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1 Introduction

Recent years have witnessed the rise of a number of gravitational models beyond general rel-
ativity attempting to address the classical singularity problem and remove the perturbative
quantum divergences of Einstein’s theory [1–3]. In particular, a general class of classical
and quantum theories with nonlocal dynamics have attracted much attention and have
become one of the most active fields of research in quantum gravity. Consider the action

S = 1
2κ2

∫
dDx

√
|g| [R+Rγ0(�)R+Rµνγ2(�)Rµν + V(R,Rµν)] , (1.1)

where κ2 = 8πG, G is Newton’s constant, g is the determinant of the metric (with signature
(−,+, · · · ,+)), R is the Ricci scalar, Rµν is the Ricci tensor and γ0,2(�) are analytic func-
tions, called form factors, of the Laplace-Beltrami operator � = ∇µ∇µ. Nonlocal quantum
gravity (NLQG) [4–8] is a set of theories which select specific form factors with exponential
or asymptotically polynomial behaviour, which have especially benign properties that pre-
serve unitarity and improve renormalizability. Renormalization can be further improved to
finiteness for some choices of the potential-like local term V, depending on the topological
dimension D of spacetime [9]. At the classical level, the theory has a well-defined problem
of initial conditions [10, 11] and it admits stable Ricci-flat solutions, i.e., background met-
rics gµν such that Rµν [g] = 0 [12–15].1 Furthermore, theories with higher-order curvature
terms usually carry at least one extra scalar degree of freedom dubbed scalaron or curva-
ton. However, this and other extra tensor modes do not propagate in NLQG on Minkowski

1Other exact solutions can be found in [16].
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spacetime [11]. Finally, some of the Ricci-flat solutions are singular (for instance, the
Schwarzschild metric [13, 14]), which means that the classical nonlocal theory possesses, in
principle, the classical black-hole singularities of general relativity. However, the finite ver-
sion of the quantum theory is conformally invariant (because all beta functions vanish and
so does the conformal anomaly) and conformal symmetry removes the singularities [17, 18].

All these results are modified when optionally adding to (1.1) a (Riemann)2 term
Rµνρσγ4(�)Rµνρσ, which is not necessary for the renormalizability of the theory because
γ4 does not appear in the graviton propagator [5, 6, 9]. In this case, Ricci-flat spacetimes
are no longer exact solutions and black-hole singularities, if any, may be resolved without
invoking conformal symmetry [19–33].

A particular and somewhat surprising feature of NLQG is that the four-graviton scat-
tering amplitude for γ4 = 0 is exactly the same [34] of Einstein’s theory of gravity in
vacuum [35–37]. Indeed, delicate cancellations among different channels take place when
γ4(�) = 0 and conspire together to obtain this result, valid also in local Stelle gravity [38].
An important implication is that no extra degrees of freedom appear at the quantum
level [39], consistently with the classical spectrum [11].

These results are clear in the light of Anselmi’s field redefinition [40], which maps
the nonlocal theory (with no (Riemann)2 term) to the Einstein-Hilbert action. Since the
S-matrix is invariant under such field redefinitions with analytic nonlocal operators, one
can conclude that all the tree-level amplitudes, including the 4-graviton amplitude found
in [34], are the same as in general relativity.

However, one may wonder whether this conclusion holds also in the presence of matter.
This issue has been addressed recently in [41], where examples of nonlocal theories were
given such that matter does not affect the stability properties of the local underlying local
theory. More precisely, in that paper, a recipe was provided in order to construct nonlocal
field theories starting from a local action and securing the following properties: linear and
non-linear stability of all solutions of the local theory, super-renormalizability or finiteness
at the quantum level, and perturbative unitarity at any loop order.

We here will first recall the general action proposed in [41] (section 2), which has been
already applied to the Higgs mechanism in nonlocal field theory [42], and afterwards we
will prove in two different but equivalent ways that all the n-point tree-level scattering
amplitudes of the nonlocal theory are identical to the amplitudes of the underlying local
one. The first proof (section 3) is based on Anselmi’s theorem [40] which was already
implemented in nonlocal purely gravitational theories in [34].2 The second proof (sec-
tion 4), which is a generalization of the results of [44] already applied to higher-derivative
theories in [43], is based on the explicit construction of a unique correspondence between
perturbative solutions and scattering amplitudes in the nonlocal theory.

2In the same paper [34], it was shown that the scattering amplitudes in Stelle’s theory and in Weyl
conformal gravity are the same of the Einstein-Hilbert theory as long as we have only gravitons as external
particles. When ghosts appear as external states, the amplitudes were computed in [43].
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2 A general nonlocal framework with entire form factors

Let us summarize the nonlocal theory proposed in [41]. Here we use a compact DeWitt
notation such that with the indices i, j on fields we encode all Lorentz, group indices, and
the spacetime dependence of the fields. Additionally, we assume that the field space is flat
and we do not need to raise indices in sums there. The action in D dimensions consists of
the usual local Einstein’s gravitational theory in the presence of matter extended with an
operator quadratic in the Einstein’s equations of motion (EoMs)3 Ei = 0 between which
it is inserted a nonlocal form factor Fij depending only on the Hessian operator ∆ of the
local theory. In a completely general notation, the action is

S(Φi) =
∫
dDx

√
|g| [Lloc + Ei Fij(∆)Ej + V(E)] , (2.1)

Sloc =
∫
dDx

√
|g| Lloc , Lloc = 1

2κ2R+ Lm , (2.2)

Ei(x) := δSloc
δΦi(x) , (2.3)

∆ki := δEi
δΦk

= δ2Sloc
δΦkδΦi

, (2.4)

where ∆ is the Hessian of the local theory, Φi = gµν , Aµ, φ, . . . is any field including the
metric and matter fields and Fij(∆)(x, y) is a form factor related to an exponential entire
function exp H(∆) through the relation

2∆ikFkj(∆) ≡
[
eH(∆) − 1

]
ij
, (2.5)

where repeated indices are summed over. Finally, the potential-like term V(E) must be at
least cubic in the local EoMs Ei, namely V(E) = O(E3).

From the definition (2.5), the EoMs for the nonlocal theory turn out to be very simple:

Ek =
[
eH(∆)

]
kj
Ej +O(E2) = 0 . (2.6)

Therefore, all the solutions of the local theory are solutions of the nonlocal theory, too, and,
most importantly, we will show that the linear and non-linear perturbations of (2.6) satisfy
the same EoMs as for the local theory. To be more explicit, given an exact background
solution Ek = 0 of the local theory, we can derive the EoMs for the perturbations expanding
the fields, and then of the EoM, in a small dimensionless parameter ε, i.e.,

Φi =
∞∑
n=0

εnΦ(n)
i , (2.7)

Ek(Φi) =
∞∑
n=0

εnE
(n)
k , Ek(Φi) =

∞∑
n=0

εnE(n)
k . (2.8)

Assuming that the fields Φ(0)
i satisfy the local background EoMs

E
(0)
k (Φ(0)

i ) = 0 , (2.9)
3With an abuse of terminology, we will keep calling the objects Ei EoMs.
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it is extremely simple to prove a result which generalizes the theorems of [15, 45]. In
appendix A, we show that all perturbations (for gravity and matter) of the nonlocal theory
satisfy the same EoMs of the perturbations in Einstein’s gravity coupled to matter,

E(n)
k (Φ(n)

i ) = 0 =⇒ E
(n)
k (Φ(n)

i ) = 0 for n > 0 , (2.10)

where the label n indicates the perturbative expansion of the tensors Ek and the EoM Ek
at the order n in all the perturbations Φ(n)

i . The outcome (2.10) is also an equivalent way
to show tree-level unitarity, as we will see in section 4, while the Cutkosky rules [46] and
perturbative unitarity for nonlocal field theories have been considered in [39].

Now we are ready to prove the two theorems mentioned at the beginning of this
introduction.

3 Field redefinition and scattering amplitudes

Since the action (2.1) consists of the local theory (2.2) augmented by nonlocal and analytic
operators at least quadratic in the EoM Ei, the local and nonlocal theories are equivalent
by means of an analytic field redefinition of the fields [34, 40, 47, 48]. Let us review and
adjust Anselmi’s theorem [34, 40] to the theory (2.1).

Theorem 1. All the on-shell n-point tree-level amplitudes in the theory (2.1) are the same
as the on-shell tree-level amplitudes of the theory (2.2).

Let us assume to have two general weakly nonlocal or local action functionals S(Φi)
and Sloc(Φi) such that

S(Φk) = Sloc(Φk) + Ei(Φk)Fij(Φk)Ej(Φk) , (3.1)

where F can contain derivative operators and Ei = δSloc/δΦi are the EoMs of the local
theory. Hence, the statement of the theorem is that there exists a field redefinition

Φ′i = Φi +QijEj , Qij = Qji, (3.2)

such that, perturbatively in F , but to all orders in powers of F , we have the equivalence

S(Φk) = Sloc(Φ′k) . (3.3)

Above, Qij is a generic nonlocal operator acting linearly on Ej , and it is defined perturba-
tively in powers of the operator Fij , namely, Qij = Fij(Φk) + . . ..

Proof. Let us consider the first order in the Taylor expansion for the functional Sloc(Φ′k),

Sloc(Φ′k) = Sloc(Φk + δΦk) ' Sloc(Φk) + δSloc
δΦi

δΦi = Sloc(Φk) + Ei δΦi . (3.4)

If we can find a weakly nonlocal (analytic) expression for δΦi such that (note that the
argument of the functionals S and Sloc is now the same)

S(Φk) = Sloc(Φk) + Ei δΦi , (3.5)

– 4 –
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then there exists a field redefinition Φi → Φ′i satisfying (3.3). Hence, the two actions S(Φk)
and Sloc(Φ′k) are tree-level equivalent. The general field redefinition (3.2) at any order in
F is given in [40] and the application of the theorem to (2.1) yields

Sloc(Φ′k) = Sloc(Φk) + Ei(Φk)Fij(Φk)Ej(Φk) = S(Φk) . (3.6)

Therefore, the nonlocal functional of the fields Φk coincides with the local functional of the
fields Φ′k.

For the theory (2.1), the perturbative spectrum is the same of the local theory (2.2).
Therefore, the Hilbert space of the asymptotic states of the nonlocal and local theories
coincide. Therefore, by virtue of the field redefinition, the tree-level scattering processes
are all and only the same. �

This result was shown in vacuum in [34] and we have generalized it here to a theory
with matter. We will reach the same conclusion in section 4 via a different route.

4 Scattering amplitudes from the perturbative solutions of the EoM

Once established that all and only the perturbative solutions of the local theory (around
a background that solves the EoMs of the local solution) are also solutions of the nonlocal
theory (see section 1), we can focus on Minkowski spacetime and conclude that all the
n-point scattering amplitudes of the local and nonlocal theories coincide.

A foundational result in local quantum field theory is that the solution of the classical
equations of motion is the generating functional of tree graphs [49, 50]. This observations
allows to find scattering amplitudes recursively [51, 52] via a procedure which can be
summarized the formula for the n-point scattering amplitude [43, 44]

Ai1...inn (p1, . . . , pn) = lim
p2
n→−m2

n

1
iG̃(pn)

δn−1Φ̃(n−2)
in

(−pn)
δΦ̃(0)

i1
(p1) · · · δΦ̃(0)

in−1
(pn−1)

, (4.1)

where Φ̃i(p) is the Fourier transform of the generic field Φi(x), G̃(p) is the tree-level Green’s
function, iG̃ is the propagator, Φ̃(n−2)

in
is the solution at the (n− 2) perturbative order in

a small-parameter expansion and Φ̃(0)
i is the solution at zero order in the same expansion.

For an ordinary quantum field theory with second-order kinetic operator, G̃(pn) = −1/p2
n

and one recovers the formula of [44]:

Ai1...inn (p1, . . . , pn) = i lim
p2
n→−m2

n

p2
n

δn−1Φ̃(n−2)
in

(−pn)
δΦ̃(0)

i1
(p1) · · · δΦ̃(0)

in−1
(pn−1)

. (4.2)

Notice that, for massless particles, the limit p2
n → 0 does not imply that pµn → 0 for all

µ = 0, 1, 2, 3.
According to the proof in the appendix A, the perturbative solutions of (2.6) or (A.1)

are the same as for the local theory as long as we start from a background that solves the
EoMs Ei = 0. Since Minkowski is one such background, we can apply directly (4.1) to the
nonlocal theory (2.1) and get the n-point scattering amplitude, where Φ̃(n−2)

in
is the solution

– 5 –
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at the (n− 2)-order in ε and Φ̃(0)
i is the solution at zero order in the same expansion (2.8).

Now, in nonlocal quantum gravity the form factor exp H(∆) is such that, by construction,
exp H(−m2) = 1 or at low momentum in the case of massless particles such as the graviton.
Since the two-point Green’s function is always of the form G̃(k) ' − exp(−H)/(k2 +m2),
no new poles are introduced in the spectrum of the theory and (4.1) reduces to (4.2).
Therefore, we can conclude that

Theorem 2. All the n-point scattering amplitudes of the nonlocal theory (2.1) equal the
amplitudes in the local theory (2.2).

For this result, it is crucial to have a benign type of nonlocality where the form factor
is entire and exp H→ 1 on shell.

A final remark is in order. Let us focus on the weakly nonlocal term in the theory (2.1)
with the asymptotically polynomial form factor typical of nonlocal quantum gravity [5, 6].
For the sake of simplicity, we only consider one field Φ and one cubic interaction. The
leading contribution to the action in the ultraviolet regime reads

E F (�)E ∼ Φ�γΦ + Φ2�γΦ , (γ > 4 , γ ∈ N) . (4.3)

On the basis of the topological relation NI − NV = L − 1 (NV = NI + 1 for L = 0,
NI : number of internal lines, NV : number of vertices, L: number of loops in a Feynman
diagram), one might be induced to think that the tree-level amplitude diverges at most as

An ∼
p2γNV

p2γNI
= p2γ(NI+1)

p2γNI
= p2γ . (4.4)

However, this naive counting fails for the special theories (2.1) and also in higher-derivative
theories where the external on-shell states that are supposed to interact are the same of
the underling local two-derivative theories. On the other hand, more generally, in higher-
derivative theories the spectrum of the theory usually contains other normal or ghost-like
states and the amplitudes involving such asymptotic states will be usually non-zero.

5 An explicit scalar-field example

Let us consider now the example of a scalar field theory with a general potential V (φ).
The action in D = 4 dimensions reads

S(Φi) =
∫
d4x

√
|g| [Lloc + Eφ F (∆φ)Eφ] , (5.1)

Sloc =
∫
d4x

√
|g| Lloc , Lloc = 1

2φ�φ− V (φ) , (5.2)

Eφ = δSloc
δφ

= �φ− V ′(φ) , (5.3)

∆φ = δEφ
δφ

= δ2Sloc
δφ δφ

= �− V ′′(φ) , (5.4)

F (∆φ) = eH(∆φ) − 1
2∆φ

. (5.5)

– 6 –
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The nonlocal EoM for the nonlocal scalar field theory is obtained taking the variation of
the action (5.1) with respect to φ, but the explicit variation is given in appendix B. The
final result reads

eH(∆φ)Eφ +O(E2
φ) = 0 . (5.6)

Therefore, according to the general proof in appendix A, the perturbative solutions of the
nonlocal theory compatible with the background solutions of Eφ = 0 are all and only the
perturbative solutions of the local theory. Let us assume as usual that the exact background
solution for φ is φB = 0, which trivially solves the EoM Eφ = 0. This solution φB would
correspond to the Minkowski metric ηµν in the case of gravity.

To further simplify our example, we consider a scalar theory with only a cubic inter-
action,

Lloc = 1
2φ�φ−

g

3!φ
3 , (5.7)

whose local EoM reads
�φ− 1

2gφ
2 = 0. (5.8)

Introducing the Fourier transform for the field φ defined by:

φ(x) =
∫

d4p

(2π)4 φ̃(p) e−ip·x, (5.9)

the EoM turns into∫
d4k

(2π)4 k
2φ̃(p) e−ik·x + g

2

∫
d4p1
(2π)4

∫
d4p2
(2π)4 φ̃(p1)φ̃(p2) e−i(p1+p2)·x = 0 . (5.10)

Changing variable from p2 to k = p1 + p2,∫
d4k

(2π)4k
2φ̃(k) e−ip·x + g

2

∫
d4k

(2π)4

∫
d4p1
(2π)4 φ̃(p1)φ̃(k − p1) e−ik·x = 0 ,

k2φ̃(k) + g

2

∫
d4p1
(2π)4 φ̃(p1)φ̃(k − p1) = 0 . (5.11)

Finally, inserting the identity in terms of Dirac’s delta in (5.11), the equation of motion in
momentum space reads

k2φ̃(k) + g

2

∫
d4p1
(2π)4

∫
d4p2
(2π)4 φ̃(p1)φ̃(p2)(2π)4δ4(k − p1 − p2) = 0 . (5.12)

Now we make use of the perturbative solution of eq. (5.12) in momentum space:

φ̃(k) =
+∞∑
n=0

φ̃(n)(k) , φ̃(n)(k) ∼ gn . (5.13)

As stated above, the full background solution is φB = 0. At zero order in the coupling
g, namely g0, the solution approximates to φ(0)(x), which satisfies the plane wave equation
with null momentum k2 = kµk

µ = 0:

�φ(0)(x) = 0 =⇒ −k2φ̃(0)(k) = 0 =⇒ k2 = 0 . (5.14)

– 7 –
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At order one in the coupling g, namely g1, the solution of

k2φ̃(1)(k) + g

2

∫
d4p1
(2π)4

∫
d4p2
(2π)4 φ̃

(0)(p1)φ̃(0)(p2)(2π)4δ4(k − p1 − p2) = 0 , (5.15)

is

φ̃(1)(k) = −g2

∫
d4p1
(2π)4

∫
d4p2
(2π)4

1
k2 φ̃

(0)(p1)φ̃(0)(p2)(2π)4δ4(k − p1 − p2) . (5.16)

At second order in g, namely g2,

φ̃(2)(k) =−g2

∫
d4p1
(2π)4

∫
d4p2
(2π)4

1
k2

[
φ̃(0)(p1)φ̃(1)(p2) + φ̃(1)(p1)φ̃(0)(p2)

]
(2π)4δ4(k − p1 − p2)

= −g
∫

d4p1
(2π)4

∫
d4p2
(2π)4

1
k2 φ̃

(0)(p1) φ̃(1)(p2) (2π)4δ4(k − p1 − p2) , (5.17)

which is symmetric exchanging p1 and p2.
Now we replace the first-order solution (5.16) into (5.17):

φ̃(2)(k) = −g
∫

d4p1
(2π)4

∫
d4p2

1
k2

×
[
−φ̃(0)(p1)g2

∫
d4k1
(2π)4

∫
d4k2

1
p2

2
φ̃(0)(k1)φ̃(0)(k2)δ4(p2 − k1 − k2)

]
×δ4(k − p1 − p2)

= g2

2

∫
d4p1
(2π)4

1
k2

×
[
φ̃(0)(p1)

∫
d4k1
(2π)4

∫
d4k2

1
(k1 + k2)2 φ̃

(0)(k1)φ̃(0)(k2)
]

×δ4(k − p1 − k1 − k2) , (5.18)

where we integrated in p2. Making the replacements k1 → p2 and k2 → p3,

φ̃(2)(k) = g2

2

∫
d4p1
(2π)4

∫
d4p2
(2π)4

∫
d4p3
(2π)4

1
k2

1
(p2 + p3)2 φ̃

(0)(p1) φ̃(0)(p2) φ̃(0)(p3)

×(2π)4δ4(k − p1 − p2 − p3) . (5.19)

We can now compute three-point and four-point scattering amplitudes. For that pur-
pose, we recall that the functional variation in momentum space is decorated with a (2π)4

from the Fourier transform:
δφ̃(p)
δφ̃(p′)

= (2π)4δ4(p− p′) . (5.20)

– 8 –
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Let us start with the 3-point scattering amplitude. Replacing the solution at the first order
in g in formula (4.1) for n = 3 we get:

A3(p1, p2, p3) = i lim
p2

3→0
eH(−p2

3)p2
3

δ2φ̃(1)(−p3)
δφ̃(0)(p1) φ̃(0)(p2)

= i lim
p2

3→0
p2

3
δ2
[
−g

2
∫ d4k1

(2π)4
∫
d4k2

1
(−p3)2 φ̃

(0)(k1)φ̃(0)(k2)δ4(k1 + k2 + p3)
]

δφ̃(0)(p1) φ̃(0)(p2)

= −i lim
p2

3→0

g

2(2π)4
∫
d4k1

∫
d4k2 δ

4(k1 + k2 + p3)

×
[
δ4(p1 − k1) δ4(p2 − k2) + δ4(p1 − k2) δ4(p2 − k1)

]
= −i g(2π)4 δ4(p1 + p2 + p3) , (5.21)

which coincides with the well-known result in local quantum field theory.
The computation of the 4-point scattering amplitude is slightly more tedious and in-

volved. From formula (4.1) for n = 4 the expression to evaluate is

A4(p1, . . . , p4) = i lim
p2

4→0
eH(−p2

4)p2
4

δ3φ̃(2)(−p4)
δφ̃(0)(p1) δφ̃(0)(p2) δφ̃(0)(p3)

. (5.22)

The solution at second order in g and evaluated in k = −p4 reads

φ̃(2)(−p4) = g2

2

∫
d4k1
(2π)4

∫
d4k2
(2π)4

∫
d4k3

1
p2

4

1
(k2 + k3)2 φ̃

(0)(k1) φ̃(0)(k2) φ̃(0)(k3)

×δ4(k1 + k2 + k3 + p4) , (5.23)

In order to get the final 4−points amplitude we have to evaluate the functional derivative
in (5.22), which yields

1
(2π)12

δ3[φ̃(0)(k1) φ̃(0)(k2) φ̃(0)(k3)]
δφ̃(0)(p1) δφ̃(0)(p2) δφ̃(0)(p3)

= δ(p1 − k1) δ(p2 − k2) δ(p3 − k3) + δ(p1 − k2) δ(p2 − k3) δ(p3 − k1)
+δ(p1 − k3) δ(p2 − k1) δ(p3 − k2) + δ(p1 − k3) δ(p2 − k2) δ(p3 − k1)
+δ(p1 − k2) δ(p2 − k3) δ(p3 − k1) + δ(p1 − k3) δ(p2 − k1) δ(p3 − k2) . (5.24)

Replacing (5.23) into (5.22), using (5.24) and integrating in k1, k2, k3, the amplitude finally
reads

A4(p1, . . . , p4) = i g2
[ 1

(p1 + p2)2 + 1
(p2 + p3)2 + 1

(p1 + p3)2

]
(2π)4δ4(p1 + p2 + p3 + p4) ,

(5.25)
again a well-known result in local quantum field theory [53].

6 Conclusions

We have proved in two different ways that all the tree-level scattering amplitudes of the
special class of theories defined in (2.1) are the same of the underlying local theory (2.2).
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The first proof was based on a general field redefinition theorem that apply to a more
general class of theories (section 3), while the second proof was constructive and based
on a general algorithm that provides a correspondence between perturbative solutions of
the classical equations of motion and tree-level scattering amplitudes (section 4). As a
particular example, we applied the theorem to a scalar field theory with cubic interaction.
These results equally apply to the NLQG (2.1) because of the EoM (5.6) whose perturbative
solutions are the same of the Einstein’s theory around any background spacetime that solves
the Einstein’s local EoM.

The class of models discussed here does not encompass all possible nonlocal ghost-
free theories of gravitation, since it leaves out the cases with non-entire form factors,
such as theories with a minimal length [54], with a minimal proper time in Schwinger
parametrization [55, 56] or with fractional operators [57]. On the other hand, the present
work has been motivated by the need to clarify the topic of scattering amplitudes in nonlocal
gravity [4–6, 8, 9, 58, 59] but it actually has a very general applicability and validity.
In particular, the same analysis applies also to local higher-derivative theories and it is
consistent with what we already know. In the case of Lee-Wick theories, such as the
quantum gravity proposal of [60, 61], complex conjugate ghosts appear, but they can be
consistently removed from the asymptotic spectrum [60] implementing the Anselmi-Piva
prescription (and not the Feynman prescription) [63–65]. Indeed, the latter prescription
guarantees that, in the loop amplitudes, ghosts are not restored consistently with the fact
that they cannot go on-shell. The same prescription works also for more general higher-
derivative theories [62], which, therefore, turns out to be unitary too.

As a future refinement of the present results, we mention the possibility to find another
proof via the world-line approach of [55]. There, the propagator of a given scalar theory
was expressed in the Schwinger representation where the integration over the proper-time
parameter s was performed with a non-trivial measure for s and a minimal value s∗. If
the propagator of the corresponding local scalar theory is obtained in the limit s∗ → 0,
then, the reasoning goes, the tree-level scattering amplitudes of the nonlocal theory are the
same as in the local theory, since the amplitudes of asymptotic in-out states should not be
affected by the short-scale behaviour. Similar considerations could apply also to nonlocal
quantum gravity. The graviton propagator has the form ∼ exp[−H(−k2)]/k2, where H is
an entire function. This admits a Schwinger-like representation of the form

e−s∗H

k2 = H
k2

∫ +∞

s∗
ds e−sH , (6.1)

valid for Re H > 0. When s∗ = 1, one obtains the nonlocal propagator of the theory. When
s∗ = 0, indeed one recovers the local propagator, for any H. Although this representation
does not recast all the derivative (momentum) dependence in integral form, the overall
factor H/k2 does not have any pole because H has a trivial kernel, i.e., H(0) = 0 in this
class of theories. Therefore, it admits a series expansion H(−k2) =

∑∞
l=1 cl(k2)l with no

zero mode and, consequently, H/k2 = c1 + c2k
2 + . . . . Thus, the limit

lim
k2→0

H(−k2)
k2 = c1 (6.2)
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is finite. The details of this reasoning should be filled up rigorously but we do not expect
major complications. However, we note that, in general, it is not sufficient to prove that
the propagator does not display any other pole besides the usual ones because scattering
amplitudes also involve the vertices and these may carry singularities such as single poles,
double poles or branch cuts.
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A Linear and nonlinear stability in the nonlocal field theory (2.1)

In order to prove that the linear and non-linear stability of the nonlocal theory (2.1) are
the same of the local theory, we have to expand perturbatively in ε (see eq. (2.8)) the
EoM (2.6), which we write in vectorial notation:

E = eH(∆) E +O(E2) = 0 . (A.1)

Since we want to study the stability of exact solutions of the Einstein’s theory coupled to
matter, we assume to expand around a metric consistent with (2.9), E(0) = 0.

Hence, at zero order in ε, we have

eH(0)(∆) E(0) +O(E(0)2) = 0 , (A.2)

which is satisfied because, by hypothesis, the background satisfies E(0) = 0.
At the first order ε1, we get

eH(1)(∆) E(0) + eH(0)(∆) E(1) +O(E(0)E(1)) = 0
=⇒ E(1) = 0 =⇒ Φ(1)

i = Φ(1)
i

(
Φ(0)
j

)
, (A.3)

where we used the solution E(0) = 0 at the previous perturbative order.
At the second order ε2, we get

eH(2)(∆) E(0) + eH(1)(∆) E(1) + eH(0)(∆) E(2) +O(E(1)E(1)) +O(E(2)E(0)) = 0
=⇒ E(2) = 0
=⇒ Φ(2)

i = Φ(2)
i

(
Φ(0)
j ,Φ(1)

k

)
= Φ(2)

i

(
Φ(0)
j ,Φ(1)

k

(
Φ(0)
l

))
, (A.4)

where we used E(0) = 0 and E(1) = 0.
Finally, by induction, at the order εn we obtain

eH(n)(∆) E(0) + eH(n−1)(∆) E(1) + eH(n−2)(∆) E(2) + · · ·+ eH(0)(∆) E(n) +
+O(E(n)E(0)) +O(E(n−1)E(1)) + · · ·+O(E(1)E(n−1)) +O(E(0)E(n)) = 0 (A.5)

=⇒ E(n) = 0
=⇒ Φ(n)

i = Φ(n)
in

(
Φ(0)
i1
, . . . ,Φ(n−1)

in−1

)
= Φ(n)

in

(
Φ(0)
i1
, . . . ,Φ(n−1)

in−1

(
Φ(n−2)
in−2

, . . . ,Φ(0)
i1

))
,

where we used E(0) = 0, E(1) = 0, . . . , E(n−1) = 0.
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Therefore,
E(n) = 0 =⇒ E(n) = 0 . (A.6)

Since this condition is not only sufficient but also necessary (whenever E = 0, also E = 0),
we conclude that

E(n) = 0 ⇐⇒ E(n) = 0 . (A.7)

It deserves to be notice that the exponential form factor always appear at the zero
order in the ε−expansion, namely exp H(0), at any step of the proof, since higher-order
terms exp H(1), exp H(2), . . . , are always multiplied by a quantity which vanishes on the
background.

B Equations of motion for a nonlocal scalar field theory

The nonlocal EoM for the nonlocal scalar field theory (5.1) is obtained taking the variation
of the action:

δS =
∫
d4x

[
δφEφ +

(
δEφ
δφ

δφ

)
F (∆φ)Eφ + Eφ F (∆φ)

(
δEφ
δφ

δφ

)
+O(E2

φ)
]

(B.1)

=
∫
d4x

{
δφEφ +

[
(�− V ′′)δφ

]
F (∆φ)Eφ + Eφ F (∆φ)

[
(�− V ′′)δφ

]
+O(E2

φ)
}
.

Integrating by parts and using the definitions (5.4) and (5.5), the variation (B.1) turns into

δS =
∫
d4x δφ

[
Eφ + 2

[
(�− V ′′)

]
F (∆φ)Eφ +O(E2

φ)
]

=
∫
d4x δφ

[
Eφ + 2∆φF (∆φ)Eφ +O(E2

φ)
]

=
∫
d4x δφ

[
Eφ + 2∆φ

eH(∆φ) − 1
2∆φ

Eφ +O(E2
φ)
]

=
∫
d4x δφ

[
eH(∆φ)Eφ +O(E2

φ)
]
, (B.2)

implying that the EoM is (5.6).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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