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Abstract. This paper deals with the zero-flux attraction-repulsion chemo-

taxis model
ut = ∇ ·

(
(u+ 1)m1−1∇u− χu(u+ 1)m2−1∇v in Ω× (0, Tmax),

+ξu(u+ 1)m3−1∇w
)
+ h(u)

vt = ∆v − f(u)v in Ω× (0, Tmax),

wt = ∆w − g(u)w in Ω× (0, Tmax),

(3)

in the unknown (u, v, w)=(u(x, t), v(x, t), w(x, t)). Here, x∈Ω, a bounded and
smooth domain of Rn (n ≥ 1), t, χ, ξ > 0, m1,m2,m3 ∈ R, and f(u), g(u) and

h(u) sufficiently regular functions generalizing the prototypes f(u) = K1uα,

g(u) = K2uγ and h(u) = ku − µuβ , with K1,K2, µ > 0, k ∈ R, β > 1 and
suitable α, γ > 0. Besides, further regular initial data u(x, 0) = u0(x), v(x, 0) =

v0(x), w(x, 0) = w0(x) ≥ 0 are given, whereas Tmax ∈ (0,∞] stands for the

maximal instant of time up to which solutions to the system exist. We will
derive relations between the parameters involved in (3) capable to warrant

that u, v, w are global and uniformly bounded in time. The article generalizes

and extends to the case of nonlinear effects and logistic perturbations some
results recently developed in [3] where, for the linear counterpart and in the

absence of logistics, criteria towards boundedness are established.
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1. Introduction and motivations.

1.1. General overview and state of the art. The pioneering papers by Keller
and Segel ([9, 10, 11]), proposed in the 70’s to model the biological phenomena
concerning chemotaxis mechanisms, continue to inspire many researchers in the
field towards the consideration of several related variants.

In this regard, in the article we dedicate ourselves to a specific problem intimately
connected to the forthcoming coupled system of partial differential equations:

ut=∇ · (D(u)∇u−S(u)∇v + T (u)∇w) + h(u) in Ω×(0, Tmax),

τvt=∆v−av + k(u, v) in Ω×(0, Tmax),

τwt=∆w−bw + l(u,w) in Ω×(0, Tmax),

uν=vν=wν = 0 on ∂Ω×(0, Tmax),

u(x, 0)=u0(x), τv(x, 0)=τv0(x), τw(x, 0) = τw0(x) x ∈ Ω̄.

(1.1)

Herein Ω is a bounded open domain of Rn with n ∈ N and smooth boundary ∂Ω,
τ ∈ {0, 1}, a, b > 0, D = D(ζ), S = S(ζ), T = T (ζ), h = h(ζ), k = k(ζ, η) and
l = l(ζ, ρ) are functions of their arguments ζ, η ≥ 0 and ρ ≥ 0 with a certain
regularity and proper behavior. Moreover, further regular initial data u0(x) ≥ 0,
τv0(x) ≥ 0 and τw0(x) ≥ 0 are given as well, the subscript ν in (·)ν indicates the
outward normal derivative on ∂Ω, whereas Tmax ∈ (0,∞] the maximal instant of
time up to which solutions to the system exist.

In the framework of real biological phenomena, it is commonly used to indi-
cate with u = u(x, t), v = v(x, t) and w = w(x, t), respectively, the nonnegative
value of a certain cell distribution (populations, organisms), of the concentration
of a chemoattractant (i.e. a chemical signal whose effect is attracting the cells to
each other) and of a chemorepellent density (i.e. a chemical signal with exactly
the opposite effect of the chemoattractant); naturally the couple (x, t) specifies the
position and the instant of time where such values are considered. In this way,
it is quite natural to interpret system (1.1) as a model describing the motion of
the cells, inside an insulated domain (zero-flux on the border: homogeneous Neu-
mann boundary conditions), under the flux effect D(u)∇u − S(u)∇v + T (u)∇w,
a combination of diffusive (D(u)), attractive (S(u)) and repulsive (T (u)) impacts,
and the external action of a source h(u). As expected, the effect of such impacts
is intimately connected to the expression of the diffusion, the attraction and the
repulsion, while the source may increment, decrement or both the cells’ density.
Further, the attractive and repulsive signals growths evolve conforming the rates
k(u, v) and l(u,w), respectively (second and third equation in (1.1)).

As expected, the cellular motility is extremely sensitive to the actions of the
above factors governing model (1.1): in particular, in general no stable behavior is
conceivable but, conversely, even weak changes in the related values may strongly
influence the dynamics. Specifically, the evolution might relax towards global sta-
bilization and convergence to equilibrium of the cell distribution u, but it could
even degenerate into the so-called chemotactic collapse, the mechanism resulting in
uncontrolled aggregation processes for u, eventually blowing up/exploding in finite
time. From the mathematical point of view, in the first case solutions (u, v, w) are
defined and bounded for all (x, t) in Ω× (0,∞), in the other case for a certain finite
time Tmax, the solution (u, v, w) becomes unbounded when approaching Tmax.
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Let us now mention some known results in the literature dealing with the so
called signal-production models coming from (1.1); in this situation, k and l are
positive functions only of u, and as u itself increases so v and w do:

1. For τ = 0 in the equations for v and w, h(u) ≡ 0 and for the linear case (i.e.,
diffusion D(u) = u, chemosensitivities S(u) = χu, with χ > 0, T (u) = ξu
with ξ > 0, and chemoattractant and chemorepellent k(u, v) = αu, α > 0,
and l(u,w) = γu, γ > 0, respectively), the value ξγ − χα is critical for
n = 2: in particular, if ξγ − χα > 0 (repulsion dominates on attraction),
in any dimension all solutions to the model are globally bounded, whereas
for ξγ − χα < 0 (attraction dominates repulsion) unbounded solutions can
be detected (see [7, 13, 17, 19]). Indeed, when ξγ − χα > 0 and for h(u) =
ku− µuβ , k ∈ R, µ > 0 and some β > 1, in [2] some questions on the blow-up
scenario are discussed.

2. For more general production laws, respectively k(u, v) ≈ αus, s > 0, and
l(u,w) ≈ γur, r ≥ 1 (which D,S, T and τ as before) the following is available
in the literature ([20]): for n ≥ 2, for every α, β, γ, δ, χ > 0, and for r > s ≥ 1
(resp. s > r ≥ 1), there exists ξ∗ > 0 (resp. ξ∗ > 0) such that if ξ > ξ∗

(resp. ξ ≥ ξ∗), any sufficiently regular initial distribution u0(x) ≥ 0 (resp.
u0(x) ≥ 0 enjoying some smallness assumptions) leads to a unique classical
and bounded solution. In addition, the same conclusion holds true for every
α, β, γ, δ, χ, ξ > 0, 0 < s < 1, r = 1 and any sufficiently regular u0(x) ≥ 0.

The chemotactic collapse appearing in the signal-production situations, apparently
(but this is an open question in the field yet) cannot occur for alike signal-absorption
models, where to high values of u correspond small ones (eventually vanishing) of
v and w. As a matter of fact, even for the so called Keller–Segel system with
consumption, which is the simplified two-unknowns version of problem (1.1) reading

ut = ∆u− χ∇ · (u∇v) in Ω× (0, Tmax),

vt = ∆v − uv in Ω× (0, Tmax),

uν = vν = 0 on ∂Ω× (0, Tmax),

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ Ω̄,

(1.2)

the occurrence of blow-up has not been found. In particular, all classical solutions
(u, v) to (1.2) are uniformly bounded in one and two-dimensional settings, inde-
pendently of some size of (u0, v0): the case n = 1 can be justified by standard
procedures, while for n = 2 the result is a consequence of more general analyses
discussed in [21, 22]. Conversely, for n ≥ 3, boundedness requires the smallness
assumption χ∥v0∥L∞(Ω)≤ 1

6(n+1) , as proved in [16]. (This condition is improved

in χ∥v0∥L∞(Ω)<
π√

2(n+1)
; see [1].) On the other hand, if in models like (1.2)

some smoothing effects on the dynamics of problem are introduced, boundedness
of related solutions remains valid even when χ∥v0∥L∞(Ω) is larger than the values
mentioned above. More specifically,

3. In [12], where the motion of the cells is affected by a logistic source reading

ut = ∆u− χ∇ · (u∇v) + ku− µu2, k, µ > 0,

the authors establish that the resulting Cauchy problem admits classical bo-
unded solutions for arbitrarily large χ∥v0∥L∞(Ω) provided µ is also larger than
a certain expression increasing with χ∥v0∥L∞(Ω);
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4. In [15], together with the dampening logistic term the equation for the parti-
cles’ density is also perturbed by nonlinear diffusion and sensitivity:

ut = ∇ ·
(
(u+ 1)m1−1∇u− u(u+ 1)m2−1∇v

)
+ ku− µu2, m1,m2 ∈ R.

Similarly to the previous case, globality and boundedness are derived whenever
the smoothness parameter µ of the logistic is large enough and the diffusion
dominates the attraction, in the sense that m1 > 2m2 − 1.

Naturally, in the frame of chemotaxis models with two signals, beyond the double-
production cases aforementioned, double-saturation or consumption-production me-
chanisms can be considered. In this sense, and always with reference to (1.1):

5. When k(u, v) ≈ av−uαv in the second equation (with τ = 1) and l(u,w) ≈ ul

in the third (with τ = 0) are fixed, the cells’ density produces chemorepellent
and absorbs chemoattractant; in [6] boundedness is established (i) for l = 1,
n ∈ {1, 2}, α ∈ (0, 1

2 + 1
n ) ∩ (0, 1) and any ξ > 0, (ii) for l = 1, n ≥ 3,

α ∈ (0, 1
2 + 1

n ) and ξ larger than a quantity depending on χ∥v0∥L∞(Ω), (iii)
for l > 1 any ξ > 0, and in any dimension;

6. For τ = 1 in the equations for v and w, h(u) ≡ 0 and for the linear case (i.e.,
diffusion D(u) = u, chemosensitivities S(u) = χu and T (u) = ξu, χ, ξ > 0)
and chemoattractant and chemorepellent k(u, v) = av−uv, l(u,w) = bw−uw
(double-signal saturation), for n ≥ 3 all solutions emanating from sufficiently
regular data such that 0 < χ∥v0∥L∞(Ω) <

1
5n and 0 < ξ∥w0∥L∞(Ω) <

1
5n are

globally bounded. This is proved in [3] (where also two- and three-dimensional
numerical simulations are presented) and through the lines of this paper we
will give some more hints on this research since the present article represents
a generalization of what derived in [3].

7. For τ = 1 in the equation for v and k(u, v) = av − uv (chemoattractant
consumed), for τ = 0 in the third and l(u,w) ≈ ul, l ≥ 1 (chemorepellent
produced), for the diffusion D(u) ≈ um1 , chemosensitivities S(u) ≈ um2 and
T (u) ≈ um3 (m1,m2,m3 ∈ R), for h(u) ≈ ku−µuβ (k ∈ R, µ > 0 and β > 1),
for n ≥ 3 all solutions emanating from sufficiently regular data u0, v0 are
globally bounded provided m1 > φ(m2,m3, n, α, β, l), for specific expressions
of φ.

Remark 1.1. Even though the analysis of this paper is merely theoretical, it is
worthwhile emphasizing that model (1.1) has some applications in the inflamma-
tion observed in Alzheimer’s disease when h(u) ≡ 0, k(u, v) and l(u,w) are linear
functions only of the cell density (the already mentioned signal-production models).
More precisely, [14] deals with the description of the gathering mechanisms of mi-
croglia and dimensional, numerical and experimental analyses, in bounded intervals
are proposed. But, without dwelling too much on aspects not belonging to our
expertise and out of the scope of the paper, there is more: also the counterpart
considering the absorption of both signals may have some biological interpretation.
Indeed, phagocytes are cells that protect the body by ingesting harmful foreign
particles, bacteria, and dead or dying cells. For instance, during the phagocytosis
process, the hepatic cells filter toxic substances (toxins), engulf them and convert
them into harmless substances (nutrients) or make sure they are released into the
surrounding environment. (See [8, §1 and §2].)
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2. Main claims and organization of the paper.

2.1. The model: presentation and some notations. Let Ω ⊂ Rn, n ≥ 2, be a
bounded open domain with smooth boundary, χ, ξ > 0, m1,m2,m3 ∈ R, f(u), g(u)
and h(u) be reasonably regular functions generalizing the prototypes f(u) = K1u

α,
g(u) = K2u

γ , and h(u) = ku − µuβ with K1,K2, µ > 0, k ∈ R and suitable
α, γ, β > 0. Once nonnegative initial configurations u0, v0 and w0 are fixed, herein
we are interested in the following nonlinear attraction-repulsion chemotaxis model,
naturally obtainable as a particular case of problem (1.1):

ut = ∇ ·
(
(u+ 1)m1−1∇u− χu(u+ 1)m2−1∇v in Ω× (0, Tmax),

+ξu(u+ 1)m3−1∇w
)
+ h(u)

vt = ∆v − f(u)v in Ω× (0, Tmax),

wt = ∆w − g(u)w in Ω× (0, Tmax),

uν = vν = wν = 0 on ∂Ω× (0, Tmax),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) x ∈ Ω̄.

(2.1)

In the light of what previously said, it should be easy to convince ourselves that
this model brings together many of the characteristics above discussed: nonlinear
diffusion, sensitivities and growth rates, as well as general logistic terms.

To our knowledge, the literature provides partial results connected to model
(2.1) only for the case m1 = m2 = m3 = 1, f(u) = g(u) = u and h(u) = 0 (see
[3]); the attained results were summarized in item 6. In particular, system (2.1)
appears as a natural continuation of the model described in item 6 itself, and it
is worthwhile developing a general n-dimensional analysis in order to extend the
mathematical comprehension. Specifically, we aim at deriving sufficient conditions
involving the parameters used in problem (2.1) according to which it admits classical
solutions which are global and uniformly bounded in time. Specifically, we look
for nonnegative functions u = u(x, t), v = v(x, t), w = w(x, t) defined for (x, t) ∈
Ω̄× [0, Tmax), and Tmax = ∞, such that{

u ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)) ∩ L∞((0,∞);L∞(Ω))

v, w ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)) ∩ L∞((0,∞);W 1,∞(Ω))
(2.2)

and satisfying for all (x, t) ∈ Ω̄× [0,∞) all the relations in (2.1).
To this aim, we require that f , g and h comply with

f, g ∈ C1(R) with 0 ≤ f(ζ) ≤ K1ζ
α and 0 ≤ g(ζ) ≤ K2ζ

γ ,

for some K1,K2, α, γ > 0 and all ζ ≥ 0, (2.3)

and

h ∈ C1(R) with h(0) ≥ 0 and h(ζ) ≤ kζ − µζβ ,

for some k ∈ R, µ > 0, β > 1 and all ζ ≥ 0. (2.4)

Remark 2.1. As the reader can expect, the results below will depend on the
parameters α, γ,m1,m2,m3 and n. In particular, in view of the formulations of the
second and third equation (which are somehow “exchangeable”), by permuting some
of those constants a number of assumptions connecting their values can be seen as
the symmetric case of the other. In this sense, even though the presentation of the
forthcoming Theorems 2.2 and 2.3 may appear hard to read, we want to underline
that we made an important effort to include all the aforementioned permutations
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in the clearest way. This is the reason why we dedicate a part of the manuscript to
define crucial constants in the computation; this is precisely what §2.1.1 includes.
(For the readers’ convenience, in Example 2.4 below we include a case where the
form of these assumptions is of easier readability.)

2.1.1. Notations. We will make reference to the following quantities in the absence
of the logistic term:

A := min



max
{
2m2 − 1, 2m3 − 1,

n− 2

n

}
, max

{
m2 −

1

n
,m3 −

1

n
,
n− 2

n

}
max

{
2m2 − 1,m3 −

1

n
,
n− 2

n

}
, max

{
m2 −

1

n
, 2m3 − 1,

n− 2

n

}
max

{
m2 −

1

n
,m3 −

1

n

}


,

B := min


max

{
m2 −

2

n
+ α,m3 −

2

n
+ γ

}
, max

{
2m2, 2m3,

n− 2

n

}
max

{
m2 −

2

n
+ α, 2m3,

n− 2

n

}
, max

{
2m2,m3 −

2

n
+ γ,

n− 2

n

}
 ,

C := min


max

{
m2 +

nα− 2

nα− 1
,m3 +

nγ − 2

nγ − 1

}
, max

{
2m2, 2m3,

n− 2

n

}
max

{
m2 +

nα− 2

nα− 1
, 2m3,

n− 2

n

}
, max

{
2m2,m3 +

nγ − 2

nγ − 1
,
n− 2

n

}
 ,

D := min

{
max

{
m2 +

nα− 2

nα− 1
,m3 +

nγ − 2

nγ − 1

}
, max

{
m2 +

nα− 2

nα− 1
, 2m3,

n− 2

n

}}
,

E := min

{
max

{
m2 +

nα− 2

nα− 1
,m3 +

nγ − 2

nγ − 1

}
, max

{
2m2,

n− 2

n
,m3 +

nγ − 2

nγ − 1

}}
,

F := max
{
m2 +

nα− 2

nα− 1
,m3 +

nγ − 2

nγ − 1

}
.

G := min



max
{
m2 −

1

n
,m3 −

2

n
+ γ

}
, max

{
2m2 − 1, 2m3,

n− 2

n

}
max

{
m2 −

1

n
, 2m3,

n− 2

n

}
, max

{
2m2 − 1,m3 −

2

n
+ γ,

n− 2

n

}
max

{
m2 −

1

n
,m3 −

2

n
+ γ,

n− 2

n

}


,

H := min



max
{
m2 −

1

n
,m3 +

nγ − 2

nγ − 1

}
, max

{
2m2 − 1, 2m3,

n− 2

n

}
max

{
m2 −

1

n
, 2m3,

n− 2

n

}
, max

{
2m2 − 1,m3 +

nγ − 2

nγ − 1
,
n− 2

n

}
max

{
m2 −

1

n
,m3 +

nγ − 2

nγ − 1
,
n− 2

n

}


,

I := min


max

{
m2 −

1

n
,m3 +

nγ − 2

nγ − 1

}
, max

{
2m2 − 1,m3 +

nγ − 2

nγ − 1
,
n− 2

n

}
max

{
m2 −

1

n
,m3 +

nγ − 2

nγ − 1
,
n− 2

n

}
 ,
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J := min


max

{
m2 −

2

n
+ α,m3 +

nγ − 2

nγ − 1

}
, max

{
2m2, 2m3,

n− 2

n

}
max

{
m2 −

2

n
+ α, 2m3,

n− 2

n

}
, max

{
2m2,m3 +

nγ − 2

nγ − 1
,
n− 2

n

}
 ,

K := min

{
max

{
m2 −

2

n
+ α,m3 +

nγ − 2

nγ − 1

}
, max

{
2m2,

n− 2

n
,m3 +

nγ − 2

nγ − 1

}}
.

For the logistic case we will refer to these quantities:

A′ := min



max
{
2m2 − 1, 2m3 − 1,

n− 2

n

}
, max

{
m2 −

1

n
,m3 −

1

n
,
n− 2

n

}
max

{
2m2 − 1,m3 −

1

n
,
n− 2

n

}
, max

{
m2 −

1

n
, 2m3 − 1,

n− 2

n

}
max

{
2m2 − β, 2m3 − β,

n− 2

n

}
, max

{
2m2 − β, 2m3 − β

}
max

{
m2 −

1

n
, 2m3 − β,

n− 2

n

}
, max

{
2m2 − 1, 2m3 − β,

n− 2

n

}
max

{
2m2 − β, 2m3 − 1,

n− 2

n

}
, max

{
2m2 − β,m3 −

1

n
,
n− 2

n

}



,

B′ := min


max

{
2m2, 2m3,

n− 2

n

}
, max

{
2m2 + 1− β, 2m3 + 1− β

}
max

{
2m2, 2m3 + 1− β,

n− 2

n

}
, max

{
2m2 + 1− β, 2m3,

n− 2

n

}
 ,

C′ := min



max
{
2m2 − 1,

n− 2

n
, 2m3

}
, max

{
2m2 − 1,

n− 2

n
, 2m3 + 1− β

}
max

{
m2 −

1

n
, 2m3,

n− 2

n

}
, max

{
m2 −

1

n
,
n− 2

n
, 2m3 + 1− β

}
max

{
2m2 − β,

n− 2

n
, 2m3

}
, max

{
2m2 − β,

n− 2

n
, 2m3 + 1− β

}
max

{
2m2 − β, 2m3 + 1− β

}


.

2.2. Statements of the theorems and discussions. With reference to the no-
tations introduced in §2.1.1, let us now give the theorems proved in this paper.

We notice that the substantial indication behind the hypotheses below is rather
natural; the diffusion parameter m1 has to be large enough in order to ensure
boundedness.

Theorem 2.2 (The non-logistic case). Let Ω be a bounded open domain of Rn,
with n ≥ 2, and smooth boundary ∂Ω, χ, ξ positive reals, and h ≡ 0. Moreover, for
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α, γ > 0 and m1,m2,m3 ∈ R, let f and g fulfill (2.3) for each of the following cases:

A1) α, γ ∈
(
0, 1

n

]
, m1 > A;

A2) α, γ ∈
(
1
n ,

2
n

)
, m1 > B;

A3) α, γ ∈
[
2
n , 1

)
, m1 > C;

A4) α ∈
[
2
n , 1

]
, γ ∈

[
2
n , 1

)
, m1 > D;

A5) α ∈
[
2
n , 1

)
, γ ∈

[
2
n , 1

]
, m1 > E;

A6) α, γ ∈
[
2
n , 1

]
, m1 > F ;

A7) α ∈
(
0, 1

n

]
, γ ∈

(
1
n ,

2
n

)
, m1 > G;

A8) α ∈
(
0, 1

n

]
, γ ∈

[
2
n , 1

)
; m1 > H;

A9) α ∈
(
0, 1

n

]
, γ ∈

[
2
n , 1

]
, m1 > I;

A10) α ∈
(
1
n ,

2
n

)
, γ ∈

(
0, 1

n

]
, m1 > Gt;

A11) α ∈
(
1
n ,

2
n

)
, γ ∈

[
2
n , 1

)
, m1 > J ;

A12) α ∈
(
1
n ,

2
n

)
, γ ∈

[
2
n , 1

]
, m1 > K;

A13) α ∈
[
2
n , 1

)
, γ ∈

(
0, 1

n

]
, m1 > Ht;

A14) α ∈
[
2
n , 1

]
, γ ∈

(
0, 1

n

]
, m1 > It;

A15) α ∈
[
2
n , 1

)
, γ ∈

(
1
n ,

2
n

)
, m1 > J t;

A16) α ∈
[
2
n , 1

]
, γ ∈

(
1
n ,

2
n

)
, m1 > Kt,

the superscript t denoting the case where the roles of α and m2 are taken by γ
and m3, respectively. Then for any initial data (u0, v0, w0) ∈ (W 1,∞(Ω))3, with
u0, v0, w0 ≥ 0 on Ω̄, there exists a unique triplet (u, v, w) of nonnegative functions,
uniformly bounded in time and classically solving problem (2.1).

Theorem 2.3 (The logistic case). Under the same hypotheses of Theorem 2.2
and β > 1, let h comply with (2.4). Then the same claim holds true whenever
α, γ > 0, m1,m2,m3 ∈ R, and f and g fulfill (2.3) for each of the following cases:

A17) α, γ ∈
(
0, 1

n

]
, m1 > A′;

A18) α, γ ∈
(
1
n , 1

)
, m1 > B′;

A19) α ∈
(
0, 1

n

]
, γ ∈

(
1
n , 1

)
, m1 > C′;

A20) α ∈
(
1
n , 1

)
, γ ∈

(
0, 1

n

]
, m1 > C′t.

All these results are put together into Figure 1.

Example 2.4. Let n = 2, m1 = m2 = m3 = m ∈ R, α = γ ∈
(
1
2 , 1

)
. We have

B = min{m− 1 + α,max{2m, 0},max{m− 1 + α, 2m, 0}}.

Specifically, for m < 0

B = m− 1 + α,

and assumption A2) of Theorem 2.2 are automatically fulfilled, in view of α < 1.

Remark 2.5 (On the validity of Theorem 2.2). For mi, with i = 1, 2, 3, complying
with its related assumptions, Theorem 2.2 provides a rather complete picture con-
cerning boundedness of solutions to (2.1). Conversely, as far as the linear diffusion
and sensitivities (m1 = m2 = m3 = 1) model is concerned, it still holds except
when α and/or γ belong to the intervals

[
2
n , 1

]
and/or

[
2
n , 1

)
, namely under the

assumptions A3)—A6), A8), A9) and A11)—A16). Henceforth, what happens in
these situations? In low dimensions or under further restrictions on the data, some
cases can be saved. More precisely:

I) If α = γ = 1 (included in A6)), boundedness of solutions is ensured by requir-
ing 0 < χ < 1

5n∥v0∥L∞(Ω)
and 0 < ξ < 1

5n∥w0∥L∞(Ω)
, with n ≥ 2, as seen in [3,

Theorem 1.1];

II) If α ∈
(
0, 1

n

]
, γ ∈

[
2
n , 1

]
(A9)) or α ∈

[
2
n , 1

]
, γ ∈

(
0, 1

n

]
(A14)), boundedness of

solutions is achieved for α ∈ (0, 1], γ = 1 (so for n = 1), for α ∈
(
0, 1

2

]
, γ = 1

and 0 < ξ < K2(n, ∥w0∥L∞(Ω)) (so for n = 2), or by symmetry, for α = 1,

γ ∈ (0, 1] (so for n = 1), for α = 1, γ ∈
(
0, 1

2

]
and 0 < χ < K1(n, ∥v0∥L∞(Ω))

(so for n = 2), respectively;
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γ

0

1
n

2
n

1

α

0 1
n

2
n 1

m1 > A

m1 > A′

m1 > Ht, m1 > It

m1 > C′t

m1 > Ct

m1 > C′t

m1 > C, m1 > D
m1 > E , m1 > F

m1 > B′

m1 > J t, m1 > Kt

m1 > B′

m1 > B

m1 > B′

m1 > G

m1 > C′

m1 > H, m1 > I

m1 > C′

m1 > J , m1 > K

m1 > B′

Figure 1. Schematization of the non-logistic case (Theorem 2.2, non-shadowed
zones) and the logistic case (Theorem 2.3, shadowed zones). With reference to
§2.1.1, herein we collect the ranges of the parameters involved in model (2.1) for
which boundedness of its solutions is established for any fixed initial distribution
u0, v0 and w0. (Recall m2,m3, k ∈ R and χ, ξ ∈ R+. For the analysis of the limit
values of α and γ in the corresponding intervals, we refer to the mentioned theo-
rems.)

III) If α ∈
(
1
n ,

2
n

)
, γ ∈

[
2
n , 1

]
(A12)) or α ∈

[
2
n , 1

]
, γ ∈

(
1
n ,

2
n

)
(A16)), Theorem 2.2

still holds for n = 1, α ∈ (1, 2), γ = 1, for n = 2, α ∈
(
1
2 , 1

)
, γ = 1 and

0 < ξ < K̃2(n, ∥w0∥L∞(Ω)), or for n = 1, α = 1, γ ∈ (1, 2), for n = 2, α = 1,

γ ∈
(
1
2 , 1

)
and 0 < χ < K̃1(n, ∥v0∥L∞(Ω)), respectively.

Apparently, the remaining scenarios cannot be managed; some details on this dis-
cussion will be given in Remark 4.5.

Remark 2.6 (On the validity of Theorem 2.3). If for the non logistic case Table 1
provides an exhaustive scenario, for the logistic one we discuss separately the linear
and nonlinear situations.

In particular, for m1 = m2 = m3 = 1, it is seen that Theorem 2.3 still applies for
β > 2 and α, γ ∈ (0, 1). Which is the situation in those cases where the limit values
of β and/or α, γ are considered? Theorem 2.3 applies (hints are given in Remark
4.6 at the end of the article) whenever

i) β > 2 and α, γ ∈ (0, 1];
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ii) β = 2, α, γ ∈ ( 1n , 1] and µ > K(n)(χ2∥χv0∥
4
n

L∞(Ω) + ξ2∥ξw0∥
4
n

L∞(Ω)), with

K(n) > 0;

iii) β = 2, α ∈
(
1
n , 1

]
, γ ∈

(
0, 1

n

]
and µ > K1(n)χ

2∥χv0∥
4
n

L∞(Ω), with K1(n) > 0;

iv) β = 2, α ∈
(
0, 1

n

]
, γ ∈

(
1
n , 1

]
and µ > K2(n)ξ

2∥ξw0∥
4
n

L∞(Ω), with K2(n) > 0.

On the other hand, for the nonlinear diffusion and sensitivities case, it continues to
be valid when either β > 2 and

v) α, γ ∈
(
1
n , 1

]
and m1 > B′;

vi) α ∈
(
0, 1

n

]
, γ ∈

(
1
n , 1

]
and m1 > C′;

vii) α ∈
(
1
n , 1

]
, γ ∈

(
0, 1

n

]
and m1 > C′t;

or β = 2 and

viii) α, γ ∈
(
1
n , 1

]
, m1 > B′ and µ > K̃, with some constant K̃ > 0 depending on

n,m1,m2,m3, χ, ∥v0∥L∞(Ω), ξ, ∥w0∥L∞(Ω);

ix) α ∈
(
0, 1

n

]
, γ ∈

(
1
n , 1

]
, m1 > C′ and µ > K̃1, with some constant K̃1 > 0

depending on n,m1,m2,m3, ξ, ∥w0∥L∞(Ω);

x) α ∈
(
1
n , 1

]
, γ ∈

(
0, 1

n

]
, m1 > C′t and µ > K̃2, with some constant K̃2 > 0

depending on n,m1,m2,m3, χ, ∥v0∥L∞(Ω).

2.3. Technical strategy and structure of the article. As it will be formally
made precise below, the mathematical requirements toward boundedness are con-
nected to some a priori estimates of

∫
Ω
up =

∫
Ω
up(x, t)dx, for some p > 1 and

some t > 0, with (u, v, w) being any given solution to problem (2.1). Whereas in
[3], dealing with the situation where m1 = m2 = m3 = 1, this issue is addressed by
the employment of a functional of the form

∫
Ω
upφ, being φ a suitable function of

(v, w), apparently for the nonlinear case under investigation the same attempt does
not work. Henceforth our idea is to consider, for some p, q, r > 1 properly large and
some t > 0, the functional

y(t) :=

∫
Ω

(u+ 1)p +

∫
Ω

|∇v|2q +
∫
Ω

|∇w|2r, (2.5)

a natural adjustment of that used in many fully-parabolic Keller–Segel systems
with two unknowns. An evolutive analysis of such a functional leads to a crucial
absorption differential inequality in time for the functional itself, and in turn to
the desired uniform-in-time bound for

∫
Ω
up. In particular, our strategy towards

the achievement of this differential inequality requires some ad hoc exploitation of
well-known functional inequalities (see Remark 3.4 below for details).

The rest of the paper is structured as follows. First, in §3 we give some hints
concerning the local existence and uniqueness of a classical solution to model (2.1)
and some of its main properties. In this same section we give a boundedness crite-
rion, establishing globality and boundedness of local solutions from proper a priori
Lp-boundedness. In turn, in §4 we focus on the derivation of these bounds, by
means of which we can deduce the claims of Theorems 2.2 and 2.3.

3. Existence of local-in-time solutions and basic properties. Once Ω, χ, ξ,
m1,m2,m3 and f, g, h are picked as above, with (u, v, w) we will indicate the clas-
sical and nonnegative solution of problem (2.1) defined for all (x, t) ∈ Ω̄× [0, Tmax),
for some finite Tmax, and emanating from the nonnegative initial data (u0, v0, w0) ∈
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(W 1,∞(Ω))3. In particular, u, v and w are such that∫
Ω

u(x, t)dx≤m0 := min

{
m,

(
k+
µ

) 1
β−1

|Ω|

}
on (0, Tmax) and m =

∫
Ω

u0, (3.1)

and

0 ≤ v ≤ ∥v0∥L∞(Ω) and 0 ≤ w ≤ ∥w0∥L∞(Ω) in Ω× (0, Tmax). (3.2)

Further, globality and boundedness of (u, v, w) (in the sense of (2.2)) are ensured
whenever (boundedness criterion, below) u ∈ L∞((0, Tmax);L

p(Ω)), with p > 1
arbitrarily large: formally,

If for some C > 0 and p = p(n,m1,m2,m3) > 1 arbitrarily large,

we have

∫
Ω

up ≤ C on (0, Tmax), then (u, v, w) ∈ (L∞((0,∞);L∞(Ω)))3.
(3.3)

We do not prove these basic statements, nor dedicate any lemma; we understand
that the details in [3, §2] and [18, Appendix A], which take into consideration also
relations (3.1) and (3.2), are sufficient in this regard. Conversely, we spend some
words regarding estimate (3.1). When h ≡ 0, it immediately follows by integrat-
ing over Ω the first equation of (2.1) and it is the well-known mass conservation
property. In the presence of the logistic terms h as in (2.4), oppositely, also an ap-
plication of the Hölder inequality has to be invoked: precisely for k+ = max{k, 0}
and for all t ∈ (0, Tmax)

d

dt

∫
Ω

u =

∫
Ω

h(u) = k

∫
Ω

u− µ

∫
Ω

uβ ≤ k+

∫
Ω

u− µ

|Ω|β−1

(∫
Ω

u

)β

,

thus concluding the proof by virtue of an ODI-comparison argument.
Crucial in our computations, beyond the above derivations, are as well some

uniform bounds for ∥v(·, t)∥W 1,s(Ω) and ∥w(·, t)∥W 1,s(Ω), with s ≥ 1. In this sense,
the following lemma is a cornerstone.

Lemma 3.1. For some c0, c1 > 0, we have that v and w comply with∫
Ω

|∇v(·, t)|s ≤ c0 on (0, Tmax)

{
for all s ∈ [1,∞) if α ∈

(
0, 1

n

]
,

for all s ∈
[
1, n

(nα−1)

)
if α ∈

(
1
n , 1

]
,

(3.4)

and∫
Ω

|∇w(·, t)|s ≤ c1 on (0, Tmax)

{
for all s ∈ [1,∞) if γ ∈

(
0, 1

n

]
,

for all s ∈
[
1, n

(nγ−1)

)
if γ ∈

(
1
n , 1

]
.

(3.5)

Proof. Fixing α, γ ∈ (0, 1], it is possible to find ρ, ρ1 > 1
2 such that for all s ∈

[ 1α ,
n

(nα−1)+
) and s ∈ [ 1γ ,

n
(nγ−1)+

), we have 1
2 < ρ < 1 − n

2 (α − 1
s ) and 1

2 < ρ1 <

1− n
2 (γ−

1
s ), respectively. From 1−ρ− n

2 (α− 1
s ) > 0 and 1−ρ1− n

2 (γ−
1
s ) > 0, the

claims follow invoking properties related to the Neumann heat semigroup; details
can be found in [4, Lemma 5.1].

We will also make use of these technical results.

Lemma 3.2. Let n ∈ N, with n ≥ 2, m1 > n−2
n , m2,m3 ∈ R and α, γ ∈ (0, 1].

Then there exists s ∈ [1,∞) such that for proper p, q, r ∈ [1,∞), θ and θ′, θ̃ and θ̃′,
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µ and µ′, µ̃ and µ̃′ conjugate exponents, we have that

a1 =

m1+p−1
2

(
1− 1

(p+2m2−m1−1)θ

)
m1+p−1

2 + 1
n − 1

2

, a2 =
q
(
1
s − 1

2θ′

)
q
s + 1

n − 1
2

,

a3 =

m1+p−1
2

(
1− 1

2αµ

)
m1+p−1

2 + 1
n − 1

2

, a4 =
q
(

1
s − 1

2(q−1)µ′

)
q
s + 1

n − 1
2

,

κ1 =

p
2

(
1− 1

p

)
m1+p−1

2 + 1
n − 1

2

, κ2 =
q − 1

2

q + 1
n − 1

2

,

and

ã1 =

m1+p−1
2

(
1− 1

(p+2m3−m1−1)θ̃

)
m1+p−1

2 + 1
n − 1

2

, ã2 =
r
(

1
s − 1

2θ̃′

)
r
s + 1

n − 1
2

,

ã3 =

m1+p−1
2

(
1− 1

2γµ̃

)
m1+p−1

2 + 1
n − 1

2

, ã4 =
r
(

1
s − 1

2(r−1)µ̃′

)
r
s + 1

n − 1
2

,

κ3 =
r − 1

2

r + 1
n − 1

2

,

belong to the interval (0, 1). If, additionally,

α ∈
(
0,

1

n

]
and m1 > m2 −

1

n
, γ ∈

(
0,

1

n

]
and m1 > m3 −

1

n
, (3.6)

α ∈
(
1

n
,
2

n

)
and m1 > m2−

2

n
+α, γ ∈

(
1

n
,
2

n

)
and m1 > m3−

2

n
+γ, (3.7)

or

α ∈
[
2

n
, 1

]
and m1 > m2+

nα− 2

nα− 1
, γ ∈

[
2

n
, 1

]
and m1 > m3+

nγ − 2

nγ − 1
, (3.8)

the following further relations hold true:

β1 + γ1 =
p+ 2m2 −m1 − 1

m1 + p− 1
a1 +

1

q
a2 ∈ (0, 1),

β2 + γ2 =
2α

m1 + p− 1
a3 +

q − 1

q
a4 ∈ (0, 1),

and

β̃1 + γ̃1 =
p+ 2m3 −m1 − 1

m1 + p− 1
ã1 +

1

r
ã2 ∈ (0, 1),

β̃2 + γ̃2 =
2γ

m1 + p− 1
ã3 +

r − 1

r
ã4 ∈ (0, 1).

Finally, the relations involving the sum of β1 and γ1, β2 and γ2, β̃1 and γ̃1, β̃2 and
γ̃2 still hold true in each one of the following cases:

▷ α ∈
(
0, 1

n

]
and m1 > m2 − 1

n , γ ∈
(
1
n ,

2
n

)
and m1 > m3 − 2

n + γ,

▷ α ∈
(
0, 1

n

]
and m1 > m2 − 1

n , γ ∈
[
2
n , 1

]
and m1 > m3 +

nγ−2
nγ−1 ,

▷ α ∈
(
1
n ,

2
n

)
and m1 > m2 − 2

n + α, γ ∈
(
0, 1

n

]
and m1 > m3 − 1

n ,

▷ α ∈
(
1
n ,

2
n

)
and m1 > m2 − 2

n + α, γ ∈
[
2
n , 1

]
and m1 > m3 +

nγ−2
nγ−1 ,

▷ α ∈
[
2
n , 1

]
and m1 > m2 +

nα−2
nα−1 , γ ∈

(
0, 1

n

]
and m1 > m3 − 1

n ,
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▷ α ∈
[
2
n , 1

]
and m1 > m2 +

nα−2
nα−1 , γ ∈

(
1
n ,

2
n

)
and m1 > m3 − 2

n + γ.

Proof. For any s ≥ 1, we put θ′, θ̃′ > max{n
2 ,

s
2}, µ > max{ 1

2α ,
n
2 } and µ̃ >

max{ 1
2γ ,

n
2 }. Thereafter, for

q > max
{

n−2
n θ′, s

2µ′ + 1
}
, r > max

{
n−2
n θ̃′, s

2µ̃′ + 1
}

p > max
{
2− 2

n −m1,
1
θ − 2m2 +m1 + 1, (2m2−m1−1)(n−2)θ−nm1+n

n−(n−2)θ ,
2αµ(n−2)

n −m1 + 1, 1
θ̃
− 2m3 +m1 + 1,

(2m3−m1−1)(n−2)θ̃−nm1+n

n−(n−2)θ̃
, 2γµ̃(n−2)

n −m1 + 1
}
,

(3.9)

it is possible to check that ai, ãi, κ2, κ3 ∈ (0, 1), for any i = 1, 2, 3, 4. On the other
hand, κ1 ∈ (0, 1) also thanks to the assumption m1 > n−2

n .

As to the second part, we consider three cases: α ∈ (0, 1
n ], α ∈ ( 1n ,

2
n ) and

α ∈ [ 2n , 1].

◦ α ∈ (0, 1
n ]. For s > 2µ′

2µ′−1 arbitrarily large, consistently with (3.9), we take

p = q = s and θ′ = sω, for some ω > 1
2 . Some standard computations entail

0 < β1 + γ1 =
s+ 2m2 −m1 − 1− 1

θ

m1 + s− 2 + 2
n

+
2− 1

ω

s+ 2s
n

,

and

0 < β2 + γ2 =
2α− 1

µ

m1 + s− 2 + 2
n

+
2s− 2− s

µ′

s+ 2s
n

.

In light of the above statements, the largeness of s infers θ arbitrarily close
to 1, in accordance with θ′ large. Further, by choosing ω approaching 1

2 ,
continuity arguments imply that β1 + γ1 < 1 whenever restriction (3.6) is
satisfied, whereas β2 + γ2 < 1 comes from µ > n

2 .

◦ α ∈ ( 1n ,
2
n ). First let s be arbitrarily close to n

nα−1 and let q = p
2 such that

(3.9) is accomplished. Then, it holds that max{ s
2 ,

n
2 } = s

2 , so that restriction
on θ′ (see above) reads θ′ > s

2 . Subsequently,

0 < β1 + γ1 =
p+ 2m2 −m1 − 1− 1

θ

m1 + p− 2 + 2
n

+
2− s

θ′

p+ 2s
n − s

,

and

0 < β2 + γ2 =
2α− 1

µ

m1 + p− 2 + 2
n

+
p− 2− s

µ′

p+ 2s
n − s

.

Since from θ′ > s
2 we have that θ′ approaches n

2(nα−1) , an already used rea-

soning implies that upon enlarging p condition (3.7) yields β1 + γ1 < 1. On
the other hand, in order to have β2 + γ2 < 1 we have to invoke the above
constraint on µ, i.e., µ > 1

2α .

◦ α ∈ [ 2n , 1]. By considering in the previous case θ′ > n
2 , we conclude by means

of (3.8).

By reasoning similarly to what we have done before for the range of α and exchang-
ing µ′ with µ̃′, q with r, θ′ with θ̃′ and α with γ, we have the claim for the cases
γ ∈ (0, 1

n ], γ ∈ ( 1n ,
2
n ) and γ ∈ [ 2n , 1].

The final part is simply obtained by considering permutations of the ranges of α
and γ.



1796 YUTARO CHIYO, SILVIA FRASSU AND GIUSEPPE VIGLIALORO

In the concluding part of the paper we will also invoke the next result, by means
of which products of powers will be estimated by suitable sums involving their bases
and powers of sums controlled by sums of powers.

Lemma 3.3. Let a, b, c ≥ 0 and d1, d2 > 0 such that d1 + d2 < 1. Then for all
ϵ > 0 there exists d > 0 such that

ad1bd2 ≤ ϵ(a+ b) + d.

Moreover, for further d3, d4, d5 > 0, it is possible to find positive d6, d̂ and d̃ such
that

ad3 + bd4 + cd5 ≥ d̂(a+ b+ c)d6 − d̃.

Proof. The proof is based on manipulations of Young’s inequality and some details
are available in [5, Lemma 4.3] and [15, Lemma 3.3].

Remark 3.4. In view of its importance in the computations, we have to point out
that from the above Lemma 3.2, the parameter s can be chosen arbitrarily large only
when α, γ ∈

(
0, 1

n

]
(this is connected to Lemma 3.1). In particular, as it will be clear

later, in this interval the terms
∫
Ω
(u+ 1)p+2m2−m1−1|∇v|2,

∫
Ω
(u+ 1)2α|∇v|2(q−1),∫

Ω
(u+1)p+2m3−m1−1|∇w|2 and

∫
Ω
(u+1)2γ |∇w|2(r−1), appearing in our reasoning

when dealing with the control of the functional defined in (2.5), can be controlled
by invoking either the Young or the Gagliardo–Nirenberg inequality.

4. A priori estimates and proof of the theorems.

4.1. The non-logistic case. In order to exploit the boundedness criterion (3.3),
let us analyze the behavior of functional defined in (2.5), with p, q, r > 1 properly
large.

In the spirit of Remark 3.4, the first steps toward the uniform bound of
∫
Ω
up

will focus on controlling the evolution in time of the functional y(t) by employing
the Young inequality.

Lemma 4.1. If m1,m2,m3 ∈ R comply with m1 > max{2m2 − 1, 2m3 − 1, n−2
n }

or m1 > max{m2 − 1
n ,m3 − 1

n ,
n−2
n } or m1 > max{2m2 − 1,m3 − 1

n ,
n−2
n } or m1 >

max{m2 − 1
n , 2m3 − 1, n−2

n } whenever α, γ ∈ (0, 1
n ], or m1 > max{2m2, 2m3,

n−2
n }

whenever α, γ ∈ ( 1n , 1), then there exist p, q, r > 1 such that (u, v, w) satisfies for
some c33, c34, c35, c36 > 0 and for all t ∈ (0, Tmax)

d

dt

(∫
Ω

(u+ 1)p +

∫
Ω

|∇v|2q +
∫
Ω

|∇w|2r
)

+ c33

∫
Ω

|∇|∇v|q|2 + c34

∫
Ω

|∇|∇w|r|2 + c35

∫
Ω

|∇(u+ 1)
m1+p−1

2 |2 ≤ c36. (4.1)

Proof. Let p = q = r > 1 be sufficiently large; moreover, in view of Remark 3.4, if
necessary we are allowed to arbitrarily enlarge these parameters.

For estimates of the term d
dt

∫
Ω
(u+ 1)p, standard testing procedures provide for

all t ∈ (0, Tmax)

d

dt

∫
Ω

(u+ 1)p =

∫
Ω

p(u+ 1)p−1ut

= −p(p−1)

∫
Ω

(u+1)p+m1−3|∇u|2+p(p−1)χ

∫
Ω

u(u+1)m2+p−3∇u·∇v
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− p(p− 1)ξ

∫
Ω

u(u+ 1)m3+p−3∇u · ∇w. (4.2)

An application of the Young inequality to the second and the third integral in (4.2)
give on (0, Tmax) for ϵ1, ϵ2 > 0 and some positive c2, c3

p(p− 1)χ

∫
Ω

u(u+ 1)m2+p−3∇u · ∇v

≤ ϵ1

∫
Ω

(u+ 1)p+m1−3|∇u|2 + c2

∫
Ω

(u+ 1)p+2m2−m1−1|∇v|2, (4.3)

and

− p(p− 1)ξ

∫
Ω

u(u+ 1)m3+p−3∇u · ∇w

≤ ϵ2

∫
Ω

(u+ 1)p+m1−3|∇u|2 + c3

∫
Ω

(u+ 1)p+2m3−m1−1|∇w|2. (4.4)

Case 1: α, γ ∈ (0, 1
n ] and m1 > max{2m2−1, 2m3−1, n−2

n } or m1 > max{m2−
1
n ,m3− 1

n ,
n−2
n } or m1 > max{2m2− 1,m3− 1

n ,
n−2
n } or m1 > max{m2− 1

n , 2m3−
1, n−2

n }. The Young inequality and bound (3.4) yield for all t ∈ (0, Tmax)

c2

∫
Ω

(u+ 1)p+2m2−m1−1|∇v|2 ≤ ϵ3

∫
Ω

|∇v|s + c4

∫
Ω

(u+ 1)
(p+2m2−m1−1)s

s−2

≤ c4

∫
Ω

(u+ 1)
(p+2m2−m1−1)s

s−2 + c5, (4.5)

with ϵ3 > 0 and some positive c4, c5.
Let us now dedicate ourselves to the cases m1 > max{2m2 − 1, n−2

n } and m1 >

m2 − 1
n , respectively. From m1 > 2m2 − 1, we have (p+2m2−m1−1)s

s−2 < p, and for
every ϵ4 > 0, Young’s inequality yields some c6 > 0 entailing

c4

∫
Ω

(u+ 1)
(p+2m2−m1−1)s

s−2 ≤ ϵ4

∫
Ω

(u+ 1)p + c6 on (0, Tmax), (4.6)

with ϵ4 > 0 and positive c6. Further, an application of the Gagliardo–Nirenberg
inequality and property (3.1) yield

θ =

n(m1+p−1)
2

(
1− 1

p

)
1− n

2 + n(m1+p−1)
2

∈ (0, 1),

so giving for c7, c8 > 0∫
Ω

(u+ 1)p = ∥(u+ 1)
m1+p−1

2 ∥
2p

m1+p−1

L
2p

m1+p−1 (Ω)

≤ c7∥∇(u+ 1)
m1+p−1

2 ∥
2p

m1+p−1 θ

L2(Ω) ∥(u+ 1)
m1+p−1

2 ∥
2p

m1+p−1 (1−θ)

L
2

m1+p−1 (Ω)

+ c7∥(u+ 1)
m1+p−1

2 ∥
2p

m1+p−1

L
2

m1+p−1 (Ω)

≤ c8

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)κ1

+ c8 for all t ∈ (0, Tmax).

Since κ1 ∈ (0, 1) (see Lemma 3.2), for any positive ϵ5 thanks to the Young inequality
we arrive for some positive c9 > 0 at

ϵ4

∫
Ω

(u+ 1)p ≤ ϵ5

∫
Ω

|∇(u+ 1)
m1+p−1

2 |2 + c9 on (0, Tmax). (4.7)
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Alternatively, we can treat the integral in the left hand side of (4.6) by applying
the Gagliardo–Nirenberg inequality and again bound (3.1), so having∫

Ω

(u+ 1)
(p+2m2−m1−1)s

s−2

= ∥(u+ 1)
m1+p−1

2 ∥
2s(p+2m2−m1−1)

(s−2)(m1+p−1)

L
2s(p+2m2−m1−1)
(s−2)(m1+p−1) (Ω)

≤ c10∥∇(u+ 1)
m1+p−1

2 ∥
2s(p+2m2−m1−1)

(s−2)(m1+p−1)
θ1

L2(Ω) ∥(u+ 1)
m1+p−1

2 ∥
2s(p+2m2−m1−1)

(s−2)(m1+p−1)
(1−θ1)

L
2

m1+p−1 (Ω)

+ c10∥(u+ 1)
m1+p−1

2 ∥
2s(p+2m2−m1−1)

(s−2)(m1+p−1)

L
2

m1+p−1 (Ω)

≤ c11

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)κ

+ c11 for all t ∈ (0, Tmax),

with

θ1 =

m1+p−1
2

(
1− s−2

(p+2m2−m1−1)s

)
m1+p−1

2 + 1
n − 1

2

and κ =
s(p+ 2m2 −m1 − 1)− (s− 2)

(s− 2)(m1 + p− 2 + 2
n )

,

for some c10, c11 > 0. In particular θ1 ∈ (0, 1), and from m1 > m2 − 1
n , since s

can be arbitrarily enlarged, continuity arguments imply κ ∈ (0, 1); in addition, the
Young inequality allows us to rephrase (4.6) as

c4

∫
Ω

(u+ 1)
(p+2m2−m1−1)s

s−2 ≤ ϵ6

∫
Ω

|∇(u+ 1)
m1+p−1

2 |2 + c12 on (0, Tmax), (4.8)

with ϵ6 > 0 and some positive c12.
Treating in a similar way the second integral on the right-hand side of (4.4) and

exploiting bound (3.5) yield on (0, Tmax)

c3

∫
Ω

(u+ 1)p+2m3−m1−1|∇w|2 ≤ c13

∫
Ω

(u+ 1)
(p+2m3−m1−1)s

s−2 + c14, (4.9)

with positive c13, c14.
Let us now turn our attention to the situation where m1 > max{2m3 − 1, n−2

n }
and m1 > m3 − 1

n , respectively. In the same flavor as before, from m1 > 2m3 − 1,

we have (p+2m3−m1−1)s
s−2 < p, and for every ϵ7, ϵ8 > 0, the Young and the Gagliardo–

Nirenberg inequalities yield some c15, c16 > 0 entailing

c3

∫
Ω

(u+ 1)
(p+2m3−m1−1)s

s−2 ≤ ϵ7

∫
Ω

(u+ 1)p + c15

≤ ϵ8

∫
Ω

|∇(u+ 1)
m1+p−1

2 |2 + c16 on (0, Tmax). (4.10)

On the other hand, by exploiting the condition m1 > m3 − 1
n again the Gagliardo–

Nirenberg inequality yields for all t ∈ (0, Tmax)∫
Ω

(u+ 1)
(p+2m3−m1−1)s

s−2

= ∥(u+ 1)
m1+p−1

2 ∥
2s(p+2m3−m1−1)

(s−2)(m1+p−1)

L
2s(p+2m3−m1−1)
(s−2)(m1+p−1) (Ω)

≤ c17∥∇(u+ 1)
m1+p−1

2 ∥
2s(p+2m3−m1−1)

(s−2)(m1+p−1)
θ2

L2(Ω) ∥(u+ 1)
m1+p−1

2 ∥
2s(p+2m3−m1−1)

(s−2)(m1+p−1)
(1−θ2)

L
2

m1+p−1 (Ω)
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+ c17∥(u+ 1)
m1+p−1

2 ∥
2s(p+2m3−m1−1)

(s−2)(m1+p−1)

L
2

m1+p−1 (Ω)
≤ c18

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)κ̂

+ c18,

with

θ2=

m1+p−1
2

(
1− s−2

(p+2m3−m1−1)s

)
m1+p−1

2 + 1
n − 1

2

∈(0, 1) and κ̂=
s(p+ 2m3 −m1 − 1)−(s− 2)

(s− 2)(m1 + p− 2 + 2
n )

,

for some c17, c18 > 0, and with θ2, κ̂ ∈ (0, 1). In this way, (4.10) becomes

c3

∫
Ω

(u+ 1)
(p+2m3−m1−1)s

s−2 ≤ ϵ9

∫
Ω

|∇(u+ 1)
m1+p−1

2 |2 + c19 on (0, Tmax), (4.11)

with ϵ9 > 0 and some positive c19. By plugging estimates (4.3) and (4.4) into rela-
tion (4.2), and by relying on bounds (4.5)-(4.7) and (4.9), (4.10) (or, alternatively
to (4.6) and (4.10), relations (4.8) and (4.11)), infer for appropriate ϵ̃1 > 0 and
proper c20 > 0 for all t ∈ (0, Tmax)

d

dt

∫
Ω

(u+ 1)p ≤
(
− 4p(p− 1)

(m1 + p− 1)2
+ ϵ̃1

)∫
Ω

|∇(u+ 1)
m1+p−1

2 |2 + c20, (4.12)

where we also have taken into consideration∫
Ω

(u+1)p+m1−3|∇u|2= 4

(m1 + p− 1)2

∫
Ω

|∇(u+1)
m1+p−1

2 |2 on (0, Tmax). (4.13)

Now, we treat the terms d
dt

∫
Ω
|∇v|2q and d

dt

∫
Ω
|∇w|2r of the functional y(t) under

the assumption that m1 > n−2
n . As to the term d

dt

∫
Ω
|∇v|2q, reasoning similarly as

in [4, Lemma 5.3], we obtain for some c21, c22 > 0 for all t ∈ (0, Tmax)

d

dt

∫
Ω

|∇v|2q + q

∫
Ω

|∇v|2q−2|D2v|2 ≤ c21

∫
Ω

u2α|∇v|2q−2 + c22. (4.14)

Moreover, Young’s inequality and bound (3.4) give for every arbitrary ϵ10, ϵ11, ϵ12 >
0 and some c23, c24, c25, c26 > 0

c21

∫
Ω

u2α|∇v|2q−2 ≤ ϵ10

∫
Ω

up + c23

∫
Ω

|∇v|
2(q−1)p
p−2α

≤ ϵ10

∫
Ω

(u+ 1)p + ϵ11

∫
Ω

|∇v|s + c24 ≤ ϵ10

∫
Ω

(u+ 1)p + c25

≤ ϵ12

∫
Ω

|∇(u+ 1)
m1+p−1

2 |2 + c26 on (0, Tmax). (4.15)

As to the term d
dt

∫
Ω
|∇w|2r of the functional y(t), with bound (3.5) in our hands,

through similar aforedescribed computations we obtain for all t ∈ (0, Tmax)

d

dt

∫
Ω

|∇w|2r + r

∫
Ω

|∇w|2r−2|D2w|2 ≤ c27

∫
Ω

u2γ |∇w|2r−2 + c28

≤ ϵ13

∫
Ω

up + c29

∫
Ω

|∇w|
2(r−1)p
p−2γ ≤ ϵ13

∫
Ω

(u+ 1)p + ϵ14

∫
Ω

|∇w|s + c30

≤ ϵ13

∫
Ω

(u+ 1)p + c31 ≤ ϵ15

∫
Ω

|∇(u+ 1)
m1+p−1

2 |2 + c32, (4.16)

with ϵ13, ϵ14, ϵ15 > 0 and some c27, c28, c29, c30, c31, c32 > 0. Therefore, by inserting
relation (4.15) into (4.14) and adding (4.12) and (4.16), we have the claim for a
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proper choice of ϵ̃1 and some positive c33, c34, c35, c36, once relations (see [4, page
17])

|∇|∇v|q|2 =
q2

4
|∇v|2q−4|∇|∇v|2|2 = q2|∇v|2q−4|D2v∇v|2

≤ q2|∇v|2q−2|D2v|2 on (0, Tmax), (4.17)

and

|∇|∇w|r|2 =
r2

4
|∇w|2r−4|∇|∇w|2|2 = r2|∇w|2r−4|D2w∇w|2

≤ r2|∇w|2r−2|D2w|2 on (0, Tmax), (4.18)

are considered too.
Case 2: α, γ ∈ ( 1n , 1) and m1 > max{2m2, 2m3,

n−2
n }. According to Remark

3.4, since in this case s has a finite upper bound, a different approach to deal with
relations (4.5), (4.9), (4.15) and (4.16) has to be used. In particular, for ϵ̄1 > 0 and
some c̄1 > 0 we can estimate relation (4.5) on (0, Tmax) as follows:

c2

∫
Ω

(u+ 1)p+2m2−m1−1|∇v|2 ≤ ϵ̄1

∫
Ω

|∇v|2(p+1) + c̄1

∫
Ω

(u+ 1)
(p+2m2−m1−1)(p+1)

p .

Now, if m1 > 2m2, then some p sufficiently large infers (p+2m2−m1−1)(p+1)
p < p, so

that for any positive ϵ̄2, ϵ̄3 and some c̄2, c̄3 > 0 we have

c̄1

∫
Ω

(u+ 1)
(p+2m2−m1−1)(p+1)

p ≤ ϵ̄2

∫
Ω

(u+ 1)p + c̄2

≤ ϵ̄3

∫
Ω

|∇(u+ 1)
m1+p−1

2 |2 + c̄3 for all t ∈ (0, Tmax),

where in the last implication we used m1 > n−2
n (as in the previous case). In a

similar way, for m1 > 2m3 and m1 > n−2
n we have for any positive ϵ̄4, ϵ̄5, ϵ̄6 and

some c̄4, c̄5, c̄6 > 0

c3

∫
Ω

(u+ 1)p+2m3−m1−1|∇w|2

≤ ϵ̄4

∫
Ω

|∇w|2(p+1) + c̄4

∫
Ω

(u+ 1)
(p+2m3−m1−1)(p+1)

p

≤ ϵ̄4

∫
Ω

|∇w|2(p+1) + ϵ̄5

∫
Ω

(u+ 1)p + c̄5

≤ ϵ̄4

∫
Ω

|∇w|2(p+1) + ϵ̄6

∫
Ω

|∇(u+ 1)
m1+p−1

2 |2 + c̄6 on (0, Tmax).

Let us focus on the integrals
∫
Ω
|∇v|

2p(p−1)
p−2α and

∫
Ω
|∇w|

2p(p−1)
p−2γ . Since α, γ < 1,

this implies that 2p(p−1)
p−2α < 2(p + 1) and 2p(p−1)

p−2γ < 2(p + 1), and subsequently an

application of the Young inequality leads to

c23

∫
Ω

|∇v|
2p(p−1)
p−2α ≤ ϵ̄7

∫
Ω

|∇v|2(p+1) + c̄7 for all t ∈ (0, Tmax),

and

c29

∫
Ω

|∇w|
2p(p−1)
p−2γ ≤ ϵ̄8

∫
Ω

|∇w|2(p+1) + c̄8 on (0, Tmax),
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with ϵ̄7, ϵ̄8 > 0 and some positive c̄7, c̄8. By taking into account [12, Lemma 2.2]
and bounds (3.2), we get∫

Ω

|∇v|2(p+1) ≤ 2(4p2 + n)∥v0∥2L∞

∫
Ω

|∇v|2p−2|D2v|2 for all t ∈ (0, Tmax),

and ∫
Ω

|∇w|2(p+1) ≤ 2(4p2 + n)∥w0∥2L∞

∫
Ω

|∇w|2p−2|D2w|2 on (0, Tmax);

the rest of the proof is an evident adaptation of previous reasoning.
We conclude by observing that this lemma holds in each of the following cases:

� α ∈ (0, 1
n ] and γ ∈ ( 1n , 1), whenever m1 > max{2m2 − 1, 2m3,

n−2
n } or m1 >

max{m2 − 1
n , 2m3,

n−2
n }

� α ∈ ( 1n , 1) and γ ∈ (0, 1
n ], whenever m1 > max{2m2, 2m3 − 1, n−2

n } or m1 >

max{2m2,m3 − 1
n ,

n−2
n }.

Let us now turn our attention to the case where, as mentioned before, the
Gagliardo–Nirenberg inequality is employed. In this case, we can derive information
also for α, γ = 1; this is the reason why in Theorem 2.2 we distinguish the situations
where the value 1 does or does not belong to the interval in question.

Lemma 4.2. If m1,m2,m3 ∈ R and α, γ > 0 are taken accordingly to (3.6), (3.7),
(3.8), then there exist p, q, r > 1 such that (u, v, w) satisfies a similar inequality as
in (4.1).

Proof. For s, p, q and r taken according to Lemma 3.2 (in particular, p = q =

r for α, γ ∈
(
0, 1

n

]
, and q = r = p

2 for α, γ ∈
(
1
n , 1

]
), let θ, θ′, θ̃, θ̃′, µ, µ′, µ̃, µ̃′,

a1, a2, a3, a4, ã1, ã2, ã3, ã4 and β1, β2, β̃1, β̃2, γ1, γ̃1, γ2, γ̃2 be therein defined.
With a view to Lemma 4.1, by manipulating relation (4.2) and focusing on the

inequalities (4.3), (4.4), (4.14) and on the first inequality in (4.16), a proper ϵ̃1 leads
for all t ∈ (0, Tmax) to

d

dt

(∫
Ω

(u+ 1)p +

∫
Ω

|∇v|2q +
∫
Ω

|∇w|2r
)
+ q

∫
Ω

|∇v|2q−2|D2v|2

+ r

∫
Ω

|∇w|2r−2|D2w|2

≤
(
− 4p(p− 1)

(m1 + p− 1)2
+ ϵ̃1

)∫
Ω

|∇(u+ 1)
m1+p−1

2 |2

+ c2

∫
Ω

(u+ 1)p+2m2−m1−1|∇v|2 + c21

∫
Ω

u2α|∇v|2q−2

+ c3

∫
Ω

(u+ 1)p+2m3−m1−1|∇w|2 + c27

∫
Ω

u2γ |∇w|2r−2 + c37, (4.19)

for some c37 > 0 (we also used relation (4.13)). In this way, we can estimate the last
four integrals on the right-hand side of (4.19) by applying the Hölder inequality so
to have for all t ∈ (0, Tmax)∫

Ω

(u+1)p+2m2−m1−1|∇v|2 ≤
(∫

Ω

(u+1)(p+2m2−m1−1)θ

) 1
θ
(∫

Ω

|∇v|2θ
′
) 1

θ′

, (4.20)∫
Ω

(u+1)2α|∇v|2q−2 ≤
(∫

Ω

(u+1)2αµ
) 1

µ
(∫

Ω

|∇v|2(q−1)µ′
) 1

µ′

, (4.21)
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and for all t ∈ (0, Tmax)∫
Ω

(u+1)p+2m3−m1−1|∇w|2≤
(∫

Ω

(u+1)(p+2m3−m1−1)θ̃

) 1
θ̃
(∫

Ω

|∇w|2θ̃
′
) 1

θ̃′

, (4.22)∫
Ω

(u+ 1)2γ |∇w|2r−2 ≤
(∫

Ω

(u+ 1)2γµ̃
) 1

µ̃
(∫

Ω

|∇w|2(r−1)µ̃′
) 1

µ̃′

. (4.23)

By invoking the Gagliardo–Nirenberg inequality and bound (3.1), we obtain for
some c38, c39 > 0(∫

Ω

(u+ 1)(p+2m2−m1−1)θ

) 1
θ

= ∥(u+ 1)
m1+p−1

2 ∥
2(p+2m2−m1−1)

m1+p−1

L
2(p+2m2−m1−1)

m1+p−1
θ
(Ω)

≤ c38∥∇(u+ 1)
m1+p−1

2 ∥
2(p+2m2−m1−1)

m1+p−1 a1

L2(Ω) ∥(u+ 1)
m1+p−1

2 ∥
2(p+2m2−m1−1)

m1+p−1 (1−a1)

L
2

m1+p−1 (Ω)

+ c38∥(u+ 1)
m1+p−1

2 ∥
2(p+2m2−m1−1)

m1+p−1

L
2

m1+p−1 (Ω)

≤ c39

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β1

+ c39 on (0, Tmax), (4.24)

and for some c40, c41 > 0(∫
Ω

(u+ 1)(p+2m3−m1−1)θ̃

) 1
θ̃

= ∥(u+ 1)
m1+p−1

2 ∥
2(p+2m3−m1−1)

m1+p−1

L
2(p+2m3−m1−1)

m1+p−1
θ̃
(Ω)

≤ c40∥∇(u+ 1)
m1+p−1

2 ∥
2(p+2m3−m1−1)

m1+p−1 ã1

L2(Ω) ∥(u+ 1)
m1+p−1

2 ∥
2(p+2m3−m1−1)

m1+p−1 (1−ã1)

L
2

m1+p−1 (Ω)

+ c40∥(u+ 1)
m1+p−1

2 ∥
2(p+2m3−m1−1)

m1+p−1

L
2

m1+p−1 (Ω)

≤ c41

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β̃1

+ c41 for all t ∈ (0, Tmax). (4.25)

Moreover, we get for some c42, c43 > 0(∫
Ω

(u+ 1)2αµ
) 1

µ

= ∥(u+ 1)
m1+p−1

2 ∥
4α

m1+p−1

L
4αµ

m1+p−1 (Ω)

≤ c42∥∇(u+ 1)
m1+p−1

2 ∥
4α

m1+p−1a3

L2(Ω) ∥(u+ 1)
m1+p−1

2 ∥
4α

m1+p−1 (1−a3)

L
2

m1+p−1 (Ω)

+ c42∥(u+ 1)
m1+p−1

2 ∥
4α

m1+p−1

L
2

m1+p−1 (Ω)

≤ c43

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β2

+ c43 on (0, Tmax), (4.26)
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and for some c44, c45 > 0(∫
Ω

(u+ 1)2γµ̃
) 1

µ̃

= ∥(u+ 1)
m1+p−1

2 ∥
4γ

m1+p−1

L
4γµ̃

m1+p−1 (Ω)

≤ c44∥∇(u+ 1)
m1+p−1

2 ∥
4γ

m1+p−1 ã3

L2(Ω) ∥(u+ 1)
m1+p−1

2 ∥
4γ

m1+p−1 (1−ã3)

L
2

m1+p−1 (Ω)

+ c44∥(u+ 1)
m1+p−1

2 ∥
4γ

m1+p−1

L
2

m1+p−1 (Ω)

≤ c45

(∫
Ω

|∇(u+1)
m1+p−1

2 |2
)β̃2

+c45 for all t∈(0, Tmax). (4.27)

In a similar way, we can again apply the Gagliardo–Nirenberg inequality and bound
(3.4) and get for some c46, c47 > 0(∫

Ω

|∇v|2θ
′
) 1

θ′

= ∥|∇v|q∥
2
q

L
2θ′
q (Ω)

≤ c46∥∇|∇v|q∥
2
q a2

L2(Ω)∥|∇v|q∥
2
q (1−a2)

L
s
q (Ω)

+ c46∥|∇v|q∥
2
q

L
s
q (Ω)

≤ c47

(∫
Ω

|∇|∇v|q|2
)γ1

+ c47 on (0, Tmax), (4.28)

and for some c48, c49 > 0(∫
Ω

|∇v|2(q−1)µ′
) 1

µ′

= ∥|∇v|q∥
2(q−1)

q

L
2(q−1)

q
µ′

(Ω)

≤ c48∥∇|∇v|q∥
2(q−1)

q a4

L2(Ω) ∥|∇v|q∥
2(q−1)

q (1−a4)

L
s
q (Ω)

+ c48∥|∇v|q∥
2(q−1)

q

L
s
q (Ω)

≤ c49

(∫
Ω

|∇|∇v|q|2
)γ2

+ c49 for all t ∈ (0, Tmax). (4.29)

Finally, an application of the Gagliardo–Nirenberg inequality and bound (3.5) imply
for some c50, c51 > 0(∫

Ω

|∇w|2θ̃
′
) 1

θ̃′

= ∥|∇w|r∥
2
r

L
2θ̃′
r (Ω)

≤ c50∥∇|∇w|r∥
2
r ã2

L2(Ω)∥|∇w|r∥
2
r (1−ã2)

L
s
r (Ω)

+ c50∥|∇w|r∥
2
r

L
s
r (Ω)

≤ c51

(∫
Ω

|∇|∇w|r|2
)γ̃1

+ c51 on (0, Tmax), (4.30)

and for some c52, c53 > 0(∫
Ω

|∇w|2(r−1)µ̃′
) 1

µ̃′

=∥|∇w|r∥
2(r−1)

r

L
2(r−1)

r
µ̃′

(Ω)

≤c52∥∇|∇w|r∥
2(r−1)

r ã4

L2(Ω) ∥|∇w|r∥
2(r−1)

r (1−ã4)

L
s
r (Ω)

+c52∥|∇w|r∥
2(r−1)

r

L
s
r (Ω)

≤c53

(∫
Ω

|∇|∇w|r|2
)γ2

+ c53 for all t ∈ (0, Tmax). (4.31)

By plugging (4.20), (4.21), (4.22) and (4.23) into (4.19) and taking into account
(4.24), (4.25), (4.28), (4.30), (4.26), (4.27), (4.29), (4.31), once inequalities (4.17)
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and (4.18) are considered we can derive for a positive suitable ϵ̃1 the following
estimate, valid for certain c54, c55, c56, c57, c58, c59, c60, c61 > 0 and all t ∈ (0, Tmax):

d

dt

(∫
Ω

(u+ 1)p +

∫
Ω

|∇v|2q +
∫
Ω

|∇w|2r
)

+ c54

∫
Ω

|∇|∇v|q|2 + c55

∫
Ω

|∇|∇w|r|2 + c56

∫
Ω

|∇(u+ 1)
m1+p−1

2 |2

≤ c57

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β1

(∫
Ω

|∇|∇v|q|2
)γ1

+ c57

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β1

+ c57

(∫
Ω

|∇|∇v|q|2
)γ1

+ c58

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β2

(∫
Ω

|∇|∇v|q|2
)γ2

+ c58

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β2

+ c58

(∫
Ω

|∇|∇v|q|2
)γ2

+ c59

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β̃1

(∫
Ω

|∇|∇w|r|2
)γ̃1

+ c59

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β̃1

+ c59

(∫
Ω

|∇|∇w|r|2
)γ̃1

+ c60

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β̃2

(∫
Ω

|∇|∇w|r|2
)γ̃2

+ c60

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β̃2

+ c60

(∫
Ω

|∇|∇w|r|2
)γ̃2

+ c61. (4.32)

Since by Lemma 3.2 we have that β1+γ1 < 1, β2+γ2 < 1, β̃1+γ̃1 < 1 and β̃2+γ̃2 < 1
and in particular β1, γ1, β2, γ2, β̃1, γ̃1, β̃2, γ̃2 ∈ (0, 1), we can treat the four integral
products and the remaining eight addenda of the right-hand side in a such way that
eventually they are absorbed by the three integral terms involving the gradients in
the left one. More exactly, to the products we apply the first inequality derived in
Lemma 3.3, and to the other terms Young’s inequality. In this way, the resulting

linear combination of the terms
∫
Ω
|∇|∇v|q|2,

∫
Ω
|∇|∇w|r|2 and

∫
Ω
|∇(u+1)

m1+p−1
2 |2

can be written as c54
2

∫
Ω
|∇|∇v|q|2 + c55

2

∫
Ω
|∇|∇w|r|2 + c56

2

∫
Ω
|∇(u + 1)

m1+p−1
2 |2,

which throughout relation (4.32) infers the claim.

Remark 4.3. We observe that the argument of Lemma 4.2 can be applied to the
linear case m1 = m2 = m3 = 1 only for α ∈

(
0, 2

n

)
and/or γ ∈

(
0, 2

n

)
.

4.2. The logistic case. For the logistic case we retrace part of the computations
above connected to the usage of the Young inequality only.

Lemma 4.4. If m1,m2,m3 ∈ R comply with m1 > max{2m2 − 1, 2m3 − 1, n−2
n }

or m1 > max{m2 − 1
n ,m3 − 1

n ,
n−2
n } or m1 > max{2m2 − 1,m3 − 1

n ,
n−2
n } or

m1 > max{m2 − 1
n , 2m3 − 1, n−2

n } or m1 > max{2m2 − β, 2m3 − β, n−2
n } or m1 >

max{2m2 − β, 2m3 − β} whenever α, γ ∈ (0, 1
n ], or m1 > max{2m2, 2m3,

n−2
n } or

m1 > max{2m2 + 1 − β, 2m3 + 1 − β} whenever α, γ ∈ ( 1n , 1), then there exist
p, q, r > 1 such that (u, v, w) satisfies a similar inequality as in (4.1).
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Proof. As in Lemma 4.1, in view of inequalities (4.3) and (4.4) taking into account
(4.5) and (4.9), and the properties of the logistic h in (2.4), relation (4.2) now
becomes for some positive c̃3 and for all t ∈ (0, Tmax)

d

dt

∫
Ω

(u+ 1)p ≤ (−p(p− 1) + δ1)

∫
Ω

(u+ 1)p+m1−3|∇u|2

+ c̃1

∫
Ω

(u+ 1)
(p+2m2−m1−1)s

s−2 + c̃2

∫
Ω

(u+ 1)
(p+2m3−m1−1)s

s−2

+ pk+

∫
Ω

(u+ 1)p − pµ

∫
Ω

(u+ 1)p−1uβ + c̃3. (4.33)

Applying the inequality (A+B)p ≤ 2p−1(Ap +Bp) with A,B ≥ 0 and p > 1 to the
last integral in (4.33), implies that −uβ ≤ − 1

2β−1 (u+ 1)β + 1; therefore

−pµ

∫
Ω

(u+1)p−1uβ≤− pµ

2β−1

∫
Ω

(u+1)p−1+β+pµ

∫
Ω

(u+1)p−1 on (0, Tmax). (4.34)

Henceforth, by taking into account the Young inequality, we have that for t ∈
(0, Tmax)

pk+

∫
Ω

(u+ 1)p ≤ δ1

∫
Ω

(u+ 1)p−1+β + c̃4 and

pµ

∫
Ω

(u+ 1)p−1 ≤ δ2

∫
Ω

(u+ 1)p−1+β + c̃5, (4.35)

with δ1, δ2 > 0 and some c̃4, c̃5 > 0.
Case 1: α, γ ∈ (0, 1

n ] and m1 > max{2m2 − 1, 2m3 − 1, n−2
n } or m1 > max{m2 −

1
n ,m3− 1

n ,
n−2
n } or m1 > max{2m2− 1,m3− 1

n ,
n−2
n } or m1 > max{m2− 1

n , 2m3−
1, n−2

n } or m1 > max{2m2 − β, 2m3 − β, n−2
n } or m1 > max{2m2 − β, 2m3 − β}.

For m1 > max{2m2 − 1, 2m3 − 1, n−2
n } or m1 > max{m2 − 1

n ,m3 − 1
n ,

n−2
n } or

m1 > max{2m2 − 1,m3 − 1
n ,

n−2
n } or m1 > max{m2 − 1

n , 2m3 − 1, n−2
n }, we refer

to Lemma 4.1 and we take in mind inequalities (4.6), (4.7), (4.8), (4.9), (4.10) and
(4.11). Conversely, when m1 > 2m2 − β and m1 > 2m3 − β, we have that (recall s

may be arbitrary large) (p+2m2−m1−1)s
s−2 < p−1+β and (p+2m3−m1−1)s

s−2 < p−1+β,

and by means of the Young inequality estimates (4.6) and (4.10) can alternatively
read

c̃1

∫
Ω

(u+ 1)
(p+2m2−m1−1)s

s−2 ≤ δ3

∫
Ω

(u+ 1)p−1+β + c̃6 for all t ∈ (0, Tmax), (4.36)

and

c̃2

∫
Ω

(u+ 1)
(p+2m3−m1−1)s

s−2 ≤ δ4

∫
Ω

(u+ 1)p−1+β + c̃7 on (0, Tmax), (4.37)

with δ3, δ4 > 0 and positive c̃6, c̃7. By inserting estimates (4.34) and (4.35) into
relation (4.33), as well as taking into account (4.6) and (4.10) (or, alternatively to

(4.6) and (4.10), bound (4.36) and (4.37)), for suitable ϵ̂, δ̃ > 0 and some c̃7 > 0 we
arrive at

d

dt

∫
Ω

(u+ 1)p ≤
(
− 4p(p− 1)

(m1 + p− 1)2
+ ϵ̂

)∫
Ω

|∇(u+ 1)
m1+p−1

2 |2

+
(
δ̃ − pµ

2β−1

)∫
Ω

(u+ 1)p−1+β + c̃7 for all t ∈ (0, Tmax),

where we used again relation (4.13). We can conclude reasoning exactly as in the
second part of the proof of Lemma 4.1, by exploiting m1 > n−2

n and by choosing
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suitable ϵ̂, δ̃. On the other hand, by enlarging p, Young’s inequality allows us to
obtain the following alternative estimates

c21

∫
Ω

u2α|∇v|2q−2 ≤ δ5

∫
Ω

up−1+β + c̃8

∫
Ω

|∇v|
2(q−1)(p−1+β)

p−1+β−2α

≤ δ5

∫
Ω

up−1+β + δ6

∫
Ω

|∇v|s + c̃9 on (0, Tmax),

and

c27

∫
Ω

u2γ |∇w|2r−2 ≤ δ6

∫
Ω

up−1+β + c̃9

∫
Ω

|∇w|
2(r−1)(p−1+β)

p−1+β−2γ

≤ δ6

∫
Ω

up−1+β + δ7

∫
Ω

|∇w|s + c̃10 for all t ∈ (0, Tmax).

Case 2: α, γ ∈ ( 1n , 1) and m1 > max{2m2, 2m3,
n−2
n } or m1 > max{2m2 + 1 −

β, 2m3 + 1− β}.
For m1 > max{2m2, 2m3,

n−2
n } we will refer to the second case of Lemma 4.1. Now,

if m1 > 2m2 +1− β and m1 > 2m3 +1− β, then some p sufficiently large infers to
(p+2m2−m1−1)(p+1)

p < p− 1+ β and (p+2m3−m1−1)(p+1)
p < p− 1+ β, so that for any

positive δ8, δ9 and some c̃10, c̃11 > 0 we have

c̄1

∫
Ω

(u+ 1)
(p+2m2−m1−1)(p+1)

p ≤ δ8

∫
Ω

(u+ 1)p−1+β + c̃10 on (0, Tmax),

and

c̄4

∫
Ω

(u+ 1)
(p+2m3−m1−1)(p+1)

p ≤ δ9

∫
Ω

(u+ 1)p−1+β + c̃11 for all t ∈ (0, Tmax).

Now, the integrals
∫
Ω
u2α|∇v|2p−2 and

∫
Ω
u2γ |∇w|2p−2 can be treated as in Case 2

of Lemma 4.1 or alternatively, by exploiting α, γ < 1, a different application of
Young’s inequalities leads on (0, Tmax) to

c21

∫
Ω

u2α|∇v|2p−2 ≤ δ5

∫
Ω

up−1+β + c̃8

∫
Ω

|∇v|
2(p−1)(p−1+β)

p−1+β−2α

≤ δ5

∫
Ω

up−1+β + δ10

∫
Ω

|∇v|2(p+1) + c̃12, (4.38)

and

c27

∫
Ω

u2γ |∇w|2p−2 ≤ δ6

∫
Ω

up−1+β + c̃9

∫
Ω

|∇w|
2(p−1)(p−1+β)

p−1+β−2γ

≤ δ6

∫
Ω

up−1+β + δ11

∫
Ω

|∇w|2(p+1) + c̃13, (4.39)

with δ10, δ11 > 0 and some positive c̃12, c̃13. The remaining part of the proof follows
as Case 2 of Lemma 4.1 for the terms dealing with

∫
Ω
|∇v|2(p+1) and

∫
Ω
|∇w|2(p+1).

As before, this result applies also for

� α∈
(
0, 1

n

]
, γ ∈

(
1
n , 1

)
and m1>max

{
2m2−1, n−2

n , 2m3

}
or m1>max

{
2m2−

1, n−2
n , 2m3+1 − β

}
or m1 > max

{
m2 − 1

n , 2m3,
n−2
n

}
or m1 > max

{
m2 −

1
n , 2m3 + 1 − β

}
or m1 > max

{
2m2 − β, 2m3,

n−2
n

}
or m1 > max

{
2m2 −

β, 2m3 + 1− β, n−2
n

}
or m1 > max

{
2m2 − β, 2m3 + 1− β

}
,
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� α∈
(
1
n , 1

)
, γ ∈

(
0, 1

n

]
and m1>max

{
2m2, 2m3−1, n−2

n

}
or m1 > max

{
2m2+

1−β, 2m3−1, n−2
n ,

}
or m1 > max

{
2m2,m3− 1

n ,
n−2
n

}
or m1 > max

{
2m2+

1− β,m3 − 1
n

}
or m1 > max

{
2m2, 2m3 − β, n−2

n

}
or m1 > max

{
2m2 + 1−

β, 2m3 − β, n−2
n

}
or m1 > max

{
2m2 + 1− β, 2m3 − β

}
.

As a by-product of what has now been obtained we are in a position to conclude.

4.3. Proof of Theorems 2.2 and 2.3.

Proof. Let (u0, v0, w0) ∈ (W 1,∞(Ω))3 with u0, v0, w0 ≥ 0 on Ω̄. For f and g as in
(2.3) and, respectively, for f , g as in (2.3) and h as in (2.4), let α, γ > 0 and let
m1,m2,m3 ∈ R comply withA1)—A16), respectively, A17)—A20). Then, we refer to
Lemmas 4.1 and 4.2, respectively, Lemma 4.4 and obtain for some C1, C2, C3, C4 > 0
and for all t ∈ (0, Tmax)

y′(t)+C1

∫
Ω

|∇(u+1)
m1+p−1

2 |2 +C2

∫
Ω

|∇|∇v|q|2 +C3

∫
Ω

|∇|∇w|r|2 ≤ C4. (4.40)

Successively, the Gagliardo–Nirenberg inequality again makes that for some positive
constants c62, c63, c64 we have on the one hand∫

Ω

(u+ 1)p ≤ c62

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)κ1

+ c62 for all t ∈ (0, Tmax), (4.41)

(as already done in the inequality immediately before (4.7)), and on the other hand
on (0, Tmax)∫

Ω

|∇v|2q = |||∇v|q||2L2(Ω)≤ c63||∇|∇v|q||2κ2

L2(Ω)|||∇v|q||2(1−κ2)

L
1
q (Ω)

+ c63|||∇v|q||2
L

1
q (Ω)

, (4.42)

and similarly for all t ∈ (0, Tmax)∫
Ω

|∇w|2r = |||∇w|r||2L2(Ω)≤ c64||∇|∇w|r||2κ3

L2(Ω)|||∇w|r||2(1−κ3)

L
1
r (Ω)

+ c64|||∇w|r||2
L

1
r (Ω)

, (4.43)

with κ2, κ3 already defined in Lemma 3.2. Subsequently, the Ls-bound of ∇v in
(3.4) and of ∇w in (3.5) infer some c65, c66 > 0 such that∫

Ω

|∇v|2q ≤ c65

(∫
Ω

|∇|∇v|q|2
)κ2

+ c65 on (0, Tmax),

and ∫
Ω

|∇w|2r ≤ c66

(∫
Ω

|∇|∇w|r|2
)κ3

+ c66 for all t ∈ (0, Tmax).

At this stage, by using estimates (4.41), (4.42) and (4.43), with the aid of the second
inequality in Lemma 3.3, relation (4.40) entails positive constants c67 and c68, and
κ̃ = min{ 1

κ1
, 1
κ2
, 1
κ3
} such that{
y′(t) ≤ c67 − c68y

κ̃(t) on (0, Tmax),

y(0) =
∫
Ω
(u0 + 1)p +

∫
Ω
|∇v0|2q +

∫
Ω
|∇w0|2r.

Finally, ODE comparison principles imply u ∈ L∞((0, Tmax);L
p(Ω)), and the con-

clusion is a consequence of the boundedness criterion in (3.3).
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Remark 4.5. First we note that the conclusions II) and III) in Remark 2.5 can
be similarly justified by using reasonings given above and connected to the proof
of Theorem 2.2. In particular, two issues are crucial: the regularity of ∇v,∇w (see
Lemma 3.1) and the problematic integral term

∫
Ω
up+1, which can be treated by

applying the Gagliardo–Nirenberg and Young’s inequalities for n = 1 without any
condition, and for n = 2 provided some restrictions hold.

As to the other cases, we can discuss the following scenarios:

• If α, γ ∈ [ 2n , 1) (A3)) we cannot apply Lemma 4.2 (see Remark 4.3). Moreover,
even Lemma 4.1 does not work; in fact, from it we would obtain that α, γ ∈
[2, 1) for n = 1 and α, γ ∈ [1, 1) for n = 2, which is not possible. The same
contradictions appear for the cases α ∈ [ 2n , 1], γ ∈ [ 2n , 1) (A4)) or α ∈ [ 2n , 1),

γ ∈ [ 2n , 1] (A5)) and α, γ ∈ [ 2n , 1] (A6)).

• If α ∈ (0, 1
n ], γ ∈ [ 2n , 1) (A8)) or α ∈ [ 2n , 1), γ ∈ (0, 1

n ] (A13)), even though
both Lemmas 4.1 and 4.2 are applicable, a further contradiction appears.

• If α ∈ ( 1n ,
2
n ), γ ∈ [ 2n , 1) (A11)) or α ∈ [ 2n , 1), γ ∈ ( 1n ,

2
n ) (A15)), and similarly

for α ∈ ( 1n ,
2
n ), γ ∈ [ 2n , 1] (A12)) or α ∈ [ 2n , 1], γ ∈ ( 1n ,

2
n ) (A16)), by reasoning

as in the previous cases we obtain a contradiction, characterized by the fact
that the intervals of α or γ are empty.

Remark 4.6. Let us spend some words on the hints mentioned in Remark 2.6.

▷ For the linear case m1 = m2 = m3 = 1, a simple substitution ensures the
validity of Theorem 2.3 for β > 2 and α, γ ∈ (0, 1); conversely, for α, γ ∈ (0, 1]
relations (4.38) and (4.39) are still applicable for β > 2 (item i)); for the
nonlinear case, the same reasoning can be carried out to show v), vi) and vii);

▷ For β = 2, in bound (4.33), the term associated to the logistic dampening
effect takes the form −pµ

∫
Ω
up+1, so that for µ large, the other positive con-

tributions proportional as well to
∫
Ω
up+1 itself, can be absorbed. As to the

expressions for µ, relations in ii), iii) and iv) come from the related range of
α and γ; for β = 2 and the nonlinear case, a further largeness assumption on
µ is required (viii), ix) and x)).
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