝑓 ) ∶=
1
2

(
𝐺𝑚(𝑓 ) +𝐺𝑚+1(𝑓 )

)
, (11)

which has the following properties:

1. It has 2𝑚 + 1 nodes. Its evaluation requires the calculation of the integrand 𝑓 at 2𝑚 + 1 nodes. However, 𝑚 of these function 
values also are required to evaluate the Gauss rule 𝐺𝑚(𝑓 ). Therefore, the additional computational effort demanded when 
calculating the averaged rule (11) is only 𝑚 + 1 function evaluations.
3

2. All its 2𝑚 + 1 weights are positive.
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3. Its degree of exactness is at least 2𝑚 + 1, i.e., 𝐴2𝑚+1(𝑓 ) = 𝐼(𝑓 ) for all 𝑓 ∈ ℙ2𝑚+1. For some measures, the averaged rule agrees 
with the Gauss–Kronrod rule and its degree of exactness is higher; see, e.g., [15,23–25].

4. For certain measures, the averaged rule (11) is internal, i.e., all nodes live in the convex hull of the support of the measure 𝑑𝜇. 
For instance, when 𝑑𝜇(𝑥) = 𝑥𝛼𝑒−𝑥𝑑𝑥 and  =ℝ+, the rule (11) is internal for 𝛼 > −1. If instead 𝑑𝜇(𝑥) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽𝑑𝑥 and 
 = [−1, 1], then the averaged rule is internal only for suitable values of 𝛼 and 𝛽; see [14].

5. The averaged rule (11) furnishes an estimate for the error 𝐼(𝑓 ) −𝐺𝑚(𝑓 ) since

𝐼(𝑓 ) −𝐺𝑚(𝑓 ) ≈𝐴2𝑚+1(𝑓 ) −𝐺𝑚(𝑓 ) =
1
2
(𝐺𝑚+1(𝑓 ) −𝐺𝑚(𝑓 )).

Spalević [17] constructed a symmetric tridiagonal matrix of order 2𝑚 + 1 whose eigenvalues are the nodes of the averaged rule 
(11) and the weights can be computed from the first component of the associated normalized real eigenvectors. This construction 
lead Spalević to the definition of the weighted averaged quadrature rule

𝐴2𝑚+1(𝑓 ) =
2𝑚+1∑
𝑘=1

𝜆𝑘𝑓 (𝑥𝑘) (12)

associated with the Gauss rule 𝐺𝑚. The nodes of the rule (12) are the eigenvalues of the symmetric tridiagonal matrix

𝐽2𝑚+1 =
⎡⎢⎢⎣

𝐽𝑚
√
𝛽𝑚𝐞𝑚 0√

𝛽𝑚𝐞𝑇𝑚 𝛼𝑚
√
𝛽𝑚+1𝐞𝑇1

0
√
𝛽𝑚+1𝐞1 𝑍𝑚𝐽𝑚𝑍𝑚

⎤⎥⎥⎦ ∈ℝ(2𝑚+1)×(2𝑚+1), (13)

where 𝑍𝑚 ∈ℝ𝑚×𝑚 is the row-reversed identity matrix. The weights of the quadrature rule (12) are the square of the first component 
of normalized real eigenvectors of (13) multiplied by 𝛽0. Spalević [17] showed the following properties of the quadrature formula 
(12):

(A) The formula requires 2𝑚 + 1 evaluations of the integrand 𝑓 . When the nodes 𝑥(𝐺)
𝑗

of the Gauss rule (8) and the nodes 𝑥𝑗 of the 
weighted averaged rule (12) are ordered in increasing order, the quadrature nodes satisfy

𝑥2𝑗 = 𝑥
(𝐺)
𝑗
, 𝑗 = 1,2,… ,𝑚.

(B) All the weights 𝜆𝑘 are positive.

(C) The quadrature rule is exact for polynomials of degree at least 2𝑚 + 2. If the measure 𝑑𝜇(𝑥) is symmetric with respect to 
the origin, then the degree of exactness is at least 2𝑚 + 3. For certain measures 𝑑𝜇, the degree of exactness is much higher; 
see [15,24,25].

(D) If 𝑑𝜇(𝑥) = 𝑥𝛼𝑒−𝑥𝑑𝑥 and  =ℝ+, then the formula is internal when 𝛼 > 1. If 𝑑𝜇(𝑥) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽𝑑𝑥 and  = [−1, 1], then it 
is internal only for certain values of 𝛼 and 𝛽.

(E) The quadrature rule suggests the error estimate

𝐼(𝑓 ) −𝐺𝑚(𝑓 ) ≈𝐴2𝑚+1(𝑓 ) −𝐺𝑚(𝑓 ). (14)

Computed examples reported in [20] show the weighted averaged quadrature rule (12) for many integrands to give higher 
accuracy than suggested by its degree of exactness. This also holds to a lesser extent for the averaged rule (11). This property 
of the rule (12) results in that the right-hand side of (14) for many integrands provides an accurate estimate of the left-hand 
side. The present paper uses this property to determine accurate estimates of the error in computed approximate solutions of 
Fredholm integral equations of the second kind.

When applying the quadrature rule (12), one generally also evaluates the Gauss rule (8). Therefore, the nodes and weights of the 
representation

𝐴2𝑚+1(𝑓 ) =
𝛽𝑚+1

𝛽𝑚 + 𝛽𝑚+1
𝐺𝑚(𝑓 ) +

𝛽𝑚
𝛽𝑚 + 𝛽𝑚+1

𝐺∗
𝑚+1(𝑓 ) (15)

can be evaluated faster than computing the eigenvalues and first components of normalized eigenvectors of the matrix (13). Here 
𝐺∗
𝑚+1 is the quadrature rule determined by the matrix

𝐽 ∗
𝑚+1 =

[
𝐽𝑚

√
𝛽𝑚 + 𝛽𝑚+1𝐞𝑚√

𝛽𝑚 + 𝛽𝑚+1𝐞𝑇𝑚 𝛼𝑚

]
; (16)

that is

𝑓 (𝑥)𝑑𝜇(𝑥) =
𝑚+1∑

𝜆∗𝑓 (𝑥∗) + 𝑒∗ (𝑓 ) =∶𝐺∗ (𝑓 ) + 𝑒∗ (𝑓 ), (17)
4

∫
 𝑘=1

𝑘 𝑘 𝑚+1 𝑚+1 𝑚+1
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where 𝑒∗
𝑚+1(𝑓 ) denotes the quadrature error in 𝐺∗

𝑚+1(𝑓 ); see [16] for a derivation of (15) and a discussion on the computational 
effort.

The representation (15) shows that the rule 𝐴2𝑚+1(𝑓 ) is a weighted average of the Gauss rule 𝐺𝑚(𝑓 ) and the quadrature rule 
𝐺∗
𝑚+1(𝑓 ). It also shows that one can evaluate the error estimate (14) as

𝛽𝑚
𝛽𝑚 + 𝛽𝑚+1

(
𝐺∗
𝑚+1(𝑓 ) −𝐺𝑚(𝑓 )

)
.

The following expression for the weights of the rule 𝐺∗
𝑚+1 is believed to be new.

Theorem 1. The degree of exactness of the quadrature rule 𝐺∗
𝑚+1 in (15) is at least 2𝑚 − 1, the nodes 𝑥∗

𝑘
interlace with the Gauss nodes 𝑥𝑘, 

and the weights are given by

𝜆∗
𝑘
=
𝛽𝑚 + 𝛽𝑚+1

𝛽𝑚

‖𝑝𝑚‖2𝜇
𝑞′2𝑚+1(𝑥

∗
𝑘
)
> 0,

where

𝑞2𝑚+1(𝑥) = 𝑝𝑚(𝑥)𝑝∗𝑚+1(𝑥) and 𝑝∗
𝑚+1(𝑥) =

𝑚+1∏
𝑘=1

(𝑥− 𝑥∗
𝑘
).

Proof. The first part of the thesis follows from the representation (15) of 𝐴2𝑚+1 and the fact that the degree of exactness of both the 
weighted averaged rule 𝐴2𝑚+1 and the Gauss rule 𝐺𝑚 is at least 2𝑚 − 1.

Let us consider the function 𝑓𝑗 (𝑥) = 𝑞2𝑚+1(𝑥)∕(𝑥 − 𝑥∗
𝑗
). Since 𝐺𝑚(𝑓𝑗 ) = 0 for any 𝑗, eq. (15) yields

∫


𝑓𝑗 (𝑥)𝑑𝜇(𝑥) =
𝛽𝑚

𝛽𝑚 + 𝛽𝑚+1

𝑚+1∑
𝑘=1

𝜆∗
𝑘

𝑞2𝑚+1(𝑥∗𝑘)
(𝑥∗
𝑘
− 𝑥∗

𝑗
)
=

𝛽𝑚
𝛽𝑚 + 𝛽𝑚+1

𝜆∗𝑗 𝑞
′
2𝑚+1(𝑥

∗
𝑗 ).

The last equality is a consequence of the well-known representation for the Lagrange polynomial associated with the quadrature 
node 𝑥∗

𝑗
of formula (15),

𝐿𝑗 (𝑥) =
𝑞2𝑚+1(𝑥)

(𝑥− 𝑥∗
𝑗
)𝑞′2𝑚+1(𝑥

∗
𝑗
)
,

where we note that 𝑞′2𝑚+1(𝑥
∗
𝑗
) = 𝑝𝑚(𝑥∗𝑗 )(𝑝

∗
𝑚+1)

′(𝑥∗
𝑗
).

On the other hand, for any 𝑗 there exists a polynomial 𝑞𝑚−1,𝑗 of degree 𝑚 − 1 such that

∫


𝑓𝑗 (𝑥)𝑑𝜇(𝑥) = ∫


𝑝𝑚(𝑥)[𝑥𝑚 + 𝑞𝑚−1,𝑗 (𝑥)]𝑑𝜇(𝑥) = ‖𝑝𝑚‖2𝜇.
Combining the above two equalities we obtain the expression given for 𝜆∗

𝑘
, whose positivity follows from its definition in terms of the 

squared first component of a normalized real eigenvector. Finally, the interlacing property of the nodes follows by applying Cauchy’s 
interlacing result to the matrix (16); see, e.g., [26, Theorem 3.3]. □

The next lemma, which will be useful in the sequel, gives a Markov–Stieltjes-type inequality. An analogous inequality is well 
known for classical Gauss rules (see, for instance, [27]), but the inequality has never been proved for averaged rules.

Lemma 2. For a fixed quadrature node 𝑥∗
𝑘

of 𝐺∗
𝑚+1, we have the bounds

𝑘−1∑
𝑖=1

𝜆∗𝑖 ≤
𝑥∗
𝑘

∫
−∞

𝑑𝜇(𝑥) ≤
𝑘∑
𝑖=1

𝜆∗𝑖 . (18)

Proof. Let 𝑃 (𝑘)
2𝑚 and 𝑄(𝑘)

2𝑚 be two polynomials of degree 2𝑚 such that

𝑃
(𝑘)
2𝑚 (𝑥∗𝑖 ) =

{
1, 1 ≤ 𝑖 < 𝑘,

0, 𝑘 ≤ 𝑖 ≤𝑚+ 1,
and

𝑑𝑃
(𝑘)
2𝑚

𝑑𝑥
(𝑥∗𝑖 ) = 0, ∀𝑖 ≠ 𝑘

and

(𝑘) ∗

{
1, 1 ≤ 𝑖 ≤ 𝑘, 𝑑𝑄

(𝑘)
2𝑚 ∗
5

𝑄2𝑚(𝑥𝑖 ) = 0, 𝑘 < 𝑖 ≤𝑚+ 1,
and

𝑑𝑥
(𝑥𝑖 ) = 0, ∀𝑖 ≠ 𝑘.
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These polynomials are uniquely determined; see, for instance, [27, Lemma 1.3]. Following the proof of [27, Theorem 5.2] one obtains 
that for each real 𝑥, we have

𝑃
(𝑘)
2𝑚 (𝑥) ≤𝐻𝑘(𝑥) ≤𝑄

(𝑘)
2𝑚(𝑥), (19)

where 𝐻𝑘 is the shifted Heaviside function defined by

𝐻𝑘(𝑥) =

{
1, 𝑥 ≤ 𝑥∗

𝑘
,

0, 𝑥 > 𝑥∗
𝑘
.

Then, since by (15) one has

𝐺∗
𝑚+1(𝑞) = 𝐼(𝑞) +

𝛽𝑚+1
𝛽𝑚

(
𝐼(𝑞) −𝐺𝑚(𝑞)

)
, ∀𝑞 ∈ ℙ2𝑚+2,

we can write

0 <
𝑘−1∑
𝑖=1

𝜆∗𝑖 =
𝑚+1∑
𝑖=1

𝜆∗𝑖 𝑃
(𝑘)
2𝑚 (𝑥∗𝑖 ) ≤ 𝐼(𝐻𝑘) +

𝛽𝑚+1
𝛽𝑚

(
𝐼(𝑃 (𝑘)

2𝑚 ) −𝐺𝑚(𝑃
(𝑘)
2𝑚 )

)
=

𝑥∗
𝑘

∫
−∞

𝑑𝜇(𝑥) +
𝛽𝑚+1
𝛽𝑚

𝑒𝑚(𝑃
(𝑘)
2𝑚 ) ≤

𝑥∗
𝑘

∫
−∞

𝑑𝜇(𝑥),

where 𝑒𝑚(𝑓 ) represents the quadrature error for the Gauss rule. To justify the last inequality, let us recall the error representation of 
the Gauss rule [21, Formula (1.4.14)]

𝑒𝑚(𝑓 ) =
𝑓 (2𝑚)(𝜉)
(2𝑚)!

‖𝑝𝑚‖2𝜇, 𝜉 ∈ ⧵ 𝜕.
By virtue of (19), as 𝐻𝑘(𝑥) is a piecewise constant function and the polynomial 𝑃 (𝑘)

2𝑚 has even degree, its leading coefficient has to 
be negative to satisfy the inequality for 𝑥 → ±∞. Therefore, 𝑒𝑚(𝑃

(𝑘)
2𝑚 ) < 0.

Similarly, we have

0 <
𝑘∑
𝑖=1

𝜆∗𝑖 =
𝑚+1∑
𝑖=1

𝜆∗𝑖 𝑄
(𝑘)
2𝑚(𝑥

∗
𝑖 ) ≥ 𝐼(𝐻𝑘) +

𝛽𝑚+1
𝛽𝑚

(
𝐼(𝑄(𝑘)

2𝑚) −𝐺𝑚(𝑄
(𝑘)
2𝑚)
)
=

𝑥∗
𝑘

∫
−∞

𝑑𝜇(𝑥) +
𝛽𝑚+1
𝛽𝑚

𝑒𝑚(𝑄
(𝑘)
2𝑚) ≥

𝑥∗
𝑘

∫
−∞

𝑑𝜇(𝑥),

since the polynomial 𝑄(𝑘)
2𝑚 of degree 2𝑚 has a positive leading coefficient and, consequently, 𝑒𝑚(𝑄

(𝑘)
2𝑚) > 0. Thus, (18) follows. □

Let us now investigate the stability and convergence of the formula 𝐺∗
𝑚+1(𝑓 ) in different function spaces. In the set of all contin-

uous functions 𝐶() equipped with the uniform norm

‖𝑓‖∞ = sup
𝑥∈

|𝑓 (𝑥)|,
the stability is an immediate consequence of the equality

‖𝐺∗
𝑚+1‖ ∶= sup‖𝑓‖∞=1

|𝐺∗
𝑚+1(𝑓 )| = 𝑚+1∑

𝑘=1
𝜆∗
𝑘
= ∫


𝑑𝜇(𝑥) <∞,

since this implies that sup𝑚 ‖𝐺∗
𝑚+1‖ <∞.

The quadrature error tends to zero as fast as the best approximation error by polynomials of degree less than 2𝑚 − 1,

𝐸2𝑚−1(𝑓 ) ∶= inf
{‖𝑓 − 𝑃‖∞ ∶ 𝑃 ∈ ℙ2𝑚−1

}
,

since for the quadrature error 𝑒∗
𝑚+1 of 𝐺∗

𝑚+1 it holds

|𝑒∗
𝑚+1(𝑓 )| = |𝑒∗𝑚+1(𝑓 − 𝑃 )| ≤ 𝐸2𝑚−1(𝑓 ),  ≠ (𝑚,𝑓 ).

Here and in the sequel,  is a positive constant which may assume different values in different formulas. We write  ≠ (𝑎, 𝑏, … ) to 
indicate that  is independent of the parameters 𝑎, 𝑏, … .

Introduce a bounded weight function 𝑢 ∶ →ℝ that is positive on the support of 𝑑𝜇, and satisfies

∫


𝑑𝜇(𝑥)
𝑢(𝑥)

<∞, ∫


𝑥𝑘 𝑢(𝑥)𝑑𝜇(𝑥) <∞, 𝑘 = 0,1,… . (20)

We define the weighted space 𝐶𝑢() as the set of all continuous function 𝑓 ∈ 𝐶( ⧵ 𝜕) such that 𝑓𝑢 ∈ 𝐶(), equipped with the 
weighted uniform norm ‖𝑓𝑢‖∞. For smoother functions, we consider Sobolev-type spaces of index 𝑟 ≥ 1,
6

𝑊 𝑟
𝑢 () = {𝑓 ∈ 𝐶𝑢() |𝑓 (𝑟−1) ∈𝐴𝐶( ⧵ 𝜕) and ‖𝑓 (𝑟)𝜑𝑟𝑢‖∞ <∞}, (21)
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where 𝐴𝐶( ⧵ 𝜕) denotes the set of absolutely continuous functions on  ⧵ 𝜕 and

𝜑(𝑥) =
⎧⎪⎨⎪⎩
√
(𝑏− 𝑥)(𝑥− 𝑎), if  = [𝑎, 𝑏],√
𝑥− 𝑎, if  = [𝑎,∞),

1, if  =ℝ.
(22)

The following result shows the stability of the quadrature rule 𝐺∗
𝑚+1 in 𝐶𝑢().

Theorem 3. Let 𝑢 be a bounded weight function that is positive on the support of 𝑑𝜇 and satisfies (20). Assume that

𝑢(𝑥∗
𝑘
) ≠ 0, 𝑘 = 1,2,… ,𝑚+ 1.

Then the formula 𝐺∗
𝑚+1 is stable, i.e.,

sup
𝑚

(
sup‖𝑓𝑢‖∞=1

|𝐺∗
𝑚+1(𝑓 )|

)
= sup

𝑚

(
𝑚+1∑
𝑘=1

𝜆∗
𝑘

𝑢(𝑥∗
𝑘
)

)
<∞.

Proof. The bounds (18) imply

𝜆∗
𝑘
=

𝑘∑
𝑖=1

𝜆∗𝑖 −
𝑘−1∑
𝑖=1

𝜆∗𝑖 ≤
𝑥∗
𝑘+1

∫
𝑥∗
𝑘−1

𝑑𝜇(𝑥), 𝑘 = 2,3,… ,𝑚. (23)

By applying the left-hand side inequality in (18) for 𝑘 = 2, and the right-hand side inequality for 𝑘 = 𝑚, we can extend (23) to 
𝑘 = 1 and 𝑘 = 𝑚 + 1 by defining 𝑥∗0 = −∞ and 𝑥∗

𝑚+2 =∞. It follows from the assumptions on 𝑢 that, for 𝑘 = 1, … , 𝑚 + 1, there exist 
uniformly bounded constants 𝑘 such that

1
𝑢(𝑥∗

𝑘
)

𝑥∗
𝑘+1

∫
𝑥∗
𝑘−1

𝑑𝜇(𝑥) = 𝑘
𝑥∗
𝑘+1

∫
𝑥∗
𝑘−1

𝑑𝜇(𝑥)
𝑢(𝑥)

.

Setting  =max𝑘 𝑘, we obtain from (23) that

𝑚+1∑
𝑘=1

𝜆∗
𝑘

𝑢(𝑥∗
𝑘
)
≤ 

𝑚+1∑
𝑘=1

𝑥∗
𝑘+1

∫
𝑥∗
𝑘−1

𝑑𝜇(𝑥)
𝑢(𝑥)

= 
𝑥∗
𝑚+1

∫
−∞

𝑑𝜇(𝑥)
𝑢(𝑥)

+ 
∞

∫
𝑥∗1

𝑑𝜇(𝑥)
𝑢(𝑥)

≤ 2 ∫


𝑑𝜇(𝑥)
𝑢(𝑥)

<∞, (24)

as the measure 𝜇(𝑥) is supported on . This shows the stability of the formula. □

The bound (24) allows us to show convergence of the quadrature rules 𝐺∗
𝑚+1 as 𝑚 increases, i.e.,

lim
𝑚→∞

𝑒∗
𝑚+1(𝑓 ) = 0,

and that 𝑒∗
𝑚+1(𝑓 ) goes to zero as fast as the error of the best polynomial approximation,

𝐸2𝑚−1(𝑓 )𝑢 ∶= inf
{‖(𝑓 − 𝑃 )𝑢‖∞ ∶ 𝑃 ∈ ℙ2𝑚−1

}
.

This is shown in the following corollary.

Corollary 4. For each 𝑓 ∈ 𝐶𝑢() one has

|𝑒∗
𝑚+1(𝑓 )| ≤ 𝐸2𝑚−1(𝑓 )𝑢, (25)

where  ≠ (𝑚, 𝑓 ).

Proof. The inequality (25) can be shown following, mutatis mutandis, the proof of Theorem 5.1.7 in [28]. We report the main steps 
of the proof for the convenience of the reader. By the exactness of formula 𝐺∗

𝑚+1 and by (24), we have for each polynomial 𝑃 ∈ ℙ2𝑚−1
7

that



Applied Mathematics and Computation 467 (2024) 128482L. Fermo, L. Reichel, G. Rodriguez et al.

|𝑒∗
𝑚+1(𝑓 )| = |𝑒∗𝑚+1(𝑓 − 𝑃 )| = |||||||∫ [𝑓 (𝑥) − 𝑃 (𝑥)]𝑑𝜇(𝑥) −

𝑚+1∑
𝑘=1

𝜆∗
𝑘
[𝑓 (𝑥∗

𝑘
) − 𝑃 (𝑥∗

𝑘
)]
|||||||

≤ ‖[𝑓 − 𝑃 ]𝑢‖∞ ⎡⎢⎢⎣∫
𝑑𝜇(𝑥)
𝑢(𝑥)

+
𝑚+1∑
𝑘=1

𝜆∗
𝑘

𝑢(𝑥∗
𝑘
)

⎤⎥⎥⎦
≤ ′ ‖[𝑓 − 𝑃 ]𝑢‖∞ ∫



𝑑𝜇(𝑥)
𝑢(𝑥)

for some constant ′ related to the constant  in (24). Taking the infimum with respect to 𝑃 , we obtain the assertion. □

Example 1. Let the function 𝑓 belong to the function space 𝐶𝑢([−1, 1]) with

𝑢(𝑥) = (1 − 𝑥)𝛾 (1 + 𝑥)𝛿, 𝛾, 𝛿 ≥ 0, (26)

and assume that we would like to evaluate (5), where the measure 𝑑𝜇(𝑥) =𝑤(𝑥)𝑑𝑥 is determined by the Jacobi weight function

𝑤(𝑥) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽 , 𝛼, 𝛽 > −1.

Then the first inequality in (20) is satisfied if

𝛾 < 𝛼 + 1, 𝛿 < 𝛽 + 1, (27)

and Theorem 3 holds true.

Now, let instead 𝑓 be a smoother function, namely, let 𝑓 belong to the Sobolev space 𝑊 𝑟
𝑢 ([−1, 1]) of index 𝑟 ≥ 1, defined in (21). 

Then [28, p. 172],

𝐸𝑚(𝑓 )𝑢 ≤ 𝑚−𝑟‖𝑓 (𝑟)𝜑𝑟𝑢‖∞,
where 𝜑 is given in (22). Corollary 4 then yields

|𝑒∗
𝑚+1(𝑓 )| ≤ 𝐶

𝑚𝑟
‖𝑓 (𝑟)𝜑𝑟𝑢‖∞.

Example 2. Let the function 𝑓 belong to the function space 𝐶𝑢([0, ∞)) with

𝑢(𝑥) = 𝑥𝛾 (1 + 𝑥)𝛿𝑒−𝑥, 𝛾, 𝛿 ≥ 0,

and assume that we would like to evaluate (5), where the measure 𝑑𝜇(𝑥) =𝑤(𝑥)𝑑𝑥 is determined by the Laguerre weight function

𝑤(𝑥) = 𝑥𝛼𝑒−𝑥, 𝛼 > −1.

Then the first inequality in (20) is satisfied if 𝛼 − 𝛾 > −1 and 𝛿 > 1 + 𝛼 − 𝛾 , and Theorem 3 holds true.

Additionally, let us consider the weighted Sobolev space 𝑊 𝑟
𝑢 ([0, ∞)) of index 𝑟 ≥ 1; see (21)–(22). Then, [28, p. 177] yields

|𝑒∗
𝑚+1(𝑓 )| ≤ 𝐶

𝑚𝑟∕2 ‖𝑓 (𝑟)𝜑𝑟𝑢‖∞.
We conclude this section by showing the stability and convergence of the quadrature rule 𝐴2𝑚+1.

Corollary 5. Under the assumptions of Theorem 3, formula 𝐴2𝑚+1 is stable, i.e.,

sup
𝑚

(
sup‖𝑓𝑢‖∞=1

|𝐴2𝑚+1(𝑓 )|) = sup
𝑚

(2𝑚+1∑
𝑘=1

𝜆𝑘

𝑢(𝑥𝑘)

)
<∞,

and convergent, i.e.,|||𝐼(𝑓 ) −𝐴2𝑚+1(𝑓 )
||| ≤ 𝐸2𝑚−1(𝑓 )𝑢,  ≠ (𝑚,𝑓 ).

Proof. Stability follows from the representation (15), the stability of the Gauss rule 𝐺𝑚, and Theorem 3. Convergence can be shown 
similarly as in the proof of Corollary 4. □

3. Properties and performance of the considered quadrature rules

We analyze the quadrature rules (9), (17), (11), and (12) for a few measures 𝑑𝜇(𝑥) =𝑤(𝑥)𝑑𝑥 with classical weight functions 𝑤(𝑥)
8

that commonly arise in Fredholm integral equations of the second kind.
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Table 1

Quadrature errors for the integral 𝐼1.

𝑚 𝐼1 −𝐺𝑚 𝐼1 −𝐺𝑚+1 𝐼1 −𝐺∗
𝑚+1 𝐼1 −𝐴2𝑚+1 𝐼1 −𝐴2𝑚+1

2 −7.93𝑒− 02 7.93𝑒− 02 7.65𝑒− 02 −3.24𝑒− 05 −7.88𝑒− 06
3 6.29𝑒− 04 −6.30𝑒− 04 −6.21𝑒− 04 −3.10𝑒− 07 3.00𝑒− 09
4 2.51𝑒− 05 −2.51𝑒− 05 −2.49𝑒− 05 2.95𝑒− 10 1.73𝑒− 11
5 −4.77𝑒− 08 4.77𝑒− 08 4.76𝑒− 08 2.49𝑒− 12 −7.36𝑒− 15
6 −8.10𝑒− 10 8.10𝑒− 10 8.08𝑒− 10 −1.29𝑒− 15 −3.84𝑒− 17

3.1. Jacobi weight functions

Let us consider polynomials (7) that are orthogonal with respect to the Jacobi weight function

𝑤(𝑥) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽 , (28)

for parameters 𝛼, 𝛽 > −1. The recursion coefficients 𝛼𝑘 and 𝛽𝑘 in (7) are explicitly known and can be expressed in terms of 𝛼 and 𝛽
as follows:

𝛼𝑘 =
𝛽2 − 𝛼2

(2𝑘+ 𝛼 + 𝛽)(2𝑘+ 𝛼 + 𝛽 + 2)
, 𝑘 ≥ 0,

𝛽0 =
2𝛼+𝛽+1Γ(𝛼 + 1)Γ(𝛽 + 1)

Γ(𝛼 + 𝛽 + 2)
,

𝛽𝑘 =
4𝑘(𝑘+ 𝛼)(𝑘+ 𝛽)(𝑘+ 𝛼 + 𝛽)

(2𝑘+ 𝛼 + 𝛽)2((2𝑘+ 𝛼 + 𝛽)2 − 1)
, 𝑘 ≥ 1,

where Γ(⋅) denotes the Gamma function. If 𝛼2 = 𝛽2, then 𝛼𝑘 = 0 for all 𝑘 ≥ 0. Moreover, when 𝛼, 𝛽 ∈
{
−1

2 ,
1
2

}
, the associated 

orthogonal polynomials are Chebychev polynomials of the first, second, third, or fourth kinds, and 𝛽𝑘 =
1
4 for 𝑘 ≥ 1. Since in this 

case 𝐺∗
𝑚+1 ≡𝐺𝑚+1, we obtain from (15) that

𝐴2𝑚+1 =
1
2
(𝐺𝑚(𝑓 ) +𝐺𝑚+1(𝑓 )), 𝑚 ≥ 2,

i.e., the weighted averaged quadrature formula (15) coincides with the averaged formula (11).

For general 𝛼, 𝛽 > −1 in (28), we have

lim
𝑚→∞

𝛽𝑚 = 1
4
, (29)

and it follows that the coefficients for 𝐺𝑚 and 𝐺∗
𝑚+1 in (15) tend to 12 as 𝑚 increases, so that

lim
𝑚→∞

(
𝐴2𝑚+1(𝑓 ) −𝐴2𝑚+1(𝑓 )

)
= 0.

This implies that the quadrature rules 𝐴2𝑚+1(𝑓 ) and 𝐴2𝑚+1(𝑓 ) may produce significantly different results only for small values of 𝑚.

Example 3. Consider the integral

𝐼1 =

1

∫
−1

𝑥𝑒𝑥 cos (𝑥+ 1)𝑑𝑥 = 1 + 𝑒2 cos 2
2𝑒

.

The integral 𝐼1 can be computed analytically. To illustrate the performance of the quadrature rules without influence of round-

off errors introduced during the computations, we carry out all computations of this section in high-precision arithmetic. Results 
determined in standard double precision arithmetic are very close to those reported.

Table 1 displays, for the integral 𝐼1 and several small values of 𝑚, the quadrature errors obtained by the Gauss rule 𝐺𝑚, the anti-

Gauss formula 𝐺𝑚+1, the rule 𝐺∗
𝑚+1, the averaged formula 𝐴2𝑚+1, and the weighted averaged rule 𝐴2𝑚+1. The weighted averaged 

rule 𝐴2𝑚+1 can be seen to produce a more accurate approximation of 𝐼1 than 𝐴2𝑚+1 for all values of 𝑚. It also can be observed that 
the anti-Gauss rule 𝐺𝑚+1 and the rule 𝐺∗

𝑚+1 give quadrature errors of opposite sign to that of the corresponding Gauss rule 𝐺𝑚. In 
Table 1, as well as in the remainder of this section, the rule 𝐴2𝑚+1 was computed according to (15).

The rules 𝐴2𝑚+1 and 𝐴2𝑚+1 can be used to estimate the quadrature error (𝐼 −𝐺𝑚)(𝑓 ). A comparison of Table 2 with the second 
columns of Table 1 shows these error estimates to be quite accurate.
9
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Table 2

Quadrature error estimates for 𝐺𝑚 ob-

tained by the averaged rules for the 
integral 𝐼1 .

𝑚 𝐴2𝑚+1 −𝐺𝑚 𝐴2𝑚+1 −𝐺𝑚

2 −7.93𝑒− 02 −7.93𝑒− 02
3 6.29𝑒− 04 6.29𝑒− 04
4 2.51𝑒− 05 2.51𝑒− 05
5 −4.77𝑒− 08 −4.77𝑒− 08
6 −8.10𝑒− 10 −8.10𝑒− 10

Table 3

Quadrature errors for the integral 𝐼2.

𝑚 𝐼2 −𝐺𝑚 𝐼2 −𝐺𝑚+1 𝐼2 −𝐺∗
𝑚+1 𝐼2 −𝐴2𝑚+1 𝐼2 −𝐴2𝑚+1

8 2.55𝑒− 04 −2.83𝑒− 04 −1.92𝑒− 04 −1.38𝑒− 05 5.72𝑒− 05
16 −4.40𝑒− 06 2.73𝑒− 06 9.11𝑒− 06 −8.37𝑒− 07 1.95𝑒− 06
32 2.59𝑒− 07 −2.44𝑒− 07 −3.01𝑒− 07 7.39𝑒− 09 −1.27𝑒− 08
64 2.54𝑒− 10 −2.76𝑒− 10 −1.87𝑒− 10 −1.10𝑒− 11 3.72𝑒− 11

128 −1.53𝑒− 13 1.51𝑒− 13 1.60𝑒− 13 −1.33𝑒− 15 2.08𝑒− 15

3.2. Generalized Laguerre weight functions

We consider the situation when the sequence of monic orthogonal polynomials {𝑝𝑚}∞𝑚=0 are generalized Laguerre polynomials [21,

28], i.e., they satisfy (6) with respect to the domain  = ℝ+ and the measure 𝑑𝜇(𝑥) = 𝑥𝛼𝑒−𝑥𝑑𝑥 for some 𝛼 > −1. The recursion 
coefficients are given by

𝛼𝑘 = 2𝑘+ 𝛼 + 1, 𝑘 ≥ 0,

𝛽0 = Γ(1 + 𝛼), 𝛽𝑘 = 𝑘(𝑘+ 𝛼), 𝑘 ≥ 1.

It is easy to see that

𝛽𝑚+1
𝛽𝑚 + 𝛽𝑚+1

→
1
2

and
𝛽𝑚

𝛽𝑚 + 𝛽𝑚+1
→

1
2

as 𝑚→∞.

Example 4. Regard the integral

𝐼2 =

∞

∫
0

1
(𝑥− 2)2 + 4

𝑤(𝑥)𝑑𝑥, 𝑤(𝑥) =
√
𝑥𝑒−𝑥,

whose exact solution is approximated by a Gauss rule with 1024 nodes. Table 3 displays quadrature errors for this integral. The 
averaged rules can be seen to yield one or two more correct decimal digits than the corresponding Gauss rule. In this example the 
averaged rule produces higher accuracy than the weighted averaged rule with the same number of nodes.

3.3. The Hermite weight function

We consider the measure

𝑑𝜇(𝑥) = 𝑒−𝑥
2
𝑑𝑥.

The monic Hermite orthogonal polynomials satisfy (7) with the coefficients

𝛼𝑘 = 0, 𝑘 ≥ 0,

𝛽0 =
√
𝜋, 𝛽𝑘 =

𝑘

2
, 𝑘 ≥ 1.

Then

𝛽𝑚+1
𝛽𝑚 + 𝛽𝑚+1

= 𝑚+ 1
2𝑚+ 1

→
1
2
,

𝛽𝑚
𝛽𝑚 + 𝛽𝑚+1

= 𝑚

2𝑚+ 1
→

1
2

10

as 𝑚 →∞.
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Table 4

Quadrature errors for the integral 𝐼3.

𝑚 𝐼3 −𝐺𝑚 𝐼3 −𝐺𝑚+1 𝐼3 −𝐺∗
𝑚+1 𝐼3 −𝐴2𝑚+1 𝐼3 −𝐴2𝑚+1

2 4.15𝑒− 02 −4.01𝑒− 02 −6.22𝑒− 02 7.41𝑒− 04 5.64𝑒− 05
4 7.41𝑒− 05 −7.32𝑒− 05 −9.26𝑒− 05 4.37𝑒− 07 2.39𝑒− 08
6 4.69𝑒− 08 −4.66𝑒− 08 −5.46𝑒− 08 1.35𝑒− 10 5.76𝑒− 12
8 1.50𝑒− 11 −1.50𝑒− 11 −1.69𝑒− 11 2.40𝑒− 14 −8.88𝑒− 16

Example 5. Consider the integral

𝐼3 = ∫
ℝ

cosh(𝑥)𝑤(𝑥)𝑑𝑥,

with 𝑤(𝑥) = 𝑒−𝑥
2
. The exact value is approximated by a Gauss rule with 512 nodes. The quadrature errors reported in Table 4 show 

that also for the integral in the present example, the averaged rules yield higher accuracy than the underlying Gauss rules, and the 
weighted averaged formula is superior to the averaged one. This is due to the smoothness of the integrand.

4. Averaged and weighted averaged Nyström-type interpolants

This section describes several ways to apply the averaged and weighted averaged quadrature rules to compute and evaluate an 
approximate solution of the integral equation (1) in suitable weighted spaces 𝐶𝑢(). The consideration of the equations in weighted 
spaces is crucial in order to include the cases when the kernel, right-hand side, and the solution may be unbounded at some boundary 
points of the domain .

Let the quadrature formula 𝐾𝑚 employed in (2) be the 𝑚-point Gauss rule 𝐺𝑚 (8). Then, after multiplying both sides by 𝑢(𝑥(𝐺)
𝑖

), 
the system (3) becomes

𝑚∑
𝑗=1

⎡⎢⎢⎣𝛿𝑖𝑗 + 𝜆
(𝐺)
𝑗

𝑢(𝑥(𝐺)
𝑖

)

𝑢(𝑥(𝐺)
𝑗

)
𝑘(𝑥(𝐺)

𝑗
, 𝑥

(𝐺)
𝑖

)
⎤⎥⎥⎦𝑎(𝐺)𝑗

= (𝑔(𝐺)𝑢)(𝑥(𝐺)
𝑖

), 𝑖 = 1,2,… ,𝑚, (30)

with 𝑎(𝐺)
𝑗

= (𝑓 (𝐺)
𝑚 𝑢)(𝑥(𝐺)

𝑗
), 1 ≤ 𝑗 ≤𝑚, and we determine an approximate solution of (1) by using the weighted Nyström interpolant

(𝑓 (𝐺)
𝑚 𝑢)(𝑦) = (𝑔(𝐺)𝑢)(𝑦) − 𝑢(𝑦)

𝑚∑
𝑗=1

𝜆
(𝐺)
𝑗

𝑢(𝑥(𝐺)
𝑗

)
𝑘(𝑥(𝐺)

𝑗
, 𝑦)𝑎(𝐺)

𝑗
, 𝑦 ∈. (31)

We note for future reference that the linear system of equations (30) can be expressed as

(𝐼𝑚 +𝐷(𝐺)
𝑚 Φ(𝐺)(𝐷(𝐺)

𝑚 )−1)𝐚(𝐺) = 𝐠(𝐺), (32)

where 𝐼𝑚 is the identity matrix of order 𝑚,

𝐷(𝐺)
𝑚 = diag(𝑢(𝑥(𝐺)1 ),… , 𝑢(𝑥(𝐺)𝑚 )),

the unknown vector is 𝐚(𝐺) = [𝑎(𝐺)1 , 𝑎(𝐺)2 , … , 𝑎(𝐺)𝑚 ]𝑇 ∈ ℝ𝑚, and the entries of the matrix Φ(𝐺) = [𝜙(𝐺)
𝑖𝑗

] ∈ ℝ𝑚×𝑚 and right-hand side 
vector 𝐠(𝐺) = [𝑔(𝐺)

𝑖
] ∈ℝ𝑚 are given by

𝜙
(𝐺)
𝑖𝑗

= 𝜆
(𝐺)
𝑗
𝑘(𝑥(𝐺)

𝑗
, 𝑥

(𝐺)
𝑖

), 𝑖, 𝑗 = 1,2,… ,𝑚,

𝑔
(𝐺)
𝑖

= (𝑔𝑢)(𝑥(𝐺)
𝑖

), 𝑖 = 1,2,… ,𝑚.

We tacitly assume that 𝑚 is large enough so that the system (32) has a unique solution; see [5, Theorem 4.1.2]. The computation of 
this solution by LU factorization of the matrix 𝐼𝑚 +𝐷(𝐺)

𝑚 Φ(𝐺)(𝐷(𝐺)
𝑚 )−1 requires about 23𝑚

3 arithmetic floating point operations (flops); 
see, e.g., [29, Lecture 20].

A Nyström method based on the anti-Gauss quadrature rule (9) was recently described in [19], where the interpolant correspond-

ing to the (2𝑚 + 1)-point averaged quadrature rule (11) was studied.

In the following, we discretize the integral equation (1) by the (2𝑚 +1)-point weighted averaged quadrature rule that is associated 
with the 𝑚-point Gauss rule, and define a corresponding weighted Nyström interpolant. This interpolant gives higher accuracy than 
the Nyström interpolant defined by the 𝑚-point Gauss rule. The difference between the approximate solutions of (1) furnished by the 
Nyström interpolants associated with the 𝑚-point Gauss rule and the corresponding (2𝑚 + 1)-point weighted averaged quadrature 
formula is used to estimate the error in the approximate solution obtained by the Gauss–Nyström interpolant. This approach of 
11

estimating the error is analogous to the technique used in Section 3.
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4.1. A weighted averaged Nyström interpolant

We consider the Nyström interpolant (4) that is determined by the (2𝑚 + 1)-point weighted averaged quadrature rule 𝐴2𝑚+1 (12)

associated with the 𝑚-point Gauss rule (8) used in (30). The determination of this interpolant requires the solution of the equation

(𝐼 +𝐾2𝑚+1)𝑓
[1]
2𝑚+1 = 𝑔, (33)

with

(𝐾2𝑚+1𝑓 )(𝑦) =
2𝑚+1∑
𝑗=1

𝜆𝑗𝑘(𝑥𝑗 , 𝑦)𝑓 (𝑥𝑗 ), (34)

that is, the solution of the linear system of equations with a matrix of order 2𝑚 + 1,

2𝑚+1∑
𝑗=1

[
𝛿𝑖𝑗 + 𝜆𝑗

𝑢(𝑥𝑖)
𝑢(𝑥𝑗 )

𝑘(𝑥𝑗 , 𝑥𝑖)

]
𝑎𝑗 = (𝑔𝑢)(𝑥𝑖), 𝑖 = 1,2,… ,2𝑚+ 1, (35)

with 𝑎𝑗 = (𝑓 [1]
2𝑚+1𝑢)(𝑥𝑗 ). We assume as usual that 𝑚 is large enough so that this system has a unique solution ̂𝐚 = [𝑎1, ̂𝑎2, … , ̂𝑎2𝑚+1]𝑇 , 

which determines the weighted averaged Nyström interpolant

(𝑓 [1]
2𝑚+1𝑢)(𝑦) = (𝑔𝑢)(𝑦) − 𝑢(𝑦)

2𝑚+1∑
𝑗=1

𝜆𝑗

𝑢(𝑥𝑗 )
𝑘(𝑥𝑗 , 𝑦)𝑎𝑗 , 𝑦 ∈. (36)

We will use the difference (𝑓 [1]
2𝑚+1(𝑦) − 𝑓

(𝐺)
𝑚 (𝑦))𝑢(𝑦) as an estimate of the error in (𝑓 (𝐺)

𝑚 𝑢)(𝑦).
Introduce the matrices 𝐷2𝑚+1 = diag(𝑢(𝑥1), … , 𝑢(𝑥2𝑚+1)) and Φ = [𝜙𝑖𝑗 ] ∈ℝ(2𝑚+1)×(2𝑚+1) with entries

𝜙𝑖𝑗 = [𝜆𝑗𝑘(𝑥𝑗 , 𝑥𝑖)], 𝑖, 𝑗 = 1,2,… ,2𝑚+ 1,

and the vector 𝐠 = [(𝑔𝑢)(𝑥𝑖)] ∈ℝ2𝑚+1. Then the linear system of equations (35) can be written as

(𝐼2𝑚+1 +𝐷2𝑚+1Φ𝐷−1
2𝑚+1)�̂� = 𝐠. (37)

The solution of this linear system by LU factorization requires about 163 𝑚
3 flops. Thus, the total computational effort required to 

solve both the systems (32) and (37) is about 183 𝑚
3 flops.

Theorem 6. Assume that  (𝐼 + 𝐾) = {0} in 𝐶𝑢() and let 𝑓 be the unique solution of equation (1) for each given right-hand side 
𝑔 ∈ 𝐶𝑢(). If

∫


𝑑𝜇(𝑥)
𝑢2(𝑥)

<∞

and the kernel function 𝑘 satisfies

sup
𝑦∈

𝑢(𝑦)‖𝑘(⋅, 𝑦)‖𝑊 𝑟
𝑢 () <∞, sup

𝑥∈
𝑢(𝑥)‖𝑘(𝑥, ⋅)‖𝑊 𝑟

𝑢 () <∞,

then equation (33) has a unique solution 𝑓 [1]
2𝑚+1 ∈ 𝐶𝑢() for 𝑚 sufficiently large.

If, in addition, the right-hand side satisfies 𝑔 ∈𝑊 𝑟
𝑢 (), then ‖(𝑓 −𝑓 [1]

2𝑚+1)𝑢‖∞ tends to zero as the error of best polynomial approximation 
in 𝑊 𝑟

𝑢 ().
Finally, the ∞-norm condition number of the coefficient matrix in (37) is bounded independently of 𝑚, for 𝑚 sufficiently large.

Proof. To prove the first part of the theorem we have to show that

(A) lim
𝑚→∞

‖(𝐾 −𝐾2𝑚+1)𝑓𝑢‖∞ = 0 for each 𝑓 ∈ 𝐶𝑢(),

(B) lim
𝑀→∞

(
sup
𝑚

[
sup‖𝑓𝑢‖≤1𝐸𝑀 (𝐾2𝑚+1𝑓 )𝑢

])
= 0.

Let us first prove (A). We observe that the function 𝑘(⋅, 𝑦)𝑓 is in 𝐶𝑢2 (). By applying Corollary 5 to this function with 𝑢2 in place of 
𝑢, we deduce|||(𝐾𝑓 )(𝑦) − (𝐾2𝑚+1𝑓 )(𝑦)

||| ≤ 𝐸2𝑚−1(𝑘(⋅, 𝑦)𝑓 )𝑢2 .
12

Therefore, multiplying both sides times 𝑢(𝑦) and using [8, Equation 4.1],
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𝐸𝑚(𝑓𝑔)𝑢2 ≤ 2
[‖𝑓𝑢‖∞𝐸𝑚(𝑔)𝑢 + ‖𝑔𝑢‖∞𝐸𝑚(𝑓 )𝑢

]
,

we obtain||||[(𝐾𝑓 )(𝑦) − (𝐾2𝑚+1𝑓 )(𝑦)
]
𝑢(𝑦)

|||| ≤ 
[
sup
𝑦∈

𝑢(𝑦)‖𝑘(⋅, 𝑦)𝑢‖∞𝐸𝑚−1(𝑓 )𝑢 + ‖𝑓𝑢‖∞ sup
𝑦∈

𝑢(𝑦)𝐸𝑚−1(𝑘(⋅, 𝑦))𝑢
]
, (38)

which tends to zero as 𝑚 increases by the assumptions on 𝑘(⋅, 𝑦) and 𝑓 .

To prove (B), we show that 𝐾2𝑚+1 maps 𝐶𝑢() into 𝑊 𝑟
𝑢 (). Indeed, from (34),

|||(𝐾2𝑚+1𝑓 )(𝑟)(𝑦)𝜑𝑟(𝑦)𝑢(𝑦)
||| ≤ 2𝑚+1∑

𝑗=1

𝜆𝑗

𝑢2(𝑥𝑗 )
𝑢(𝑥𝑗 )

|||𝑘(𝑥𝑗 , 𝑦)(𝑟)𝜑𝑟(𝑦)𝑢(𝑦)||| ⋅ |||𝑓 (𝑥𝑗 )𝑢(𝑥𝑗 )|||
≤ ‖𝑓𝑢‖∞ sup

𝑥∈
𝑢(𝑥)‖‖‖𝑘(𝑥, ⋅)(𝑟)𝜑𝑟𝑢‖‖‖∞ 2𝑚+1∑

𝑗=1

𝜆𝑗

𝑢2(𝑥𝑗 )
,

which is bounded by virtue of the assumptions on the kernel and on the weight function, and by taking Corollary 5 into account. 
Hence, 𝐾2𝑚+1𝑓 ∈𝑊 𝑟

𝑢 () and we can deduce that

𝐸𝑀 (𝐾2𝑚+1𝑓 ) ≤ 
𝑀𝑐𝑟

‖𝑓𝑢‖∞,
where 𝑐 and  are positive constants independent of 𝑚, 𝑀 , and 𝑓 . Condition (B) now follows and, consequently, ‖(𝐾−𝐾2𝑚+1)𝐾2𝑚+1‖
tends to zero as 𝑚 increases. This can be seen by (38) with 𝐾2𝑚+1𝑓 in place of 𝑓 and by applying our assumptions on the kernel 
function. Therefore by [5, Chapter 4], the operator 𝐼 −𝐾2𝑚+1 is invertible in 𝐶𝑢(), for 𝑚 sufficiently large, and uniformly bounded. 
This completes the proof of the first assertion.

The estimate of the error follows from [5, Theorem 4.1.2],‖‖‖(𝑓 − 𝑓 [1]
2𝑚+1)𝑢

‖‖‖∞ ∼ ‖‖‖[𝐾𝑓 −𝐾2𝑚+1𝑓 ]𝑢
‖‖‖∞ ,

and by applying (38).

A proof of the well-conditioning of the linear system is given in [5, p. 113]. We just have to replace the usual infinity norm by 
the weighted norm of the space 𝐶𝑢(). □

4.2. An approximate Nyström interpolant based on the splitting (15)

The splitting (15) suggests the use of an approximate Nyström interpolant that is cheaper to compute than solving (37). The 
evaluation of the approximate interpolant proceeds as follows:

I. Determine and solve the linear system of equations (32) associated with the 𝑚-point Gauss rule. This yields the Nyström inter-

polant 𝑓 (𝐺)
𝑚 𝑢 defined by (31).

II. Compute the (𝑚 +1)-point Nyström interpolant that is associated with the quadrature rule 𝐺∗
𝑚+1 in (17), with nodes and weights 

𝑥∗
𝑗

and 𝜆∗
𝑗
, respectively. Thus, we consider the equation

(𝐼 +𝐾∗
𝑚+1)𝑓

∗
𝑚+1 = 𝑔, (39)

where

(𝐾∗
𝑚+1𝑓 )(𝑦) =

𝑚+1∑
𝑗=1

𝜆∗𝑗 𝑘(𝑥
∗
𝑗 , 𝑦)𝑓 (𝑥

∗
𝑗 ).

This leads to the Nyström interpolant

(𝑓 ∗
𝑚+1𝑢)(𝑦) = (𝑔𝑢)(𝑦) − 𝑢(𝑦)

𝑚+1∑
𝑗=1

𝜆∗
𝑗

𝑢(𝑥∗
𝑗
)
𝑘(𝑥∗𝑗 , 𝑦)𝑎

∗
𝑗 , 𝑦 ∈, (40)

whose coefficients 𝑎∗
𝑗
= (𝑓 ∗

𝑚+1𝑢)(𝑥
∗
𝑗
), 𝑗 = 1, 2, … , 𝑚 + 1, are the unknowns in the linear system of equations

𝑚+1∑
𝑗=1

[
𝛿𝑖𝑗 + 𝜆∗𝑗

𝑢(𝑥∗
𝑖
)

𝑢(𝑥∗
𝑗
)
𝑘(𝑥∗𝑗 , 𝑥

∗
𝑖 )

]
𝑎∗𝑗 = (𝑔𝑢)(𝑥∗𝑖 ), 𝑖 = 1,2,… ,𝑚+ 1.

We can express the above linear system in the form

(𝐼𝑚+1 +𝐷∗
𝑚+1Φ

∗(𝐷∗
𝑚+1)

−1)𝐚∗ = 𝐠∗, (41)
13

where 𝐚∗ = [𝑎∗1 , … , 𝑎∗
𝑚+1]

𝑇 ,
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𝐷∗
𝑚+1 = diag(𝑢(𝑥∗1),… , 𝑢(𝑥∗

𝑚+1)),

and the entries of the matrix Φ∗ = [𝜙∗
𝑖𝑗
] ∈ℝ(𝑚+1)×(𝑚+1) and right-hand side vector 𝐠∗ = [𝑔∗

𝑖
] ∈ℝ𝑚+1 are given by

𝜙∗
𝑖𝑗 = 𝜆∗𝑗 𝑘(𝑥

∗
𝑗 , 𝑥

∗
𝑖 ), 𝑖, 𝑗 = 1,2,… ,𝑚+ 1,

𝑔∗𝑖 = (𝑔𝑢)(𝑥∗𝑖 ) 𝑖 = 1,2,… ,𝑚+ 1.

III. Approximate the solution of the original equation (1) by a convex combination of the weighted Nyström interpolants computed 
in steps I and II, as suggested by the representation (15) of the quadrature rule (12):

(𝑓 [2]
2𝑚+1𝑢)(𝑦) =

𝛽𝑚+1
𝛽𝑚 + 𝛽𝑚+1

(𝑓 (𝐺)
𝑚 𝑢)(𝑦) +

𝛽𝑚
𝛽𝑚 + 𝛽𝑚+1

(𝑓 ∗
𝑚+1𝑢)(𝑦). (42)

The determination of this interpolant requires the solution of two linear systems of equations with matrices of orders 𝑚 and 𝑚 +1, 
respectively. Their solution demands about 43𝑚

3 flops. In particular, this includes the computational effort required to evaluate the 
Gauss–Nyström interpolant (31). Hence, the calculation of the interpolant (42) is cheaper than the computation of the interpolant 
(36). We will compare the accuracy of the approximations 𝑓 [1]

2𝑚+1 and 𝑓 [2]
2𝑚+1, defined by (36) and (42), respectively, of the solution 

𝑓 of (1) in Section 6.

We observed in Section 2 that for Chebychev measures, the coefficients 𝛽𝑚+1
𝛽𝑚+𝛽𝑚+1

and 𝛽𝑚
𝛽𝑚+𝛽𝑚+1

in (15) are 12 . When 𝑚 tends to 

∞, these coefficients tend to 12 as 𝑚 increases also for other measures. When the coefficients equal 12 , the Nyström interpolant (42)

coincides with the averaged interpolant determined by the Gauss and anti-Gauss rules. The latter interpolant has been investigated 
in [19].

We conclude this subsection by showing convergence and stability of the Nyström method based on the quadrature rule 𝐺∗
𝑚+1 . 

This yields (40), and convergence of the interpolant (42).

Theorem 7. Assume that  (𝐼 + 𝐾) = {0} in 𝐶𝑢() and let 𝑓 be the unique solution of equation (1) for the right-hand side function 
𝑔 ∈ 𝐶𝑢(). If

∫


𝑑𝜇(𝑥)
𝑢2(𝑥)

<∞,

and the kernel function 𝑘 is such that

sup
𝑦∈

𝑢(𝑦)‖𝑘(⋅, 𝑦)‖𝑊 𝑟
𝑢 () <∞, sup

𝑥∈
𝑢(𝑥)‖𝑘(𝑥, ⋅)‖𝑊 𝑟

𝑢 () <∞,

then, for 𝑚 large enough, equation (39) has a unique solution 𝑓 ∗
𝑚+1 ∈ 𝐶𝑢(). Moreover, if the right-hand side 𝑔 is in 𝑊 𝑟

𝑢 (), then ‖‖‖(𝑓 − 𝑓 ∗
𝑚+1)𝑢

‖‖‖∞ tends to zero as 𝑚 increases as the error of best polynomial approximation in 𝑊 𝑟
𝑢 ().

Finally, the condition number of the matrix (𝐼𝑚+1 +Φ∗) in the ∞-norm is bounded independently of 𝑚, for 𝑚 sufficiently large.

Proof. The assertions can be proved similarly as Theorem 6, by applying Corollary 4 in place of Corollary 5. □

Proposition 8. Assume that  (𝐼 +𝐾) = {0} in 𝐶𝑢() and let 𝑓 be the unique solution of equation (1) for the right-hand side function 
𝑔 ∈ 𝐶𝑢(). Then, under the assumption of Theorem 3,

lim
𝑚→∞

‖(𝑓 − 𝑓
[2]
2𝑚+1)𝑢‖∞ = 0,

where 𝑓 [2]
2𝑚+1 is given by (42).

Proof. By (42) we have

‖(𝑓 − 𝑓 [2]
2𝑚+1)𝑢‖∞ ≤ 𝛽𝑚+1

𝛽𝑚 + 𝛽𝑚+1
‖(𝑓 − 𝑓 (𝐺)

𝑚 )𝑢‖∞ +
𝛽𝑚

𝛽𝑚 + 𝛽𝑚+1
‖(𝑓 − 𝑓 ∗

𝑚+1)𝑢‖∞,
from which the assertion follows by considering that the coefficients tend to 12 as 𝑚 → ∞ and by taking Theorems 6 and 7 into 
account. □

5. Iterative methods for the evaluation of the Nyström interpolant (36)

This section describes several iterative methods for computing approximations of the Nyström interpolant (36) that are more 
accurate than the approximation described in the previous subsection. This paper discusses some simple algorithms directly stemming 
from the quadrature rules used to compute (36). We prove their convergence under the assumption that the weight of the space 𝐶𝑢()
14

is 𝑢(𝑥) = 1. However, in Section 6, we show by a numerical experiment that a suitable choice of the weight 𝑢 may improve the rate 
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of convergence. Other iterative methods also could be employed, such as Krylov methods. Here, we focus on methods that exploit 
the structure of the problem.

Using the notation introduced above, we set

𝜃(1)𝑚 =
𝛽𝑚+1

𝛽𝑚 + 𝛽𝑚+1
,

𝜃(2)𝑚 =
𝛽𝑚

𝛽𝑚 + 𝛽𝑚+1
,

Φ11 = 𝜃(1)𝑚 Φ(𝐺),

Φ22 = 𝜃(2)𝑚 Φ∗,

see (32) and (41), and

(Φ12)𝑖𝑗 = 𝜃(2)𝑚 𝜆∗𝑗 𝑘(𝑥
∗
𝑗 , 𝑥

(𝐺)
𝑖

), 𝑖 = 1,2,… ,𝑚, 𝑗 = 1,2,… ,𝑚+ 1,

(Φ21)𝑖𝑗 = 𝜃(1)𝑚 𝜆
(𝐺)
𝑗
𝑘(𝑥(𝐺)

𝑗
, 𝑥∗𝑖 ), 𝑖 = 1,2,… ,𝑚+ 1, 𝑗 = 1,2,… ,𝑚.

Express the system (37) as[
𝐼𝑚 +Φ11 Φ12

Φ21 𝐼𝑚+1 +Φ22

][
𝐛
𝐜

]
=
[
𝐠(𝐺)
𝐠∗
]
, (43)

where 𝐛 = 𝐚(𝐺) ∈ℝ𝑚, 𝐜 = 𝐚∗ ∈ℝ𝑚+1. The representation (43) suggests a few iterative solution methods. The first one we consider is 
a modification of the method considered in Subsection 4.2, which uses the computed LU factorizations in an iterative fashion. It is 
defined by

(𝐼𝑚 +Φ11)𝐛(𝑘+1) = 𝐠−Φ12𝐜(𝑘),

(𝐼𝑚+1 +Φ22)𝐜(𝑘+1) = 𝐠∗ −Φ21𝐛(𝑘+1),
𝑘 = 0,1,2,… . (44)

Since the method is stationary, the LU factorizations of the coefficient matrices can be computed initially, and then used in each 
iteration. Computing the vector 𝐜(0) by the (𝑚 + 1)-point 𝐺∗

𝑚+1 quadrature formula yields a quite accurate initial approximation of 
the second part of the solution. In actual computations, convergence is typically achieved within a fairly small number of iterations. 
The following results give sufficient conditions for the convergence of the method.

Theorem 9. Let the kernel of (1) satisfy

‖𝑘‖∞ = sup
𝑦∈

‖𝑘(⋅, 𝑦)‖∞ < 𝛽−10 , (45)

where 𝛽0 = ⟨𝑝0, 𝑝0⟩. Then, for a sufficiently large 𝑚, the iteration process (44) converges to the vectors

𝐛 = [𝑓 [1]
2𝑚+1(𝑥

(𝐺)
1 ),… , 𝑓

[1]
2𝑚+1(𝑥

(𝐺)
𝑚 )]𝑇 , 𝐜 = [𝑓 [1]

2𝑚+1(𝑥
∗
1),… , 𝑓

[1]
2𝑚+1(𝑥

∗
𝑚+1)]

𝑇 , (46)

that is, to the unique solution of system (37).

Proof. Let 𝐛 ∈ℝ𝑚 and 𝐜 ∈ℝ𝑚+1 denote the solution of (44). Introduce the error vectors 𝐞(𝑘+1)
𝑏

= 𝐛(𝑘+1) − 𝐛 and 𝐞(𝑘)𝑐 = 𝐜(𝑘+1) − 𝐜 for 
𝑘 = 0, 1, 2, …. The assumption (45) implies that there exists a constant 𝜀 > 0 such that the matrix Φ11 satisfies

‖Φ11‖∞ = 𝜃(1)𝑚 max
𝑖=1,2,…,𝑚

𝑚∑
𝑗=1

𝜆
(𝐺)
𝑗
|𝑘(𝑥(𝐺)

𝑗
, 𝑥

(𝐺)
𝑖

)| ≤ 𝜃(1)𝑚 𝛽0‖𝑘‖∞ < 𝜃(1)𝑚 − 𝜀 <
1
2
,

since the sum of the quadrature weights is 𝛽0. Similarly, we obtain

‖Φ𝑖𝑗‖∞ <
1
2
, 𝑖, 𝑗 = 1,2. (47)

Therefore, the matrices 𝐼𝑚 +Φ11 and 𝐼𝑚+1 +Φ22 are invertible and

‖(𝐼𝑚 +Φ𝓁𝓁)−1‖∞ ≤ 1
1 − ‖Φ𝓁𝓁‖∞ , 𝓁 = 1,2.

Combining (44) and (43), we obtain

𝐞(𝑘+1)
𝑏

= −(𝐼𝑚 +Φ11)−1Φ12𝐞(𝑘)𝑐 , 𝐞(𝑘+1)𝑐 = −(𝐼𝑚 +Φ22)−1Φ21𝐞
(𝑘+1)
𝑏

,

which yields
15

𝐞(𝑘+1)𝑐 = (𝐼𝑚 +Φ22)−1Φ21(𝐼 +Φ11)−1Φ12𝐞(𝑘)𝑐 , 𝑘 = 0,1,2,… .
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It follows from (47) that

‖(𝐼𝑚 +Φ11)−1Φ12‖∞ ≤ ‖Φ12‖∞
1 − ‖Φ11‖∞ < 1.

Similarly, ‖(𝐼𝑚 +Φ22)−1Φ21‖∞ < 1, and we obtain

‖(𝐼𝑚 +Φ22)−1Φ21(𝐼 +Φ11)−1Φ12‖∞ < 1.

This shows that lim𝑘→∞ 𝐞(𝑘)𝑐 = 𝟎. The fact that lim𝑘→∞ 𝐞(𝑘)
𝑏

= 𝟎 can be shown similarly. □

Theorem 10. Let the kernel of (1) satisfy

sup
𝑦∈

‖𝑘(⋅, 𝑦)‖1 ≤𝑀 < 1,

where 𝑀 is a positive constant. Then, for a sufficiently large 𝑚, the iteration process (44) converges to the unique solution (46) of system 
(37).

Proof. Proceeding as in the proof of Theorem 9, we can write

‖Φ11‖∞ = 𝜃(1)𝑚 max
𝑖=1,…,𝑚

𝑚∑
𝑗=1

𝜆
(𝐺)
𝑗
|𝑘(𝑥(𝐺)

𝑗
, 𝑥

(𝐺)
𝑖

)| = 𝜃(1)𝑚 𝐺𝑚(|𝑘(⋅, 𝑦)|).
Since 𝐺𝑚 is convergent, there are a sequence of constants 𝜌𝑚 > 0, 𝑚 = 1, 2, …, which converge to 1, such that

𝐺𝑚(|𝑘(⋅, 𝑦)|) ≤ 𝜌𝑚‖𝑘(⋅, 𝑦)‖1 ≤ 𝜌𝑚𝑀 < 1,

for 𝑚 sufficiently large. Recalling that 𝜃(1)𝑚 converges to 12 as 𝑚 increases, we have

‖Φ11‖∞ ≤ 𝜃(1)𝑚 𝜌𝑚𝑀 <
1
2
.

The rest of the proof is similar to the proof of Theorem 9. □

The iterations (44) are terminated when two consecutive iterates are sufficiently close, that is when

‖𝐛(𝑘+1) − 𝐛(𝑘)‖2 < 𝜏 and ‖𝐜(𝑘+1) − 𝐜(𝑘)‖2 < 𝜏,

for a chosen tolerance 𝜏 , or when a prescribed maximum number of iterations has been carried out. We denote the computed solution 
by 𝐛(iter) = [𝑏(iter)

𝑖
] and 𝐜(iter) = [𝑐(iter)

𝑖
]. This yields the interpolant

𝑓
[3]
2𝑚+1(𝑦) = 𝑔(𝑦) − 𝜃(1)𝑚

𝑚∑
𝑗=1

𝜆
(𝐺)
𝑗
𝑘(𝑥(𝐺)

𝑗
, 𝑦)𝑏(iter)

𝑗
− 𝜃(2)𝑚

𝑚+1∑
𝑗=1

𝜆∗𝑗 𝑘(𝑥
∗
𝑗 , 𝑦)𝑐

(iter)
𝑗

,

for any 𝑦 ∈.

We next consider the alternative iterative method

(𝐼𝑚 +Φ11)𝐛(𝑘+1) = 𝐠−Φ12𝐜(𝑘),

𝐜(𝑘+1) = 𝐠∗ −Φ21𝐛(𝑘+1) − Φ22𝐜(𝑘),
𝑘 = 0,1,2,… , (48)

which only requires the LU factorization of the matrix 𝐼𝑚 +Φ11. Similarly, for the method (44), the initial solution 𝐜(0) is computed 
by the quadrature rule 𝐺∗

𝑚+1. We denote the Nyström interpolant corresponding to the above iteration by 𝑓 [4] .

Theorem 11. Under the assumptions of Theorem 9, the iteration process (48) converges to the vectors (46).

Proof. The error vectors for the method are

𝐞(𝑘+1)
𝑏

= (𝐼𝑚 +Φ11)−1Φ12

(
Φ21𝐞

(𝑘)
𝑏

+Φ22𝐞(𝑘−1)𝑐

)
,

𝐞(𝑘+1)𝑐 =
(
Φ21(𝐼𝑚 +Φ11)−1Φ12 −Φ22

)
𝐞(𝑘)𝑐 ,

𝑘 = 1,2,… .

The convergence can be easily proved by the same arguments as in the proof of Theorem 9. □

The last iterative method we consider is a Richardson-type method. It is defined by

𝐛(𝑘+1) = 𝐠−Φ11𝐛(𝑘) − Φ12𝐜(𝑘),
𝑘 = 0,1,2,… . (49)
16

𝐜(𝑘+1) = 𝐠∗ −Φ21𝐛(𝑘+1) − Φ22𝐜(𝑘),
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Fig. 1. Errors 𝑓 − 𝑓 (𝐺)
𝑚

(Gauss rule), 𝑓 − 𝑓𝑚+1 (anti-Gauss rule), and 𝑓 − 𝑓 ∗
𝑚+1 (𝐺∗

𝑚+1 rule), for Example 6 (left) and Example 7 (right) with 𝑚 = 2.

Table 5

Approximation errors for Example 6.

𝑚 𝑅(𝐺)
𝑚

�̃�𝑚+1 𝑅∗
𝑚+1 𝑅

(𝐴)
2𝑚+1 𝑅[1]

2𝑚+1 𝑅[2]
2𝑚+1

2 1.11e-01 1.26e-01 1.25e-01 1.10e-02 2.22e-03 1.20e-02

4 6.03e-03 6.03e-03 6.00e-03 2.42e-06 2.89e-07 3.57e-07

6 1.49e-05 1.49e-05 1.49e-05 6.88e-10 4.71e-11 4.69e-11

8 8.01e-09 8.01e-09 8.00e-09 9.53e-14 3.16e-15 3.77e-15

10 1.46e-12 1.46e-12 1.46e-12 3.33e-16 8.88e-16 2.22e-16

Convergence can be established similarly as above. The LU factorization of a matrix is not required in this case, but the convergence 
is the slowest among the iterative methods considered. We refer to the Nyström interpolant computed in this manner as 𝑓 [5] .

Remark 1. We note that the iterative methods (44), (48), and (49) may be implemented by replacing 𝐛(𝑘+1) by 𝐛(𝑘) in the right-hand 
side of the second equation of each method. This has the advantage that the two formulas can be evaluated simultaneously on a 
parallel computer, but it slightly decreases the rate of convergence.

6. Numerical examples

To illustrate the performance of the averaged Nyström interpolants discussed in the previous sections, we apply them to the 
solution of three integral equations with different degrees of regularity. The computations were carried out in Matlab R2021b on a 
Debian GNU/Linux computer.

In the tables that report the results, the symbols

𝑅(𝐺)
𝑚 , �̃�𝑚+1, 𝑅

∗
𝑚+1, 𝑅

(𝐴)
2𝑚+1, 𝑅

[𝑖]
2𝑚+1, 𝑖 = 1,2,… ,5,

denote the difference in the uniform norm between the exact solution 𝑓 and the Nyström interpolants

𝑓 (𝐺)
𝑚 , 𝑓𝑚+1, 𝑓

∗
𝑚+1, 𝑓

(𝐴)
2𝑚+1, 𝑓

[𝑖]
2𝑚+1, 𝑖 = 1,2,… ,5,

respectively. We approximate the uniform norm by evaluating the error at 103 equispaced points in the interval (−1, 1).

Example 6. We first consider the equation

𝑓 (𝑦) + 1
2

1

∫
−1

𝑥𝑒𝑦 sin(𝑥+ 𝑦)𝑓 (𝑥)𝑑𝑥 = 𝑔(𝑦), (50)

where 𝑔(𝑦) = 1
32 (8 cos2 − 4 cos4 − 4 sin 2 + sin4)𝑒𝑦 cos𝑦 + cos(3𝑦). The exact solution is 𝑓 (𝑦) = cos3𝑦. We set 𝛼 = 𝛽 = 0 in the Jacobi 

weight function (28) and 𝛾 = 𝛿 = 0 in the weight 𝑢(𝑥) (26) of the function space 𝐶𝑢([−1, 1]).
In the graph on the left of Fig. 1, we plot the difference between the exact solution 𝑓 and the approximation produced by the 

Gauss rule, the anti-Gauss formula, and the quadrature rule 𝐺∗
𝑚+1 for 𝑚 = 2. We can observe that the errors of the second and third 
17

Nyström interpolants are of opposite sign as the error in the Nyström interpolant determined by the Gauss rule for all 𝑥 ∈ [−1, 1].



Applied Mathematics and Computation 467 (2024) 128482L. Fermo, L. Reichel, G. Rodriguez et al.

Table 6

Approximation errors for Example 6.

𝑚 𝑅[1]
2𝑚+1 𝑅[3]

2𝑚+1 (𝑁iter) 𝑅[4]
2𝑚+1 (𝑁iter) 𝑅[5]

2𝑚+1 (𝑁iter)

2 2.22e-03 2.22e-03 (13) 2.22e-03 (21) 2.22e-03 (25)

4 2.89e-07 2.89e-07 (12) 2.89e-07 (21) 2.89e-07 (23)

6 4.71e-11 4.71e-11 (10) 4.71e-11 (17) 4.71e-11 (20)

8 3.16e-15 3.72e-15 (8) 3.72e-15 (13) 3.72e-15 (14)

10 8.88e-16 1.11e-16 (5) 1.11e-16 (8) 1.11e-16 (8)

Table 7

Approximation errors for Example 7 (𝜏 = 10−15 , 𝛾 = 𝛿 = 0).

𝑚 𝑅[1]
2𝑚+1 𝑅[2]

2𝑚+1 𝑅[3]
2𝑚+1 (𝑁iter) 𝑅[4]

2𝑚+1 (𝑁iter) 𝑅[5]
2𝑚+1 (𝑁iter)

2 1.32e-03 8.18e-03 1.32e-03 (20) 1.32e-03 (44) 1.32e-03 (92)

4 8.82e-06 1.33e-04 8.82e-06 (19) 8.82e-06 (36) 8.82e-06 (83)

8 4.76e-09 2.49e-08 4.76e-09 (16) 4.76e-09 (30) 4.76e-09 (69)

16 9.99e-11 9.99e-11 9.99e-11 (13) 9.99e-11 (23) 9.99e-11 (53)

32 2.44e-12 2.44e-12 2.44e-12 (12) 2.44e-12 (20) 2.44e-12 (43)

64 5.62e-14 5.60e-14 5.60e-14 (10) 5.62e-14 (18) 5.60e-14 (35)

128 1.33e-15 2.39e-15 1.33e-15 (10) 1.33e-15 (14) 1.55e-15 (100)

256 1.55e-15 1.01e-15 7.77e-16 (7) 7.77e-16 (10) 8.88e-16 (20)

Table 5 shows the behavior of the Nyström interpolants determined by three quadrature rules (Gauss, anti-Gauss, and 𝐺∗
𝑚+1), 

and compares them to the interpolants determined by averaged and weighted averaged Gauss rules (𝑓 (𝐴)
2𝑚+1 and 𝑓 [1]

2𝑚+1), and the 
approximation 𝑓 [2]

2𝑚+1 of the latter. The number of quadrature nodes, 𝑚, ranges from 2 to 10.

It can be seen that while the simple rules are equivalent, the averaged rules lead to improved accuracy, in some cases the 
improvement is 6 significant decimal digits. The weighted averaged rule is always more accurate than the averaged rule, except 
when machine precision is reached, where the larger linear system to be solved increases error propagation. The approximated 
interpolant 𝑓 [2]

2𝑚+1 (42) is less accurate than 𝑓 [1]
2𝑚+1 for small 𝑚, while it is equivalent for larger numbers of collocation points, and is 

the most accurate for 𝑚 = 10. It can be seen that in the last case, the solution of two linear systems of orders 𝑚 and 𝑚 + 1, instead of 
the solution of one system of order 2𝑚 + 1, is beneficial both with respect to the complexity and stability of the numerical method.

Table 6 compares the weighted averaged interpolant 𝑓 [1]
2𝑚+1 computed by a direct method, to the approximations 𝑓 [𝑖]

2𝑚+1, 𝑖 = 3, 4, 5, 
obtained by the iterative methods (44), (48), and (49). We remark that the kernel of (50) satisfies the convergence assumption of 
Theorem 10, but not that of Theorem 9. For each algorithm, we report the uniform norm error and the number of iterations necessary 
to reach convergence. We see that the accuracy achieved by the three iterative methods is equivalent to the accuracy obtained by 
direct solution. The iterative methods are more accurate for 𝑚 = 10.

In this test, we used a rather small tolerance 𝜏 = 10−15 to stop the iteration. We recall that the first iterative method requires two 
LU factorizations of matrices of orders 𝑚 and 𝑚 + 1, the second one just demands one LU factorization of a matrix of order 𝑚, while 
(49) does not require the computation of a factorization. Since the number of iterations for the second method is less than twice the 
number required by the first method, its computational cost is less. The third method has the lowest complexity, as it only involves 
matrix-vector product evaluations. However, since the matrix size is very small, it is not possible to actually measure the computing 
time.

Example 7. The second integral equation is

𝑓 (𝑦) +

1

∫
−1

𝑒𝑥+𝑦

1 + 𝑥2 + 3𝑦2
𝑓 (𝑥) 4√1 − 𝑥2𝑑𝑥 = |𝑦+ 1| 32 , (51)

and the parameters of the Jacobi weight function (28) are 𝛼 = 𝛽 = 1
4 , and the space is not weighted, i.e., 𝛾 = 𝛿 = 0. The exact solution 

is not available. We therefore consider the Nyström interpolant computed by a Gauss rule with 𝑚 = 512 the exact solution. The graph 
on the left of Fig. 1 shows that, also in this case, the errors in the Nyström interpolant determined by the anti-Gauss and 𝐺∗

𝑚+1 rules 
with 𝑚 = 2 are of opposite sign as the error in the Nyström interpolant determined by the Gauss rule 𝐺𝑚 at all point of the interval 
(−1, 1).

Table 7 compares the different algorithms for computing the weighted averaged interpolants 𝑓 [𝑖]
2𝑚+1, 𝑖 = 1, 2, … , 5. The stop 

tolerance for the iterative methods is 𝜏 = 10−15, and 𝛾 = 𝛿 = 0 for the space 𝐶𝑢([−1, 1]). The kernel of (51) does not satisfy the 
assumptions of Theorems 9 and 10, but nevertheless the iterative methods converge, except for in one case. As the right-hand 
side of (51) is not smooth, a large value of 𝑚 is required to achieve high accuracy. This is illustrated by the second column. 
Due to propagation of round-off errors, the error in the interpolants 𝑓 [1]

2𝑚+1 does not decrease as 𝑚 becomes larger than 128. The 
approximation 𝑓 [2]

2𝑚+1 is slightly less accurate for 𝑚 < 16, but it is about the same as in 𝑓 [1]
2𝑚+1 when 𝑚 is large. We recall that the 
18

evaluation of 𝑓 [2]
2𝑚+1 is cheaper than the evaluation of 𝑓 [1]

2𝑚+1.
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Table 8

Approximation errors for Example 7 (𝜏 = 10−15 , 𝛾 = 𝛿 = 1.24).

𝑚 𝑅[1]
2𝑚+1 𝑅[2]

2𝑚+1 𝑅[3]
2𝑚+1 (𝑁iter) 𝑅[4]

2𝑚+1 (𝑁iter) 𝑅[5]
2𝑚+1 (𝑁iter)

32 1.80e-12 1.80e-12 1.80e-12 (11) 1.80e-12 (19) 1.80e-12 (42)

64 4.20e-14 4.21e-14 4.19e-14 (9) 4.19e-14 (16) 4.19e-14 (32)

128 1.33e-15 2.25e-15 1.55e-15 (7) 1.33e-15 (12) 1.33e-15 (24)

256 7.77e-16 1.11e-15 7.77e-16 (5) 8.88e-16 (8) 8.88e-16 (16)

Table 9

Approximation errors for Example 8 (𝜏 = 10−12).

𝑚 𝑅[1]
2𝑚+1 𝑅[3]

2𝑚+1 (𝑁iter) 𝑅[4]
2𝑚+1 (𝑁iter) 𝑅[5]

2𝑚+1 (𝑁iter)

2 9.67e-05 9.67e-05 (43) 9.67e-05 (100) 4.06e+42 (100)

4 4.97e-08 4.97e-08 (38) 4.97e-08 (77) 2.68e+41 (100)

8 9.35e-12 9.59e-12 (25) 8.61e-12 (51) 8.31e+37 (100)

16 1.11e-16 4.79e-14 (3) 4.97e-13 (3) 2.74e+31 (100)

32 2.22e-16 1.39e-16 (3) 2.22e-16 (3) 2.22e-16 (2)

64 1.67e-16 1.67e-16 (3) 1.11e-16 (3) 2.78e-16 (2)

The iterative methods prove to be more stable than the direct approaches, reaching machine precision for 𝑚 = 256; see the last 
three columns in Table 7. The number of iterations decreases as the size of the problem increases, and the second iterative method 
appears to be more efficient than the first one, as the complexity is reduced. The accuracy of the third method is comparable, but 
the number if iterations grows with 𝑚, and exceeds the maximum number of allowed iterations (100) when 𝑚 = 128.

To investigate the influence of the weight in the space 𝐶𝑢([−1, 1]), we repeat in Table 8 the computations for the larger values of 
𝑚 and 𝛾 = 𝛿 = 1.24 in (26). By (27), 𝛾 and 𝛿 should be less than 5∕4; we choose their value to be slightly smaller than this bound. We 
observe that the accuracy is unaltered for the three iterative approaches, but the number of iterations decreases, showing that the 
weight 𝑢(𝑥) acts as a preconditioner for the iterative algorithms. At the same time, the accuracy of the first direct method improves 
when 𝑚 = 256.

Example 8. We apply the Nyström method to the integral equation

𝑓 (𝑦) +

1

∫
−1

(𝑦+ 3)| cos(3 + 𝑥)| 52 𝑓 (𝑥)(1 − 𝑥)−
1
4 (1 + 𝑥)

4
5 𝑑𝑥 = ln(1 + 𝑦2),

and set 𝛼 = −1
4 and 𝛽 = 4

5 in the Jacobi weight function (28). Moreover, 𝛾 = 𝛿 = 0. The kernel does not satisfy the convergence 
conditions.

Table 9 reports the results obtained for the direct and iterative methods for computing the weighted averaged interpolant. The 
first two iterative methods exhibit very slow convergence for 𝑚 ≤ 8, while they are fast for larger values of 𝑚. The third method 
diverges for 𝑚 ≤ 16, but converges in just 2 iterations for larger values of 𝑚. This illustrates that convergence may occur only when 𝑚
is large enough. This is not a significant drawback, since iterative methods are mainly intended for medium and large-scale problems.

7. Conclusions

This paper discusses and compares Nyström interpolants determined by Gauss, averaged Gauss, and weighted averaged Gauss 
quadrature rules with a focus on the latter. Stability and accuracy of the Gauss rules used is investigated, and convergence of the 
Nyström interpolants, and of iterative methods for their computation, are discussed. For many problems the interpolants based on 
averaged Gauss and weighted averaged Gauss rules are shown to perform well. A complete analysis of the iterative methods for a 
generic weight function 𝑢 will be the subject of future research.
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