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A B S T R A C T

This paper investigates tensile behavior of through thickness reinforced carbon/epoxy lap joint composite
laminates, reinforced with steel z-pins and staples, arranged in two rows parallel to the overlapping edges, via
experimental testing. Acoustic emission (AE) monitoring is employed during the displacement-controlled tensile
tests to monitor damage propagation during loading using the Vallen AMSY-5 measurement system, with two
piezoelectric sensors being mounted at the laminate surface. Furthermore, machine learning algorithms are
integrated to process AE data, enabling the recognition and prediction of failure mechanisms. Fractographic
analyses were performed to observe the nature of damage post-failure. The experimental research was enriched
with capturing high-resolution pictures of total crack propagation length growth using a high-resolution pho-
tocamera. The performed empirical tests demonstrated that the unstable propagation of a crack along the
bonding interface has led to an eventual breakdown of both unreinforced and reinforced joints. An increase in the
full displacement and load at failure was clearly detected for both z-pins and staples with a noticeable decrease in
crack growth length, while a higher performance was illustrated for staples in comparison to z-pinned and
unpinned.

1. Introduction

Carbon fiber-reinforced polymers (CFRPs) have been in the research
focus for few decades due to their remarkable strength and stiffness. The
excellent mechanical properties of these materials along fiber axis
empower designers to meticulously shape their internal structures for
specific loading conditions which sets them apart from isotropic mate-
rials making them highly implemented in various industry sectors.
Because of these unique benefits, composites are widely used to create
aircraft and automotive components, which represents a major
advancement in cutting-edge technical solutions. The investigation of
innovative connecting configurations has gained momentum due to the
expanding scale of composite structures. The emphasis is especially on
configurations that can survive the diverse range of challenges presented
by different loadings, creating a dynamic environment where joining
technology developments are critical to the development of strong and
durable structures. Adhesive joining is generally the method of choice
for attaching thin composite adherends [1,2]. Even though carbon fiber

polymer matrix composites have a long history, a recurring problem that
restricts their widespread application is the high stress that develops at
the joint interface, which leaves them susceptible to through thickness
damage like delamination and debonding. This may result in significant
reductions in the overall strength and stiffness of the structures, which
may cause catastrophic failures without any warning signs [3–5]. To
overcome their problems with low delamination resistance and poor
impact damage tolerance, several 3D fiber composites have been
developed [6,7]. In particular, the performance of 3D fiber composites is
greatly improved by the use of through thickness fibers, or z-binders
[8,9]. Many strengthening methods have been investigated to improve
the structural integrity of bonded or co-cured composite joints in order
to produce 3D preforms. Of them, z-pinning has emerged as a z-rein-
forcement method that works well for uncured prepreg laminates.
Inserting thin metal or carbon rods into the through thickness direction
is the z-pinning approach [10–16]. A number of studies looked at the
performance of lap joints reinforced with a different hybrid method, in
which two prepreg adherends are separated before consolidation by a
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thin metal sheet with protruding spiky pins [17–22]. The beneficial ef-
fect resulted from the traction forces that are transmitted by the through
thickness z-reinforcement along the delamination crack. These forces
increased resistance to crack propagation by actively opposing crack
opening and sliding [12,23]. Z-pinning has demonstrated its ability to
improve through thickness mechanical properties of the structures, such
as interlaminar fracture resistance, ultimate strength, resistance to
delamination, and damage tolerance, while also lowering the suscepti-
bility to structural failure in comparison to alternative methods [10].
According to research by Cartié et al., under modes I and II loadings, the
bridging effects made possible by z-pins can increase delamination
resistance by as much as 160 % and 100 %, respectively [24]. Zhang and
colleagues stated that the increased delamination toughness reduces the
damage area induced by impacts in addition to increasing impact
resistance. Impact damage areas on z-pinned laminates, for example, are
up to 64 % less than on unpinned laminates. Additionally, the authors
discovered that the effectiveness of z-pinning is greater in containing the
spread of delamination rather than in initiating damage [25]. Mouritz
and researchers found that applying z-pinning across the bonding sur-
faces significantly improved the failure strength and energy absorption
of lap, T-shaped, and L-shaped composite joints [26,27]. Among com-
posite adherends, z-pinning has proven to be remarkably effective in
increasing the tensile strength of various lap joint designs [10,28,29].
The strength of single-lap carbon/epoxy adherends was examined in
relation to metal inserts with three different patterns of steel pins (with
pins evenly dispersed over the overlap region, concentrated near the
overlap edges [22]. When subjected to a tensile loading with varying z-
pin content, Chang and colleagues observed a significant improvement
in the ultimate strength and fatigue life of lap joints reinforced with z-
pins [26]. Several crack-stopping approaches were under investigation
like rivetless nut plates [30], small diameter pins [31]. The initial phase
of technology assessment, which showcased the possibilities of stapled
joints, was carried out by Löbel et al. [31], when compared to bolted
joints, stand-alone staples showed an overall 28 % increase in tensile
strength. Comparing patented edge-staple joints to solely bonded joints,
there was a 23 % gain in tensile strength. Due to the lack of pullout, the
geometric shape of staples offered an efficient method of axial attach-
ment [31]. Through thickness rods or pins across composite adherends
can cause distinct mechanisms of damage and deformation under load,
which have been experimentally seen and described in [32]. Because the
damage accumulation in CFRP composites is usually internal and does
not show up any visible signs on the surface of the structure, assessing
the damage can be difficult [33]. There is a wide variety of non-
destructive testing methods available for composite constructions,
including X-ray tomography [34], ultrasonic testing [35], eddy current
testing [36], and infrared tomography [37]. As an example, some au-
thors examined the use of X-ray tomography in composite structure
damage imaging [38–40]. The goal of the study was to locate fiber
breakage, matrix cracking, and delamination in composite materials
[41]. One of the most promising of these is the acoustic emission (AE)
method, which has been applied in a number of ways as a real-time
monitoring tool to follow the behavior of composite structures [33].
High accuracy defect region localization is possible using the AE
approach. Numerous studies and publications have been done in the
literature regarding the application of the acoustic emission technique to
the localization of flaws in composite materials [42]. The acoustic
emission (AE) approach shows remarkable sensitivity and reliability
when it comes to identifying active cracks [43], especially in the early
stages of their initiation [44]. The characteristics of AE transients
resulting from different failure modes in CFRP composites, such as
matrix cracking, delamination, fiber fracture, and debonding, have been
the subject of numerous research studies [45–47]. Using the time of
arrival (TOA) method, which is based on examination of the difference
in registered arrival time of transient stress wave acquired by succeeding
sensors, the AE events created by propagating failure are located.
However, the TOA technique’s application can result in measurement

inaccuracies because of the dispersive nature of propagating Lamb
waves and important material attenuation qualities. Consequently,
numerous investigators experimented with different approaches for
localizing defects [48,49]. Lately, AE data has been analyzed using
several kinds of machine learning methods to categorize the damage
modes in composite laminates. Several types of damage occurring in
open hole tensile specimens (OHT) were assessed using the k-means
clustering approach by Ozaslan et al. [50]. The study conducted by Xu
et al. [51] employed the k-means++ clustering technique to detect
distinct damage patterns in laminate subjected to hygrothermal aging in
a single lap joint. Godin et al. [47] clustered the damage modes in GFRP
composite laminate under tensile strain using a combination of k-means
and k-nearest neighbor algorithms. In order to anticipate the failure load
under stress, Sause et al. [52] suggested an artificial neural network
(ANN)-based AE method. The damage modes that are occurring in a
buckled CFRP panel were located and classified by McCrory et al. [53].
The damage in quasi-isotropic laminates under indentation was classi-
fied by Saeedifar et al. [54] using a wide range of clustering techniques,
including fuzzy C-Means, k-means, genetic k-means, Self-Organizing
Map (SOM), Gaussian Mixture Model (GMM), and hierarchical model.
The CFRP laminate failures under fatigue load were characterized by
Bhat et al. [55] using ANN to remove noise resulting from AE signals.
Determining the ideal number of clusters to classify the damage is the
main challenge with clustering algorithms.

The aim of this paper is to understand how the through thickness
pinning reinforcement process influences the initiation and propagation
of damage in the material. The AE signals of CFRP step lap joints
featuring various pinning patterns were monitored and collected during
tensile testing to identify the mechanisms of damage and assess the
effectiveness of Z-pins and staple pins in particular in enhancing the
structural performance of CFRP composites.

The novelty lies in the exploration of staples as a through thickness
reinforcement method, particularly in comparison with traditional z-
pinning method, by systematically evaluating the effectiveness and
performance of staples in this particular situation. Staples are distin-
guished by their unusual, unique U-shaped geometry with dual through-
thickness arms and a horizontal clamping mechanism, in contrast to z-
pins, which may be limited by their single vertical line configurations.
This work presents a new perspective on the strengthening of composite
materials.

Fig. 1. Geometry and groups of single step joints samples (dimensions not to
scale): (a) Unpinned lap joint (Z1), (b) Z-pinned lap joint (Z6), and (c) Staple
pinned lap joint (Z9).
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2. Experimental procedures

2.1. Materials

The single step joints composite laminates were made of unidirec-
tional carbon/epoxy prepreg (HS150/ER450; CIT, Legnano, Italy) tape
prepared by the hand lay-up technique. The laminates stacking sequence
was [0◦/90◦/0◦/90◦/0◦]s. Three groups of specimens were manufac-
tured, namely: Z1 (unpinned), Z6 (z-pinned), and Z9 (staple-pinned) as
shown in Fig. 1. Single stepped-lap joints were bonded together through
a co-curing process, without the use of an additional adhesive layer, with
an overlap length of 40 mm and overlap adherend thickness of 0.625
mm which is half the thickness of the sample. Preceding the curing
phase, the integration of z-pins involved a manual insertion process into
pre-punched holes, each crafted with a needle measuring 0.5 mm in
diameter, ensuring alignment along the thickness direction. These pins
were made of a continuous steel wire (0.5 mm diameter) known for its
excellent corrosion resistance and heat resistance. Once inserted, the
wires were cut to the laminate thickness just above the joint surfaces.
Two distinct pinning configurations were selected to reinforce the
overlap region of the joint panels. The first pinning configuration con-
sisted of two rows of z-pinned at a distance of 5 mm from the edge of the
overlap region (Fig. 1b). The second pinning configuration (Fig. 1c)
consisted of two rows of staple pins with the same distance from the edge
of the overlap’s regions (taking into account that the two rows of staples
were placed on opposite sides on the surface). A consistent 5 mm spacing
between consecutive pins/staples along each row was upheld. As
reference specimens, lap joints without staples or pins were created and
cured in the same manner as the pinned samples. Following the

reinforcing process, all joints underwent curing within an autoclave,
subjected to a maximum temperature of 125 ◦C and a pressure of 3 bar.
Upon completion of the curing process, the consolidated jointed panels
were cut into samples 20 mm wide, 360 mm long, with an average
thickness of 1.25 mm. The elastic properties of the carbon/epoxy were
determined during tensile test and were as follows: E1 = 120 GPa; E2 =

9.2 GPa; ν12 = 0.26; G12 = 4 GPa.

2.2. Experimental tensile test

Experimental tensile tests (Fig. 2) were carried out on Shimadzu
ASG-X tensile testing machine equipped with 10 kN load cell. Prior to
experiments, tabs were fastened on both sides to the composites at a
length of 40 mm. To ensure quasi-static loading conditions, all tests were
conducted with constant crosshead velocity equal to 1 mm/min. Prior to
experiments, a millimeter paper was glued to samples in order to in-
crease precise measurement of developing cracks that were recorded
with a Nikon D500 4 K photo camera (Nikon, Tokyo, Japan).

Visual inspection technique was adopted to detect and measure the
crack length growth. The camera was mounted at a fixed distance from
the sample. An additional lamp was positioned around the sample to
ensure optimal lighting conditions and minimize shadows. Images of the
samples were taken at regular intervals during the recording of loading
process. The crack length was measured by tracking the crack tip. The
accuracy of the crack length measurements was determined to be ± 0.2
mm based on repeated measurements.

The acoustic emission signals generated by developing cracks were
registered by using the Vallen AMSY-5 measurement system consisting
of pre-amplifier (AEP-4, 34 dB of gain) and analog-to-digital (A/D) card
(Vallen‘s ASIP-2, sampling frequency 40 MHz, resolution—18 bits, band
width 1.6–2400 kHz). Piezoelectric sensors (Fujicera 1045S, max. freq.
1.3 MHz) were adhesively bonded to the top surface of the samples
(Fig. 3) at the distance of 130 mm from specimen’s end at 50 mm from
the laminate center, where the lap-joint was located.

The load and AE responses were registered in real time at a 5 MHz
sampling rate. Subsequently, the load–displacement vs cumulative en-
ergy and cumulative hits plots were created. In order to distinguish
different damage failure mechanisms occurring during experimental
tests, two different machine learning clustering techniques were uti-
lized. After the experimental test, the failure surfaces were examined
using the Keyence VHX-5000 microscope (Fig. 4).

2.3. Application of machine learning technique to identification of the
acoustic signature of damage mechanisms

In composite structures different damage phenomena such as
delamination, matrix cracking fiber debonding or fiber pull-out can
occur during lifetime operation. The type of damage may depend on
various factors such as resin and fiber materials, specific loading con-
dition, loading rate or even humidity. The occurrence of different fail-
ures and their extent have influence on the structure integrity.
Therefore, proper identification and recognition of damage types can

Fig. 2. Experimental test setup for the pinned composite tensile specimens.

Fig. 3. Sensors positions on the test specimen.
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deliver important information about the state of the structure and can
improve predictive prognosis models that aim to estimate the operating
time of a system before failure. In this case, to realize this task, a syn-
thesis of the acoustic emission technique and machine learning algo-
rithms can have promising capability. In the current paper,
identification and assignment of the acoustic emission signals signatures
to different types of damages occurring during tensile tests of lap-joints
laminates was done by using the unsupervised pattern recognition
technique. Cluster analysis aimed to utilize machine learning algorithms
for grouping acoustic emission patterns (extracted AE typical waveform
features) into N classes corresponding to different failure mechanisms.

As indicated by the extensive literature review [57–64] each of the
acoustic emission signals propagates inside a composite material with
unique waveform features. For example, delamination is characterized
by long duration time and low peak frequency, matrix cracking is
determined by shorter rise time and duration, as well as lower peak
frequency. On the other hand, fibers breaking is usually determined by
high frequency and amplitude, as well as short rise time. The precise
boundary values of aforementioned AE parameters are difficult to be
generally specified due to discrepancies caused by such factors as: type
of sensors used, applied loading conditions, sensor’s positions or mate-
rial attenuation. In current research, recorded AE signals were clustered

Fig. 4. The Keyence 5000 VHX microscope.

Fig. 5. Typical AE signal registered during tensile test and its spectral representation.
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into three groups representing the most expected damage modes
occurring during tensile tests of lap-joint laminates: delamination, ma-
trix cracking and other failure mechanism related with deformation and
damage of steel pins, as well as regions around it. For the last case, to
better recognition of possible failure modes, a scanning electron mi-
croscopy observation should be performed, which is not the object of
this paper. After clustering procedure, the partitioned acoustic emission
signal features were referred to comparative values (resulted from
literature review) obtained by other researchers. This allowed to predict
and assign specific clusters to characteristic composite damage modes.
The general procedure of signal registration and analysis was divided
into three steps: collection of the AE data, preprocessing and converting
the data into a usable form and sorting into groups called class. In the
case of unsupervised pattern recognition, it is a process by which AE
waveform features were classified in general group according to their
similarity. With regard to the first step, the acoustic emission transient
waves propagated into loaded lap-joint laminates were registered by
using piezoelectric transducers attached to the specimen’s top surface in
the form of voltage versus time responses. All signals were registered by
using the Vallen AMSY-5 acoustic emission system and were stored in
two databases containing primary features and transient data. The
registered signals were preliminary filtered to remove measurement
noise. The weakest AE transient elastic waves for which the number of
threshold crossing was less or equal to three were not taken into account
for further considerations. Subsequently, six waveform features were
extracted from each of the registered AE signals, namely: amplitude A
[dB], rise time R [µs], energy E [aJ] (atto-Joule), duration D [µs],
number of threshold crossing C (number of counts), and maximum
frequency f [kHz] obtained by application of the FFT transform to raw
signal. One of the acoustic emission signals registered during the
experiment with typical waveform features is presented in Fig. 5.

Those six quantification AE features are often used in literature
[54,65–67] to discriminate damage mechanisms in loaded composite
materials. Therefore, it was decided to utilize them as an input data set
collected in the form of pattern matrix. This matrix contains the whole
input data set consisting of each acoustic emission hit and corresponding
extracted waveform features. Subsequent steps in patter recognition
process were feature normalization and eigenvector projection. For the
first one, this procedure provides data normalization by scaling the AE
features values by using the Equation (1):

AEnorm =
AE − min(AE)

max(AE) − min(AE)
(1)

The second mathematical procedure allows for decreasing the dimen-
sionality of the feature space. In this case, the principal component
analysis, that bases on reducing the input data vector to the most
essential feature was used. In order to assign the AE waveform signal to a
specific group representing a characteristic failure mechanism two un-
supervised machine learning clustering techniques were utilized: the k-
means and the Gaussian mixture model (GMM). Due to low computa-
tional cost those methods are the most commonly used clustering al-
gorithms to partition data sets into groups. Two methods were chosen in
order to compare cases. The machine learning algorithms were imple-
mented in MatLab 2024 software where all data was processed. The first
clustering method is an iterative procedure aiming to minimize the sum
of squared error of the L2 loss function:

L2 =
∑k

j=1

∑

i

⃒
⃒uj − xi

⃒
⃒2 (2)

Here the uj is the center of cluster j {1, 2, k, ……} and xi are the AE data
points correlated with cluster j. The process star from initial cluster
centers defined by random selection among the available data. Then the
feature vectors are labeled in accordance with the closest calculated
centroid and finally the labeled data center is calculated and the

respective centroids are moved. The above procedures are repeated until
the L2 criterion is reached. The second GMM method is a multivariate
Gaussian distribution that determine the probability that given AE data
point belongs to a specific cluster by following equation:

p(xj|λ) =
∑M

i=1
wigi(xj|ui,

∑
i) (3)

Here M is a number of Gaussian components and wi is the weight
correlated with the multivariate Gaussian distribution gi (Equation (4).
Each component is defined by its mean and covariance values. The
mixture is defined by a vector of mixing proportions that represents the
fraction of the population described by a corresponding component.

gi(xi|ui,
∑

i) =
1

(2πd/2)|
∑

i|1/2
exp

(

−
1
2
(xj − ui)T

∑
i− 1(xj − ui)

)

(4)

3. Results and discussion

3.1. Tensile test

The load–displacement curves for the lap joints measured during
static tensile loading for unpinned, z-pinned and stapled specimens are
presented in Fig. 6. Most of the displacement spectrum showed primarily
linear characteristics for the unpinned joint (Z1). The failure ultimately
occurred at a load of 6.4 kN and manifested as essentially brittle fracture
debonding cracks. Damage initiated by cracks at the end of the bonded
region where the localized geometric stress concentration existed, that
in turn excited the evolution of delamination. After reaching a critical
value, the delamination propagated and resulted in a sudden complete
separation of the two adherends. The failure of z-pinned joints (Z6) was
governed by the same sequence of failure events observed in unpinned
joints. However, the load–displacement curve revealed that the final
separation of the z-pinned joints is preceded by a more progressive
fracture process, during which the growth of the interfacial crack pro-
ceeded in steps. This advancement is attributed to the restraining effect
of through-thickness z-pins, which reduce the energy available at the
front of the crack and thus arrest or delay its propagation. Remarkably,
the load and displacement range were the highest for the single lap joint
with staples (Z9). It can be concluded that the introduction of staples
within the structure did not entirely prevent delamination but signifi-
cantly delayed its propagation. This delay is primarily attributed to the
unique bridging mechanism of the staples, which effectively distribute
stress across the overlapped layers of the material upon delamination
initiation. By connecting the fractured zones and so reducing stress at
the crack tips, staples reduced the driving force for propagation. Staples’
clamping force fortified the bond between layers and increased resis-
tance to layer separation. Even though delamination may still happen
under stress, the stapled reinforcement of Z9 samples helped improve
structural integrity and prolong its load-carrying capacity.

Fig. 6. Load vs displacement curves of unpinned, z-pinned and staple pinned
joints under static tensile test.
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The typical growth of total crack which is the total length from the
two edges of unpinned, z-pinned, and staple-pinned joints is illustrated
in Fig. 7. The growth of crack length curve for unpinned joint in Fig. 7a
was very fast and the crack length immediately before final failure is
very large. The rapid rise indicated almost instantaneous crack propa-
gation. While Fig. 7b depicting the z-pinned joint, showed a similar
trend of increasing crack length, albeit at a somewhat slower rate

compared to the unpinned specimens and with almost half the crack
length at failure, which means that pins restrained the growth of cracks.
However, despite the presence of z-pins, there were still instances of
sudden jumps in crack length. In contrast, Fig. 7c for staple-pinned
specimens demonstrated a distinct behavior. The crack length started
to increase at a later stage compared to the other configurations and the
rate of crack growth is significantly slower. The efficacy of staples in
limiting crack length propagation has been shown by the delayed in-
crease in crack length. The intimate contact promoted by the clamping
action of staples leads to a reduction in overall crack length prior to
failure, indicating superior crack restraint compared to both the
unpinned and z-pinned configurations. The comparison is demonstrated
in Fig. 8. For these three configurations, it appears that while both z-pins
and staples contributed to restraining crack growth, staples emerged as
the more effective solution. Their gripping action promoted intimate
contact between layers, significantly minimized the rate of crack prop-
agation and eventually led to an inferior crack length at failure
compared to the other configurations.

3.2. Detection of damage onset by using acoustic emission technique

One of the goal of this paper was precise detection of damage initi-
ation in lap-joint composite laminates by using the acoustic emission
technique. The main advantage of this method is high sensitivity to
detect material degradation at an early stage. It should be mentioned
that this technique was previously successfully utilized by the authors of
this article to detect initiation of delamination in elastically coupled DCB
and ENF composite laminates [68–70]. In this case, the registered AE
features were combined with load values registered during mechanical
tests in real time. In order to detect damage onset, two different initia-
tion criteria were used, namely: the cumulative energy and the cumu-
lative hits. With regard to the above, the moment of damage initiation is
considered when the first pronounced increase of those cumulative plots
is observed. In Figs. 9-11 the load-time versus cumulative hits and cu-
mulative energy curves obtained during tensile tests conducted on
composite lap-joint laminates are presented. The AE points marked on
the plots represent moments in which sudden increase in the gradients of
cumulative values were observed. Hence, the aforementioned criteria
were fulfilled. For those points, specific values of time and corre-
sponding load were precisely determined. In the case of Z1 laminate
significant increase for cumulated acoustic energy was observed at t =
69 s of the test duration, corresponding to a load of 2516 N. In the case of
laminate Z6 increase was observed at 124 s of the test, corresponding to
a load of 4310 N. For the Z9 laminate respective values of time and load
for significant increase were 81 s and 2348 N. These AE points represent
moments in which crack propagation started. On the other hand, the
increased rise in the cumulative number of hits indicates much faster
propagation of delamination. The AE points for cumulated hits were as
follows Z1: t = 29 s, F=1335 N, Z6: t = 52 s, F=1854 N, Z9: t = 21 s,
F=697 N. It is also worth emphasizing that higher levels of cumulated
acoustic energy activity were observed before the maximum load and
before visually observed crack growth. In Fig. 10 at a load of 7461 N
energy activity suddenly drops and no energy is released that can be
correlated with visually noticed crack length increase (Fig. 7) and is it
possible that pins stopped further crack growth. During loading Z9
sample it is also noticeable that a slight drop of load occurred with
simultaneous high increase of energy release. Crack increased during
that loading, but there was no further decrease in load value, which may
be to the staples carrying staples carrying the load. For all samples,
sudden increases in cumulative energy and cumulative hits occurred just
before the final failure.

3.3. Recognition of damage mechanisms by using the machine learning
techniques

Identification of acoustic emission signatures corresponding to

Fig. 7. Typical growth of total crack length: (a) Unpinned, (b) z-pinned, and (c)
Staple pinned.

Fig. 8. Comparison of total crack length growth of the different configurations.
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characteristic damage modes were prepared based on the AE data
collected during tensile tests conducted on the three types of the lap-
joint laminates, namely: the Z1 unpinned, the Z6 pinned and the Z9
stapled specimens. All of the AE hits captured by piezoelectric sensors
were transformed from analog to digital form and collected in the Vallen
AE Software. The total numbers of the AE events registered by the two
sensors were 9266, 7233 and 13,324 for unpinned, pinned and stapled
laminates respectively. Subsequently, the characteristic signal features
as: amplitude A [dB], rise time R [µs], energy E [aJ], duration D [µs],
number of counts C and maximum frequency f [kHz] – (calculated by
using the discrete Fourier transform) were extracted from each regis-
tered waveform and sent to Matlab Software. The first step covered
preprocessing of extracted AE signatures including removing outliers
and data normalization. Preliminary processed AE features in the form
of plot matrix and its mutual correlation coefficients obtained for the Z1
laminate are presented in Fig. 12 and Table 1. The scatter plots provided
insight into the quantitative data distribution and allowed for the
assessment of possible linear correlations between multiple variables.
Based on the histogram plots, it can be observed that most of the

registered acoustic emission events were characterized by signal signa-
tures exhibiting specific ranges, namely: amplitude (40 dB – 60 dB), rise
time (0 – 20 µs), energy (0–––200 aJ), duration (0–––300 µs), number of
counts (0–25) and peak frequency (0 – 300 kHz). In addition, mutual
correlations can be observed between specific variables that indicate
possible redundancy of data. The correlation coefficients reach values
between − 1 and 1 (0 – no correlation, − 1/1 negative/positive correla-
tion), which describes a linear relationship between measured variables.
Based on values collected in Table 1 it can be noticed that energy values
are strongly correlated with amplitude, duration and number of counts.
Similarly, the number of threshold crossing C has a high correlation with
A, E and D features. On the other hand, the frequency descriptors exhibit
no correlation with other parameters. The presence of highly correlated
variables increases the dimensionality of feature space and may decrease
the classifier efficiency. This is the one of the greatest difficulties in
multivariate statistical analysis that can be simplified by using addi-
tional mathematical processing that allows reducing redundant data and
present it as a new set of uncorrelated variables. In this case, the prin-
cipal component analysis was applied to all the AE feature data set. As a

Fig. 9. Load-time plots versus: a) cumulative energy, b) cumulative hits, obtained for Z1 laminate subjected to tensile test.

Fig. 10. Load-time plots versus: a) cumulative energy, b) cumulative hits, obtained for Z6 laminate subjected to tensile test.
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result of this operation, the input feature vector was linearly trans-
formed from a six dimensional to a four-dimensional space retaining
maximum information about the input variables. The clustering pro-
cedure was prepared by using two different machine learning tech-
niques, namely: the k-means and the Gaussian mixture model

techniques. The clusters centroids were measured by using the squared
euclidean distance metric technique. In addition, the number of itera-
tions was set to 80. Moreover, a regularization parameter was estab-
lished to 0.15. The clustering procedure was prepared on three AE
datasets collected during tensile tests conducted on unpinned Z1, pinned
Z6 and stapled Z9 laminates. The number of clusters n was chosen based
on the tested composite type and the expected failure modes. They were
as follows: for Z1 laminate n set to 2 (expected main damages: matrix
cracking and delamination), for Z6 and Z9 n was equal to 3 (expected
main damages: matrix cracking, delamination and other failure related
with damage of steel pins and area around it).

The predictive labeling of clusters to a specific type of damage was
done by relating the average values of the acoustic emission waveform
features representing each group with typical ranges of those parameters
that are characteristic for specific damage modes. The recommendations
about distinctive AE signatures resulting from previous research con-
ducted by the authors of current paper [56] and from extensive review of

Fig. 11. Load-time plots versus: a) cumulative energy, b) cumulative hits, obtained for Z9 laminate subjected to tensile test.

Fig.12. Typical scatter plots of AE waveform features data obtained for Z1 laminate subjected to tensile loading.

Table 1
Correlation coefficient values between different acoustic emission waveform
features for Z1 laminate.

AE feature A [dB] R [µs] E [aJ] D [µs] C [-] f [kHz]

A [dB] 1 0.3714 0.7620 0.5617 0.7891 0.0714
R [µs] 0.3714 1 0.4333 0.3449 0.2920 − 0.0960
E [aJ] 0.7620 0.4333 1 0.8100 0.8237 − 0.0916
D [µs] 0.5617 0.3449 0.8100 1 0.7286 − 0.0461
C [-] 0.7891 0.2920 0.8237 0.7286 1 0.0411
f [kHz] 0.0714 − 0.0960 − 0.0916 − 0.0461 0.0411 1
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state of the art where many researchers deeply investigated the issues of
different damage phenomena identification by using the acoustic
emission technique and the machine learning clustering algorithms.
Considering the above, the shape of propagated elastic transient wave-
form generated by developing damage inside the material depends on
the type of failure mechanism. Moreover, the signal primary features can
also be correlated with characteristic damage type. Hence, for example,
a matrix cracking phenomenon can be characterized by low energy and

short duration. Similarly, delamination can be described by AE signals
with longer rise time and with greater number of threshold crossing
(counts). The more detailed discussion about general behavior of elastic
waves induced by internal damage was described in the previous sec-
tion. In the Tables (2 – 7) the results of clustering procedure prepared on
the typical waveform features extracted from registered acoustic emis-
sion signals during the tensile tests conducted on the Z1, Z6 and Z9
laminates were presented. Those outcomes contain average values of the

Table 2
Mean values of the AE features obtained by using k-means technique for the Z1 laminate.

Cluster A
[dB]

R
[µs]

E
[aJ]

D
[µs]

C
[-]

f
[kHz]

Percentage
[%]

Predicted
failure mode

1 54 19 376 259 16 369 28 delamination
2 48 13 69 75 6 331 72 matrix

cracking

Table 3
Mean values of the AE features obtained by using GMM technique for the Z1 laminate.

Cluster A
[dB]

R
[µs]

E
[aJ]

D
[µs]

C
[-]

f
[kHz]

Percentage
[%]

Predicted
failure mode

1 54 19 356 250 15 364 32 delamination
2 48 13 64 71 5 331 68 matrix

cracking

Table 4
Mean values of the AE features obtained by using k-means technique for the Z6 laminate.

Cluster A
[dB]

R
[µs]

E
[aJ]

D
[µs]

C
[-]

f
[kHz]

Percentage
[%]

Predicted
failure mode

1 58 23 879 339 19 338 18 other failure mechanisms
2 53 20 263 186 12 324 30 delamination
3 48 9 51 51 5 323 53 matrix

cracking

Table 5
Mean values of the AE features obtained by using GMM technique for the Z6 laminate.

Cluster A
[dB]

R
[µs]

E
[aJ]

D
[µs]

C
[-]

f
[kHz]

Percentage
[%]

Predicted
failure

1 58 23 864 335 19 337 18 other failure mechanisms
2 53 22 262 192 12 321 27 delamination
3 48 9 55 52 5 325 55 matrix

cracking

Table 6
Mean values of the AE features obtained by using k-means technique for the Z9 laminate.

Cluster A
[dB]

R
[µs]

E
[aJ]

D
[µs]

C
[-]

f
[kHz]

Percentage
[%]

Predicted
failure

1 55 31 392 206 13 306 17 other failure mechanisms
2 51 27 142 106 8 306 33 delamination
3 46 11 40 42 4 319 50 matrix

cracking

Table 7
Mean values of the AE features obtained by using GMM technique For the Z9 laminate.

Cluster A
[dB]

R
[µs]

E
[aJ]

D
[µs]

C
[-]

f
[kHz]

Percentage
[%]

Predicted
failure

1 55 30 414 205 13 307 15 other failure mechanisms
2 51 28 162 124 9 305 27 delamination
3 47 14 46 45 5 317 57 matrix

cracking
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main AE features in each cluster, the predictive assignment of clustered
data to failure mechanisms and its percentage contribution in AE data
set obtained for specific test. The last parameter allows for quantitative
estimation of damage presence in different types of lap-joint laminates
under the static tensile test. To prepare comparative study the unsu-
pervised machine learning grouping of the AE data was conducted by
using two different clustering techniques: the k-means and the Gaussian
mixture model. Those approaches gave similar average values of the AE
features and its percentage contributions. Nevertheless, comparing the
scatter plots (Figs. 13-15) obtained by using those techniques, the
acoustic emission data were not grouped in the same manner. For the k-
means algorithms the AE waveform features were partitioned in more
pronounced clusters with less fuzziness at the boundaries than for the
Gaussian mixture model. It should be noticed, that due to those ap-
proaches giving similar outcomes, the discussion about obtained results
was conducted with respect to the values determined by using the k-
means technique. In the case of the Z1 (unpinned) joints, two

characteristic groups of signals that represent two failure mechanisms
could be observed. They were as follows: cluster 1 corresponds to
delamination (28 %) and cluster 2 corresponds to matrix cracking (72
%). For the Z6 (pinned) joint and Z9 (stapled) joint the collected AE data
were divided into three characteristic clusters. For the Z6 laminate,
damage phenomena caused by delamination (30 %), matrix cracking
(53 %) and other failure mechanism (18 %) can be distinguished. The
last failure group can be correlated with steel pins failure or laminate
damage in the region around pin. Similar situation can be noticed for the
Z9 stapled specimen. Here, the delamination group corresponded to 33
% of total AE signals, matrix cracking to 55 % and other failure mech-
anisms to 15 %. To sum up, the matrix cracking was found to be the most
dominant mode of failure for all three groups of lap joint laminates (Z1,
Z6, Z9) subjected to tensile loading. Delamination and other failure
mechanisms were grouped in smaller clusters. Based on obtained out-
comes, characteristic ranges of the AE waveform features with regard to
predicted damage mechanisms can be established and they were as

Fig. 13. Scatter plots of clustered waveform features extracted from the AE signals registered during tensile test of Z1 unpinned composite laminate.

Fig. 14. Scatter plots of clustered waveform features extracted from the AE signals registered during tensile test of Z6 pinned composite laminate.
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follows:

• for matrix cracking; A (46 – 48 dB), R (9 – 11 μs), E (40 – 69 aJ), C (4
– 6), D (42 – 75 μs) and f (319 – 331 kHz),

• for delamination:A (51 – 54 dB), R (19 – 27 μs), E (142 – 376 aJ), C (8
– 16), D (106 – 259 μs) and f (305 – 369 kHz)

Fig. 15. Scatter plots of clustered waveform features extracted from the AE signals registered during tensile test of Z9 stapled composite laminate.

Fig. 16. Micrograph of Z1 unpinned specimen.
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• for other failure mechanisms included pin damage: A (55 – 58 dB), R
(23 – 31 μs), E (372 – 879 aJ), C (13 – 19), D (206 – 339 μs) and f (306
– 338 kHz)

For the last group, an additional future investigation is required for
better recognition of the acoustic signatures mainly related with damage
of steel pins.

Fig. 17. Micrograph of the Z1 specimen fracture surface at 30x magnification.

Fig. 18. Micrograph of Z-Pinned for Z6.
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3.4. Fractographic analysis

The appearance of fracture surfaces resulting from failure in longi-
tudinal tension was primarily influenced by the bonding strength be-
tween fibers and matrix materials. To explain it simply, stronger bond
between the fiber and matrix tends to produce a flatter fracture surface.
Conversely, as the bond strength decreases the fracture surface becomes
more irregular and fibrous. Understanding the quality of fiber matrix
interface can provide valuable insights into the integrity of the structure.
In Fig. 16 one can notice voids, which occur in the laminate due to the
entrapment of volatile substances or air bubbles during the lay-up pro-
cess. Additionally, they may arise from the entrapment of moisture
during the crosslinking of the thermosetting matrix. When the laminate
was subjected to tensile loading, these porosities and voids merge
together forming cavities. Porosity can serve as a localized weakness and
potentially leads to a decrease in delamination resistance. Moreover, by
using magnification x30 it was possible to see several pulled-out indi-
vidual fibers. Micrograph in Fig. 17 shows the broken end of the fiber
appears frayed which suggests a tensile failure, where the fiber has been
pulled apart.

In the Fig. 18 represents z-pinned joints, we may notice pulled-out
fiber bundles where the fibers have been extracted from the resin ma-
trix, which can be a result of mechanical stress. These disruptions are
shown in two magnified insets providing a closer look at the damage. It
was possible to measure real length 12573 µm and second 4579 µm of
the dislodged fiber bundle. Such defects within the composite can
compromise its structural integrity.

Fig. 19 represents the failure surface of a staple pinned joint, where
broken pins are visible within the red square, together with pulled fiber
bundles. spanning a total length of 22.048 mm, a cluster of carbon fibers
detached from the matrix material upon rupture of the reinforcement.
Such damages are significant and may indicate a weak point in the
applied reinforcement staple pinned leading to the mass detachment of
fibers from the material.

4. Conclusions

This study examined static tensile behavior of carbon/epoxy com-
posite lap joints reinforced with steel z-pins and staples in the overlap
region. Joints with 2 rows of pins and 2 rows of staples were manufac-
tured to investigate the achievable performance improvements through
different patterns of through thickness reinforcement. The main in-
vestigations provided can be summarized as follows:

⋅ Z-pins and staples served in a strategic manner to slow down the
growth of debonding cracks, enhanced the structural integrity and
longevity. While staples appeared to be more efficace due to their
special geometry, since they applied a clamping force across the
overlapping layers, strengthened the bond between them by bridging
delamination and reducing the driving force behind the growth of
the cracks.

⋅ Z-pins and staples have increased the load capacity and prolonged
the displacement range for the composite materials until failure. The
superior performance of staples over z-pins, however, indicates their
potential as a cutting-edge strengthening method.

⋅ During the analysis of the acoustic emission, a high level of cumu-
lated acoustic energy was observed before the maximum point on the
load–displacement plot and before visually observed crack move-
ment. Using acoustic emission allows for earlier detection of degra-
dation process. In further research more detailed analysis of acoustic
emission and filtering signal will be conducted.

⋅ Application of machine learning data clustering revealed that the
fracture process was dominated by matrix cracking and delamination
fracture mechanisms. The damage phenomena occurring around pin
regions need to be more investigated in future tests.

⋅ Through optical microscopy it was possible to observe the surface
topography and morphology of the fracture after failure. The frac-
tography illustrated how the staples and z-pins joint mitigate the
propagation of debonding fractures at a microstructural level.
Particularly, the fractography showed surfaces rich with voids,
broken individual fibers. In the future deeper fractographic exami-
nation will be useful for scanning electron microscopy (SEM) to
provide a more detailed understanding of the staple and pin inter-
action with the composite matrix and the resulting failure modes.
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