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Abstract.22

Objective: To introduce the optimization of a customized GPU-based simultane-23

ous algebraic reconstruction technique (cSART) in the field of phase-contrast breast24

computed tomography (bCT). The presented algorithm features a 3D bilateral reg-25

ularization filter that can be tuned to yield optimal performance for clinical image26

visualization and tissues segmentation.27

Approach: Acquisitions of a dedicated test object and a breast specimen were per-28

formed at Elettra, the Italian synchrotron radiation (SR) facility (Trieste, Italy) using29

a large area CdTe single-photon counting detector. Tomographic images where ob-30

tained at 5 mGy of mean glandular dose, with a 32 keV monochromatic X-ray beam31

in the free-space propagation mode. Three independent algorithm’s parameters were32

optimized by using contrast-to-noise ratio (CNR), spatial resolution, and noise texture33

metrics. The results obtained with the cSART algorithm were compared with conven-34

tional SART and filtered back projection (FBP) reconstructions.35

Main results: Compared to conventional FBP reconstructions, results indicate that36

the proposed algorithm can yield images with a higher CNR (by 35% or more), retain-37

ing a high spatial resolution while preserving their textural properties. Alternatively,38

at the cost of an increased image “patchiness”, the cSART can be tuned to achieve a39

high-quality tissue segmentation, suggesting the possibility of performing an accurate40
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glandularity estimation potentially of use in the realization of realistic 3D breast mod-41

els starting from low radiation dose images.42

Significance:The study indicates that dedicated iterative reconstruction techniques43

could provide significant advantages in phase-contrast bCT imaging. The proposed44

algorithm offers great flexibility in terms of image reconstruction optimization, either45

towards diagnostic evaluation or towards image segmentation.46

47

Keywords: Breast CT, Propagation-based Phase-Contrast imaging, Iterative reconstruc-48

tion algorithm, synchrotron radiation49
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1. Introduction51

X-ray breast computed tomography (bCT) is a fully 3D mammographic technique52

in which multiple low-dose projections are acquired over an angle of 180 degrees or53

more and then reconstructed through suitable algorithms (Chen & Ning 2002, Sarno54

et al. 2015, O’Connell et al. 2018). Even though the first clinical studies in bCT55

were published more than ten years ago (Lindfors et al. 2008), the integration of56

this technique into clinical practice has only recently started (Wienbeck et al. 2017).57

Preliminary clinical studies have suggested that bCT can provide a good visualization58

of both masses and microcalcifications with a radiation dose comparable to, or slightly59

higher than, conventional mammographic exams (Shim et al. 2020). Following the60

first generation of bCT scanners, which was based on cone beam geometry and flat61

panel detectors (Lindfors et al. 2010, O’Connell et al. 2010), a new generation of62

bCT systems based on fan beams and photon-counting detectors has been recently63

developed (Kalender et al. 2017), reducing the negative impact of scattered radiation in64

the final image and improving the system’s dose efficiency.65

In addition to conventional x-ray imaging that relies uniquely on the absorption66

properties of the sample, phase-contrast (PhC) imaging techniques have demonstrated67

improved visibility of low-contrast features in soft tissues (Wilkins et al. 1996, Mittone68

et al. 2018, Brombal 2020b). In this context, programs of phase-contrast bCT69

(PhC bCT) are under development at Elettra, the Italian synchrotron radiation (SR)70

facility (Trieste, Italy) (Longo et al. 2019) and at the Australian Synchrotron in71

Melbourne (Gureyev et al. 2019). The setup at Elettra includes a high-resolution72

CdTe photon-counting detector (Bellazzini et al. 2013) and it is based on the free-73

space propagation modality which is arguably the simplest phase-sensitive technique74

to implement, only requiring to increase the sample-to-detector distance to detect75

phase effects. Owing to the high coherence provided by a synchrotron source, this76

arrangement results in images with an enhanced contrast across interfaces (edge-77

enhancement) (Wilkins et al. 1996). The “edge-enhanced” images, or projections, are78
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further processed via a phase-retrieval algorithm (Paganin et al. 2002). The combined79

effect of free-space propagation and phase retrieval results in a major decrease in80

image noise at similar contrast and spatial resolution levels that would be observed81

in a conventional x-ray attenuation-based tomography (Gureyev et al. 2017, Brombal82

et al. 2018a, Baran et al. 2017). As recently demonstrated, the image quality of PhC83

bCT outperforms clinical bCT systems, providing a higher spatial resolution, signal-to-84

noise ratio and a finer granularity (Brombal et al. 2019, Pacilè et al. 2019). With the goal85

of setting up a clinical study, the SYRMA-3D collaboration has worked been working86

in the last years to evaluate, quantify and optimize the main parameters of the PhC87

bCT imaging technique in terms of x-ray energy (Delogu et al. 2019, Oliva et al. 2020),88

sample-to-detector distance (Brombal et al. 2018b, Brombal 2020a), detector’s operating89

mode, strategies for CT scans and reconstruction workflow (Longo et al. 2019, Brombal90

et al. 2021).91

Breast compute tomography must provide high spatial and contrast resolution92

with a radiation dose level comparable to a standard 2-view mammography. Low93

radiation dose can be achieved either by reducing the x-ray fluence per tomographic94

projection (Greffier et al. 2015, Solomon et al. 2017) or by decreasing the number of95

projections (Sidky et al. 2014). The first approach, while preserving a good angular96

sampling, results in an increased noise in the projection images leading to a noisier97

CT image. Conversely, when the number of projections falls significantly below the98

Nyquist angular sampling criterion, analytical reconstruction algorithms introduce99

significant image artefacts and, again, increased noise. Several approaches have been100

proposed to improve the global image quality in low dose CT scans and some of them101

have been applied to bCT data (Zhao et al. 2012), including iterative reconstruction102

(IR) algorithms (Sidky & Pan 2008, Makeev & Glick 2013, Bian et al. 2014, Pacilè103

et al. 2015, Delogu et al. 2017a).104

IR techniques usually search for a smooth/regular solution compatible with the105

measured projection data and, for some algorithms, that satisfies other additional106

constraints (e.g., non-negativity). Thanks to the advancements in terms of107

computational power, IRs are attracting a growing interest in many applications of108

biomedical x-ray imaging (Löve et al. 2013, Nishiyama et al. 2016). Multiple clinical109

studies have shown their potential in terms of image quality improvement and/or110

radiation dose reduction when compared against the standard filtered back projection111

(FBP) or Feldkamp-Davis-Kress reconstructions (Gervaise et al. 2012, Willemink112

et al. 2013, Löve et al. 2013, Chen et al. 2014a, Mirone et al. 2014, Greffier113

et al. 2015, Nishiyama et al. 2016). Additionally, the integration of regularization114

filters within IR techniques enables both a noise reduction in homogeneous regions115

of the image (low spatial frequency component) and the preservation of details across116

interfaces (high spatial frequency component). On the other hand, IRs are generally117

associated with an undesired change in the image texture, described by radiologists as118

“patchy” (Chen et al. 2014b, Schulz et al. 2013), in some cases leading to a negative119

impact on their clinical implementation (Miéville et al. 2013). The image “patchiness”120
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can be understood quantitatively as an increment of noise spatial correlation, described121

by a shift towards the lower spatial frequencies of the noise power spectrum (NPS) peak122

when compared to the FBP case.123

In this framework, the reconstruction algorithm optimization represents one of124

the last steps of the SYRMA-3D project towards the clinical implementation of125

PhC bCT aiming to improve the global image quality for clinical compatible low126

dose CT scans, i.e. below 5 mGy of total mean glandular dose (MGD) (Fedon127

et al. 2015, Mettivier et al. 2015). In this study we describe and use a custom-made128

GPU-based simultaneous algebraic reconstruction technique (cSART) in combination129

with a 3D bilateral regularization filter. Compared to other iterative algorithms,130

SART generally ensures a fast convergence and flexibility allowing the implementation131

of custom modifications . Moreover, SART , it is easily parallelizable on GPU and132

it is usually associated with noise reduction while preserving the sharpness of edges133

and interfaces. It should also be remarked that, despite this study being focused134

on SART due to its straightforward implementation, the bilateral filter can be in135

principle integrated within any iterative reconstruction algorithm. To date only few136

specific studies on IRs dedicated to bCT have been published (Oliva et al. 2017, Tseng137

et al. 2020) and most of clinical applications reported in the literature rely on analytical138

reconstructions. The proposed cSART algorithm requires the tuning of 3 independent139

parameters, providing a higher flexibility with respect to the standard SART (Gordon140

et al. 1970, Kak et al. 2002). Specifically, following the preliminary results published141

in (Donato et al. 2019a), the effect of these parameters on noise power spectrum142

(NPS), spatial resolution and contrast-to-noise ratio (CNR) are herein discussed and,143

by analyzing the peak frequency of the NPS curve, optimal combinations of parameters144

preserving the image texture are identified for the PhC bCT system at hand. Moreover,145

the possibility of obtaining suitable images for tissue segmentation is investigated. This146

task can be of great interest for the glandularity assessment and for the realization147

of realistic virtual (Caballo et al. 2018) or 3D printed (Germann et al. 2020) breast148

phantoms. The imaging results obtained with the cSART algorithm are also compared149

with conventional SART and FBP reconstructions.150

2. Materials and methods151

2.1. Samples description152

The presented study is based on images of two samples: i) a breast mastectomy with a153

maximum diameter of 9 cm and a vastly differentiated infiltrating ductal carcinoma154

(already described in (Piai et al. 2019)); ii) a bCT dedicated test object (Contillo155

et al. 2018, Piai et al. 2019) composed by a polymethyl methacrylate (PMMA)156

cylindrical container (diameter 12 cm, height 10 cm) filled with demineralized water157

and a set of five plastic rods (diameter 1.2 cm) made of polyethylene (PE), nylon,158

polyoxymethylene (POM), polytetrafluoroethylene (PTFE) and BR12 breast-tissue159



5

equivalent material, respectively. These materials were chosen to mimic the attenuation160

and contrast of breast tissues. The test object’s design allows to image the plastic161

rods, for CNR and spatial resolution measurements, and the uniform water background,162

located at a different vertical position, for NPS evaluation. Prior to the CT scan, the163

mastectomy sample was fixed in formalin and sealed in a vacuum bag. The handling164

of the specimen followed the Directive 2004/23/EC of the European Parliament and165

of the Council of 31 March 2004 on setting standards of quality and safety for the166

donation, procurement, testing, processing, preservation, storage, and distribution of167

human tissues. The images were acquired in the framework of the operative protocol168

of the Breast Unit of the Trieste University Hospital (”PDTA Neoplasia mammaria”,169

approved on 11 December 2019 by ASUGI—Azienda Sanitaria Universitaria Giuliano170

Isontina, Italy). A written informed consent was obtained from the patient prior to her171

inclusion into the study. The specialized breast center of ASUGI is in compliance with172

the standard of EUSOMA guidelines (certificate No. 1027/01).173

2.2. Beamline description and experimental setup174

Images were collected at the SYRMEP beamline (Tromba et al. 2010) of the Elettra175

synchrotron facility, with the storage ring operating at 2.4 GeV. X-rays are produced176

by a bending magnet and they can be monochromatized in the range 8.5-40 keV by177

means of a Si(111) double-crystal monochromator, providing an energy resolution of178

approximatevely 0.1%. Samples were positioned in a pendant geometry hanging from179

the patient support, a rotating table with an ergonomically designed aperture at the180

rotation center, 30 m away from the source. At sample position the x-ray beam had a181

laminar shape with a cross section of 220 mm (horizontal) × 3.5 mm (vertical, Gaussian182

shape, full width half maximum), while the object-to-detector distance was set to 1.6 m.183

Images were collected with a CdTe photon-counting detector (Pixirad-8) (Bellazzini184

et al. 2013, Delogu et al. 2017b) featuring a 60 µm pixel pitch and a global active area185

of 246 mm × 24.8 mm, leading to a matrix of 4096 × 476 pixels. Samples were scanned186

in continuous rotation by acquiring 1200 evenly spaced projections over 180◦ at a rate187

of 30 Hz. The beam energy was set to 32 keV while the beam intensity was adjusted188

by means of aluminium filters to deliver 5 mGy of total MGD.189

2.3. Image Reconstruction190

Projection images were pre-processed through a detector-specific procedure (Brombal191

et al. 2018c) and phase-retrieved prior to tomographic reconstruction (Brombal192

et al. 2018b, Donato et al. 2019b). The well-known phase-retrieval algorithm based193

on the homogeneous transport of intensity equation (TIE-Hom) (Paganin et al. 2002)194

was used, selecting a δ/β value of 2308, which corresponds to (ICRU-44) breast195

tissue (White et al. 1989), as reported in a publicly available database (Taylor 2018).196

Phase-retrieved projections were reconstructed with a GPU-based FBP and Shepp-197

Logan filtering, a standard SART with 5 iterations (both part of the Astra toolbox198
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for tomography (Van Aarle et al. 2016)) and the cSART algorithm introduced in the199

next section. In addition to the Shepp-Logan filtering, that is standard in many bCT200

applications (Shim et al. 2020, Brombal et al. 2019), reconstructions with different201

common FBP filters were performed. Namely, from the sharpest to the smoothest,202

Ram-Lak, Cosine and Hamming and Hann, filters were used while the respective results203

reported in the supplementary material. Reconstructions were performed on a system204

equipped with a GPU NVIDIA® GeForce RTX 2080 Ti card with 11 GB of GDDR6205

VRAM, 4352 CUDA cores, and a boost clock of 1.635 MHz. The reconstruction time206

for each slice was: 25 s for the cSART, 21 s for the standard SART and less than 1 s207

for FBP.208

2.4. The custom SART algorithm209

The customized version of the SART algorithm has been implemented to exploit parallel210

GPU computation performances by using the C++/CUDA programming language. In211

the standard SART algorithm iterative corrections are computed at each angular step212

(angle-by-angle) and they are evaluated and applied simultaneously to all the rays of213

the projection. One iteration is considered to be complete when all the projections have214

been used. As described in the following, the cSART implementation entails several215

improvements over the standard SART algorithm, ensuring higher flexibility to optimize216

the image quality (a detailed description of the algorithm can be found in Section S1 of217

the supplementary materials).218

(i) The iterative corrections are weighed with a relaxation factor (Golosio et al. 2004),

so that the update formula for the (k + 1)-th iteration reads:

F (k+1)(ix, iy) = F (k)(ix, iy) + η(k)C(k)(ix, iy) (1)

where F (k) is the image estimated at the k-th iteration and C(k) is the respective219

normalized image correction in the reconstruction plane (ix, iy). The relaxation220

factor η is applied to the corrections to reduce image noise in the reconstruction.221

In our implementation, η grows linearly from zero to a maximum ηmax in the first222

few angular steps (in the current work this value was set to 10) then it decreases223

linearly with the number of iterations and angular steps down to zero for the last224

angular step of the last iteration. In this work we used ηmax = 0.5.225

(ii) Projections corresponding to different angles are used in random ordering scheme.226

(iii) A bilateral 3D filter is applied periodically to the reconstructed image guess during

the iterative process. In the filter, the content of each pixel is replaced with a

weighted average accounting for both the (3D) Euclidean distance and the gray-

level difference of neighbouring pixels. The used weighting kernels are Gaussian, so

that the weight of the pixel identified with indices i′x, i′y, i
′
z in filtering the pixel ix,
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iy, iz is:

K(i′x, i
′
y, i
′
z; ix, iy, iz) = exp

[
−

(i′x − ix)2 + (i′y − iy)2

2σ2
xy

...

− (i′z − iz)2

2σ2
z

−
(F (i′x, i

′
y, i
′
z)− F (ix, iy, iz))

2

2σ2
v

] (2)

where σxy, σz and σv are parameters related to the spatial width of the filter in

the horizontal plane, to the width in vertical direction, and to the width in content

difference, respectively. F (i′x, i
′
y, i
′
z) and F (ix, iy, iz) are the contents of the pixels

i′x, i′y, i
′
z and ix, iy, iz respectively, where x and y are the spatial coordinates in

each projection image and z is the projection index. In this work σxy and σz are

chosen to be equal and expressed in pixel size units, while σv is expressed in the

same units as F (ix, iy, iz). By calling F̃ (k) the image filtered with the kernel K, the

reconstructed image is updated periodically during the iterative process as:

F (k) −→ (1− w)F (k) + wF̃ (k) (3)

where w is a weighting factor comprised between 0 (no filtration) and 1 (full227

filtration).228

To optimize the cSART parameters, images were reconstructed with different229

combinations of the algorithm’s parameters, by varying σxy = σz in the range [2 : 7]230

pixels with a step of 1 pixel, σv in the range [0.004 : 0.014] with step of 0.002 and ηmax231

(hereafter η) w in the range [0.04 : 0.16] with step of 0.02, corresponding to a total of232

252 reconstructions. Of note, we set σxy = σz, but in principle they can be different for233

a higher level of customization. The number of iterations was fixed to 5, consistently234

with the standard SART reconstructions, while the regularization filter was applied235

every 100 randomly ordered angular steps. Reconstructions were obtained with different236

numbers of iterations in the range [4 : 8]: in the main text only results corresponding237

to 5 iterations are shown, consistently with standard SART reconstructions, whereas238

results for different numbers of iterations are reported in the supplementary materials239

document. Larger numbers of iterations were tested but generally they did not improve240

the reconstruction quality while increasing the processing time.241

2.5. Quantitative assessment242

The quantitative evaluation of cSART images was carried out in comparison with243

the FBP algorithm, assumed as reference, and with the standard SART algorithm.244

We firstly focused on the image texture by analysing the noise power spectrum.245

Then a quantitative evaluation was performed by using the contrast-to-noise ratio246

and spatial resolution metrics. Lastly, a further type of assessment involved the use247

of reconstructions for tissue segmentation. Images were analysed through dedicated248

MATLAB (The MathWorks, Inc., Natick, MA, United States) codes.249
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2.5.1. Noise Power Spectrum Image noise and texture were characterized by means

of the noise power spectrum (NPS) (Verdun et al. 2015), which is the noise spectral

decomposition in the Fourier space. For each reconstruction the 2D NPS map was

measured from equally sized homogeneous ROIs according to the following definition:

NPS(fx, fy) =
dxdy
NxNy

1

NROI

NROI∑
i=1

∣∣F [Ii(x, y)− I i]
∣∣2 (4)

where fx and fy are the spatial frequencies, Nx andNy are the ROI dimensions in number

of pixels, dx and dy are the pixel dimensions in mm, NROI is the total number of selected

ROIs, F denotes the 2D Fourier transform, Ii(x, y) is the pixel value at position (x, y)

of the i−th ROI, while I i is the respective mean value. The corresponding image noise

(σ) is obtained from the NPS as:

σ2 =

∫ ∫
NPS(fx, fy)dfxdfy. (5)

Given the radial symmetry of 2D NPS in CT reconstructions, 1D radially averaged NPS250

maps were also computed by using the identity f 2
r = f 2

x + f 2
y . Peak frequency (fpeak)251

of radial NPS curves were used for the determination of image texture, where a high252

peak frequency corresponds to a high granularity and a low peak frequency corresponds253

to a coarse noise, resulting in a patchy appearance. On the test object both 2D and254

1D NPS distributions were evaluated by selecting in a homogeneous water region 25255

non-overlapping circularly distributed square ROIs with an area of 0.72 × 0.72 mm2, as256

shown in Fig. 1 (a). For the breast sample NPS measurements were performed over 10257

homogeneous ROIs within the adipose tissue (black squares in Fig. 1 (c)) at nearly the258

same distance from the center of the specimen. Each ROI within the tissue have 64 ×259

64 pixels area (0.36 × 0.36 mm2). To precisely determine their peak frequency, 1D NPS260

curves were oversampled by a factor of 4.261

2.5.2. Contrast-to-noise ratio

The CNR was evaluated by using the following definition:

CNR =
Id − Ib√

(σ2
d + σ2

b )/2
(6)

where Id and Ib are the average pixel intensities of the detail d and the background b,262

while σd and σb are the respective standard deviations (i.e. noise). In the phantom263

the CNR of each plastic insert was measured with respect to the water background. A264

square ROI of 64×64 pixels was selected within each rod, while, for the background265

estimation, 10 evenly spaced ROIs were selected in the neighbouring region (see Fig.266

1 (b)). The background’s standard deviation was taken as the average of the background267

ROIs standard deviations. On the breast specimen CNR was measured as the average268

CNR value of three pairs of square ROIs selected within glandular (detail) and adipose269

(background) tissues, as shown by the green and red squares in Fig. 1 (c).270
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Figure 1. Homogeneous water-filled (a) and plastic details (b) regions of the test

object. Blue squares represent the ROIs used to evaluate the NPS, in (a), and the

CNR of the PE detail, in (b). Breast tissue reconstruction (c) where the ROIs for

NPS (black squares), CNR (green squares for detail, red squares for background) are

displayed. Scale bars correspond to 10 mm.

2.5.3. Spatial resolution In the test object the spatial resolution was characterized271

through the task transfer function (TTF), which is an object-dependent extension of272

the modulation transfer function (MTF) describing the spatial resolution for a specific273

object contrast and background noise (Li et al. 2014, Solomon et al. 2015). While274

MTF is usually measured on a single high-contrast detail, TTF is measured for various275

materials exhibiting different contrasts. TTF is useful in the characterization of non-276

linear/iterative algorithms where the spatial resolution is, in general, influenced by277

the image contrast level, meaning that different interfaces will show different levels278

of sharpness. It is worth noting that, when phase-retrieval filter is applied, this279

consideration applies also to FBP reconstructions and it will be discussed in more detail280

in subsection 3.1.2.281

TTF was evaluated by using the circular edge method, which requires a polar

coordinate transformation allowing to estimate the detail’s edge-spread function from

which TTF is derived (Richard et al. 2012, Chen et al. 2014b). TTF was measured on

PE, Delrin and Teflon inserts whereas the contrast yielded by Nylon and BR12 inserts

was insufficient for applying the circular edge method. Starting from the frequency

corresponding to the 50% of the TTF curve (f50%), the spatial resolution was evaluated

as the full width at half maximum (FWHM) of the corresponding point-spread function

(PSF) (Bartels 2013):

FWHM(mm) =
1

2.26× f50%(lp/mm)
(7)

where this equation holds in the Gaussian approximation for both TTF and PSF.282

Due to the lack of sharp interfaces in the breast specimen the spatial resolution283

was estimated through an alternative procedure recently introduced by Mizutani et284

al. (Mizutani et al. 2016), which has already been applied to bCT images (Brombal285
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et al. 2019). The main advantage of this approach, based on Fourier spectrum’s286

fitting (Saiga et al. 2018), is that it allows to estimate the overall spatial resolution in287

terms of FWHM directly from general sample images, thus not requiring dedicated test288

objects. On the other hand, the model underlying this method contains the assumption289

of a Gaussian system’s PSF, which is not rigorously true for many modern CT systems,290

is not material specific. In this context, Mizutani’s method can be regarded as an291

approximate but easy way to assess spatial resolution from general samples images292

that is particularly useful for comparison studies. To cross-check the spatial resolution293

results, this technique is also applied to the test object images.294

2.5.4. Segmentation and image comparison The last type of quantitative assessment295

in this study involved the tissue segmentation and the comparison against a high dose296

(50 mGy) ground-truth FBP reconstruction. Considering the breast tissue composition,297

a simple segmentation approach consists in using two thresholds, one for the separation298

of the background (air) and the other for the separation of glandular from adipose299

tissues. For the ground-truth image, which presents a low level of noise, the gray-300

level distributions of the tissue’s components are well separated, so the segmentation301

thresholds were set at the local minima between each distributions pair. On the other302

hand, the gray-level distributions of adipose and glandular tissues in the low dose images303

present, in general, superposition, therefore requiring for a threshold optimization. The304

gray-level distributions of both ground-truth and low dose images are reported in Fig. S1305

of the supplementary material.306

The figure of merit chosen for the evaluation of segmentation quality and for the

optimization of reconstruction parameters and segmentation thresholds was the macro-

F1 score (Opitz & Burst 2019). This score is often used in multi-class classification

problems (Wu & Zhou 2017, Lipton et al. 2014) and it is based on the image confusion

matrix. In particular, let mij be the element i, j of the confusion matrix, where the

second index j represents the ground-truth, while the first index i represents the output

of the classification. In our application, mij is the number of pixels that belong to the

class j in the segmented high-dose image and to the class i in the segmented low-dose

image. Let Pi, Ri and F1i denote the precision, recall and F1 score for the class i:

Pi =
mii∑
j mij

; Ri =
mii∑
j mji

; F1i =
2PiRi

Pi +Ri

. (8)

The macro-F1 is computed as the arithmetic mean of the F1 scores of all the classes:

F1 =
1

n

∑
i

F1i (9)

where n is the number of classes. Given its definition, the values of F1 range from307

0 to 1, with 1 indicating a segmentation identical to the ground truth. The optimal308

cSART reconstruction in terms of segmentation will be the one which maximizes F1 with309

respect to all the four free parameters, namely σxy,z, σv, η and the threshold th between310
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glandular and adipose components. In this analysis the range of cSART reconstruction311

parameters has been further expanded by varying σxy and σz in the range [2 : 10] pixels312

with a step of 1 pixel, σv in the range [0.004 : 0.020] [0.004 : 0.030] with step of 0.002313

and η w in the range [0.04 : 0.20] with step of 0.02.314

3. Results and discussion315

3.1. Test Object316

3.1.1. Noise power spectrum As stated in the introduction, the shift toward low317

frequencies of the NPS peak is followed by a change in the image texture demonstrated318

by Fig. 2. Panels (a)-(d) show homogeneous water ROIs reconstructed with FBP, cSART319

(with σxy,z = 2, σv = 0.004 and η w = 0.04), cSART (with σxy,z = 6, σv = 0.014 and η320

w = 0.06) and standard SART, respectively. Their respective 2D NPS plots are reported321

in color logarithmic scale in panels (e)-(h). The 2D NPS plots of FBP and cSART show322

a clear circular symmetry, while in the SART case a slightly higher noise contribution is323

observed along the Cartesian directions. From 2D NPS plots the average radial profiles324

are computed as shown in panel (i), resulting in peak frequencies of 0.89 mm−1, 0.89325

mm−1, 0.44 mm−1 and 0.44 mm−1, respectively. In terms of texture, it is clear that the326

cSART with low parameters values allows to produce images which are very similar to327

the reference FBP case, whereas larger values, as well as the use of standard SART,328

introduce more correlation resulting in a coarser noise. On the other hand, the cSART329

algorithm allows a reduction (by a factor larger than 2 with the largest parameters330

values) in the noise magnitude if compared with the FBP. Conversely, the standard331

SART yields a higher noise than FBP. Considering that in SART reconstructions the332

noise magnitude decreases for smaller iteration numbers, additional reconstructions have333

been performed with a decreasing number of iterations (from 5 to 1) but little differences334

(below 10%) in noise magnitude were found.335

Focusing on the optimization of cSART parameters, panel (a) of Fig. 3 shows the336

radial NPS behaviour going from the smallest (noisiest image) to the largest (smoothest337

image) cSART parameter combination in comparison with the FBP case. Results338

considering reconstruction performed with FBP filters other than Shepp-Logan are339

reported in Fig. S2 (a) of the supplementary material. The double-arrow line indicates340

that the NPS peak frequency moves toward lower values as the image noise decreases.341

This behavior is further supported by the scatter plot in panel (b) where it is shown342

that the NPS peak frequency is strongly correlated with (as a first approximation343

linearly dependent to) the image noise magnitude. Moreover, having the possibility to344

finely modify the NPS peak frequency by tuning the cSART parameters, it is useful345

to define a threshold criterion to distinguish parameters preserving a noise texture346

similar to the FBP case from parameter sets yielding a coarse/patchy image appearance.347

Consequently, in panel (b) a threshold criterion has been introduced identifying images348

whose NPS peaks differ less than 15% from the FBP case (orange points). Despite349



12

Figure 2. Homogeneous 256×256 pixel water ROIs obtained with FBP (a), cSART

(σxy,z = 2, σv = 0.004, η w = 0.04) (b), cSART (σxy,z = 6, σv = 0.014, η w = 0.06)

(c) and standard SART algorithm (d). In (e)-(h) the respective 2D NSP are reported

in logarithmic color scale. In (i) the radial average NPS profiles for FBP (solid blue

line), cSART (red dash/dash dotted lines) and standard SART (green dashed line).

Figure 3. In (a) radial NPS curves measured from FBP (blue solid line), from cSART

with the smallest parameter combination (red dot dashed line) and from cSART with

the largest parameter combination (red dashed line). The gray shaded area represents

the range of NPS curves obtained with intermediate cSART parameters. In (b) a

scatter plot of the NPS frequency peaks as a function of the measured image noise:

orange and blue points refer to reconstruction within and out of the NPS peak threshold

criterion, respectively. The FBP result (black diamond) is reported for comparison,

while standard SART (not shown) has frequency peak at 0.41 mm−1. In (c) the image

noise is plotted against the bilateral filter parameter σv, for different values of σxy,z
(different line colors) and at a fixed relaxation factor η w = 0.04.

being an arbitrary value and related to our imaging system, which can be in principle350

subject to dedicated optimization, this threshold is useful as a first line discrimination351

to rule out parameters yielding a too aggressive image filtration. Panel (c) shows the352

dependence of image noise versus the bilateral filter width σv for different values of353

σxy,z at a fixed relaxation factor η = 0.04. From the figure it is clear that larger354

filter parameters monotonically bring to a lower image noise. The same consideration355

holds for increasing relaxation factor values. For this reason, each triplet of the cSART356
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Figure 4. Scatter plots of the measured FWHM against the CNR across PTFE

(a), POM (b) and PE (c) interfaces. Orange and blue points indicate cSART

reconstructions within and out from the NPS peak threshold condition, respectively.

Results of FBP (black diamond) and SART (green circle) are also reported.

parameters identifies the image filtration ‘strength’, where the increase of each single357

parameter brings to a lower noise magnitude and a lower NPS peak frequency. A358

similar behaviour has been discussed for other iterative filters used in clinical practice359

by a number of recent publications (Ghetti et al. 2013, Solomon et al. 2015, Euler360

et al. 2018).361

3.1.2. Contrast-to-noise ratio and spatial resolution The scatter plots in Fig. 4 show362

the spatial resolution, measured with the circular edge technique, as a function of363

the CNR corresponding to the PTFE (a), POM (b) and PE (c) details, respectively,364

for the images reconstructed with cSART (dots), FBP (diamond marker) and SART365

(circular marker). Results for the different FBP filters are reported in Fig. S2 (b) of the366

supplementary material The results show that the use of cSART algorithm can yield367

a significant increase in CNR which, considering only the points within the threshold368

condition, is as high as 45%, 70% and 100% for PTFE, POM and PE details, respectively.369

In terms of spatial resolution, the cSART yields comparable or better results with370

respect to the FBP for the PTFE (a) and POM (b) details, while the resolution is371

degraded at the PE (c) interface by a 30% or more. Considering the trends of the372

cSART data for the different materials, it is interesting to observe that higher CNR373

values are associated with better spatial resolutions at PTFE interface (a) and with a374

generally worse resolutions at POM (b) and PE (c) interfaces. These different trends375

further justify the use of the TTF approach, as the results of the custom iterative376

reconstruction algorithm exhibit a material-specific behaviour. On the same topic, it377

should be noted that the FWHM broadly varies as a function of the interface also for378

FBP reconstructions, going from 0.09 mm for POM to 0.27 mm for PE. This effect, which379

should not be present in conventional attenuation-based CT, is due to the application380

of the phase-retrieval filter that is common to all the reconstructed images. In fact,381

the δ/β parameter of the phase-retrieval filter is material/interface specific. Since the382

scanned object is heterogeneous, the chosen δ/β cannot be optimal for all the interfaces383
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Figure 5. Breast sample detail depicting a tumor mass (light gray) in an adipose

background (dark gray), acquired at 50 mGy MGD (a) and 5 mGy MGD (b)-(e).

Reconstructions are performed with FBP in (a) and (b), standard SART in (c), cSART

within the threshold condition in (d) and cSART out from the threshold condition in

(e). Scalebar corresponds to 5 mm.

within the sample, resulting in an excessive blurring at the interfaces where δ/β is384

overestimated, and an enhanced sharpness due to uncompensated phase-contrast fringes385

at interfaces where δ/β is underestimated (Thompson et al. 2019). In our work, we set386

δ/β = 2308, which corresponds to the breast tissue/air interface at 32 keV. On the other387

hand, the nominal δ/β values for the phantom inserts’ interfaces with water are of 1448388

for PTFE, 41765 for POM and 427 for PE, respectively. Considering that, from a signal389

processing perspective higher δ/β values correspond to higher smoothing due to the390

phase retrieval (Beltran et al. 2010, Brombal et al. 2018b, Donato et al. 2019b), it is clear391

that the POM interface is under-smoothed, yielding the best spatial resolution, while392

both PTFE and PE interfaces are over-smoothed, the latter yielding the worst spatial393

resolution. To allow for a visual comparison the test object’s images reconstructed with394

FBP, SART, cSART within and out from the threshold condition are reported in Fig. S3395

and Fig. S4 of the supplementary material.396

3.2. Breast specimen397
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Figure 6. Scatter plots of FWHM (measured with Mitzutani’s method) versus CNR

for the breast specimen (a) and for PTFE insert in the test object (b). Orange and blue

points indicate cSART reconstructions within and out from the NPS peak threshold

condition, while black diamond and green circle indicate FBP and SART.

3.2.1. Texture, contrast-to-noise and spatial resolution A qualitative comparison on398

a detail of the breast sample centered on the tumor mass is shown in Fig. 5; in399

panel (a) the reference image acquired at high radiation dose (50 mGy) is reported,400

while from (b) to (e) there are the images acquired with the standard 5 mGy dose401

and reconstructed through FBP (b), standard SART (c), cSART within the threshold402

condition (d) (σxy,z = 2, σv = 0.008 and η w = 0.06) and out from the threshold403

condition (e) (σxy,z = 7, σv = 0.014 and η w = 0.08). As expected from the photon404

statistics, going from the high to the low dose images reconstructed via FBP a 3-fold405

decrease in CNR is observed (from 9.2 to 3.1). On the other hand, no advantage over406

FBP in terms of image quality is associated with the use of conventional SART, while407

the cSART image satisfying the threshold criterion features a higher CNR (4.2), similar408

texture and no apparent spatial resolution degradation. Interestingly, as shown in (e), by409

increasing the cSART parameters an image with the same CNR observed in the reference410

high dose image (CNR = 9.2) can be obtained at cost of an increased patchiness. The411

corresponding images of the whole sample are reported in Fig. S5 of the supplementary412

material.413

The quantitative analysis on the specimen images is reported in Fig. 6. In414

particular, panel (a) shows the FWHM, evaluated with Mizutani’s approach, as a415

function of CNR measured on the breast specimen for cSART, FBP and SART416

reconstructions. Similar to the test object’s case, the cSART reconstructions satisfying417

the NPS frequency peak threshold criterion, yield a higher CNR (up to 35%) if compared418

to FBP, with only a marginal degradation (below 10%) in the spatial resolution. On the419

other hand, the standard SART reconstruction yields a spatial resolution comparable420

with FBP but with a 15% lower CNR. In absolute terms, the mean FWHM of cSART421

reconstructions satisfying the threshold condition is 0.13 mm, whereas for the FBP422

case it as around 0.12 mm. The latter value is in good agreement with previous423
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Figure 7. Segmented components of the FBP at 50 mGy shown overlapped with those

of the FBP at 5 mGy (a), standard SART (b) and cSART at highest F1 score (c).

Air background is shown in black, adipose component in gray, glandular component in

white and misclassified pixels in green blue and magenta red.

measurements performed with the same imaging setup on different samples (Brombal424

et al. 2019, Brombal et al. 2018a, Donato et al. 2019b), and it corresponds roughly to425

twice the detector’s pixel size. Interestingly, when applying the Mizutani’s approach to426

the test object, similar spatial resolution values are observed, as shown in panel (b).427

As mentioned, this approach aims at evaluating the overall spatial resolution of the428

imaging system, therefore it is expected that the FWHM does not change by changing429

the sample.430

3.2.2. Image segmentation Qualitative results of the image segmentation are showed431

in Fig.7. Panels (a)-(c) show the overlay of the segmented ground-truth image with the432

segmented FBP (a), standard SART (b) and cSART at highest F1 (c) images. The three433

components of the segmentation, namely the air background, adipose and glandular434

tissue are showed, respectively, in black, gray and white. Green Blue and magenta red435

pixels are the misclassified pixels of adipose and glandular classes, respectively (green436

blue is glandular classified as adipose and magenta red is vice versa). From the images437

it is clear that, when compared to the reference high-dose image, the cSART algorithm438

with adequately tuned parameters largely outperforms the FBP-based segmented image.439

The quantitative analysis on the segmented images is reported in the plots of Fig. 8.440

In panel (a)-(c) the optimization of the segmentation threshold between glandular441

and adipose components for different cSART parameters combinations is reported.442

The optimal threshold was found to be loosely independent from the reconstruction443

parameters and, in all cases, was around 0.21. Considering the effect of each cSART444

parameter on segmentation quality, panel (a) demonstrates that F1 increases at higher445

σv values reaching a plateau for σv > 0.014. Conversely, panel (b) shows that higher446

F1 scores are related to lower σxy,z, hence to small spatial blurring which contributes to447

the preservation of fine details. Finally, panel (c) shows that F1 peaks for intermediate448
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Figure 8. F1 score as a function of the adipose-glandular threshold th for: η = 0.14

w = 0.12, σxy,z = 2.0 and different values for σv (a); η = 0.14 w = 0.12, σv = 0.020

σv = 0.028 and different values for σxy,z (b); σxy,z = 2.0, σv = 0.020 σv = 0.028 and

different values for η w (c). Panel (d) shows F1 as a function of the CNR where orange

and blue open circles indicate cSART reconstructions within and out from the NPS

peak threshold condition, black diamond is FBP, green circle is SART. The blue square

indicates cSART yielding the highest F1 score. The dashed vertical line represents the

CNR value of the FBP reconstructed reference image at 50 mGy.

values of η w. In panel (d) the F1 scores are plotted against the respective CNR449

values, also including the FBP and SART reconstructions. The plot indicates that450

cSART reconstructions always result in a better segmentation with respect to FBP and451

SART. Moreover, it is interesting to observe that a higher fidelity in the segmentation452

is achieved for cSART reconstructions not comprised within the NPS frequency peak453

threshold condition, confirming that the optimization of reconstruction parameters454

for segmentation is different from the one for diagnostic visualization indicating that455

optimal parameters for segmentation are different with respect to the ones for diagnostic456

visualization. The plot also indicates that when the cSART images reach the same CNR457

as the reference image (dashed line in the plot) the segmentation quality saturates and458

there is no advantage in pursuing higher CNR values. In addition, segmentation results459
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obtained with the cSART algorithm for different numbers of iterations, from 4 to 8, are460

reported in Fig. S6 of the supplementary material and in the supplementary table 1.461

The results show that the highest F1-score corresponds to 5 iterations, while neither462

the optimal σxy,z nor the optimal σv are dependent on the number of iterations. On the463

other hand, when increasing the number of iterations, the optimal weighting factor w464

tends to decrease.465

4. Conclusions466

This study shows that the adoption of iterative reconstruction techniques can provide467

significant advantages in the context of breast CT imaging with monochromatic468

synchrotron radiation and using free-space propagation and phase-retrieval. In469

particular, based on images of a surgical breast sample, the use of the customized470

GPU-based SART algorithm herein presented resulted in a contrast to noise ratio gain471

up to 35% with an only marginal decrease in spatial resolution (less than 10%) and472

image texture properties similar to the reference FBP case. Analogous indications were473

obtained from the analysis on the dedicated test object, revealing a CNR gain from474

45% to 100% across different plastic inserts at a comparable or slightly worse spatial475

resolution and similar NPS peak frequency (difference less than 15%) when compared476

with FBP. On the other hand, the use of standard SART algorithm did not provide any477

advantage over FBP, generally resulting in noisier images and a coarser noise structure.478

A threshold for NPS frequency peak was used as first line discrimination criterion to479

identify those cSART parameters that preserve the image texture when compared to480

FBP. In this study the threshold was arbitrarily set to 15% but, in the future, its481

definition will be subject to a dedicated reader study. It is worth noting that the482

triplets of parameters satisfying the threshold condition for the test object overlap with483

those for the breast specimen. This suggests that the phantom based optimization of484

the cSART algorithm is representative for the breast specimen.485

Moreover, the presence of sharp plastic inserts in the phantom allowed for a task486

transfer function (TTF) analysis, resulting in different trends in the spatial resolution487

for different materials. This finding further confirms the need for careful optimization488

of IR algorithms as their performances are dependent on the imaged object, plus it489

suggests the usefulness of test objects closely reproducing the contrast characteristics of490

the investigated organ. When the latter condition is satisfied, the similar trends observed491

in terms of CNR and spatial resolution for breast tissue and the test object, suggest492

that the optimization of the cSART algorithm can be carried out based on test object493

images, therefore being feasible virtually in any clinical system. It should be stressed494

that this indication would need to be confirmed by scanning a larger number of samples495

in different experimental conditions and focusing on specific features of clinical interest496

(e.g., microcalcifications or margins sharpness), which will be the subject of future497

studies. In this context, a dedicated investigation on cSART reconstructed images at498

coarser angular stepping will be performed with the aim of reducing the scan time and499
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(optionally) the radiation dose.500

Additionally, The study also demonstrated that the proposed algorithm offers great501

flexibility, allowing to optimize image reconstruction either towards diagnostic evalua-502

tion, with a limited gain in CNR and textural properties similar to FBP, or towards503

image segmentation, with a major gain in CNR (by a factor of 3 or more) at cost of in-504

creased image patchiness allowing to optimize image reconstruction either for diagnostic505

evaluation images (limited CNR gain and textural properties similar to FBP) or for506

image segmentation (major CNR gain and increase patchiness). The latter feature is of507

great importance as it would enable, starting from low dose clinical images, for accurate508

glandular fraction estimation and straightforward realization of 3D breast models.509
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