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Abstract

This short note provides a correction for a �aw in the proof of Lemma 2 in [1]. The

statement of Lemma 2 is correct by itself but its proof requires a slightly di�erent de�nition

of the e-transition probability matrix given in De�nition 5 of [1].
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Figure 1: A labeled continuous-time Markov model.

In [1], there was a �aw in the proof of Lemma 2. The statement of Lemma 2 is correct by itself

but its proof requires a slightly di�erent de�nition of the e-transition probability matrix given in

De�nition 5. This note provides the corrections and adjust Examples 3 and 4 accordingly. The

other results, proofs, and examples in [1] remain unchanged.

Correction to De�nition 5 in [1]: Given an LCTMM G = (X,E,Λ,π0), for each event e ∈ E
its e-transition probability matrix Qe = (qe,i,j) ∈ Rn×n≥0 (where qe,i,j is the element of matrix

Qe in row i and column j) is de�ned by qe,i,j = µ(xi, e, xj), where for xi ∈ X, e ∈ E, and

xj ∈ Post(xi), we denote by µ(xi, e, xj) the sum of the �ring rates of the e-transitions from

state xi to xj (µ(xi, e, xj) = 0 if no e-transition exists from state xi to xj). N

Correction to Example 3 in [1]: The a-transition and b-transition probability matrices of the

LCTMM in Figure 1 with alphabet E = {a, b} are the matrices Qa and Qb detailed below: �

Qa =

 0 µ1,1 0

µ2,1 0 0

µ3,3 0 µ3,1

 , Qb =


0 0 0

0 0 0

0 µ3,2 0

 .
�

Correction to Lemma 2 in [1]: Consider an LCTMM G = (X,E,Λ,π0) and its e-transition

probability matrices as in the revised De�nition 5 above. Given an observation σ = (e, t) with

e ∈ E, it holds that:

π(t | π0, σ) =
π(t− | π0) ·Qe

π(t− | π0) ·Qe · 1n×1
, (1)

where 1n×1 is the all ones column vector of dimension n.



Proof. For each state xj of the LCTMM it holds that

πj(t | π0, (e, t)) = lim
dt→0

Pr(x(t) = xj | (e, (t− dt, t]))

= lim
dt→0

Pr(x(t) = xj ∩ (e, (t− dt, t]))
Pr((e, (t− dt, t]))

= lim
dt→0

n∑
i=1

Pr((x(t) = xj ∩ (e, (t− dt, t])) | x(t− dt) = xi) · Pr(x(t− dt) = xi)

Pr((e, (t− dt, t]))

The numerator and denominator of the previous expression are reformulated.

� Given an in�nitesimal interval dt, the quantity qe,i,j · dt represents the probability that a

transition to x(t) = xj occurs when event e is observed in interval (t − dt, t] given that

x(t− dt) = xi. More formally, Pr(x(t) = xj ∩ (e, (t− dt, t]) | x(t− dt) = xi) = qe,i,j · dt.

� On the other hand,

Pr((e, (t− dt, t])) =
n∑
i=1

Pr((e, (t− dt, t]) | x(t− dt) = xi) · Pr(x(t− dt) = xi)

=

n∑
i=1

 n∑
j=1

qe,i,j .dt

 · Pr(x(t− dt) = xi)

Considering that lim
dt→0

Pr(x(t− dt) = xi) = πi(t
− | π0), we have

πj(t | π0, (e, t)) =

∑n
i=1 qe,i,j · πi(t− | π0)∑n

j=1 (
∑n

i=1 qe,i,j · πi(t− | π0))

or equation (1) in matrix form. Observe that the denominator in equation (1) is nonzero

because the event e has been observed at time t, i.e., there must exist a state xi from which a

transition labeled e may occur and such that πi(t− | π0) > 0.

�

Correction to Example 4 in [1]: Consider the LCTMM in Figure 1 with sequence of observations

σ = (a, 1)(b, 3)(a, 4)(a, 5) within the time interval [0, 7]. The state probabilities are reported in

Figure 2.

In order to illustrate that the time stamps of the observations in�uence the probabilities of the

states, consider also the sequence of observations σ = (a, t1) with several values of t1 within

the time interval [0, 4]. Observe in Figure 3 that the probability of x3 at time t = 4 changes

depending on the value of t1.



Figure 2: State probabilities with respect to σ = (a, 1)(b, 3)(a, 4)(a, 5), x1: top, x2: center, x3:

bottom.

Figure 3: Probability of x3 with respect to σ = (a, t1) with t1 = 3 (top), t1 = 2 (center) and

t1 = 1 (bottom).



Comments on the corrections : Let us consider some basic cases that explain and illustrate

De�nition 5 and Lemma 2.

Consider the LCTMM in Figure 4(a) with π0 = [1 0 0] where a and b are two observable

labels. As far as no label is observed at all up to time t, we have π(t− | π0) = [1 0 0] because

there exists no silent evolution from state x1. When a label a is observed at t we will obtain

π(t | π0, σ) = [0 1 0] with σ = (a, t). According to Equation (1) this can be written as

π(t | π0, σ) =

[
1 0 0

]
·

 0 µ 0

0 0 0

0 0 0


[

1 0 0
]
·

 0 µ 0

0 0 0

0 0 0

 ·
 1

1

1


=

[
0 1 0

]
. (2)

Note that the probability Pr((a, (t− dt, t]) to observe a within (t− dt, t] assuming that nothing

was observed before time t− dt (and consequently that the system stays at x1 before t− dt) is
equal to the probability that the delay of a is smaller than dt (which is µdt) and that the delay

of b is greater than dt (which is 1−µ′dt). Since the events a and b are independent and dt is an

in�nitesimal duration, we have: Pr(a, dt) = (µdt) · (1− µ′dt) = µdt− µµ′dt2 ≈ µdt.

Consider the LCTMM in Figure 4(b) with π0 = [1 0 0] where a is the single observable label.

As far as no label a is observed, we have π(t− | π0) = [1 0 0]. When a label a is observed at t

we will obtain π(t | π0, σ) with σ = (a, t) according to Equation (1):

π(t | π0, σ) =

[
1 0 0

]
·

 0 µ µ′

0 0 0

0 0 0


[

1 0 0
]
·

 0 µ µ′

0 0 0

0 0 0

 ·
 1

1

1


=

[
0 µ

∆
µ′

∆

]
(3)

with ∆ = µ+ µ.′

Consider �nally the LCTMM in Figure 4(c) with π0 = [1 0 0]. This example evolves exactly as

the example in Figure 4(b) up to the �rst observation of the label a at time t. From that time,

and despite the fact that no silent transition exists in this system, the probability of the states

x2 and x3 will change depending on the values of µ and µ′ and according to the extended ε sub

chain of the system (De�nition 4 in [1]). In particular, for a given value of time t′ ≥ t, there

exists αt′ ∈ [0, 1] such that π(t′− | π0, (a, t)) = [0 αt′ 1−αt′ ]. When a second label a is observed



Figure 4: Three simple examples.

at t′ we will obtain π(t′ | π0, σ) with σ = (a, t)(a, t′) that can be written as

π(t | π0, σ) =

[
0 αt′ 1− αt′

]
·

 0 µ µ′

0 µ 0

0 0 µ′


[

0 αt′ 1− αt′
]
·

 0 µ µ′

0 µ 0

0 0 µ′

 ·
 1

1

1


=

[
µαt′
∆′ 0

µ′(1−αt′ )
∆′

]
(4)

with ∆′ = µαt′ + µ′(1− αt′).
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