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Abstract: The Internet of Things is enriching our life with an ecosystem of interconnected devices.
Object cooperation allows us to develop complex applications in which each node contributes
one or more services. Therefore, the information moves from a provider to a requester node in a
peer-to-peer network. In that scenario, trust management systems (TMSs) have been developed to
prevent the manipulation of data by unauthorized entities and guarantee the detection of malicious
behaviour. The community concentrates effort on designing complex trust techniques to increase their
effectiveness; however, two strong assumptions have been overlooked. First, nodes could provide the
wrong services due to malicious behaviours or malfunctions and insufficient accuracy. Second, the
requester nodes usually cannot evaluate the received service perfectly. For this reason, a trust system
should distinguish attackers from objects with poor performance and consider service evaluation
errors. Simulation results prove that advanced trust algorithms are unnecessary for such scenarios
with these deficiencies.
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1. Introduction

Many forms of social and economic transactions are built on an entity’s expectation
that one’s transaction partner will not behave opportunistically and deviate from previously
made agreements. This expectation is commonly conceptualized as trust: although we
experience and rely on trust during our interactions in everyday life, trust can have many
definitions, so that it is challenging to define it accurately.

Trust, defined as “the subjective probability by which an individual, the trustor,
expects that another individual, the trustee, performs a given action on which its welfare
depends” [1], can be regarded as the fabric of many scenarios involving interactions
between entities. Whenever entity outcomes depend on others, its expectation regarding
their benevolent versus malevolent intentions towards it critically shape its behaviour.

Trust is also typically regarded as essential to cooperation and it has thus been recog-
nized as a critical factor for the Internet of Things (IoT) [2]. In the IoT scenario, the requester
has the role of the trustor and has to trust that the provider, who is then the trustee, will
provide the required service. However, misbehaving devices may perform several types of
attacks for their own gain towards other IoT nodes: they can provide false services or false
recommendations, and they can act alone or create a group of colluding devices to monopo-
lize a class of services. If not handled adequately, attacks and malfunctions would outweigh
any of the benefits of the IoT [3]. In this way, Wang et al. in [4] and Samuel et al. in [5]
represent two important instances that take advantage of blockchain. In the first work, the
authors provide trust management in vehicular crowdsourcing networks (VCNs); thanks
to the immutability and transparency offered by blockchain, they guarantee high reliability
for service producers and consumers. In addition, the second study illustrates an efficient
mechanism to provide trust in smart grids towards interaction analysis between nodes and
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storing information in the blockchain. Moreover, the importance of trustworthiness in edge
computing is depicted in [6]. The authors investigate the problem of learning-aided compu-
tation for collaborative mobile edge computing (MEC) and propose an online mechanism
based on the trust concept.

Trust management allows for multiple objects to share opinions about the trustworthi-
ness of other devices. The goal of a trust management system (TMS) is then to guarantee
that actions taken by entities in a system reflect their reputation values, and to prevent
these values from being manipulated by unauthorized entities. Reputation is a measure
derived from direct or indirect knowledge or experience on earlier interactions of entities
and is used to assess the level of trust in an entity. TMSs play an important role in IoT as
they help entities overcome perceptions of the uncertainty and risk of a transaction and
promote users’ acceptance and consumption of IoT services and applications.

The literature on TMSs concentrates on analysing the different phases involved in the
process of managing the trust, its properties, the available techniques used to compose
trust, the existing computation models and their effectiveness as defensive mechanisms
against malicious attacks. Regardless of the proposed model, all the analysed papers are
tested under two strong assumptions:

• A node provides the wrong service intentionally; however, well-behaving devices
can show poor performance, due to errors, poor accuracy or technical problems in
general. This problem is usually overlooked by trust algorithm models while it is
indeed fundamental for them to be able to distinguish a malicious node from a poorly
behaving one.

• The requesting node is able to accurately estimate the service received; notwithstand-
ing this, requesters do not usually have ground truth information regarding the service,
so that its evaluation is hardly accurate and even good services, and thus benevolent
providers, can be poorly evaluated.

This means that even during a benevolent transaction, i.e., in a transaction involving
only benevolent nodes, there could be two possible sources of errors, namely the entity
providing the service and the requester evaluating it, without necessarily any malicious
node involved. The presence of these errors can confuse TMSs and thus make it difficult to
isolate only malicious nodes.

In this paper, we claim that these assumptions are too strong and should be lifted to
a certain degree in order to better evaluate the TMSs; otherwise, it becomes difficult to
estimate and appreciate their performance since simpler approaches can achieve better
results. Our paper works in this direction and thus provides the following contributions:

• We briefly survey the main techniques used to form the overall trust out of multiple
trust properties.

• We discuss the deficiencies of the scenarios used to test TMSs and show how, in such
scenarios, advanced techniques are not necessary to deal with the trust management
problem.

The rest of the paper is organized as follows: Section 2 presents the main techniques
adopted to compute trust and discusses the deficiencies of the scenarios used to test them.
In Section 3, we survey the common scenarios’ features and show the possible types of
attacks on trust. Section 4 illustrates how a basic model can outperform complex ones with
an overly simplified scenario and presents how different models perform under different
conditions. Finally, Section 5 provides some final remarks and a discussion about the
importance of a complex scenario.

2. How to Construct Your Trust Model

The goal of any TMS is to identify malicious behaviours as soon as possible in order
to isolate the nodes implementing such behaviours and discourage them from acting
maliciously. With this goal in mind, many researchers have proposed different approaches



IoT 2022, 3 264

which make use of direct observation and indirect recommendations [7]. A trustworthiness
management model can be classified following five dimensions [8]:

• The Composition refers to the trust attributes considered in the computation that are
QoS or Social components;

• The scheme used, distributed, semi-distributed or centralized, is defined in the Propa-
gation dimension;

• The Aggregation depicts how the trust attributes are aggregated to result in a trust degree;
• The Update concerns how trust is updated, periodically or when an event occurs;
• Finally, the Formation illustrates the overall trust as a single trust dimension or a

combination of multiple ones.

Regardless of the different model proposed, all the papers follow a common creation
process for trust management. At first, the authors present a scenario where objects could
exchange information, describing the role of the requester and of the provider. Therefore,
a trust model can be illustrated on the basis of the five dimensions previously described.
Finally the model is tested under specific assumptions and compared with other trust
models already accepted by the community. Regarding the simulations, the authors usually
consider many types of attacks, intelligent or not, and show how the model behaves under
different attack combinations.

Information about providers is gathered as direct experience when a node observes an-
other node and itself calculates the trust value, or indirect recommendations; the providers
therefore take trust information through other objects in the network. Both historical data
and recommendations can be used in making decisions and, in particular, to select the best
provider for the required services. Major trust management techniques investigated in the
literature include approaches such as weighted sum, fuzzy logic, Bayes distribution, game
theory, regression analysis or other machine learning methods.

However, all the trust models need some inputs and attributes that are associated with
the main characteristics of the transaction (requester and provider) and the network [9].
The trust attributes concern QoS or social area, focusing on the objects or the connected
network. Among QoS attributes, the leading role is represented by computation capa-
bilities and transaction service quality, which consider features of the service providers
and the evaluated service. Moreover, social attributes include credibility, centrality and a
relationship factor, which take care of the nodes’ role in the network and their reputation.

Thanks to the concept of reputation, the trust models measure the degree of trust and
reduce risk in service transactions [10]. Different approaches can be used to propagate trust
among objects. A first centralized method consists of a central entity that engages all the
tasks of computation, trust management, storage and dissemination of information. On the
other hand, in a decentralized approach each object itself manages the reputation of other
nodes and its update, while in a semi-distributed technique, a set of nodes take care of the
reputation from other nodes in the network and communicate with each other to maintain
global trust.

The papers in the literature evaluate the models in terms of effectiveness and novelty
but overlook essential deficiencies of the scenarios used to test TMSs. In the following, we
present a research study evaluation and an important valuation for classifying most of the
approaches in the state of the art. Figure 1 illustrates the distribution of the 43 analysed
research papers over time according to their publishers (IEEE, Springer, Elsevier, MDPI,
ACM, Hindawi, Intelligent Networks and Systems Society, The Institution of Engineering
and Technology, and Bentham Science Publishers). We considered studies published online
in recent years, from 2017 to 2021, which were published to provide a management method
to guarantee trust in the IoT. The following string was defined to process the investigation:

• (“Trustworthiness” OR “Trust model” OR “Trust management” OR “Trust Technique”)
AND (“IoT” OR “Internet of Things”).
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The systematic review analyses all the resulting papers from our investigation in order
to provide a response to the following analytical questions (AQ) in agreement with our
paper’s goals:

– AQ1: Can providers make errors when providing a service?
All the analysed trust management models rarely dealt with errors in service pro-
viding; among all the analysed papers, only [11–13] take into account this problem.
Some errors involve benevolent nodes in a transaction: well-behaving devices could
provide the wrong services due to errors, poor performance, poor accuracy or technical
problems in general. The majority of the state-of-the-art models do not consider any
type of error in the trust composition; even so, a few evaluate the simulations in a
scenario with errors, not distinguishing provider errors from malicious behaviours.
However, considering the probability of error in the trust composition could improve
the performance of algorithms against errors.

– AQ2: How are the services evaluated? Is there any evaluation system?
When a node receives the requested service, it needs to check if it is consistent and then
rate it. Therefore, the feedback has the role of being the source of a trust model, which
takes care of the services and their processes. Unfortunately, the community barely
examines the mechanism of evaluation, and usually, in their algorithms, the nodes
provide perfect feedback in a discrete dimension, where 0 represents a poor service
and 1 a good one. Among the analysed works, refs. [14–16] propose an evaluation
system for receiving services, which is used to rate the interactions with the other
nodes in the network. On the other side, most proposed models focus only on trust
computation techniques and superficially treat feedback generation.

– AQ3: Do trust algorithms contemplate the possibility of the requester making errors
in the evaluation?
As we previously remarked, the state-of-the-art works rarely evaluate errors: the
models do not tackle any discrimination between service evaluation errors (requester
side) and service providing errors (provider side). However, few authors contem-
plate a feedback algorithm in their algorithms, even though they presuppose perfect
evaluation competence in the requesters. Examining the probability of errors in the
evaluation service phase could improve the scenario, which would be more com-
parable to reality. Therefore, evaluating the feedback could increase the number of
applications making use of a trust algorithm. In all the analysed papers, only [17–19]
consider errors in the feedback evaluation process.

Figure 1. Distribution of research papers.

The majority of the state-of-the-art models exhibit the same assumptions: each re-
quester can evaluate perfectly the received service, and any probability of error is contem-
plated in the algorithm creation. However, a trust model should consider a probability of
error, whether from the requester side (service evaluation) or the provider side (sending
a service).
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In the following, we show how these assumptions are essential for a trust model.
In addition, we illustrate how a simple trust algorithm could replace a complex one if it
does not consider errors, with the best results in terms of malicious behaviour detection.

3. Scenario Description

Among all the proposed approaches, only a handful tested their trust management
techniques on real-world IoT applications. Usually, due to the lack of real data concerning
several aspects of object behaviour, the authors resort to simulations to test TMSs and to
analyse their performance. The scenarios set up for the experimental evaluation share some
common features:

• The number of devices in the network is established.
• The interaction model among nodes is defined, so that a device can send service

requests to other nodes in the network. A pool of possible service providers are
returned to the requester so that it can choose the most reliable one based on the
TMS proposed.

• Every set of simulations defines the number of transactions carried out among the
devices, so that the TMS is able to converge and reach its steady-state.

• Additional features are considered in the scenario based on particular components
used to compute trust in the proposed system: e.g., if social aspects are taken into
account, metrics such as centrality and friendship relations are added to the network.

• The percentage of malicious devices in the network is determined and sometimes
used as a variable to test and understand the upper limit of malicious nodes that the
trust system is able to identify.

However, malicious nodes can implement several types of behaviours and trust-related
attacks, which represent the different solutions they adopt to avoid being detected. Among
the possible types of attack, the most tested ones are [7]:

Malicious with Everyone (ME): this is the simplest attack and it is used as a baseline
to test TMSs. A malicious node acts maliciously with everyone, so that it always provides
bad services and recommendations, regardless of the requester [20].

Discrimination Attack (DA): a malicious node modifies its behaviour based on the
service requester. This means that a node can discriminate nodes based on some character-
istics, such as their typology or some social metrics. As a result, some devices can consider
the node as benevolent while others can label it as malevolent [21].

On–Off Attack (OOA): a node periodically changes its behaviour, by alternately being
benevolent (ON) and malevolent (OFF). During the ON state, the node builds up its trust,
which is then used to attack the network [22].

Opportunistic Service Attack (OSA): a malicious node provides good services only
when it senses that its trust reputation is dropping. In this way, the node tries to maintain
an acceptable level of trust in order to still be selected as a service provider [23].

The general scenario is then represented by a node requesting a particular service;
every node in the network can provide one or more services, so that a service discovery
component in the network is needed to return to the requester a list of potential providers.
At this point, the TMS has to help the requester to select one of the providers based on their
level of trust. The trust level is usually computed based on the previous interactions among
the nodes or by requesting recommendations to neighbouring nodes. Indeed, after every
transaction, the requester assigns feedback to the selected provider to evaluate the service.

All the analysed models are then usually evaluated mainly in terms of success rate,
i.e., considering the percentage of successful transactions compared to the number of
total transactions. Indeed, every attack has its own impact on the success rate which also
depends on the TMS implemented: some algorithms are specifically designed to identify
certain attacks, while others aim to provide an acceptable level of defence against most
attacks. For this reason, the impact of an attack depends on the proposed model and, most
importantly, on the scenario used to test it. This is specifically the goal of the paper, i.e., to
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highlight which elements must be described in order to better appreciate the performance
of a model.

However, all the features described before are usually considered as ideals, such as
that a provider has infinite resources and always has the requested data available or that
it can, in any case, retrieve the data with excellent accuracy and therefore without the
possibility of making errors. Similarly, there are no communication errors or intermediate
nodes that could alter the content of the service. Finally, once a piece of data has been
requested, the requester is perfectly capable of evaluating the quality of the received service
and provide an accurate evaluation.

Figure 2 provides a simple example of a generic network and the main steps of a
transaction between two nodes: node i requesting a service and node j providing it. The
red lines highlight two of the possible sources of errors: indeed, even if both node i and
node j are benevolent, the transaction could become unsuccessful if node j has difficulties
acquiring the service with the requested accuracy or if node i evaluates it poorly.

i

j

1. Service 

request

2. Service 

acquisition

4. Service 

evaluation

3. Service 

provision

Figure 2. Trust management system—general scenario.

The goal of any TMS is to compute and list the trust level of all the available providers
and to able to distinguish between malicious nodes and possible errors. This step is
fundamental to help the requester to identify the most reliable node that requires the
service and to avoid any malicious providers. However, we argue that the complexity of
the TMSs proposed in the literature and the scenarios used to test them do not match, and
therefore that they are not able to show their true performance. In the following section,
we show how a simplified approach is able to outperform well-known TMSs available in
the literature.

4. Let Us Test It

In this section, we test and compare different models in order to show the importance
of accurately describing the scenario used to test the models. Our tests show that advanced
techniques are not necessary in the scenarios commonly used in the literature. On the other
hand, complex solutions become essential when models do not overlook error probability
in service providing or evaluation.

4.1. Simulation Setup

In order to test the different models, we needed an unbiased network in which objects
can communicate with each other. For this we resorted to the well-known IoT/SIoT
dataset available here (http://www.social-iot.org/index.php?p=downloads, accessed on
10 December 2021) and to the query generation model described in [24]. The network
consists of 16,216 devices owned by 4000 users from the municipality of Santander (Spain).
The authors provide a set of applications that could be requested by the user, in which
every app makes use of one service or more. Each object can offer or request services useful

http://www.social-iot.org/index.php?p=downloads


IoT 2022, 3 268

for the requested application. Moreover, a query model of interactions between devices
was offered and used in order to best fit a real IoT scenario. We decided to consider a
sub-network of around 800 devices to increase the probability of interaction. Each device
makes a request based on the query generation model and waits for a service from a set of
possible providers. The provider was selected according to the TMS model.

Moreover, the provider can implement two main behaviours: one is always benevolent,
providing good services, and the other one is malicious. The malicious nodes were designed
according to Section 3. The ME behaviour represents the simplest attack, and it provides
only scarce services. Similarly, nodes performing DA attacks act maliciously but modify
their behaviour based on the service requester and provide bad services to a subset of
devices; e.g., in the social trust models, the nodes provide good services only to friends,
while in the IoT scenario only to a random subset of nodes considering the same number
of the previous SIoT approach. The other two types of attacks are, respectively, OOA and
OSA. An OOA node changes its behaviour every two interactions, whereas the last attack
tries to maintain a trust level higher than 90% of its maximum value.

4.2. Experimental Evaluation

We used as a baseline to compare other models the simplest approach possible (labelled
as Basic Approach in the figures): this approach makes use only of the requester experience,
i.e., the requester does not make use of recommendations from its neighbours, and only the
last interaction with the provider is considered in order to evaluate its trust. This means
that, since the general scenario used to test TMSs only considers the ability for the requester
to perfectly evaluate the service received, the trust can only assume two values: 1 if the
service was good and 0 otherwise. Moreover, if the trust of a provider reaches 0, i.e., the last
service was not evaluated positively by the requester, the provider will no longer selected.

We first evaluated the performance of the basic approach by analysing the success
rate, i.e., the ratio between the number of successful transactions and the total number of
transactions, or by directly calculating the level of trust computed by a node. We compared
its performance with well-known models in the research community. In the first work [20],
Nitti et al. proposed a trust model designed for the Social IoT (SIoT) scenario. The authors
propose a decentralized architecture in which each node computes the trust values of
providers on the basis of its own experience and on the opinion of the neighbours. The trust
is evaluated considering quality of service (QoS) parameters, such as transaction service
quality and computation capability, and social metrics, such as centrality, relationship
factors and credibility. Each node computes the trust value of providers applying a static
weighted sum, considering all the mentioned parameters and feedback of past interactions.
Another work designed for the social scenario is presented in [25]. Chen et al. illustrate
a scheme for service access based on recommendations. The authors considered both
QoS metrics, such as energy status, quality reputation and social relationships. In the
scheme, each node has its own vision of the network and relies on the recommendations
from its friends to speed up the evaluation of trust. The final trust values are computed
based on the parameters and past performances toward a weighted sum. The other two
models, i.e., those from Adewuyi et al. [26] and Mendoza et al. [27], are designed for
a generic IoT scenario. In the first work, the authors propose a subjective approach to
evaluate and manage trust between nodes in collaborative applications. A trust aggregation
function based on a weighted sum is used to calculate trust values. A concept based on
trust decay is introduced to address the issue of trust update, and many resources, such
as recommendations and past experience, are used for the computation. In addition, in
the second study, the authors present a distributed trust management based on only direct
information acquired by communication between nodes. The model considers only service
quality attributes; it assigns positive trust value to the node that collaborates in service
providing and a negative trust value to the node that refuses to cooperate. No social
attributes are considered, and the model proposes mitigating attacks towards a reward and
punishment mechanism and analysing QoS attributes.
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Figure 3 shows the transaction success rate when malicious nodes implement the
ME attack, i.e., nodes that act maliciously with everyone providing inadequate services,
under the scenario conditions described in Section 3 at varying percentages of the malicious
nodes. We considered that 10%, 20% and 30% of the nodes are malicious and that every
time a requester is looking for a service there is an average of 60 possible providers. All
the models had a good reaction to this attack and were able to achieve a high success rate,
always higher than 95%, 93% and 80%. However, it is clear that the basic approach is
able to outperform the other approaches: this happens since as soon as a requester detects
a provider implementing the ME attack, that requester is labelled as malicious, its trust
reaches 0 and it is never selected again. Moreover, we can see how models have different
behaviours for various percentages of errors, and each algorithm performs differently with
respect to others for several percentages of errors.

Figure 3. Transaction success rate for different trust management models for the ME attack at varying
percentages of the malicious nodes.

As the first result, the simplest algorithm would seem to overcome the complex ones;
this is possible because most trust models overlook the important issue of errors in the
scenario used to test them. Benevolent providers could supply inadequate services due
to malfunctions or scarce accuracy; in the same way, requesters are not able to accurately
evaluate received services, and they could consider a good service as a bad one. To test
this critical condition, we inserted an error percentage in which a node could make an
error in service providing or service evaluation. Moreover, an important parameter that
has to be considered is represented by the providers’ availability. Figure 4 shows the
performance of the trust models based on the error percentage, with different averages of
available providers. Each graph exhibits the success rate after 12,000 transactions for all
the evaluated models at the variation of error percentage. The results illustrate how the
basic approach performs well for a high number of providers, even with the increasing
percentage of error. However, the lower the average of the providers, the higher the
probability of the blocking of the basic approach. The blocking problem is represented
by the number of malicious nodes discarded by the simplest algorithm, which does not
allow for the selection of malicious providers, i.e., the requesters do not select any provider.
The probability of block increases with reductions in the number of providers, regardless
of the error percentage. With the minimum number of available providers, that is, only
one provider, the smallest error level provokes the interruption of the algorithm and
its uselessness.

In order to overcome the blocking problem, we integrated the simplest algorithm with
a tolerance mechanism: each requester considers a window of past interactions, which can
be used to evaluate the trust of the providers. Then the trust is calculated as the average of
the past feedback, i.e., evaluations of the historical interactions. Therefore, to improve the
functioning of the basic approach, we needed to increase the simple algorithm complexity.
The larger the window, the higher the probability of attack by malicious nodes; otherwise,
the narrower the window, the higher the probability of errors. We next wanted to show the
behaviour of the new basic approach with different dimensions of transaction windows
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considering an average of 20 providers. Figure 5 illustrates how the models respond to a
network with a mix of all the attacks analysed. The results are shown in terms of transaction
success rate considering 10% of malicious nodes for each type of attack, for a total of 40%
malicious nodes. The graph depicts how the complex approaches are able to converge well
and better than the basic approach with different dimensions of the window. Until 15% of
error percentage, the narrowest window operates well in terms of success rate, whereas by
increasing the error the best results were revealed with the larger window. In any case, the
basic approach suffers from complex attacks which only the well-designed trust models
can overcome. By analysing which attacks had a higher impact, we can see how the basic
approach better manages simple attacks; however, it suffers from smart attacks, such as
OSA and OOA, which are not sufficiently detected.
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Figure 4. Transaction success rate for different averages of providers and error percentages.
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Figure 5. Transaction success rate with all types of malicious attacks.

5. Conclusions and Future Directions

This paper discussed and analysed two important deficiencies of the scenarios used
to test TMSs. The first concerns errors in providing services: a node provides the wrong
service due to malicious behaviours or malfunctions and poor accuracy (errors in service
providing). Moreover, the requester node usually is not able to perfectly evaluate the
received service; thus, benevolent providers could be poorly evaluated (errors in service
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requesting). We have shown how these essential assumptions must be considered in the
scenario used to test a trust model and how any complex algorithm is necessary otherwise.

We compared and evaluated the performance of the simplest trust mechanism and
four well-known TMSs, where two of them were designed for the SIoT and the other two
for a generic IoT scenario. The first results showed how the simplest is the best algorithm
in terms of success rate when the scenario overlooks the two ignored errors in service
providing and requesting and when the malicious nodes implement the simplest attack
ME. By contrast, when the scenario becomes nearest to a real one, the simplest algorithm
must be replaced with a complex model. Then we updated the scenario according to a
percentage of error in service requesting and providing and considered different averages
of available providers. The experiment illustrates the importance of declaring the scenario
and how complex algorithms are needed to detect smart attacks.

Therefore, the statement of a real scenario is important to understand which metrics
or parameters are more suitable: e.g., TMS could perform well in a scenario with a higher
number of providers and a low error rate; otherwise, other models could work with a
high percentage of specific smart attacks. In this way, a model could be selected instead of
another that shows the worst performance in an evaluated scenario. The best results for
TMSs are obtained with the specific scenario set to design them.

In conclusion, the designing process of a TMS model should consider several parame-
ters. First, the average number of selected providers is essential to understand how robust
the model is against errors; e.g., in models with a low average of providers, a high per-
centage of errors impacts more than a model with a high average of providers. Moreover,
taking into consideration errors in providing and evaluating services helps the network
owner to best fit the model with the utilised scenario. In this way, a trust model could be
used instead of another in a scenario with less or more accurate devices. Finally, a complete
description of the attacks evaluated by the model is useful for selecting the right attack
detection algorithm for the evaluated scenario.
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