Corrections to "Probabilistic state estimation for labeled continuous time Markov models with applications to attack detection"

Dimitri Lefebvre ${ }^{1}$, Carla Seatzu ${ }^{2}$, Christoforos N. Hadjicostis ${ }^{3}$, and Alessandro Giua ${ }^{2}$
${ }^{1}$ GREAH Laboratory, Normandy Univ., Le Havre, France Email:
dimitri.lefebvre@univ-lehavre.fr
${ }^{2}$ DIEE, Univ. of Cagliari, Italy Email: carla.seatzu@unica.it, giua@unica.it
${ }^{3}$ Dept. of Electrical and Computer Engineering, Univ. of Cyprus, Nicosia, Cyprus, Email:
chadjic@ucy.ac.cy

October 6, 2022

Abstract

This short note provides a correction for a flaw in the proof of Lemma 2 in [1]. The statement of Lemma 2 is correct by itself but its proof requires a slightly different definition of the e-transition probability matrix given in Definition 5 of [1].

Published as:

D. Lefebvre, C. Seatzu, C.N. Hadjicostis, A. Giua, "Corrections to «Probabilistic state estimation for labeled continuous time Markov models with applications to attack detection»", Discrete Event Dynamic Systems, Vol. 32, pp. 539-544, 2022. DOI: 10.1007/s10626-022-00364-6

Figure 1: A labeled continuous-time Markov model.

In [1], there was a flaw in the proof of Lemma 2. The statement of Lemma 2 is correct by itself but its proof requires a slightly different definition of the e-transition probability matrix given in Definition 5. This note provides the corrections and adjust Examples 3 and 4 accordingly. The other results, proofs, and examples in [1] remain unchanged.

Correction to Definition 5 in [1]: Given an LCTMM $G=\left(X, E, \Lambda, \pi_{0}\right)$, for each event $e \in E$ its e-transition probability matrix $Q_{e}=\left(q_{e, i, j}\right) \in \mathbb{R}_{\geq 0}^{n \times n}$ (where $q_{e, i, j}$ is the element of matrix Q_{e} in row i and column j) is defined by $q_{e, i, j}=\mu\left(x_{i}, e, x_{j}\right)$, where for $x_{i} \in X, e \in E$, and $x_{j} \in \operatorname{Post}\left(x_{i}\right)$, we denote by $\mu\left(x_{i}, e, x_{j}\right)$ the sum of the firing rates of the e-transitions from state x_{i} to $x_{j}\left(\mu\left(x_{i}, e, x_{j}\right)=0\right.$ if no e-transition exists from state x_{i} to $\left.x_{j}\right)$.

Correction to Example 3 in [1]: The a-transition and b-transition probability matrices of the LCTMM in Figure 1 with alphabet $E=\{a, b\}$ are the matrices Q_{a} and Q_{b} detailed below: \diamond

$$
Q_{a}=\left[\begin{array}{ccc}
0 & \mu_{1,1} & 0 \\
\mu_{2,1} & 0 & 0 \\
\mu_{3,3} & 0 & \mu_{3,1}
\end{array}\right], \quad Q_{b}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & \mu_{3,2} & 0
\end{array}\right] .
$$

Correction to Lemma 2 in [1]: Consider an LCTMM $G=\left(X, E, \Lambda, \pi_{0}\right)$ and its e-transition probability matrices as in the revised Definition 5 above. Given an observation $\sigma=(e, t)$ with $e \in E$, it holds that:

$$
\begin{equation*}
\boldsymbol{\pi}\left(t \mid \boldsymbol{\pi}_{0}, \sigma\right)=\frac{\boldsymbol{\pi}\left(t^{-} \mid \boldsymbol{\pi}_{0}\right) \cdot Q_{e}}{\boldsymbol{\pi}\left(t^{-} \mid \boldsymbol{\pi}_{0}\right) \cdot Q_{e} \cdot \mathbf{1}_{n \times 1}}, \tag{1}
\end{equation*}
$$

where $\mathbf{1}_{n \times 1}$ is the all ones column vector of dimension n.

Proof. For each state x_{j} of the LCTMM it holds that

$$
\begin{aligned}
\pi_{j}\left(t \mid \boldsymbol{\pi}_{0},(e, t)\right) & =\lim _{d t \rightarrow 0} \operatorname{Pr}\left(x(t)=x_{j} \mid(e,(t-d t, t])\right) \\
& =\lim _{d t \rightarrow 0} \frac{\operatorname{Pr}\left(x(t)=x_{j} \cap(e,(t-d t, t])\right)}{\operatorname{Pr}((e,(t-d t, t]))} \\
& =\lim _{d t \rightarrow 0} \sum_{i=1}^{n} \frac{\operatorname{Pr}\left(\left(x(t)=x_{j} \cap(e,(t-d t, t])\right) \mid x(t-d t)=x_{i}\right) \cdot \operatorname{Pr}\left(x(t-d t)=x_{i}\right)}{\operatorname{Pr}((e,(t-d t, t]))}
\end{aligned}
$$

The numerator and denominator of the previous expression are reformulated.

- Given an infinitesimal interval $d t$, the quantity $q_{e, i, j} \cdot d t$ represents the probability that a transition to $x(t)=x_{j}$ occurs when event e is observed in interval $(t-d t, t]$ given that $x(t-d t)=x_{i}$. More formally, $\operatorname{Pr}\left(x(t)=x_{j} \cap(e,(t-d t, t]) \mid x(t-d t)=x_{i}\right)=q_{e, i, j} \cdot d t$.
- On the other hand,

$$
\begin{aligned}
\operatorname{Pr}((e,(t-d t, t])) & =\sum_{i=1}^{n} \operatorname{Pr}\left((e,(t-d t, t]) \mid x(t-d t)=x_{i}\right) \cdot \operatorname{Pr}\left(x(t-d t)=x_{i}\right) \\
& =\sum_{i=1}^{n}\left(\sum_{j=1}^{n} q_{e, i, j} \cdot d t\right) \cdot \operatorname{Pr}\left(x(t-d t)=x_{i}\right)
\end{aligned}
$$

Considering that $\lim _{d t \rightarrow 0} \operatorname{Pr}\left(x(t-d t)=x_{i}\right)=\pi_{i}\left(t^{-} \mid \boldsymbol{\pi}_{0}\right)$, we have

$$
\pi_{j}\left(t \mid \boldsymbol{\pi}_{0},(e, t)\right)=\frac{\sum_{i=1}^{n} q_{e, i, j} \cdot \pi_{i}\left(t^{-} \mid \boldsymbol{\pi}_{0}\right)}{\sum_{j=1}^{n}\left(\sum_{i=1}^{n} q_{e, i, j} \cdot \pi_{i}\left(t^{-} \mid \boldsymbol{\pi}_{0}\right)\right)}
$$

or equation (1) in matrix form. Observe that the denominator in equation (1) is nonzero because the event e has been observed at time t, i.e., there must exist a state x_{i} from which a transition labeled e may occur and such that $\pi_{i}\left(t-\mid \boldsymbol{\pi}_{0}\right)>0$.

Correction to Example 4 in [1]: Consider the LCTMM in Figure 1 with sequence of observations $\sigma=(a, 1)(b, 3)(a, 4)(a, 5)$ within the time interval $[0,7]$. The state probabilities are reported in Figure 2.

In order to illustrate that the time stamps of the observations influence the probabilities of the states, consider also the sequence of observations $\sigma=\left(a, t_{1}\right)$ with several values of t_{1} within the time interval $[0,4]$. Observe in Figure 3 that the probability of x_{3} at time $t=4$ changes depending on the value of t_{1}.

Figure 2: State probabilities with respect to $\sigma=(a, 1)(b, 3)(a, 4)(a, 5), x_{1}$: top, x_{2} : center, x_{3} : bottom.

Figure 3: Probability of x_{3} with respect to $\sigma=\left(a, t_{1}\right)$ with $t_{1}=3$ (top), $t_{1}=2$ (center) and $t_{1}=1$ (bottom).

Comments on the corrections: Let us consider some basic cases that explain and illustrate Definition 5 and Lemma 2.

Consider the LCTMM in Figure $4(\mathrm{a})$ with $\boldsymbol{\pi}_{0}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ where a and b are two observable labels. As far as no label is observed at all up to time t, we have $\boldsymbol{\pi}\left(t^{-} \mid \boldsymbol{\pi}_{0}\right)=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ because there exists no silent evolution from state x_{1}. When a label a is observed at t we will obtain $\boldsymbol{\pi}\left(t \mid \boldsymbol{\pi}_{0}, \sigma\right)=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ with $\sigma=(a, t)$. According to Equation (1) this can be written as

$$
\boldsymbol{\pi}\left(t \mid \boldsymbol{\pi}_{0}, \sigma\right)=\frac{\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{lll}
0 & \mu & 0 \tag{2}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]}{\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{lll}
0 & \mu & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] .
$$

Note that the probability $\operatorname{Pr}((a,(t-d t, t])$ to observe a within $(t-d t, t]$ assuming that nothing was observed before time $t-d t$ (and consequently that the system stays at x_{1} before $t-d t$) is equal to the probability that the delay of a is smaller than $d t$ (which is $\mu d t$) and that the delay of b is greater than $d t$ (which is $1-\mu^{\prime} d t$). Since the events a and b are independent and $d t$ is an infinitesimal duration, we have: $\operatorname{Pr}(a, d t)=(\mu d t) \cdot\left(1-\mu^{\prime} d t\right)=\mu d t-\mu \mu^{\prime} d t^{2} \approx \mu d t$.

Consider the LCTMM in Figure $4(\mathrm{~b})$ with $\boldsymbol{\pi}_{0}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ where a is the single observable label. As far as no label a is observed, we have $\boldsymbol{\pi}\left(t^{-} \mid \boldsymbol{\pi}_{0}\right)=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$. When a label a is observed at t we will obtain $\boldsymbol{\pi}\left(t \mid \boldsymbol{\pi}_{0}, \sigma\right)$ with $\sigma=(a, t)$ according to Equation (1):

$$
\boldsymbol{\pi}\left(t \mid \boldsymbol{\pi}_{0}, \sigma\right)=\frac{\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{ccc}
0 & \mu & \mu^{\prime} \tag{3}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]}{\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{ccc}
0 & \mu & \mu^{\prime} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}=\left[\begin{array}{lll}
0 & \frac{\mu}{\Delta} & \frac{\mu^{\prime}}{\Delta}
\end{array}\right]
$$

with $\Delta=\mu+\mu .{ }^{\prime}$
Consider finally the LCTMM in Figure $4(\mathrm{c})$ with $\boldsymbol{\pi}_{0}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$. This example evolves exactly as the example in Figure 4(b) up to the first observation of the label a at time t. From that time, and despite the fact that no silent transition exists in this system, the probability of the states x_{2} and x_{3} will change depending on the values of μ and μ^{\prime} and according to the extended ε sub chain of the system (Definition 4 in [1]). In particular, for a given value of time $t^{\prime} \geq t$, there exists $\alpha_{t^{\prime}} \in[0,1]$ such that $\boldsymbol{\pi}\left(t^{\prime-} \mid \boldsymbol{\pi}_{0},(a, t)\right)=\left[0 \alpha_{t^{\prime}} 1-\alpha_{t^{\prime}}\right]$. When a second label a is observed

Figure 4: Three simple examples.
at t^{\prime} we will obtain $\boldsymbol{\pi}\left(t^{\prime} \mid \boldsymbol{\pi}_{0}, \sigma\right)$ with $\sigma=(a, t)\left(a, t^{\prime}\right)$ that can be written as

$$
\boldsymbol{\pi}\left(t \mid \boldsymbol{\pi}_{0}, \sigma\right)=\frac{\left[\begin{array}{ccc}
0 & \alpha_{t^{\prime}} & 1-\alpha_{t^{\prime}}
\end{array}\right] \cdot\left[\begin{array}{ccc}
0 & \mu & \mu^{\prime} \tag{4}\\
0 & \mu & 0 \\
0 & 0 & \mu^{\prime}
\end{array}\right]}{\left[\begin{array}{lll}
0 & \alpha_{t^{\prime}} & 1-\alpha_{t^{\prime}}
\end{array}\right] \cdot\left[\begin{array}{ccc}
0 & \mu & \mu^{\prime} \\
0 & \mu & 0 \\
0 & 0 & \mu^{\prime}
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}=\left[\begin{array}{lll}
\frac{\mu \alpha_{t^{\prime}}}{\Delta^{\prime}} & 0 & \frac{\mu^{\prime}\left(1-\alpha_{t^{\prime}}\right)}{\Delta^{\prime}}
\end{array}\right]
$$

with $\Delta^{\prime}=\mu \alpha_{t^{\prime}}+\mu^{\prime}\left(1-\alpha_{t^{\prime}}\right)$.
Conflict of Interest: The authors declare that they have no conflict of interest.

References

[1] D. Lefebvre, C. Seatzu, C.N. Hadjicostis, A. Giua, "Probabilistic state estimation for labeled continuous time Markov models with applications to attack detection," Discrete Event Systems, Vol. 32, pp. 65-88, 2022.

