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Abstract

The brain is one of the most intricate systems and the quest for simulating the
neuronal dynamics has led to the development of several approaches and simu-
lation tools able to represent the behavior of portions of the brain with different
levels of detail. Among the different techniques that we can adopt to shed light
on neuronal dynamics, mean-field models and spiking neural networks are two of
the most relevant, and are introduced in Part I of this doctoral thesis. In particular,
spiking neural network models have become an effective tool to study brain func-
tions as they capture several aspects of natural neural networks, with every neuron
being characterized by a membrane potential and a mechanism to emit electrical
pulses for communication with other neurons. While mean-field approaches are
suitable for the simulations of models of the entire brain with population resolu-
tion, spiking neural networks are able to simulate portions of the brain at cellular
level. However, recent computing technologies are paving the way for large-scale
simulations through the usage of cutting-edge supercomputer clusters, and it is of
fundamental importance for computational neuroscientists to have tools able to
take advantage of these technologies. In recent years, Graphical Processing Units
(GPUs) established themselves as promising hardware to be employed for such
simulations, thanks to their high degree of parallelism, and several GPU-based
simulation codes have been developed. In Part II of this thesis, we describe the
GPU code for spiking neural network simulations NEST GPU, which is able to effi-
ciently exploit GPU hardware spanning from consumer GPUs to data-center cards
employed in MPI-GPU clusters. The thesis is devoted both to evaluate the perfor-
mance of such a simulator in the simulation of neuroscientifically relevant models,
and, most importantly, to validate the results of the neuronal dynamics with re-
spect to established spiking network simulators such as NEST.
To better understand the link between brain functioning and high-level cognitive
processes with low-level neuronal activity, there is the need to provide realistic
models both for the neurons and the synapses. Indeed, there is broad consensus
in the neuroscientific community that synaptic mechanisms, such as short-term
synaptic plasticity and structural synaptic plasticity underlie cognitive processes
like working memory and learning. Part III of this thesis is devoted to develop-
ing simulation and theoretical frameworks that shed light on the possible relation
between these synaptic mechanisms and the previously mentioned cognitive pro-
cesses. In particular, Chapter 7 focuses on the simulation of a working memory
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ABSTRACT

spiking network driven by short-term plasticity (STP), which is believed to be
responsible for the activity-silent mechanisms that characterize working memory
networks, while Chapter 8 presents a theoretical framework able to describe a
learning process mediated by structural synaptic plasticity, evaluating the memory
capacity of the network as a function of the simulation parameters.
This thesis aims to start facing the challenge of the study of high-level cognitive
processes through simulations of large-scale neuronal networks. In a framework in
which computing technologies are opening to the realm of large-scale simulations
through the usage of GPU clusters, there is a need for simulators capable of ex-
ploiting this fast-growing hardware being efficient and, more importantly, reliable.
Additionally, modeling neuron and synaptic scale mechanisms can shed light on
their impact on high-level cognitive processes such as learning and memory and,
together with large-scale simulations at neuron resolution, it would be possible to
estimate the relation of these mechanisms and the dynamics of neuronal networks
representing a significant portion of the brain. These works are oriented toward
the development of more detailed network models, which will pave the way for
the usage of these tools in medicine as support for novel therapies.

Gianmarco Tiddia 8
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Chapter 1
Modeling neurons and network
dynamics

Summary

This chapter introduces the topic of neuron modeling and provides the equa-
tions of neuronal dynamics used in the thesis to perform spiking network
simulations. The chapter, starting with a brief description of the biologi-
cal neuron and the first neuron modeling approaches, introduces one of the
most simple spiking neuron models, i.e., the leaky integrate-and-fire (LIF).
Moreover, it will describe how we can model synapses, distinguishing them
from current and conductance-based approaches. Finally, firing rate models
will be briefly introduced.

1.1 Biological neurons and how to model them

In order to model neuron dynamics, we have to be aware of how a neuron works
and what mechanisms it exploits to communicate with other neurons. Neurons
are cells that, together with glial cells, make up the neural tissue, which is the
main component of the nervous system. They are the elementary units of such a
system and are of large number indeed: a human brain contains around 86 × 109

neurons [6]. Each neuron is provided with thousands of synapses to communicate
with other neurons1, forming intricate networks. Neurons communicate using
a combination of electrical and chemical signals which are delivered to all the
neurons they are connected with. This peculiar communication method requires
a likewise peculiar cell structure. Indeed, neurons are composed of three basic
structures such as the soma, which is the cell body, and extensions such as the
axon and the dendrites, which have the role of transmitting or receiving signals,
respectively. Axons and dendrites are not simple extensions of the body cell, since
some cellular components are only located in the latter, and also the cellular mem-
brane itself has different characteristics.

1It is estimated that neurons of the cerebral neocortex have, on average, 7000 synapses each [7].
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CHAPTER 1. MODELING NEURONS AND NETWORK DYNAMICS

The effect of the electric pulses exchanged between neurons results in a change
in the neuronal membrane electric potential. Indeed, a resting neuron shows a
membrane electric potential because of a difference in concentration of certain
ions between the inside and the outside of the membrane, which leads to a differ-
ence in the membrane electric potential according to the Goldman equation. The
main ions involved in this process are sodium (Na+) and potassium (K+), with a
resting membrane potential of around −70mV. A neuron emits a short and intense
signal called action potential (or spike) when the membrane is sufficiently depo-
larized. Indeed, a depolarization of the membrane opens voltage-gated channels
leading to a flux of sodium ions towards the outside of the neuron. A sufficiently
depolarized membrane (around −55mV) leads to a positive feedback mechanism
and to the emission of an action potential that propagates toward the axon to be
transmitted to other neurons. After that, the membrane potential is restored to
the resting value through specific ion pumps.
In order to provide detailed neuron models able to explain the dynamics of a
neuron membrane potential we can adopt a relatively simple yet powerful ap-
proach, based on the construction of a so-called equivalent circuit, which has the
aim of capturing the main aspects of the mechanisms briefly discussed above that
describe the neuronal dynamics. Next, it will be shown a typical example of a neu-
ron model based on the design of an equivalent circuit, i.e., the Hodgkin-Huxley
model. This model has not been employed for the aims of this thesis, but it is
of fundamental importance since it represents the first neuron model with a high
predictive power.

1.1.1 Modeling using equivalent circuits

The idea of describing the neuronal membrane and its dynamics using equiva-
lent circuits comes from a phenomenological approximation for the description
of membrane and ion channels. First of all, the membrane in such models is de-
scribed as a capacitor, since its impermeability prevents ions from passing through
it and the charge is represented by the ion concentrations in proximity to the in-
side and outside of the membrane. The only elements that enable an ion flux
through the membrane are the ion channels, which can be modeled using variable
resistors and voltage generators to describe the ion flux based on the membrane
potential.
The following is a typical example of a neuron model described by an equiva-
lent circuit. Developed in 1952, the Hodgkin-Huxley (HH) model [8] is a semi-
empirical model that takes into account the dynamics of sodium and potassium
ions, together with a non-voltage dependent leakage channel, which considers
minor contributions driven by the rest of ion species. Figure 1.1 shows the cir-
cuit scheme of the model. Supposing that an input current I arrives from the
outside of the membrane, we can use the conservation of charge to derive a differ-
ential equation on the membrane potential Vm. The equation will have the form
CmV̇m = I − IK − INa − IL, and the ion currents can be modeled using channel
conductance.

Gianmarco Tiddia 12 Part I



CHAPTER 1. MODELING NEURONS AND NETWORK DYNAMICS

Figure 1.1: Equivalent circuit for the Hodgkin-Huxley model. Out and In repre-
sent, respectively, the outside and the inside of the neuron. Generator and resistive
elements represent sodium (Na), potassium (K), and leakage (L) channels.

The set of equations describing the HH model is

CmV̇m = I − gK(Vm − EK)− gNa(VNa − ENa)− gL(Vm − EL)

= I − gK∞n4(Vm − EK)− gNa∞m3h(VNa − ENa)− gL(Vm − EL)

ṅ =αn(Vm)(1− n)− βn(Vm)n

ṁ =αm(Vm)(1−m)− βm(Vm)m

ḣ =αh(Vm)(1− h)− βh(Vm)h

(1.1)

where the α and β functions represent the nonlinear voltage dependence and are
obtained through experimental observations. The interesting part is the fact that
using the variables n,m, h we are able to provide the description of sodium and
potassium channel dynamics: n and m are defined as potassium activation gate
and sodium activation gate since their value changes as a function of the mem-
brane potential. The variable h is called sodium inactivation gate and regulates the
dynamics of the channel as soon as the action potential is emitted. This variable
leads to a short time period, called refractory period, during which the neuron is
not able to depolarize the membrane.
Such a model is able to describe in detail the dynamics of the membrane potential
of a neuron and the mechanism of spike emission by modeling the dynamics of
the most relevant ion channels. However, we can guess that simulating large-scale
networks of HH neurons can be arduous since, to compute the dynamics of each
neuron, a system of four differential equations has to be solved numerically. Thus,
simpler neuron models are needed in order to pave the way for large-scale sim-
ulation within a reasonable computing time, still capturing the main aspects of
the dynamics of a neural network. These neuron models are described in the next
section.

Gianmarco Tiddia 13 Part I



CHAPTER 1. MODELING NEURONS AND NETWORK DYNAMICS

1.2 Integrate-and-fire neuron models

Although the Hodgkin-Huxley model provides a detailed description of the dynam-
ics of a neuron membrane potential, and several models taking account of diverse
ionic currents have been developed during the last decade, the nonlinearity of
their differential equations can result in computationally expensive simulations
when a large number of neurons is employed. For this reason, large-scale spiking
neural network simulations rarely employ this model. Indeed, the need for build-
ing large-scale networks of neurons within a reasonable time-to-solution time re-
quires a compromise on single-neuron modeling. In this regard, integrate-and-fire
models were introduced to provide a simplified yet computationally efficient de-
scription of the dynamics of single neurons. Starting from the work of Lapicque in
1907 [9] and developed around the 1960s (see [10] for a nice report), integrate-
and-fire models describe the relationship between current inputs received by the
neuron and its membrane potential using differential equations (or systems of dif-
ferential equations), with membrane potential changes that can be modeled in
different ways depending of a voltage threshold, a parameter that is not present
in models such as the HH. When the membrane potential is below the threshold,
if the neuron is not injected by a current, the membrane behaves passively acting
like a discharging capacitor tending towards a resting membrane potential value.
When the threshold is reached (ergo when the neuron has received enough cur-
rent input), the model fires a spike and suddenly resets the membrane potential to
a baseline level. Thus, there is no modeling of the ion channel dynamics that lead
to the emission of the action potential, nor to the dynamics that take place after
the emission during which ion concentration is restored before the neuron is able
to fire again. The latter is simply modeled defining a refractory time, during which
the model does not integrate any input.
Thus, integrate-and-fire models are able to provide us only the time at which the
spike is fired. Indeed, these models assume that, since the shape of the action
potential is approximately the same among all the spikes fired by neurons, the
information to be transmitted to other neurons is not contained in the shape itself,
but rather by the time at which spikes are emitted. Ergo, the description of the
action potential can be discarded and only the spike time can be considered as a
relevant quantity able to make neurons communicate with each other.
The next sections describe one of the most used integrate-and-fire models, i.e., the
leaky integrate-and-fire, mainly following the text Neuronal Dynamics [11].

1.2.1 Leaky integrate-and-fire (LIF)

The leaky integrate-and-fire model (LIF) is the most simple model of this kind of
neurons and is described by the most simple equivalent circuit for the neuronal
membrane, i.e., an RC circuit. The circuit is also provided with a voltage source to
have a defined resting membrane potential. Figure 1.2 provides a scheme of the
model.

Gianmarco Tiddia 14 Part I



CHAPTER 1. MODELING NEURONS AND NETWORK DYNAMICS

Figure 1.2: Leaky integrate-and-fire neuron model equivalent circuit. The circuit
comprises a capacity (Cm), a resistance (Rm) and a generator with voltage Vrest.
The membrane potential Vm measured between the inside and the outside of the
membrane. The gray lines indicate that this circuit represents a portion of the
whole neuronal membrane.

To derive the equations describing the dynamic of the LIF neuron model we have
to consider an input current I(t) which, using the law of current conservation, can
be split as follows:

I(t) = IRm + ICm =
Vm − Vrest

Rm
+ CmV̇m (1.2)

where V̇m is the derivative of the membrane potential with respect to the time
t. We can write Equation (1.2) in a more usual way by calling τm = RmCm and
putting the derivative of the membrane potential to the left side, so that

τmV̇m = −(Vm(t)− Vrest) +RmI(t) (1.3)

From the equation above we derive the description of the behavior of the mem-
brane below the voltage threshold Vth

Vm(t) = Vrest + (Vm(t0)− Vrest) exp
(t− t0

τm

)
(1.4)

when t > t0. Thus, according to Equation (1.4), if no input is provided after a
certain time t0, the membrane potential of the neuron decays exponentially with
a time constant τm reaching the resting value Vrest.
If the input signal received by the neuron is sufficient for it to reach the potential
threshold Vth, as discussed before, the membrane potential drops to a reset value
Vreset suddenly after the time of spike emission tf

lim
ϵ→0+

V (tf + ϵ) = Vreset (1.5)

and remains clamped at this value after the spike emission for a time tref, which is
the refractory time.
This model has been employed in large-scale models such as the cortical microcir-
cuit of [12], in particular for its simplicity and the fact that it can be integrated
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CHAPTER 1. MODELING NEURONS AND NETWORK DYNAMICS

using efficient integration methods such as [13]. Moreover, it is possible to obtain
closed form expressions to derive, for instance, the external current needed to
elicit a defined change in the membrane potential. We see some additional calcu-
lations on this model later in this chapter, to support the description of the spiking
network models presented in this thesis.
However, such an elementary model has some limits. For example, the linearity
of the model makes the response much simpler than it is in reality, discarding the
nonlinear behavior of the membrane dynamics that show up in particular when
the membrane potential is near the threshold. Moreover, in the case of spike
emission, after the neuron membrane potential is reset, all the information re-
lated to the previous activity is lost. Indeed, it has been shown that neurons have
some mechanisms related to the possibility of keeping a "memory" of their previous
synaptic activity since repetitive stimulus leads to a lower response over time. This
mechanism is called adaptation, and can be added into integrate-and-fire neuron
models with nonlinearity. Thus, instead of having a neuron model described by a
linear differential equation, we can have something like

τmV̇m = f(Vm) +RmI(t) (1.6)

with f(Vm) being a nonlinear term. An example of an integrate-and-fire model
able to describe this mechanism is called Adaptive Exponential integrate-and-fire
(AdEx) [14]. Such a model is able, after appropriate parameter tuning, to show
a voltage trace compatible with the HH model when the same input current is
given, meaning that an integrate-and-fire model, despite the simplicity related to
the threshold mechanism and the need for a compromise between computational
cost and realistic behavior, can be able to reproduce analogous results of a more
detailed semi-empirical model.
For the purpose of this thesis, we employ leaky integrate-and-fire neurons, in par-
ticular, because of the possibility of finding closed form solutions for a proper
choice of the inputs to be given to the neurons. In this regard, some examples
will be shown later in this chapter. The next section shows how to model synaptic
response, i.e. how we can model the shape of the postsynaptic potential (PSP)
when a neuron receives a spike.

1.3 Modeling synaptic response

Here we present a brief introduction to synaptic response, functional to the neu-
ron models employed in this work. For an exhaustive discussion please refer to
Modeling Synapses [15], a chapter of [16], from which the following discussion
is drawn.
As we already discussed in the first section, the presynaptic spike depolarizes the
synaptic terminal, causing the influx of Calcium ions that trigger the neurotrans-
mitter release. Then, neurotransmitters bind to receptors in the postsynaptic ter-
minal, leading to an ionic current across the postsynaptic neurons and polarizing
or depolarizing its membrane. After that, neurotransmitters return to the presy-
naptic terminal. This mechanism has been modeled under the name of short-term
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CHAPTER 1. MODELING NEURONS AND NETWORK DYNAMICS

synaptic plasticity (STP) and will be discussed in detail in the next chapter.
To model the postsynaptic response we can apply some simple phenomenologi-
cal models. The most simple way to model synaptic transmission would be to
increase the membrane potential of the postsynaptic neuron by a determined
amount. However, to offer a more realistic model we can link the current trans-
mitted by a presynaptic neuron j to a change in the synaptic conductance gsyn of
the postsynaptic neuron i, so that

Ii(t) =
∑
f

gsyn,i(t− t
(j)
f )(Vm,i(t)− Esyn

i,j ) (1.7)

where the index t
(j)
f is the time at which a spike is fired from the presynaptic

neuron j and Esyn
i,j is the reversal potential, i.e., the membrane potential at which

the ion current on the membrane reverses. gsyn(t) can be modeled using different
functions.
A first detail that can be added in this regard can be an exponential decay using
a separate time constant suddenly after a step-like increase of the conductance.
Thus

gsyn(t) =

{
ḡsyne

−(t−tf )/τsyn for t > tf

0 for t < tf
(1.8)

The conductance thus raises from 0 to ḡsyn at tf , and it decreases exponentially
with a time constant τsyn. This model can describe a very quick neurotransmitter
release and binding to the postsynaptic ion channel, followed by a slower closure
of the ion channels, and thus a reduction of the conductance. It is a good approx-
imation for certain types of neurotransmitters but can be ineffective in describing
a slow-rising postsynaptic potential.
To simulate a finite rise time, we can use an alpha function, as described in the
following equation

gsyn(t) = ḡsyn
t− tf
τsyn

e1−(t−tf )/τsyn (1.9)

However, in this case, we do not have control of the rising and decreasing phase
separately, since we are using the same synaptic time constant τsyn. To add this
detail, we have to define a time constant for rising and decay and sum the two
exponential contributions as follows

gsyn(t) = A(e−(t−tf )/τdecay − e−(t−tf )/τrise)ḡsyn (1.10)

where A is a normalization factor so that the amplitude of the postsynaptic po-
tential is equal to ḡsyn. The time at which the postsynaptic potential reaches the
peak (tpeak) can be derived by setting the derivative of Equation (1.10) to zero,
obtaining

tpeak = tf +
τriseτdecay

τdecay − τrise
ln
(τdecay

τrise

)
(1.11)

and by imposing that gsyn(tpeak) = ḡsyn we have that the normalization factor is

A =
1

e−(tpeak−tf )/τdecay − e−(tpeak−tf )/τrise
(1.12)
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This approach is one of the most flexible since it enables finding a close form for
the time at which the postsynaptic potential has a peak and is able to describe
efficiently the postsynaptic response.
There is a further approximation that can be done in terms of synaptic transmis-
sion, which models directly the current injected into the postsynaptic neuron in-
stead of the conductance. These models are known as current-based as opposed to
the conductance-based approach discussed so far. In this approximation, we can re-
fer to Equation (1.7) and suppose that there is no voltage-dependent effect, which
can be a good approximation in case of small depolarization. In the context of this
thesis, the vast majority of neurons employed will have a current-based synaptic
response, mainly modeled with exponential decay similar to what is described in
Equation (1.8), so that:

Isyn(t) =

{
Īsyne

−(t−tf )/τsyn for t > tf

0 for t < tf
(1.13)

where the current raises from 0 to Īsyn at time tf , and it decreases exponentially
with a time constant τsyn.

1.4 Additional calculation for the LIF model

As mentioned in Section 1.2.1, with the LIF model we are able to find useful an-
alytic expressions. Here we provide a relatively simple example, that is employed
in several network models that will be described in this thesis.
This expression is related to the tuning of synaptic weights, and in particular to
the amount of current needed to elicit a given postsynaptic potential.
To find this expression we can start considering a LIF neuron model with expo-
nential current-based postsynaptic response. According to the equation describing
the sub-threshold dynamics of the LIF neuron model we have

τm
dV

dt
= −(V − Vrest) +RI(t) (1.14)

where R = τm/Cm and I(t) = I0e
−t/τs, i.e., the neuron receives an input current

of amplitude I0 at t = 0. Let us also consider Vrest = 0 for simplicity. τm and
τs represent the membrane time constant and the synaptic current time constant
respectively. The general solution of Equation (1.14), considering the exponential
behavior of I0 is

V (t) = V0e
−t/τm +

τm

Cm

τs

τs − τm
I0e

−t/τs (1.15)

and considering V (0) = 0

V (t) = − τm

Cm

τs

τs − τm
I0

[
e−t/τm − e−t/τs

]
(1.16)

The Equation (1.16) represents the postsynaptic response to a current stimulus of
amplitude I0 reached at t = 0. Imposing the derivative of Equation (1.16) to zero
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enables us to find the time tmax at which the membrane reaches the maximum
depolarization because of the stimulus applied. So we have

tmax = ln
[(τm

τs

)τmτs/(τm−τs)]
(1.17)

and

V (tmax) =
τmτsI0

Cm(τs − τm)

[(τm

τs

)−τm/(τm−τs)

−
(τm

τs

)−τs/(τm−τs)]
(1.18)

The equation above represents the amplitude of the postsynaptic potential elicited
by a postsynaptic current of amplitude I0. Thus, the value of I0 needed to obtain
a postsynaptic potential amplitude of V (tmax) is

α =
I0

V (tmax)
=

{
τmτs

Cm(τs − τm)

[(τm

τs

)−τm/(τm−τs)

−
(τm

τs

)−τs/(τm−τs)]}−1

(1.19)

which is the analytic expression used in this model to get the value of the synaptic
efficacy needed to elicit appropriate postsynaptic potentials. In fact, the term α
represents the variation of input current needed to have a unit of variation of the
postsynaptic potential. Thus, since usually simulators express the synaptic weights
in current units, we can use the expression above to tune the synaptic weights to
have the wanted response in terms of membrane potential.

1.5 Firing rate models

We discussed how a biological neuron can be modeled by using equivalent cir-
cuits and integrate-and-fire neuron models, which are able to provide the times
at which spikes are emitted. We can further increase the level of abstraction by
characterizing a neuron using a different state variable, i.e. the firing rate. Thus,
instead of representing the neuron behavior through its spike sequence, we can
describe it using the rate of spike emission, identified as the ratio between the
number of spikes emitted and the elapsed time.
The development of firing rate models is justified by the large number of inputs a
neuron can receive (a neuron can have around seven thousand incoming connec-
tions); if a neuron receives uncorrelated presynaptic input from a large number
of incoming synapses, the overall input of the neuron will grow approximately
linearly with the number of synapses, with the standard deviation of the input
growing as the square root of this number [17]. Thus a firing-rate-based descrip-
tion, in such a case, should be compatible with a spike-based description.
To model the input incoming to a neuron we need the firing rate of the neurons
that target the one under consideration and the synaptic efficacy (or weight) of
the respective synapses. These quantities can be described as vectors: we call
u the output rate of the presynaptic neurons and w the synaptic weights of their
synapses. Thus, the total input can be simply described by the scalar product w ·u.
Figure 1.3 shows a scheme of inputs from presynaptic neurons to a postsynaptic
neuron.
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Figure 1.3: Scheme representing a postsynaptic neuron (blue dot) being targeted
by presynaptic neurons (red dots) through synaptic connections (black arrows).
The synaptic weights of the connections are indicated with the vector w, whereas
the output rate of the presynaptic neurons is indicated with u. The output of the
postsynaptic neuron is indicated with v.

If we consider an exponential synaptic response, similar to Equation (1.8) but
describing the synaptic current, we can write

τsyn
dIsyn

dt
= −Isyn +w · u (1.20)

Once the total input is evaluated, we have to estimate the response of the neu-
ron through a activation function F(Isyn). Among the most common activation
functions are the Heaviside step function H(x) and the threshold-linear (or ReLU)

F(x) = α max{0, x} (1.21)

where α is a multiplicative coefficient.
Generally, in such models, neurons do not respond instantaneously to the synaptic
input, and thus the firing rate follows the linear differential equation

τv
dv
dt

= −v + F(Isyn) (1.22)

The time constant τv expresses the time needed for the neuron to reach a steady
state firing rate when a constant input is given. Usually, in firing rate models, the
time constant of the input current τsyn is considered negligible with respect to τv,
and thus, for τsyn ≪ τv Equation (1.22) reduces to

τv
dv
dt

= −v + F(w · u) (1.23)

Indeed, a network behavior can be described by these equations, and steady-state
solutions can shed light on the long-term behavior of a network performing deter-
mined tasks, as we will see further in this thesis.
In this regard, we will present both feed-forward and recurrent networks, thus
a brief introduction of how such networks can be described is provided follow-
ing [17].
Figure 1.3 shows an example of a feed-forward network, since the flow of the sig-
nals has only one direction, i.e., from the population below to the neuron above.
Considering a population of postsynaptic neurons instead of having a single cell
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and calling u the rate of the population below (ergo the presynaptic one) and v
the rate of the population above, we can write

τv
dv

dt
= −v + F(W · u) (1.24)

where W ·u =
∑Nu

b=1Wabub for a = 1, . . . , Nv. Indeed, in the case of a feed-forward
network, the steady-state solution is similar to the one shown before, however, this
is not true for recurrent networks. In a recurrent network, a neuron population
can have self-connections, and thus the output rate of the neurons depends on the
rate of the population itself. Figure 1.4 shows a scheme of a recurrent network.

Figure 1.4: Scheme of a recurrent network with two neuron populations. The
synaptic weights of the feed-forward connections are indicated with the matrix
W, whereas M indicates the set of synaptic weights of the recurrent connections.

Calling Ma,a′ the matrix which contains the synaptic weights from output neurons
a and a′, Equation (1.24) becomes

τv
dv

dt
= −v + F(W · u+M · v) (1.25)

Indeed, the matrix M here considers only self-connections of the output popula-
tion, but it can also be considered in a similar way as the contribution of a second
population (e.g. an inhibitory one) which is stimulated by the output population
and then projects to it an inhibitory feedback. Such an architecture is widely used
when a realistic architecture of a neural circuit has to be represented since the
addition of an inhibitory population grants the stability of the excitatory (i.e. out-
put) population and can also lead to mechanisms of competition through lateral
inhibition that take place in the human brain.
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Chapter 2
Synaptic plasticity and cognitive
processes

Summary

Here the synaptic models studied in compliance with this thesis are pre-
sented, i.e., short-term synaptic plasticity and structural plasticity. The de-
scription of these plasticity mechanisms is then followed by a discussion
of the relationship between them and cognitive processes such as working
memory and learning.

2.1 Short-term synaptic plasticity (STP)

In this section, short-term plasticity and its phenomenological description are in-
troduced. For further details please see [18–22].
Short-term plasticity (STP) is a mechanism in which the synaptic efficacy tem-
porarily changes with a timescale on the order of hundreds or thousands of mil-
liseconds. This phenomenon is regulated by the amount of synaptic resources (i.e.
the neurotransmitters) available in the synapse at the moment of spike emission
and by the calcium levels in the presynaptic terminal.
Indeed, the spike arrival at the presynaptic terminal elicits an influx of calcium
ions that is responsible for the release of the vesicles in which neurotransmitters
are stored. Higher calcium concentration in the terminal leads to a higher fraction
of neurotransmitters released. This mechanism is called short-term facilitation
(STF). The neurotransmitter release is then followed by a mechanism of calcium
removal from the presynaptic terminal to restore its baseline concentration. The
amount of neurotransmitters a synapse can contain is limited and the emission of
a spike diminishes the number of neurotransmitters available in the presynaptic
terminal for further stimulation. This mechanism is called short-term depression
(STD). Without synaptic activity, the number of available neurotransmitters in the
presynaptic terminal returns to its baseline level. The coupling of these two phe-
nomena leads to a temporary modulation of the synaptic efficacy (i.e. short-term
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plasticity).
The first phenomenological model for short-term plasticity was presented in [18].
The model describes mechanisms that take place in the presynaptic terminal, such
as the neurotransmitter dynamics, taking into account the fact that neurotransmit-
ters are limited and also the mechanism of neurotransmitter release is triggered by
calcium ions. The neurotransmitter dynamics can be described by three normal-
ized quantities that represent the fraction of neurotransmitters in three different
states:

• recovered (x), i.e., contained in synaptic vesicles, ready to be released;

• active (y), i.e., released in the synaptic cleft;

• inactive (z), i.e., in the process of returning inside the synaptic vesicles.

The mechanism related to calcium dynamics is described by a normalized quantity
called u, which represents the fraction of opened calcium channels. Short-term
plasticity can thus be described by the following set of equations:

dx

dt
=

z

τd
− u(ts)x(ts − ϵ)δ(t− ts)

dy

dt
= − y

τsyn
+ u(ts)x(ts − ϵ)δ(t− ts)

dz

dt
=

y

τsyn
− x

τd
du

dt
= − u

τf
+ U(1− u)δ(t− ts)

(2.1)

Where ts is the time at which a spike is emitted, δ(·) is a Dirac delta and τsyn, τf
and τd are the synaptic time constant and the time constants for facilitation and
depression mechanism, respectively.
Synaptic modulation is driven by the variable y(t), ergo considering a synaptic
efficacy J , the postsynaptic potential would have an amplitude of Jy(t). In this
equation, for simplicity, we neglect the indexed i, j indicating the indices of presy-
naptic and postsynaptic neurons. The quantity u increases by a factor U(1 − u)
whenever a presynaptic spike arrives, since the spike triggers the opening of cal-
cium channels.
Is it possible to show that such a model can be simplified by adopting a system of
two differential equations that describe the behavior of the synaptic resources (x)
and the one of utilization factor (u) [18]. Let x be the normalized amount of avail-
able resources in the presynaptic terminal and let u be the fraction of resources
used in a spike emission. The spike arrival to the synaptic terminal raises the vari-
able u by a quantity U(1 − u) (so that u remains normalized) and the amount of
resources released is equal to ux. Considering a synapse connecting the presynap-
tic neuron i and the postsynaptic neuron j, this dynamics can be described by the
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following equations [23]:

dui,j

dt
= −ui,j − U

τf
+ U(1− ui,j)

∑
s

δ(t− t(i)s )

dxi,j

dt
=

1− xi,j

τd
− ui,jxi,j

∑
s

δ(t− t(i)s )

(2.2)

where δ(·) is the Dirac delta function and the sum is over the spike times t
(i)
s of

the presynaptic neuron i. The synaptic modulation takes place during the spike
emission, so that

Ji,j(t) = J (abs)
i,j ui,j(t− δ̂i,j)xi,j(t− δ̂i,j) (2.3)

where J
(abs)
i,j is the absolute synaptic efficacy for the synapse connecting neurons i

to neuron j and δ̂i,j is the synaptic delay. Thus, when a spike is fired, the synaptic
efficacy is described by the product Jux.
Short-term plasticity can show STD-dominated or STF-dominated behaviors de-
pending on the choice of the time constants for the mechanism of depression and
facilitation. The former can be observed when the mechanism of neurotransmitter
restoration is slower with respect to the mechanism of residual calcium removal
after spike emission and vice versa. To give a phenomenological description of STP
we can define, as in Equation (2.2), τd as the time constant of the process of neu-
rotransmitter restoring and τf the time constant for calcium removal mechanism.
Thus we can observe STD-dominated dynamics when τd > τf and STF-dominated
dynamics when τd < τf . Figure 2.1 shows an example of STD-dominated and
STF-dominated dynamics, in which two postsynaptic neurons receive signals from
a presynaptic neuron through synaptic connections with STP with different facili-
tation and depression time constants.
As can be seen, the neuron connected with the STF-dominated synapse is able to
show a change in the postsynaptic potential after a relatively long period of time
(around one second). This is achieved by the fact that the synaptic resources (x)
can return quickly to the presynaptic terminal, whereas the calcium concentration
in the terminal (u) decreases slowly. Since the STP modulation is driven by the
factor ux, this results in a temporary potentiation of the synaptic efficacy. The
STD-dominated synapse has the opposite effect, according to which the efficacy
strongly decreases when a series of spikes have to be transmitted and slowly re-
turns to the baseline efficacy.
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Figure 2.1: Voltage trace of two neurons connected with the same presynaptic
neuron with a STP connection. A neuron has a STF-dominated connection (red
line), with τf = 1.5 s and τd = 0.2 s, whereas the other neuron shows a STD-
dominated behavior (blue-dotted line), with τf = 0.2 s and τd = 1.5 s. The time
axis is interrupted between 600 and 1500ms, during which the presynaptic neuron
is not active.

2.1.1 STP and Working Memory

We notice in Figure 2.1 that facilitated (i.e., STF-dominated) synapses can show,
after a relatively long time of inactivity, an increase in synaptic efficacy. Indeed,
it has been estimated that, in our brain, certain regions show a predominance of
facilitated synapses, whereas many others show mostly STD-dominated synapses.
Among the regions with more relevant occurrence of facilitated synapses, we have
the prefrontal cortex (PFC), which is believed to be one of the most important lo-
cations of the brain in which Working Memory (WM), which will be briefly intro-
duced here, takes place. The question that arises is whether a synaptic mechanism
such as STP, and in particular synaptic facilitation, would be a synaptic correlate
of working memory.
Working Memory is a cognitive process able to hold and manipulate information
for a short time. It is involved in a vast number of cognitive tasks [24–27] which
span from speech to visual and spatial processing. Differently from long-term
memory, working memory is a transient phenomenon and it is also believed that
it does not entail structural changes to the network.
A classic procedure for studying working memory relies on the so-called delay re-
sponse tasks. In such a framework, a stimulus is presented for a short time and
the related execution of the task can take place only after a delay period. During
the delay period, it is experimentally observed, especially in the prefrontal cortex,
a neuronal selective persistent spiking activity able to maintain the information
previously presented by the stimulus [28–30]. When this activity is somehow sus-
pended (e.g. because of a noise stimulus during the delay period or a too-long
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delay) the task is not correctly executed.
The first computational models assumed that this peculiar activity could be en-
tirely maintained with prior long-term synaptic modifications so that, when a
stimulus was given into the network, the population encoding for the presented
stimulus exhibited a persistent spiking activity [31, 32]. Thus, according to these
models, the information was only stored in the spiking activity. However, exper-
imental pieces of evidence show that memory can be also maintained when the
enhanced activity is interrupted, suggesting that information is not only stored in
the population spiking activity [33] and also that working memory processes can
exhibit discrete periodic bursts instead of a persistent activity [34,35].
In this framework, many studies were conducted to enlighten the role of synaptic
plasticity in working memory [36] and some of the proposed models rely on short-
term synaptic facilitation [21,23,37,38]. The work of [37] shows that employing
synaptic facilitation enables a spiking network to maintain a relevant number of
memories at the same time, whereas the same network lacking this kind of plas-
ticity can maintain many fewer memories. Moreover, [38] argues that the nonlin-
earity of short-term facilitation is essential for displaying a reasonable persistent
activity able to retain memory during a delay period.
One of the models that posit a dominant role of synaptic facilitation in working
memory is the one of [23], which shows that a spiking network with synaptic fa-
cilitation is able to exhibit a bi-stable regime in which it can autonomously retain
memories with periodic spiking activity without a significant firing rate increase.
Thus, according to this model, memories are stored in a synaptic fashion, with
spiking activity functional for synaptic facilitation upkeep. The model is further
employed in [39] to study how working memory capacity can be modulated by
synaptic facilitation and the network’s external excitation.
More recently, [40] (see also [41]) proposed a spiking network model based on
a fast expression of Hebbian plasticity, in which memory is retained by oscillatory
bursts. Here, the authors proposed a synaptic plasticity model based on a Hebbian
learning rule flanked by a short-term plasticity mechanism. This kind of imple-
mentation can enable a network to learn new memory representations, whereas
using non-Hebbian plasticity needs prior long-term network training.
In the context of this thesis we focused on the theory proposed by [23], first repro-
ducing the results of the work using the spiking network simulator NEST [3] and
then evaluating the model itself, to shed light on the limitations and the strength
of such approach when comparing it to other working memory models that rely
on different neural mechanisms. This study is presented in Chapter 7.
Indeed, the mechanisms involved in the modification of the synaptic efficacy of a
synapse are many and take place at different time scales. The next sections present
mechanisms that describe synaptic changes at longer time scales, from minutes to
days.
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2.2 Spike timing-dependent synaptic plasticity (STDP)

As we noticed in the previous section, STP has a time scale of the order of seconds,
and it only depends on the emission of a spike from the presynaptic terminal. Such
a process is not related to an activity-driven potentiation of the synapses, which
is believed to be a key process for learning according to the Hebb postulate [31],
which states that there should be a metabolic process triggered by a repetitive and
persistent firing from a presynaptic neuron to a postsynaptic one able to increase
the efficacy of the signals transmitted.
In this regard, spike timing-dependent plasticity (STDP) is a mechanism that changes
the synaptic efficacy of a synapse based on the times at which the presynaptic and
the postsynaptic neurons emit a spike. In particular, when the presynaptic neuron
fires slightly before the postsynaptic neuron, the synaptic efficacy increases follow-
ing a long-term potentiation (LTP) process. This is related to the fact that between
these events there could be a causal relation, and after repeated events in which
presynaptic spikes are followed by postsynaptic activity some metabolic processes
are triggered leading to a strengthening of the synaptic efficacy. On the contrary,
a synapse that connects neurons that do not show this behavior can decrease its
synaptic efficacy, leading to long-term depression (LTD).
The general behavior of STDP can be described by the following [42, 43], given
∆t = tfj − tfi the spike times difference between the postsynaptic neuron j and the
presynaptic neuron i

∆ω+ = F+(ω)e
−|∆t|/τ+if ∆t > 0

∆ω− = F−(ω)e
−|∆t|/τ−if ∆t ≤ 0

(2.4)

where ω represents the synaptic efficacy and F (ω) is a time independent function.
The only part of the equation that is time dependent is represented by the expo-
nential functions, each one provided with a specific time constant, meaning that
this rule is asymmetric with respect to ∆t (it is a form of Temporal Asymmetric
Hebbian learning).
In 1998, the work of [44] measured the synaptic modifications in neurons of the
hippocampus, showing that the spike timing between the presynaptic and post-
synaptic neuron determined "the direction and the extent of synaptic changes".
Figure 2.2 depicts the experimental results measured in that work, showing that
there is an exponential dependence of the change in EPSC with respect to the
spike timing. Further, a positive or negative ∆t determines an increase or a de-
crease of the postsynaptic current amplitude, respectively, and a different time
constant for the time-dependent exponential behavior, as also reported in Equa-
tion (2.4). STDP is here presented as a single phenomenological model, however,
several STDP models have been developed in recent times to take into account
the several experimental observations regarding the role of the spike timing in
long-term plasticity mechanisms (see [42] for a review).
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Figure 2.2: Experimental measurements of synaptic potentiation and depression
depending on the spike timing. The difference in the excitatory postsynaptic
current amplitude (EPSC) is measured after repetitive correlated spiking activ-
ity. Spike timing is defined as the time difference between the beginning of the
postsynaptic potential and the arrival of the presynaptic spike on the axonal ter-
minal. Figure from [44]. Copyright ©1998 by the Society for Neuroscience.

2.3 Structural plasticity and learning

While in the previous sections we discussed temporary and reversible changes in
the synaptic efficacy of an instantiated synapse, here we discuss the structural
changes in the synaptic morphology of the brain neuronal network, which takes
place during the lifetime, constantly changing the architecture of our brain.
These changes occur at longer time scales than the short or long-term mechanisms
mentioned above and consist in the consolidation, creation of new synapses, or
erasure of synapses that have not been consolidated. This kind of plasticity is
called structural plasticity. It can be spontaneous, but also activity-based [45], and
it has a key role in the stabilization of new concepts that have to be kept in mem-
ory after learning [46].
Structural plasticity is underlain by several biochemical and biophysical mecha-
nisms and, according to [47], we can distinguish between two main categories:
activity-dependent and homeostatic structural plasticity.
Activity-dependent structural plasticity (Hebbian in [47]) is related to the growth
or retraction of neurites and the formation of new synapses to increase the con-
nectivity between two neurons with high and correlated activity, but also to the
deletion of synapses which connect neurons with low and uncorrelated activity.
It is known that LTP induced by a strong neural activation is followed by an in-
crease in the number of synapses. Moreover, LTP causes the growth of dendritic
spines, which is related to the efficacy of the synapses. The growth of a dendritic
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spine is associated with its stability in a way that a grown spine, to which corre-
sponds a higher synaptic efficacy, is more stable, i.e. it is not likely to be removed.
Thus, synaptic efficacy can somehow be related to structural plasticity and the
probability for a synapse to be consolidated or removed [48,49]. Accordingly, it is
also shown in several studies (see, for example, [50]) that inhibiting LTP prevents
the increase of the number of dendritic spines, corroborating the link between
LTP, structural plasticity and synaptic efficacy changes in previously instantiated
synapses. On the other hand, LTD is linked to structural plasticity, showing that it
leads to a reduction in the number of synapses [51].
These activity-dependent modifications are then flanked by a homeostatic kind of
structural plasticity, which consists of a decrease in connectivity between neurons
with high neuronal activities and an increase within neurons with low activity.
Thus, this mechanism results in a balancing effect that, through dendritic and
axonal modifications, leads to a regime of intermediate postsynaptic neuronal ac-
tivity (see [45] for a review). These effects are summarized in Figure 2.3.

Figure 2.3: Summary of the effects of activity-dependent (i.e. Hebbian) and home-
ostatic structural plasticity when having high or low neuronal activity. In case of
high activity, new dendritic spines are formed following the Hebbian mechanisms
and, to maintain homeostasis some connections are removed afterward. An oppo-
site behavior can be seen for low neuronal activity. Figure from [47].

In addition, the number of synapses in the brain can change over time. In [52]
it is shown that synaptic density reaches the highest values at 1–2 years age, it
drops during adolescence and stabilizes between age 16–72, followed by a slight
decline. However, although synaptic density remains approximately stable during
adulthood, rewiring of network connections occurs as well. Indeed, the increase of
connections in high activity regions (and vice versa), together with the rearrange-
ment of synapses leads to a fine-tuning of the brain’s circuits [53], because on
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one hand some synapses are strengthened through long-term potentiation (LTP)
and new connections are formed next to the already potentiated ones to further
enhance synaptic transmission, on the other hand when the presynaptic and post-
synaptic neuron activities have low correlation their connection are likely to be
removed. Indeed, synaptic pruning is considered essential for optimizing activity
propagation and memory capacity [54–56]. Additionally, it is commonly believed
that synaptic pruning and rewiring dysfunction are among the neural correlates
of developmental disorders such as autism or schizophrenia [57, 58], leading to
a higher or lower synaptic density with respect to neurotypical subjects, respec-
tively [59–61].
Only in recent times, computational models of structural plasticity and connectiv-
ity rearrangements during learning were developed, showing intriguing results.
[55] and [56] describe a model of structural plasticity based on "effectual con-
nectivity", defined in these works as the fraction of synapses able to represent a
memory stored in a network. By structural plasticity, effectual connectivity is im-
proved, since synapses that do not code for the memory are moved in order to
optimize the network’s connectivity. Their model defines synapses using a Markov
model of three states: potential (i.e. not instantiated), instantiated but silent, or
instantiated and consolidated. Structural plasticity is thus related to the passage
of the synapses from a potential state to an instantiated state (and vice versa),
whereas changes only related to the synaptic weight are described by the consoli-
dation of the instantiated synapses. With such a model, it is possible to show that
networks with structural plasticity have higher or comparable memory capacity
to networks with dense connectivity and it is possible to explain some cognitive
mechanisms such as the spacing effect [55].
[62] simulated a spiking neural network with structural plasticity and STDP, show-
ing that structural plasticity reduces the amount of noise of the network after a
learning process, thus making the network able to have a clearer output. Further-
more, such a network with structural plasticity shows higher learning speed than
the same network with only STDP implemented.
Some new insights about the importance of synaptic pruning are also shown
in [63], in which different pruning rates were studied suggesting that a slowly
decreasing rate of pruning over time leads to more efficient network architectures.
Chapters 8 and 9 of this thesis will expand this discussion by proposing a new the-
oretical model for learning through structural plasticity supported by firing-rate-
based simulations. The model is designed to consider the effects of both activity-
dependent and homeostatic structural plasticity as described in this section and
can help shed light on the role of structural modifications of brain circuits during
learning.
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Chapter 3
Simulation technology: CPU,
GPU-based and beyond

Summary

This chapter introduces some spiking network simulators, with particular
regard to NEST GPU, i.e., the GPU version of the NEST simulator. After pre-
senting the currently most used simulators, classified according to the type
of hardware that supports them, the dissertation will focus on GPU comput-
ing and NEST GPU accompanied by a description of some of its algorithms.

3.1 From CPUs to GPUs and neuromorphic comput-
ing: a brief introduction

Spiking neural networks are used to study the behavior of neuron populations with
single neuron resolution. They are establishing themselves as a flexible and pow-
erful tool to study the brain function resulting from neuronal dynamics. Moreover,
the development of simulation technology is leading to more complex and realis-
tic network architecture being able to simulate the dynamics of large networks of
neurons more accurately and more efficiently in terms of performance.
Currently, the simulation of spiking neural networks can greatly benefit from a
large variety of hardware: from conventional hardware like CPUs and GPUs to
chips specifically designed for this kind of computation, such as FPGA and neuro-
morphic hardware. From a software perspective, in the last decades, many simula-
tors have been developed to provide the neuroscientific community with powerful
yet flexible and intuitive platforms to simplify the simulations of such networks
and produce good quality data. Indeed, the development of simulation software
able to take advantage of the most recent computing technology is vital for paving
the way for more detailed and realistic models. For this reason, many simulation
software have recently introduced different back-ends in order to benefit from the
largest variety of hardware.
Among the most established spiking network simulators we can mention NEST
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[64], NEURON [65], Brian 2 [66] and ANNarchy [67]. These simulators are ca-
pable of simulating a large variety of neuron and synapse models and support
multi-thread parallel execution on general-purpose CPU-based systems. In addi-
tion, NEST and NEURON support distributed computing via MPI.
Neuromorphic hardware is an umbrella term for research oriented towards brain-
inspired hardware architectures. In this regard, many projects have been devel-
oped; we can mention Loihi [68] and TrueNorth [69], which are entering the
realm of large-scale neural network simulations, and BrainScaleS [70], which is
based on analog emulations of simplified models of spiking neurons and synapses,
with digital connectivity. The system enables energy-efficient neuronal network
simulations, offering highly accelerated operations. Another promising project in
this field is SpiNNaker [71], which recently achieved biological real-time simula-
tions of a cortical microcircuit model [72] proposed in [12]. This model has since
been simulated sub-realtime with NEST [73], on FPGA-based neural supercom-
puter [74,75] and also with NEST GPU [4], as will be discussed later. SpiNNaker’s
result was made possible by its architecture designed for efficient spike commu-
nication, performed with an optimized transmission system of small data pack-
ets. BrainScaleS and SpiNNaker are freely available to the scientific community
through the EBRAINS Neuromorphic Computing service.
Nevertheless, neuromorphic systems still require a significant amount of system-
specific skills. Even if the simulation speed they can provide is impressive, the
flexibility and simplicity of programming environments available for such neuro-
morphic systems are still low compared to their general-purpose counterparts. On
neuromorphic systems adopting analog design techniques, advantages in speed,
area, and energy consumption are associated with the difficulties of managing
manufacturing fluctuations, unavoidable in analog substrates, and with the effects
of electronic noise emerging in the dynamics of analog circuits. Porting neural
simulations from digital systems to analog neuromorphic platforms is not a trivial
task. Overcoming such difficulties and turning them into advantages is an emerg-
ing field of research [76]. Furthermore, as soon as the number of synapses per
neuron reaches biological scales (i.e., several thousand per neuron), the current
generation of neuromorphic systems can experience a significant slowdown. For
example, in its maximum configuration, the first-generation BrainScaleS system
hosts 1 billion synapses and 4 million neurons (250 synapses per neuron) on 20
silicon wafers [77], and a similar synapse-per-neuron ratio is a sweet spot for op-
timal execution on SpiNNaker, well below the typical 10, 000 synapses per neuron
characteristic for pyramidal cortical neurons. However, an FPGA-based cluster
recently showed promising results in the simulation of the cortical microcircuit
model of [12], being around 20 times faster than real-time in a network with nat-
ural density, paving the way for a new generation of a neuromorphic system that
will have to simulate even larger scale networks [75].
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3.1.1 GPU-based simulation

Over the past years, the use of GPUs (Graphical Processing Units) for parallel com-
puting had a significant surge in popularity across various research fields, from
scientific simulation to data analysis, deep learning, and machine learning in gen-
eral. Indeed, this hardware is provided with thousands of cores executing multi-
ple threads simultaneously, resulting in hardware capable of a very high degree
of parallelism. Types of computation based on SIMD parallelism (i.e., Single In-
struction Multiple Data) can largely benefit from GPU parallelism. For this reason,
GPU manufacturers developed specific frameworks such as CUDA or OpenCL to
take full advantage of the GPU capabilities. Moreover, GPUs are becoming more
and more affordable and can be easily found in the consumer market, even inside
high-end laptops. Supercomputers are also taking advantage of the GPU availabil-
ity since they are reaching for exascale by deriving a significant portion of their
computing power from GPUs.
For neuroscience to benefit from these systems, efficient GPU-based back-end for
neural network simulators have been developed. For instance, simulation codes
such as ANNarchy [67], NENGO [78], Arbor [79], and CARLsim [80] provide a
GPU back-end. Moreover, simulators such as Brian and NEURON have simulation
codes that take advantage of GPUs, i.e., Brian2CUDA [81] and CoreNEURON [82]
respectively.
However, there are simulators such as GeNN [83], or the previously mentioned
CARLsim, that are primarily designed for GPUs, with CUDA [84] being the most
widely used scripting language for the device code (thus NVIDIA GPUs are em-
ployed) and C/C++ for host code. Among GPU-based simulators, we can say that
GeNN is currently one of the most popular. Integrated also in the Brian simulator
as Brian2GeNN [85], GeNN was able to outperform CPU-based and neuromor-
phic code in the simulation of a highly-connected large-scale network [86] and
recently managed to simulate a multi-area spiking network model [87–89] on a
single GPU card [90]. This result was achieved with the procedural connectivity
approach, consisting of generating the model connectivity and its synaptic weights
only when spikes need to be transmitted, without storing any connectivity data in
the GPU memory. Nonetheless, such an approach can be efficient from a memory
point of view, since one of the most constraining features of GPUs is the size of
the built-in memory, which in spiking neural network simulations can be a severe
limitation. However, this method can be suitable only with static synapses, since
plastic synapses require storage of the synaptic weights, which change their value
during the simulation.
One interesting topic for spiking network simulation codes, no matter the back-
end, is the way a network is instantiated and prepared for the simulation. In-
deed, every simulation code employs different solutions, with algorithms that are
adapted to the type of simulation hardware the simulator takes advantage of.
From now on, we will call this task network construction. Generally speaking,
we can identify two macro-categories of network construction management:

• network construction during runtime using scripting languages;

• code-generation approaches, which require the code to be first generated
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through a high-level description provided by the user before it is compiled
and executed.

On one hand, code-generation approaches offer an advantage since, after code-
generation and compilation, the time for model construction is generally negligi-
ble. On the other hand, a new compilation is needed whenever there is a modifi-
cation of the model to be applied, with times needed for this task typically much
longer than network construction times [91]. Runtime network construction net-
work can offer more ease in model implementation and can be also an advantage
in some contexts like parameter scan applications. However, they can be less per-
forming than code-generation approaches [1].
Hitherto we presented a plethora of simulation codes, lastly focusing on GPU-
based codes. Now the GPU-based simulation code NEST GPU will be introduced.

3.2 NEST GPU

NEST GPU [2], previously named NeuronGPU [1], is a GPU library for the simula-
tion of large-scale networks of spiking neurons. Written in CUDA-C++, it is provided
with a Python interface, with most commands being similar, if not identical, to
the Python interface of the NEST simulator. Indeed, it has been recently included
in the NEST Initiative with the aim of integrating it with the NEST simulator to
allow for GPU-based simulations. To open for large-scale simulations of spiking
networks, it is able to exploit multiple GPUs on MPI clusters. In this regard, NEST
GPU implements a novel MPI-optimized spike delivery algorithm that has been
tested on an MPI-GPU cluster in [2] on the simulation of the multi-area model
of [87–89]. One of the greatest advantages of the simulations of such a model is
the algorithm used for the neuron distribution among the different MPI processes.
Indeed, NEST GPU exploits the neuron distribution described in [92], according
to which the spatial locality of the neurons is taken into account. To be more spe-
cific, this means that neurons belonging to the same population (or cortical circuit
in general) are simulated in the same MPI process. This is a potentially great ad-
vantage since intra-population connections are generally higher in number than
inter-population connections. Thus, this approach leads to a limited load on MPI
communication with respect to other algorithms. For example, one of the most
utilized approaches for neuron distribution in MPI simulations is the round-robin,
for which neurons are evenly distributed across the MPI processes, meaning that
in each MPI process there are neurons belonging to every neuron population sim-
ulated. This approach grants an optimal load balance across MPI processes but
can be less efficient depending on the network architecture since it can lead to a
much higher compute load on MPI communication.
Regarding network construction, NEST GPU falls in the category in which the net-
work is built on runtime. In previous versions of NEST GPU (see for example the
prototype library NeuronGPU [1]), the network construction process was not han-
dled by the GPU, but the network was built in the CPU. However, the network had
to be transferred from CPU to GPU for the simulation of the network dynamics
to start. This copy operation from RAM to GPU memory was indeed a bottleneck
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for the network construction, which resulted comparable to or even slower than
CPU-based simulators such as NEST [1,2]. Even if the network construction time
is a fixed overhead with respect to the time-to-solution, a relatively slow network
construction approach can limit the efficiency of applications such as parameter
scans, where several simulations have to be done, resulting in a significant con-
tribution to the overall execution time. For this reason, we came up with a novel
algorithm for dynamic network construction directly in the GPU devices that are
able to reach state-of-art performance for network construction [4]. The follow-
ing subsections give a brief description of the spike delivery and communication
algorithm and the novel network construction algorithm.

3.2.1 Spike delivery algorithm

Spike delivery algorithms can be significantly different among different simulation
codes, mainly depending on the hardware the simulators use. NEST GPU exploits
a specific spike delivery algorithm, which is here briefly introduced. For a more
detailed description, please refer to [1,2].
In NEST GPU, each neuron is provided with an output spike buffer, which holds
the spikes emitted by the neuron. Output connections of the neuron are organized
in groups, with each group collecting connections with the same synaptic delay.
Each spike is identified by three values:

• multiplicity, i.e., an integer that indicates how many spikes correspond to
the spike event under consideration. Generally, this value is 1, but can be
greater in the case, for example, of spiking devices with Poisson statistics;

• time index ts, which starts from 0 and is increased by 1 at every simulation
time step;

• connection-group index ig, which starts from 0 and is incremented every time
the time index matches a connection-group delay.

Given these values for each spike event, the spike is sent when the time index of
the spike ts matches a connection-group delay. This way, the spike is sent in that
simulation time step to all the target nodes of the connection group associated
with the matching delay. In particular, when a spike has to be transmitted, it is
first sent to a spike array. Finally, the spike is sent from this array to the target
neurons using a CUDA kernel. Figure 3.1 depicts the workflow of the spike buffer.
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Figure 3.1: Schematic representation of the spike buffer. At time step t a neuron
emits a spike, which starts with the time index and the connection group index
equal to 0. In the next time step, the spike increases ts by 1, and, matching the
delay of the connection group 0, a spike event is sent to the spike array. This
process is iterated until ig matches the last connection group and the spike event
reaches it. Figure adapted from [1].

Regarding multiple MPI process simulations, when a source node is connected to
a target neuron belonging to a different MPI process, the spike buffer is created
in the remote process, so that when the source node fires a spike, it is sent to the
remote spike buffer at the end of the simulation time step through MPI communi-
cation.

3.2.2 Network construction algorithm

As mentioned in this section, NEST GPU has recently been equipped with a new
algorithm for network construction that dynamically builds the network directly in
the GPU [4]. Since the GPU memory capacity is one of the most important bottle-
necks in GPU computing, an algorithm that handles such a task should be able to
optimize the available memory as much as possible. In the creation of the spiking
neural network, a crucial role in this regard is held by the creation of the connec-
tions between network nodes. Indeed, in network models with natural connection
density, the number of connections greatly exceeds the number of spiking devices:
for instance, the multi-area model of [87–89] includes 4 million neurons and 24
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billion synapses. We can thus understand the importance of having an efficient
method for instantiating and organizing connections during network creation.
NEST GPU structures connections in the following way: each connection contains
the source node index, the target node index, the receptor port index, synaptic
weight and delay, and the synaptic group index (which is non-zero only for plastic
connections). Additional parameters can exist depending on the synapse model
employed. Connections are stored in GPU memory using dynamically allocated
blocks with a fixed number of connections per block (B), which can be set by the
user. It should not be too small to avoid having too many blocks and thus increase
the execution time, and it should not be too big to avoid wasting memory leaving
the last block not completely filled with connections. A reasonable value, that we
usually use for large-scale simulations, can be B = 107.
Every time a connection command is executed, if the last allocated block does not
have enough free slots, one or more new blocks are created to store the remaining
connections. After blocks have been allocated, connections are created by launch-
ing CUDA kernels (i.e., functions executed on GPU devices exploiting multiple
CUDA-thread blocks) to set the connection parameters. In case some parameters
have to be driven by a probability distribution, the cuRAND library1 is used to get
the pseudo-random numbers given the distribution parameters. Figure 3.2 depicts
an example of connection creation using this algorithm.
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Figure 3.2: Example of connection creation. (A) All-to-all connection rule is used,
so every source neuron (green) is connected with each target neuron (orange).
Here, 12 connections are created and the same amount of slots in the connection
blocks have to be allocated. (B) Memory slots allocated in the blocks, that have
already allocated memory for previous connections (full black squares). To store
all the new connections, a new block is created. Finally, an appropriate number of
CUDA-threads per block (k) is used to create the connections. Figure from [4].

1https://developer.nvidia.com/curand
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Once connections are created, they must be organized properly to optimize the
spike transmission using the spike buffer. For this reason, connections are divided
into groups, so that connections from the same group have the same source node
and the same synaptic delay. Those groups are, indeed, the connection groups
discussed in the previous section and depicted in Figure 3.1. In order to organize
connections in this way, connections have to be sorted using two sorting keys hi-
erarchically, i.e., the index of the source node as the first key and the delay as the
second key. Such a process is done after the dynamical creation of the connec-
tions, in a stage called calibration phase. The sorting algorithm employed is an
extension of radix-sort [93] applied to an array organized in blocks, based on the
implementation available in the CUB library2.
Once the connections are sorted, their groups must be adequately indexed, so that
when a neuron emits a spike, the code has quick access to the groups of con-
nections outgoing from this neuron and to their delays. This indexing is done in
parallel using CUDA kernels on connection blocks with one CUDA thread for each
connection. Finally, for each source node, an array of size equal to the number of
outgoing connection groups is constructed, and the arrays are then concatenated
for all the source nodes into a single one-dimensional array. This avoids the cre-
ation of a large number of separate arrays, whose retrieval and usage would be
more demanding than having a single one. This structure is used during spike
delivery to properly index the spike event and send them to the proper connec-
tion groups. More details about the network construction algorithm can be found
in [4].

2https://nvlabs.github.io/cub
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Chapter 4
Spiking network models and
validation techniques

Summary

Here we will introduce the spiking network models we used for benchmark-
ing and validating the NEST GPU simulator. After the description of the
models, it will be described the statistical parameters used to evaluate their
behavior, and how these parameters can be compared between simulators
to ensure that different implementations of the same model provide a statis-
tically compatible result.

4.1 Balanced network

The simplest network model used in this work is the so-called balanced network
model. It is a sparsely connected network composed of an excitatory and an in-
hibitory population of integrate-and-fire neurons [94]. Under suitable conditions,
this model can exhibit a stable average firing rate with asynchronous irregular
spiking activity. External driving is granted by independent input spike trains tar-
geting all neurons of both excitatory and inhibitory populations. In both NEST
and NEST GPU this can be achieved through a single spiking device, called a
poisson_generator, which is able to send independent spike trains following a
Poisson distribution through all its outgoing connections. In the considered model,
a single Poisson generator is connected by excitatory connections to all neurons of
both populations.
Neurons are connected through static synapses, which can be excitatory or in-
hibitory. Each neuron receives CE connections from excitatory neurons and CI =
CE/4 connections from inhibitory neurons using the fixed_indegree connection
rule, ergo each neuron is provided with CE excitatory and CI inhibitory input con-
nections from other neurons of the model (see [95] for a detailed description of
the connection rule). Furthermore, the network is provided of NE excitatory neu-
rons and NI = NE/4 inhibitory neurons.
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Figure 4.1 shows the structure of the network model following the graphical no-
tation of [95] for nodes and connections.

Figure 4.1: Schematic representation of a balanced network model. Here the
graphical notation proposed in [95] is used. Thus, the triangle, the circle, and
the hexagon represent, respectively, an excitatory, an inhibitory, and a stimulating
device population (a Poisson signal generator in this case). Moreover, arrowhead
connections are excitatory, and circle-headed connections are inhibitory.

Such a network was also used in [1] in order to test the weak scaling performance
of NeuronGPU, the prototype library of NEST GPU. Here we propose a similar scal-
ing using the most recent version of NEST GPU.
The neuron model implemented is the adaptive-exponential integrate-and-fire (AdEx)
[14] with conductance-based synapses and synaptic conductance modeled by an
alpha function [15]. An introduction to the neuron model can be found in Ap-
pendix A, together with neuron and network model parameters.

4.2 Cortical microcircuit

The cortical microcircuit model of [12] describes the neural circuit under 1mm2

of cortical surface. It is composed of around 77, 000 neurons and 3 × 108 static
connections with connectivity originating from an integrated connectivity map.
Moreover, it is characterized by a layered structure that is based on the stratifi-
cation of the cerebral cortex. Each layer (i.e., 2/3, 4, 5, or 6) has an excitatory
(E) and an inhibitory (I) neuron population, for a total of eight populations: 2/3I,
2/3E, 4I, 4E, 5I, 5E, 6I, and 6E. All neurons are externally stimulated by a back-
ground input which originates from Poisson-distributed spike input or a DC input.
The external input is needed to take into account the signal coming from other
regions of the cortex that are not included in the model. Moreover, neurons of lay-
ers 4 and 6 are additionally stimulated by a thalamo-cortical input designed as the
previously described external input, in order to mimic the input coming from the
thalamus. We can consider it as a multilaminar extension of the balanced network
model described in Section 4.1.
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The neuron model employed is a leaky integrate-and-fire (LIF) with exponentially
decaying postsynaptic currents. The differential equations underlying the neuron
dynamics are integrated using the exact integration method of [13]. Synapses are
static and the weight is chosen in order to have a defined average postsynaptic
potential amplitude (see Chapter 1 for more details in this regard).
Such a model is able to show an asynchronous irregular spontaneous activity,
compatible with the experimentally observed cell-type and layer-specific firing
statistics. As we will see in the next section, it has been used as a building
block for larger models [89], and has been used as a benchmark in several stud-
ies [73,74,86,96–98].
The model has been implemented in NeuronGPU (and thus in NEST GPU) in [1]
and we evaluate the performance of the libraries on this model in [1,4].
Neuron and network model parameters are described in detail in Tables 1-4 of [99]
following the guidelines proposed in [100]. Figure 4.2 shows a scheme of the mi-
crocircuit model.

Figure 4.2: Scheme of the cortical microcircuit. The scheme exhibits the layered
structure of the network model, together with intra- and inter-layer connections.
Here, only connections with probability > 0.04 are shown. Figure from [97].
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4.3 Multi-area model

The multi-area model is a spiking network model able to describe the dynamics
of the vision-related areas of one hemisphere of the macaque cortex [87–89]. In
particular, the model is composed of 32 areas, each one described by a patch of
1mm2 size with full local density of neurons and synapses. This way, about 4
million neurons and 24 billion synapses are simulated. Each area is designed sim-
ilarly to the cortical microcircuit model of [12] described in the previous section.
Thus, areas have a laminar structure with 4 layers, each one with an excitatory
and an inhibitory population of neurons. Since one area (i.e., area TH) lacks one
layer, the total number of neuron populations in the network is 254. The local
connectivity (i.e., within the same area) is a result of a scaling of the one of the
cortical microcircuit of [12]. Also, the number of neurons for each microcircuit de-
pends on experimental measurements done on every modeled area (e.g., neuron
density and thickness of the cortical layer). The inter-area connectivity is based
on the database CoCoMac [101] of axonal tracing data, complemented with ad-
ditional axonal tracing studies [102, 103] and statistical estimations reported in
detail in [87].
The neuron model used is, as in the cortical microcircuit, the current-based LIF
model with exponentially decaying postsynaptic potential. Moreover, the input
coming from non-modeled regions of the brain is mimicked through Poisson spike
trains, with frequency adapted for each neural population of the model.
Figure 4.3 represents an overview of the multi-area model.

Figure 4.3: Schematic representation of the multi-area model, adapted from [2].

Such a model can show two activity states based on the synaptic strength of
the cortico-cortical synapses with respect to the local synaptic weights. When
the cortico-cortical synaptic strength is the same as the local one, the network
reaches the so-called ground state, in which the activity is asynchronous and ir-
regular without any relevant rate fluctuation. Indeed, such a state does not rep-
resent the resting-state recordings for spiking activity and functional connectivity.
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However, when cortico-cortical connections are increased, the network can reach
the metastable state, in which the network activity matches the recordings of the
resting-state activity of lightly anesthetized monkeys. For further details on the
multi-area model, we refer to the original publications [88,89].

4.4 Validation techniques and benchmarking

The described network models were implemented on NEST and the result of the
simulations of these models was compared with experimental measurements (see
for example [12,89]). Thus, NEST is a reliable and well-established simulator we
can use as a reference to ensure the correctness of the simulations of the same
network models with NEST GPU. When implementing the same model on a differ-
ent simulator, the first question that we need to answer is: did we build the right
system? To answer such a question, after preliminary checks (e.g., verify that a
single neuron responds in the same way when the same input is given), we have
to establish a validation protocol able to assess whether the outcomes of the simu-
lators are statistically compatible. To do so we need some quantitative estimations
for each population, and a metric to compare these estimations obtained from the
same population of the model under consideration using different simulators.

4.4.1 Getting the distributions

The simulation outcome that has been used to compare these models with exper-
imental observations is the spiking activity. As proposed in several other works
(such as [74, 86, 97, 99]) we choose a set of statistical distributions related to the
spiking activity of the neuron populations. In order to provide enough details on
the statistical distributions we extracted from the data, we need to define what
we actually measure from simulations and identify as spiking activity. Indeed, the
outcome we get from the simulations is the spike train from each neuron of the
population, identified with an ID. A spike train can be described by the equation

si(t) =
∑
k

δ(t− t
(i)
k ) (4.1)

where δ(·) is a Dirac delta. Thus, a neuron spike train is just the collection of time
values tj at which the neuron i has emitted a spike. In addition, we need to de-
scribe another quantity functional for the estimation of the statistical distributions,
which is the inter-spike interval (ISI). Given a spike train, the inter-spike interval
(ISI) is defined as the time difference between two consecutive spikes. Thus

ISIi(t) = t
(i)
k+1 − t

(i)
k (4.2)

Now that we have defined the spike train and the ISI, for each population we
computed the following statistical distributions:

• the average firing rate. For a single neuron it can be defined as

νi(t) =
1

t

∫ t

0

si(t)dt (4.3)
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The distribution is then formed by the firing rates of the neurons belonging
to the population calculated using the equation above. The average single-
neuron firing rate for a population is

ν(t) =
1

N

N∑
i=1

νi(t) (4.4)

• the coefficient of variation of the inter-spike intervals (i.e., CV ISI), thus the
ratio between standard deviation and average of the inter-spike intervals

CVi =

∑
k(ISI(i)k − ⟨ISI(i)k ⟩)2∑

k ISI(i)k

(4.5)

Like the firing rate, this is a quantity extracted from a single neuron, thus
the population distribution is the collection of the CVi for all the neurons of
the population;

• the pairwise Pearson correlation between spike trains, obtained by consid-
ering only a subset of 200 neurons for each population to have a reason-
able computing time. To properly compute this statistical distribution, spike
trains are binned using a time step of 2ms (i.e., the neurons refractory time
used when simulating the network models), so that at most one spike can
occur at each bin. We call bi the binned spike train of the neuron i and µi

a vector with the same length of bi having all the entries equal to the aver-
age of the binned spike train. Then, Pearson correlation can be computed as
follows

C[i, j] = ⟨bi − µi, bj − µj⟩√
⟨bi − µi, bi − µi⟩ · ⟨bj − µj, bj − µj⟩

(4.6)

where ⟨, ⟩ represents a scalar product. Considering 200 neurons per popula-
tion, the result of Equation (4.6) is a 200 × 200 matrix, and the distribution
of the pairwise Pearson correlation is formed by the non-diagonal entries of
the matrix.

The quantities we have just described are computed using the Elephant package
[104]. To form the raw distributions, it would be sufficient to apply proper binning
to the data and create the histograms. In this regard, distributions are binned
following the Freedman-Diaconis rule, according to which the bin width is defined
as

2
IQR
N1/3

(4.7)

where IQR is the interquartile range of the data and N is the number of observa-
tions for each distribution. This way, we can obtain the raw distributions, which
are indeed dependent on the random fluctuations of single simulations. In order
to reduce such fluctuations, we applied a smoothing using the kernel density es-
timation (KDE) [105, 106] with a Gaussian kernel. Having a set of values xi with
i = 1, . . . , N and a bandwidth h, a Gaussian kernel K(x, h) can be defined as

K(x, h) = A exp
(
− x2

2h2

)
(4.8)
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where A is a constant needed for normalization. The KDE for a point y is then

ρK(y) =
N∑
i=1

K(y − xi, h) (4.9)

Hence, if xi are the set of values extracted from the spike data, each value can now
be considered as a Gaussian function with a fixed width and properly normalized.
The sum of the Gaussian functions obtained for each value produces the smoothed
distribution.
To get the distributions, we still have to define the values for the normalization fac-
tor A and the bandwidth h. Regarding the normalization, each Gaussian function
returned by Equation (4.9) is normalized to 1/N so that the final distribution is
normalized to unity. Moreover, the bandwidth is optimized through the Silverman
method [107], so that

h = 0.9 min
(
σ̂,

IQR
1.349

)
N−1/5 (4.10)

with σ̂ standard deviation of the values and IQR the interquartile range. In the
framework developed for this thesis, KDE is obtained using the function
sklearn.neighbors.KernelDensity of the scikit-learn Python library [108].
For more clarity, Figure 4.4 depicts a simple application of KDE.

Figure 4.4: Example of application of KDE to a simple data set. The left panel
shows the histogram obtained from the data shown below as vertical black dashes.
On the right, KDE is applied to data. Red-dotted lines represent the Gaussian
kernels from each value that belongs to the data set, whereas the blue line is the
KDE, defined as the sum of the single Gaussian kernels. Figure from [109].

This way we are able to obtain a continuous function able to reduce the small vari-
ability observed by single simulations that used different seeds for random number
generation. Indeed, the seed plays a crucial role in our validation framework, and
the next subsection describes its role in detail.
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4.4.2 Getting the metric to compare the distributions

The validation protocol adopted to statistically compare the results of the spiking
activity obtained from different simulation codes (i.e., NEST and NEST GPU) is
described below:

1. we perform a set of simulations (e.g., 10) using NEST, and we do the same
with NEST GPU. Each simulation should use a different seed for random
number generation;

2. we perform an additional set of simulations using NEST (i.e., the simulator
taken as a reference) using a different set of seeds, in order to estimate the
variability of NEST when using different seeds;

3. we compute, using a proper metric, the pairwise comparison between the
distributions obtained by the two different simulators (e.g., the first simu-
lation of NEST compares the distributions with the first simulation of NEST
GPU, etc). This way we collect a set of values that quantifies the difference
between the two simulators for each distribution, which we can call NEST-
NEST GPU;

4. we can do the same but comparing the two sets of simulations using NEST,
obtaining the NEST-NEST dissimilarity measure (or distance);

5. we plot side by side the NEST-NEST GPU and NEST-NEST values to evalu-
ate the differences that arise because of the different simulator employed
and the one that can arise because of a different seed for random number
generation when using the same simulator.

With this approach, we have a more quantitative method for the validation of the
NEST GPU simulator than a simple comparison of the distributions that can be
done by simply showing the distributions in the same plot.
Now a question remains to be answered: which metric, or dissimilarity measure,
should we choose? For example, in [1] for the comparison of NEST and NeuronGPU
in the simulation of the cortical microcircuit model, we used the Kullback-Leibler
divergence (DKL) [110], which is defined as

DKL(p, q) = −
∑
i

pi log
(pi
qi

)
(4.11)

where p and q are two probability distributions with the index i running on the
sampling points of the distributions. The divergence measures the degree of dis-
similarity of p with respect to a reference distribution q. However, in [2] we moved
to the Earth Mover’s Distance (EMD) because of the metric properties that make
it symmetric and more specific in detecting the degrees of dissimilarity among the
distributions. EMD computes the distance between two probability distributions
and its name resembles a problem of soil reshaping. Indeed, the two distributions
can be interpreted as two piles of soil, with one of them having to be arranged in
order to have the same shape as the other one. In this case, EMD represents the
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minimum amount of work needed to move the soil from one pile in order to have
the desired distribution of soil. Returning to our distributions, EMD measures the
work that has to be done to reshape a distribution in order to be like the target
one. From a mathematical point of view, EMD is equivalent to the 1st Wasserstein
distance between two distributions.
The Wasserstein distance is defined as follows [111,112]: let χ be a metric space
endowed with a metric d and µ and ν be two probability measures on χ. Also let
Γ(µ, ν) be the set of probability measures γ on χ × χ so that the measure γ has
marginals µ and ν on each axis. The pth-Wasserstein distance can be written as

Wp(µ, ν) =
(

inf
γ∈Γ(µ,ν)

∫
χ×χ

d(x, y)pdγ(x, y)
)1/p

(4.12)

This relation yields the given interpretation of the Earth Mover’s Distance. In par-
ticular, given a γ ∈ Γ(µ, ν) and two locations (x, y), the quantity d(x, y)p quantifies
the amount of work necessary to move a unit of mass from x to y, and the infi-
mum of the integral thus returns the minimum amount of work needed to reshape
µ distribution into ν.
Furthermore, Equation (4.12) can be rewritten when χ = R1 (ergo d(x, y) =
|x − y|). Letting FX be the cumulative distribution function (CDF) of a distri-
bution X and F−1

X (q) = inf{x : FX(x) ≥ q}, q ∈ (0, 1) the quantile distribution of
X (i.e. the inverse cumulative distribution), it is shown in [113] that

Wp(µ, ν) =
(∫ 1

0

|F−1
µ (α)− F−1

ν (α)|pdα
)1/p

. (4.13)

In the particular case of the 1st Wasserstein distance (i.e. p = 1), as discussed
in [114], Equation (4.13) reduces to

W1(µ, ν) = EMD(µ, ν) =

∫
R
|Fµ(t)− Fν(t)|dt. (4.14)

that is the equation used by the Python scientific library SciPy [115] to compute
this metric with the scipy.stats.wasserstein_distance function, which takes
the values of the distributions as input, computes their CDF and finally returns the
result of the integral shown in Equation (4.14).
In conclusion, the validation process enables us to show side by side the distri-
butions of the EMD values obtained from the comparisons NEST-NEST GPU and
NEST-NEST. The next chapter describes the validation work we performed using
NEST GPU for the simulation of the cortical microcircuit model and the multi-area
model. Then, we analyze the performance of NEST GPU in the simulation of these
models and the scaling performance of the simulator through simulations of the
balanced network model.
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Summary

Here NEST and NEST GPU are compared in terms of neural activity of single
neurons and the models discussed in the previous chapter with the aim of
providing a solid validation workflow to be easily employed when validating
NEST GPU. In particular, NEST GPU is validated on the simulation of the
cortical microcircuit model and the multi-area model previously introduced.

5.1 Single neuron simulation

A first control that should be done when checking the compatibility of NEST GPU
is a simple simulation of single neuron models targeted by a few spikes or injected
with a constant current, to be compared with an analogous NEST simulation. In-
deed, one of the tests NEST GPU performs after installation regards the response
of such a stimulus by the membrane potential of the several neuron models imple-
mented in the simulator. For instance, Figure 5.1 shows the membrane potential of
two different neuron models injected with two spikes delivered using connections
with different delays. Panel A depicts the response of a LIF neuron with exponen-
tial current-based synapses (iaf_psc_exp in NEST and NEST GPU), whereas panel
B shows the response of an AdEx neuron with conductance-based synapses and
synaptic conductance modeled as an alpha function (aeif_cond_alpha in NEST
and NEST GPU).
The same simulation is also performed in NEST, and the results are here compared.
In particular, the first signal the neuron receives is excitatory (i.e., is transmitted
through a connection with positive weight), whereas the following one elicits a
drop in the membrane potential (ergo the synapse is inhibitory, and thus with a
negative synaptic weight). When testing NEST GPU consistency in such simula-
tions, we take the NEST values as a reference and we compute the normalized
root-mean-square error (NRMSE) between the membrane potential obtained by
the two simulators, normalized by the average of the membrane potential ob-

53



CHAPTER 5. NEST GPU VALIDATION

tained by the NEST GPU simulation (in modulus), as indicated in Equation (5.1):

NRMSE =
RMSE

|V̄ NEST GPU
m |

=
1

|V̄ NEST GPU
m |

√∑N
i=1(V

NEST GPU
m − V NEST

m )2

N
(5.1)

Indeed, the NRMSE calculated from the data shown in panels A and B of Figure
5.1 are in the range of 10−6.

Figure 5.1: Membrane potentials of neurons injected with single spikes simulated
using NEST (blue dotted line) and NEST GPU (red line). (A) LIF neuron with
exponential current-based synapses. NRMSE = 5.3 × 10−6. (B) AdEx neuron
with conductance-based synapses and synaptic conductance modeled as an alpha
function. NRMSE = 4.5× 10−6. (C) Difference between the LIF neuron membrane
potential simulated using NEST GPU and NEST. (D) Same as (C), but for the AdEx
neuron membrane potential.

Clearly, such a test is not enough to ensure the compatibility of NEST and NEST
GPU. The following sections will describe the validation processes on the simula-
tion of two large-scale network models, i.e., a cortical microcircuit model and a
multi-area model.

Gianmarco Tiddia 54 Part II



CHAPTER 5. NEST GPU VALIDATION

5.2 Simulations of the cortical microcircuit model

The first large-scale model implemented in NEST GPU was the cortical microcircuit
model of [12] described in Section 4.2. It employs LIF neurons with exponential
current-based synapses, which, as indicated in Figure 5.1 do not show any rele-
vant difference in the dynamic with respect to the NEST implementation. Indeed,
this model is also integrated using the same integration method, which is the exact
integration scheme proposed in [13].
In order to validate the result of the NEST GPU simulations using NEST as a refer-
ence, we perform simulations using the Poisson spike generator as input for each
area of the model, and we initialize the membrane potential following a normal
distribution in order to avoid long transients. In addition, we perform a so-called
pre-simulation phase of 500ms without recording the spiking activity for the same
reason. The simulation of the network dynamics (with enabled spike recording)
is 600 s long, using a simulation time step of 0.1ms. Indeed, such a long simula-
tion of biological time to be simulated can be preferred, since it helps the activity
statistics to converge, being able then to distinguish between the statistic of the
spiking activity and random processes [99]. Moreover, the full-scale simulation
of such a model can also be performed using GPUs mounted in high-end laptops,
since it requires a bit less than 4950MiB of GPU memory and returns output files
of around 4MB for each second of simulation of the network dynamics.
Following the validation protocol discussed in Section 4.4.2, we compute the dis-
tributions of firing rate, CV ISI and Pearson correlation for all the eight popula-
tions of the model for NEST GPU and NEST and, to produce the distributions,
we used the seaborn.violinplot function of the Seaborn Python library [116],
which returns KDE-smoothed optimized using the Silverman method. Indeed, the
first validation between NEST GPU and NEST, done in [1], was not done using this
package, but by extracting and smoothing the distributions autonomously through
our analysis script, which performed the same procedure by computing the KDE
method using the function sklearn.neighbors.KernelDensity available in the
scikit-learn Python library [108]. By using the Seaborn Python library, we verified
that the violin plot function uses the same protocol for binning and smoothing as
in the previous analysis pipeline described in Section 4.4.1. Moreover, the violin
plot has the advantage of showing side-by-side the distributions obtained using
the two simulators, granting a better comparison of the results. Figure 5.2 shows
the violin plot for a simulation of the cortical microcircuit model on NEST and
NEST GPU.
As can be noticed, the distributions obtained with NEST and NEST GPU are vi-
sually indistinguishable. However, to provide a quantitative estimation of the
difference between the distribution, and compare the fluctuations between the
two simulators and NEST with different seeds for random number generation, we
computed the EMD. In this regard, we created three sets of 100 simulations each
using different seeds for random number generation, so that the comparison of
NEST-NEST and NEST-NEST GPU can be done. Figure 5.3 shows how values of
EMD for such a comparison fluctuate for each population of the model and for
each distribution obtained.
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Figure 5.2: Violin plot of the distributions of firing rate (A), CV ISI (B) and Pear-
son correlation (C) extracted during a simulation of the cortical microcircuit model
performed on NEST (orange distributions) and NEST GPU (sky blue distributions).
Distributions are obtained for each population of the model, whose label is indi-
cated in the abscissa. The central dashed line represents the median of the distri-
bution, whereas the two side dashed lines represent the interquartile range.

Figure 5.3, as previously discussed, compares the fluctuations we can expect by
simulating the same model using two different simulators such as NEST and NEST
GPU (i.e., NEST-NEST GPU comparison) and the ones we can have by comparing
NEST simulations with different seeds for random number generation (i.e., NEST-
NEST comparison). Thus, if the NEST-NEST GPU comparison fluctuates similarly
with respect to the values of the NEST-NEST comparison, we can conclude that
the usage of a different simulator does not have a significant variability when
simulating the model, thus validating the simulator. In this case, we can notice
that the fluctuations are compatible, and also the values of EMD are relatively low
when compared to the values of the respective distributions in Figure 5.2. Thus,
we can affirm that NEST GPU is able to reproduce results statistically identical
with respect to the ones of NEST.
The validation here reported compares the version 3.3 of NEST [117] and the
version of NEST GPU able to construct the network directly in the GPU memory,
presented in [4] and available on the GitHub page of the library1 under the git tag
nest-gpu_onboard2.

1https://github.com/nest/nest-gpu
2https://github.com/nest/nest-gpu/releases/tag/nest-gpu_onboard
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Figure 5.3: Box plots of the EMD obtained by comparing distributions of firing
rate (A), CV ISI (B) and Pearson correlation (C) for NEST and NEST GPU simula-
tions (sky blue bars) or two sets of NEST simulations with different seeds (orange
bars). The central line of the box plot represents the median of the distribution,
whereas the extension of the boxes is determined by the interquartile range of the
distribution formed by the values of EMD of each comparison. Whiskers extend to
the farthest observations that lie within 1.5 times the interquartile range, and dots
represent the outliers.

Indeed, this validation workflow was employed for different versions of NEST and
NEST GPU. For instance, in [1] was compared NEST version 2.20.0 [118] and the
prototype library NeuronGPU3. Moreover, during the development of the library,
such a workflow is applied whenever a code modification results in a change of
the spiking activity results, to ensure that the compatibility from a statistical point
of view is always preserved.

5.3 Simulations of the multi-area model

In order to validate NEST GPU and the MPI implementation of its spike delivery
algorithm, in [2] we implemented and simulated the multi-area model of [87–89].
As described in Section 4.3, the model simulates 32 areas of the macaque visual
cortex, each one represented by a patch of 1mm2 surface designed as the cortical
microcircuit model of [12]. Thus, every area (except for the TH, which lacks layer
4), has a total of 4 layers (i.e., 2/3, 4, 5, 6), each one having an excitatory (E) and

3https://github.com/golosio/NeuronGPU
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an inhibitory (I) population.
In order to validate NEST GPU in the simulation of this model, we performed the
same protocol described in Chapter 4 and applied in the previous section in the
case of the cortical microcircuit model. However, some simulation parameters dif-
fer with respect to the validation workflow of the cortical microcircuit. For each
set of simulations, we performed 10 simulations using different seeds for random
number generation. The pre-simulation time is set to 500ms as well, however, we
simulated 10 s of biological activity, using a simulation time step of 0.1ms. The
reason for the lower number of simulations and the shorter time of the simulation
of the network dynamics is mainly linked to technical bottlenecks, mostly related
to the limited compute time available to perform the simulations and the amount
of data to be analyzed to produce the validation. Indeed, such a large-scale net-
work, with about 4 million neurons and 24 billion synapses, requires an MPI-GPU
cluster to be simulated, and in the case of these simulations, we opted for a simu-
lation using 32 compute nodes, each equipped with a GPU device. Details on the
computing platform used to perform the simulations will be provided in the next
chapter.
As mentioned in Section 4.3, the multi-area model can exhibit two activity states:
a stationary ground state with relatively low firing rate variability and a metastable
state, more realistic and with an increase in the rate fluctuation and inter-area in-
teractions. As a reference, Figure 5.4 shows the raster plot of two of the 32 areas
of the model to show the difference in the spiking activity between these states.

Figure 5.4: Raster plots for the areas V1 and V2 of the multi-area model when the
network is in the ground state (A) and in the metastable state (B) simulated using
NEST. Figure adapted from [2].
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As can be seen, raster plots of the ground state of the model show a behavior
without significant changes in the network activity, whereas the metastable state
is quite the opposite. It should be noted that the only difference between the
two states of the model is the strength of the cortico-cortical synapses: when the
strength is the same with respect to the intra-area synapses the model is in its
ground state, whereas the metastable state has the strength of the cortico-cortical
connections increased.
For the purpose of this study, we validated both the ground state and the metastable
state of the model. We computed the distributions of firing rate, CV ISI, and
Pearson correlation for each population of the model, so that for each state we
extracted a total of 762 distributions (254 distributions per statistical measure).
Distributions were smoothed through the KDE with a Gaussian kernel using a
bandwidth driven by the Silverman method. As explained in the previous section,
such a task can be done by the Seaborn violinplot function, which is useful to
compare at first glance distributions obtained, in this case, using NEST and NEST
GPU.
Figure 5.5 represents the violin plots of firing rate, CV ISI, and Pearson correlation
obtained from a simulation of the multi-area model using NEST and NEST GPU
for the first area of the model (i.e., the V1) in the ground and metastable states.
This is depicted as a sample, however, the distributions for all the populations and
areas of the model are shown in Appendix B.
The distributions of NEST and NEST GPU are barely indistinguishable when sim-
ulating the ground state of the multi-area model.
In contrast, in the distributions of metastable state of the model, we can notice,
apart from higher rates and variability indicated by the values of the statistical
distributions, a larger difference between NEST and NEST GPU distributions, so
that the distributions are not indistinguishable as in the case of the ground state.
However, we have to consider that, in such a state, even a change of the seed for
random number generation can lead to a large variability with respect to what we
observe in the ground state. To make this clear, Figure 5.6 and 5.7 show the distri-
butions of firing rate, CV ISI, and Pearson correlation just for two populations of
the area V1 of the model in both the ground state and the metastable state. NEST
and NEST GPU distributions are shown not using the violin plot function but us-
ing our analysis workflow that produces smoothed distributions without employ-
ing the Seaborn violinplot function. Moreover, to underline the variability due
to the change of seed, here we show distributions averaged over the 10 seeds of
random number generation employed, together with a shading representing the
standard deviation of the mean.
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Figure 5.5: Violin plot of the distributions of firing rate, CV ISI, and Pearson cor-
relation extracted during a simulation of the multi-area model of the ground state
(A, B, C) and the metastable state (D, E, F) for the area V1. Simulations are per-
formed on NEST (orange distributions) and NEST GPU (sky blue distributions).
The Central dashed line represents the median of the distributions, and the other
two dashed lines represent the interquartile range.
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Figure 5.6: Ground state distributions of firing rate (A,B), CV ISI (C,D) and Pear-
son correlations (E,F) for the populations L4E and L4I of the area V1 of the multi-
area model. Distributions are averaged over 10 simulations with NEST (orange
line) and NEST GPU (sky blue dotted line). Sky blue and orange shading repre-
sents the standard deviation of the distributions. Figure adapted from [2].
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Figure 5.7: Metastable state distributions of firing rate (A,B), CV ISI (C,D) and
Pearson correlations (E,F) for the populations L4E and L4I of the area V1 of the
multi-area model. Distributions are averaged over 10 simulations with NEST (or-
ange line) and NEST GPU (sky blue dotted line). Sky blue and orange shading
represents the standard deviation of the distributions. Figure adapted from [2].

As can be seen, metastable state simulations have a higher variability even when
the seed is changed using the same simulator. In this regard, the usage of EMD
to compare the fluctuations when using the simulators can be particularly useful,
since it is not trivial to ensure the compatibility between NEST and NEST GPU
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when having distributions qualitatively different. Thus, having 2 sets of NEST
simulations and a set of NEST GPU simulations using 10 different seeds for ran-
dom number generation, we perform 10 pairwise comparisons between NEST and
NEST GPU and 10 comparisons between the two sets of NEST simulations. The
EMD values related to these comparisons are then collected in box plots and plot-
ted side by side for a more effective comparison of the fluctuations driven by the
usage of a different seed and the ones driven by the usage of a different simulator.
Figure 5.8 shows the EMD box plots for the comparison of, respectively, firing rate,
CV ISI, and Pearson correlation distributions for each population of area V1 of the
multi-area model in the case of ground state and metastable state simulations.
Figure 5.8 shows that the EMD values for the NEST-NEST GPU comparison are
distributed similarly to those for the NEST-NEST comparison, meaning that the
differences that arise due to the choice of the simulator are statistically similar to
those between NEST simulations with different random number generator seeds.
Thus, using NEST GPU instead of NEST (with different random seeds) does not
add variability compared to using different random seeds with the same simula-
tor. As a reference, only the results for the area V1 of the model are shown in
this figure, however, the EMD box plots for all the populations and areas of the
model are shown in Appendix B. This is a further indication that NEST and NEST
GPU yield statistically closely similar results. EMD values obtained by the com-
parison of the ground state distributions are significantly smaller than the EMD
values obtained for the metastable state. This is due to the increased fluctuations
in the latter state of the model. In some cases, whiskers for the NEST-NEST and
NEST-NEST GPU comparisons have different extents. This may be related to long-
tailed distributions of the corresponding activity statistics. Indeed, differences in
the tails of the distributions caused by only a few data points can lead to large
differences in EMD values because the probability mass needs to be moved over
large distances to turn one distribution into another. Moreover, each EMD box is
only formed by 10 values of EMD, since each set of simulations comprises 10 sim-
ulations. Indeed, a larger amount of data would decrease the differences between
the box plots shown, however, such a work would need a considerable amount
of computed time which can be reduced by future hardware and developments of
the library.
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Figure 5.8: Earth Mover’s Distance between distributions of firing rate, CV ISI
and correlation of the spike trains obtained from the area V1 of the model in the
ground state (A, B, C) and the metastable state (D, E, F) simulated with NEST
and NEST GPU. EMD boxes are obtained comparing NEST using different seeds
(NEST-NEST, orange) and NEST and NEST GPU (NEST-NEST GPU, sky blue). The
high variability of the metastable state can be evidenced by the large difference in
the scale of the plots (A-C) and (D-F).
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Chapter 6
NEST GPU performance evaluation

Summary

Here, NEST GPU performance is evaluated using different hardware and
parallel configurations. First of all, benchmarks on the simulation of the
cortical microcircuit model are presented, with a focus both on the network
construction and on the simulation of the network dynamics. Then, per-
formance on the simulation of the multi-area model on an MPI-GPU cluster
is discussed. Finally, the scaling performance of the simulator is shown us-
ing the balanced network model with a different number of neurons and
synapses.
Benchmarks oriented toward the estimation of the network construction
time on NEST GPU are performed together with Jose Villamar, a PhD stu-
dent at the Institute of Neuroscience and Medicine (INM-6) of the Jülich
Research Center (Germany).

6.1 Phases of the simulation

To properly evaluate the performance of the library we have to distinguish at least
two phases of the overall simulation time (or time-to-solution): network construc-
tion and simulation. The network construction phase handles all the steps until
the actual simulation of the network dynamics starts, with the latter handled by
the simulation phase. To go more into detail, the network construction phase is
characterized by the following stages:

• initialization, which is a setup phase in the Python script that imports mod-
ules, sets the parameters, etc;

• node creation, which instantiates the neurons and the devices of the network
model;

• node connection, which instantiates the connections between the network
nodes;
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• calibration, a preparation phase in which connections are properly ordered
and organized suitably for the spike delivery algorithm, and spike buffers
and spike arrays are initialized.

In the previous version of NEST GPU and in the prototype library NeuronGPU, the
calibration phase was also used to move the data from RAM to GPU memory, since
the network construction phase was done at the CPU level and then copied to
GPU. However, the novel algorithm proposed in [4] directly performs the network
construction phase on the GPU device, avoiding the copy operation.
As the network construction phase, also the simulation phase can be divided into
subtasks, which are:

• delivery, which represents the time for local spike handling and delivery;

• communication, which describes the time for remote (i.e., through MPI) spike
handling and delivery. This subtask is present only for multi-GPU simula-
tions;

• collocation, which describes the time needed for preparing the MPI send
buffers (ergo is present only in multi-GPU simulations);

• update, representing the time needed to update the dynamics of neurons and
synapses;

• other, which is a general subtask that collects minor contributions to the
simulation time that do not belong to the previous subtasks.

6.2 Simulations of the cortical microcircuit model

After having validated NEST GPU on the simulation of the cortical microcircuit
model in Section 5.2, here we evaluate the performance of the library. Simulations
of such a network model are usually performed on a single GPU since the full-scale
model easily fits the GPU memory of relatively recent GPU cards, and even high-
end laptops can simulate the model within a reasonable time-to-solution.
Here we divide the performance evaluation on the simulation of the cortical mi-
crocircuit into two subsections to distinguish between the performance evaluation
of the network construction phase and the simulation of the network dynamics.

6.2.1 Network construction time performance

The network construction phase is an "intensive property" of the overall simula-
tion, meaning that it does not depend on the biological time we want to simulate.
Thus, an appropriate time for simulating the dynamics would lead to a minor
contribution of this time to the overall simulation time. However, it should not
be considered as a simple overhead not worthy to be optimized. Indeed, this
phase can have a significant time contribution in certain applications such as pa-
rameter scans, in which several simulations are needed to be tested and thus a
non-optimized network construction phase would strongly condition the overall
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time.
In [4] we tested the new network construction algorithm able to construct the
network at runtime on GPU. We validated the new algorithm, which currently can
only be applied to single-GPU simulations, on the simulation of the cortical micro-
circuit model. While in the previous version of NEST GPU the network construc-
tion depended on the CPU of the workstation, now this time depends uniquely on
the GPU card employed (as the simulation time).
To evaluate the performance at this stage, we used different systems employing
different NVIDIA GPU cards. The table below fully describes the hardware these
systems are equipped with.

System CPU GPU
JUSUF cluster

(node)
2× AMD EPYC 7742, 2× 64

cores, 2.25 GHz
NVIDIA V100, 1530 MHz, 16 GB

HBM2e, 5120 CUDA cores
JURECA-DC

cluster (node)
2× AMD EPYC 7742, 2× 64

cores, 2.25 GHz
NVIDIA A100, 1410 MHz, 40 GB

HBM2e, 6912 CUDA cores
Workstation 1 Intel Core i9-9900K, 8 cores,

3.60 GHz
NVIDIA RTX 2080 Ti, 1545
MHz, 11 GB GDDR6, 4352

CUDA cores
Workstation 2 Intel Core i9-10940X, 14 cores,

3.30 GHz
NVIDIA RTX 4090, 2520 MHz,
24 GB GDDR6X, 16384 CUDA

cores

Table 6.1: Hardware configuration of the different systems used to evaluate the
performances. Cluster information is given on a per-node basis.

First of all, we want to compare the performance of the new algorithm of network
construction of NEST GPU with the previous one. We call NEST GPU onboard the
version of NEST GPU which implements the novel algorithm since all the phases
of the simulation take place on the GPU card. We call then NEST GPU offboard
the previous version of the library for which the network construction phase was
handled by the CPU and then the network was copied into the GPU memory for
the simulation of the network dynamics.
For the comparison, we performed 10 simulations using different seeds for every
system configuration shown in Table 6.1. Times are extracted using Python timers,
in particular using the function perf_counter_ns of the time module, which re-
turns each time measured in nanoseconds, i.e., the best possible resolution at
Python level.
Figure 6.1 directly compares the two network construction approaches using the
different computing systems described in Table 6.1.
As can be seen, the novel method for network construction directly on GPU mem-
ory outperforms the method applied in the previous version of the library, granting
a speed-up of two orders of magnitude. With this method, the full-scale cortical
microcircuit model can be constructed in less than a second both on consumer-
grade GPUs and data center GPUs.
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Figure 6.1: Comparison of the network construction phase for the two versions
of NEST GPU in the simulation of the cortical microcircuit model. Simulations
are performed on different hardware configurations, here indicated with the GPU
device they equip. Error bars show the standard deviation of the time needed for
network construction over ten simulations using different seeds. Figure adapted
from [4].

Additionally, we also compared the performance of the novel algorithm with the
CPU-based simulator NEST (version 3.3 [117]) and the GPU-based GeNN [83]
(version 4.8.01). In particular, the GeNN simulator differs in terms of the net-
work construction approach from NEST GPU since it adopts a code-generation
approach. Thus, GeNN code has to be generated and compiled before execution.
In this simulator, the network construction phase can be decomposed into the fol-
lowing subtasks:

• model definition, which defines neurons, devices, and synapses of the net-
work;

• building, which generates and compiles the simulation code;

• loading, which allocates memory and instantiates the network on the GPU.

Also, in this case, the time to complete the subtasks is measured through Python
timers. Regarding NEST, the network construction is done at runtime as in NEST
GPU, with analogous network construction subtasks. Figure 6.2 shows the net-
work construction time for NEST GPU, NEST, and GeNN using different hardware
configurations.
As can be noticed, NEST GPU results faster in the network construction with re-
spect to NEST, and also to GeNN. However, it should be noted that the building
phase of GeNN, related to code creation and compilation, take place only if code
has not been generated and compiled or when network parameters have to be

1https://github.com/genn-team/genn/releases/tag/4.8.0
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Figure 6.2: Performance comparison of the network construction phase for dif-
ferent simulators and hardware configurations on the cortical microcircuit model.
Data for NEST GPU (onboard) is the same as in Figure 6.1. (A) Network construc-
tion time of the model in linear scale for different simulators and hardware config-
urations. (B) as in A but with logarithmic y-axis scale. In both panels, the building
phase of GeNN is placed on top of the bar, breaking with the otherwise chrono-
logical order, because this phase is not always required and at the same time, this
display makes the shorter loading phase visible in the plot with the logarithmic
y-axis. Error bars show the standard deviation of the overall network construction
phase over ten simulations using different random seeds. Figure from [4].
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changed. If these are not the cases, this phase is not present, making the network
construction times of NEST GPU and GeNN compatible. Nonetheless, NEST GPU
approach works on runtime, so the time for code compilation is not needed any-
way, increasing the flexibility of this phase.
Moreover, Figure 6.2 shows the performance for network construction when, in
NEST and NEST GPU, external stimulation of the model is driven by Poisson spikes
generators. Indeed, the NEST and NEST GPU implementations can have this kind
of device or DC input as external stimulation. However, the network construction
times obtained using the DC input in NEST and NEST GPU are similar to the one
shown in the figure.
In summary, the new network construction of NEST GPU is able to achieve state-of-
the art performance in the network construction of networks that can be simulated
on single GPUs. Indeed, NEST GPU network construction times are compatible
with code generation-based simulation codes such as GeNN. Currently, the major
limitation of this algorithm is that it can be employed only for single-GPU sim-
ulations, however, an extension for the algorithm to multi-GPU simulations is in
development. A discussion about the idea behind this extension of the algorithm
and how should it work is presented in the outlook of this thesis.

6.2.2 Simulation performance

Evaluating the simulation performance is important to provide an efficient simu-
lation code: indeed, codes that run at realtime are fundamental for several appli-
cations, such as robotics and studies of large-scale models oriented towards the
study of cognitive processes and brain development in general. As a normal prac-
tice, when evaluating simulation performance spike recording is disabled. Differ-
ently from the network construction phase, the simulation phase is an "extensive
measure", meaning that the length of the wall-clock time depends on the amount
of biological time that has to be simulated. In order to provide a measure to assess
the simulation speed we use the real-time factor (RTF), defined as

RTF =
Twall

Tmodel
(6.1)

where Twall is the wall-clock time, i.e., the time needed for the simulator to com-
plete the simulation of the network dynamics, whereas Tmodel is the biological time
that is simulated.
Here we evaluate the performance of the simulation of the network dynamics for
NEST GPU (onboard) on the simulation of the cortical microcircuit model. To sim-
plify the notation, from now on we will drop the term "onboard" so that for NEST
GPU we refer to the most recent version of the library.
Since this model was the most tested one when optimizing the library, here we can
provide benchmarks using different versions of the library. In particular, we will
focus on the simulation of the model using the Poisson signal generators as exter-
nal stimulation. Indeed, there is a relevant difference in the simulation time when
Poisson signals or DC input are employed for external stimulation, with the latter
leading to the best performance. However, since a stimulation through Poisson-
like spike trains is the most plausible from a neuroscientific point of view, the plot,
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if not specified, will show the performance when these devices are employed on
NEST and NEST GPU simulations.
To show the improvement of the library over the last few years, Figure 6.3 shows
the simulation time of the current version of NEST GPU and the prototype library
NeuronGPU using the different hardware systems shown in Table 6.1.
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Figure 6.3: Real-time factor of cortical circuit model simulations for NEST GPU
(amber) and NeuronGPU (dark red). Here, Tmodel = 10 s and 10 simulations for
each hardware configuration are performed. Error bars show the standard devia-
tion calculated over the 10 simulations.

As can be seen, NEST GPU library has been optimized in the simulation phase,
with improvements that span from 55% to 75% with respect to NeuronGPU, the
prototype library introduced in [1]. This improvement is mainly due to an op-
timization of the CUDA synchronous calls in the NEST GPU code, which were
removed when unnecessary. This led to a removal of the latency due to the syn-
chronization between CUDA threads during the simulation phase which were not
necessary for performing simulations correctly. This work was done with the help
of NVIDIA developers in the context of a GPU hackathon, during which I and the
rest of the NEST GPU team were involved in several optimizations of the GPU code
of the library. In that context, we also focused on the implementation of multiple
algorithms to perform nested loops on GPU code in the most efficient way possi-
ble. Indeed, part of the performance improvement is also due to the choice of a
more efficient algorithm for this operation. In this regard, further work is needed
to evaluate the most efficient algorithm to perform this task and, more in general,
optimization of the library using techniques such as performance profiling will be
the object of future work to further improve NEST GPU performance. This topic
will be discussed in the outlook of this thesis.
Together with the comparison of the results of the spiking activity, we also com-
pare the performance of NEST and NEST GPU. Moreover, we also perform a com-
parison between NEST GPU and other GPU-based simulators such as GeNN [83],
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which has established itself as one of the most used GPU-based simulation codes.
In particular, in [86] the GeNN implementation of the cortical microcircuit model
was presented, thus we decided to compare the two simulators in the simulation
of this model. Indeed, results changed over the last years: Figure 6.4 shows the
results of the comparison obtained in [1] and the one obtained in [4] for different
versions of the GPU libraries.
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Figure 6.4: Real-time factor using different NVIDIA GPUs for different GPU-based
simulation codes. (A) real-time factor of the prototype library NeuronGPU (red)
and GeNN 3.2.0 (navy), from [1]. (B) real-time factor of the most recent version
of NEST GPU (amber) and GeNN 4.8.0 (sky blue). Data for NEST GPU is the same
as in Figure 6.3.

As can be seen, panel A shows that, using the same GPU hardware, NeuronGPU
was able to outperform GeNN (version 3.2.0 2), whereas in the current version of
the libraries (see panel B), GeNN performs the simulation of the cortical microcir-
cuit faster than NEST GPU.
However, simulations with NEST GPU here use Poisson signal generators as ex-
ternal input. Indeed, using DC input can lead to a remarkable speed-up of the
simulation. GeNN employs a different mechanism for external stimulation, which
mimics incoming Poisson spike trains through a current directly applied to each
neuron. For this reason, it is interesting to compare both the NEST GPU imple-
mentations with Poisson spike and the DC input-driven stimulation with the GeNN
code.
To represent the current state-of-art for the simulation of the cortical microcircuit
model on conventional computing architectures, Figure 6.5 represents the real-
time factor for NEST GPU, GeNN 4.8.0, and NEST. The NEST (GPU and CPU)
performance is measured both when employing the Poisson spike generators and
DC inputs as external stimulation.

2https://github.com/genn-team/genn/releases/tag/3.2.0
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Figure 6.5: Real-time factor using different CPU-based and GPU-based simulation
codes, with the model employing different external stimuli; i.e., Poisson spike
trains (amber), DC input (sienna), or the one designed by GeNN (sky blue).
(A) real-time factor of different versions of NEST using different hardware and
parallelization approaches. Data for NEST 3.3 from [4], data for NEST 2.14.1
from [73]. (B) real-time factor of NEST GPU and GeNN 4.8.0 using different
NVIDIA GPUs. Data from [4].

To provide more detail on the NEST performance, the one of NEST 3.3 is presented
on [4] and uses a single compute node of the HPC cluster JURECA-DC [119]
(see also Table 6.1), exploiting its 128 cores by 8 MPI processes each running 16
threads. The performance achieved using NEST 2.14.1 [120] is from [73] and is
obtained using two nodes equipped with two AMD EPYC Rome 7702 with 64 cores
each, with 2 MPI processes per node. This result is, at the time of writing, the best
result achieved by NEST in the simulation of this model.
Figure 6.5 shows that GPU-based performances are all below real-time, with the
best results achieved by GeNN or by NEST GPU when the external stimulation is
driven by a DC input. It is also interesting to note that data center GPUs such as
the NVIDIA V100 and the NVIDIA A100 show performance compatible (or even
slower) with respect to recent consumer GPUs such as the RTX 2080Ti and the RTX
4090. In particular, the remarkable results on the latter can be related to the higher
clock speed of this GPU card. Moreover, NEST GPU performs the computation
using single-precision floating point (FP32), which explains the fact that data-
center GPUs such as the A100, with better performance than consumer GPUs on
double-precision floating point operations, show similar performance compared
to RTX 2080. A further investigation of the relationship between the performance
and the specifications of the GPU device will be the object of future work.

Gianmarco Tiddia 73 Part II



CHAPTER 6. NEST GPU PERFORMANCE EVALUATION

6.3 Simulations of the multi-area model

Here we present the performance evaluation of the multi-area model implemen-
tation for NEST GPU. The network is comprised of 32 areas, each one designed
similarly to the cortical microcircuit. NEST GPU simulations were performed us-
ing the JUSUF computing cluster [121], whereas NEST simulations were done on
JURECA-DC [119]. See Table 6.1 for the specifications of each node of these com-
puting clusters.
Since at most one of the model areas can be simulated on a single NVIDIA V100
(i.e., the GPU card with which JUSUF nodes are equipped), we decided to paral-
lelize the simulation as follows: we employ 32 nodes equipped with a GPU each,
with a single MPI process per node. In this regard, we decided to simulate the
model so that each area is simulated in a single MPI process, i.e. in a single GPU
card.
Such an approach is possible thanks to the locality exploitation of NEST GPU,
which enables the creation of entire neuron populations in a defined MPI process.
Indeed, this is one of the major differences with respect to NEST, since the CPU
code adopts a round-robin approach to evenly distribute the neurons across all the
MPI processes. Indeed, this approach, adopted also in [92], can be significantly
advantageous for multi-area models such as the one simulated here, since the den-
sity of inter-area connections greatly exceeds the density of intra-area connections.
From a simulation point of view, this means that simulating each area in the same
MPI process can greatly reduce the number of spikes that have to be sent to other
areas of the model, thus reducing the compute load of MPI communication, which
typically incurs higher overhead compared to intra-node communication.
To evaluate the performance of the simulation of this model, we simulated the
ground state and the metastable state, without recording the spikes. While we
employed 32 compute nodes with 1 MPI process each for the NEST GPU simula-
tions, we performed a strong scaling using a variable amount of compute nodes
for the NEST (version 3.0 [122]) simulations, finding that the fastest performance
was achieved when simulating the model on 32 nodes of JURECA-DC, with 8 MPI
processes per node and 16 threads per task. The strong scaling was done using
the benchmarking framework beNNch [123].
Regarding the version of NEST GPU employed, as previously mentioned, the most
recent version of NEST GPU can not be used since it employs the network construc-
tion algorithm to construct the network in GPU memory, which has not yet been
implemented for multi-GPU simulations. Moreover, the version used here version
still differs from the one previously called NEST GPU (offboard), since it lacks of
the optimization mentioned in the previous section regarding asynchronous calls.
This has the disadvantage of increasing the simulation time, but has the advantage
of providing the exact times for the simulation subtasks, which the current version
is still not able to provide3. This way, we can also evaluate the amount of time
taken by each stage of the simulation, which can be advantageous when compar-
ing different approaches for network simulation across different MPI processes.

3A solution for this issue is currently object of study from me and the rest of the NEST GPU
team.
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Figure 6.6 shows the real-time factor for the simulation of the multi-area model
using NEST and NEST GPU.
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Figure 6.6: Real-time factor for ground and metastable state simulations of the
multi-area model using NEST and NEST GPU. The time taken by each simulation
subtask is averaged over the MPI processes and results are then averaged over 10
simulations using different seeds. Error bars show the standard deviation of the
overall performance across the 10 simulations. Adapted from [2].

As can be seen in Figure 6.6, NEST GPU is able to achieve, for the ground state,
a real-time factor of 6.5 ± 0.1, which is around 2.4 times faster than NEST. In the
metastable state, NEST GPU has a speed-up factor of 3.1 times with respect to
NEST, with a real-time factor of 15.3 ± 0.9. The longer simulation time taken for
the metastable state is explained by the higher firing rates and synchrony in this
state.
The main difference between the simulators appears in the time taken by spike
communication, evidencing the advantage of exploiting a neuron distribution among
MPI processes that takes into account spatial locality. Indeed, the round-robin dis-
tribution of neurons in NEST necessitates the communication between MPI pro-
cesses of a larger amount of data since also intra-area spikes have to be delivered
through MPI.
The relative contributions of the various phases do not differ strongly between the
ground and metastable states. The contribution of the communication of spikes
between different MPI processes for the metastable state of the model is around
8.0 s and 29.7 s per second of biological time for NEST GPU and NEST, respectively.
The contribution of update, delivery, and other operations, excluding the commu-
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nication of spikes between different MPI processes, is around 7.3 s for NEST GPU
and 18.0 s for NEST. We can therefore observe that the better performance of NEST
GPU compared to NEST is mainly due to a reduction in the communication time
of the spikes between MPI processes, although there is an improvement also in the
time associated with the update and delivery of local spikes.
Nevertheless, it could be argued that using this approach for simulating the areas
of the model would lead to an unbalanced distribution of compute load across
simulations, and thus to different simulation times. However, since MPI processes
are synchronized at the end of every simulation time step, the overall simulation
time shown by every MPI process is the same. Indeed, each MPI process shows
different times for the simulation subtasks, depending on the number of neurons
to be simulated or spikes delivered inside and outside the process, with latency
due to synchronization between the processes at every time step. The resulting
latency due to the difference between model areas is embedded in the Communi-
cation subtask.
For a better estimation of the subtask times in every MPI process, Figure 6.7 shows
the relative contributions to the total simulation time of the simulation subtasks
for each MPI process (i.e., model area).
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Figure 6.7: Relative contributions to the simulation time of the multi-area model
in the metastable state for every area (i.e. for every MPI process) in a NEST
GPU simulation. The latency due to the MPI synchronization is included in the
Communication subtask. Figure from [2].

We measured that, within a simulation, the contribution of the spike communi-
cation between the 32 MPI processes (i.e. the 32 areas of the model) can vary
up to 25% with respect to its average shown in Figure 6.6 and the contribution
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of the local spike delivery subtask shows comparable variations. The rest of the
subtasks (i.e. Collocation, Update, and Other) do not change significantly across
the MPI processes, as shown in Figure 6.7. Moreover, we also evaluate the amount
of spikes that have to be delivered through MPI by the multi-area model, as a frac-
tion of the total number of spikes delivered during a simulation.
Figure 6.8 shows that the vast majority of the spikes emitted in a second of biologi-
cal time are delivered within the same area, and only a small fraction of the spikes
is delivered to different areas because the inter-area connections represent only
a minority of the total connectivity of the model [89]. Therefore, the NEST GPU
neuron distribution, which exploits spatial locality, strongly reduces the number of
spikes that have to be communicated between MPI processes and thus contributes
to the overall simulation time reduction.
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Figure 6.8: Spikes delivered in a simulation of the full-scale multi-area model in
the metastable state. (A) Heatmap of the number of spikes delivered from each
area of the model for a second of biological time. The diagonal elements show
the total number of spikes fired by the neurons within the model area, whereas
the off-diagonal elements show the number of spikes delivered to different areas
of the model. (B) Fraction of spikes delivered to different areas of the model (i.e.
to different MPI processes), obtained with the ratio between the number of spikes
sent by a source area to every other area of the model and the total number of
spikes emitted by the source area neurons. Figure from [2].

In case of enabled spike recording using NEST GPU the simulation time increases
up to 5% when recording from all neurons. In these simulations, packing of
recorded spikes and transfer to the CPU memory is performed every 2000 sim-
ulation time steps (i.e. every 200ms of biological time). This overhead is strongly
dependent on the model simulated and the amount of GPU memory available.
Indeed, a larger GPU memory would support larger buffers of recorded spikes,
diminishing the frequency of copy operations from GPU memory to CPU memory.
Furthermore, the overhead can be reduced by recording spikes from only a frac-
tion of the neurons.
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Regarding the network construction phase, the algorithm employed by NEST GPU
is the one adopted by NeuronGPU. Indeed, simulations of this model reveal the
limits of the previous approach: the network, both in the ground and in the
metastable state, was constructed in around 955 s on NEST GPU (more precisely,
951±29 s for the ground state and 957±41 s for the metastable state), whereas the
same network was constructed by NEST in around 75 s (80±7 s for the ground state
and 69.5 ± 0.4 s for the metastable state). These results suggest that an extension
of the network construction algorithm proposed in [4] for multi-GPU simulation
can significantly reduce the time-to-solution when simulating a large-scale model
requiring an MPI-GPU cluster to be simulated. Indeed, preliminary tests suggest
that an MPI implementation of this algorithm can reduce the network construction
time to around 60 s, but additional work is required to validate this new implemen-
tation.

6.4 Simulations of the balanced network model: NEST
GPU scaling performance

In order to evaluate the scaling performance of NEST GPU, we used the balanced
network model described in Section 4.1. Indeed, the neurons or the connections
per neuron simulated can differ, with a scaling that preserves the average spiking
activity of the network. This way, we are able to have an idea about the times
taken by the simulator to perform simulations of networks with a certain number
of neurons and connections per neuron on a single GPU4.
In particular, here we evaluate the NEST GPU scaling on the simulation of the
balanced network model using Workstation 1 described in Table 6.1 (i.e., the one
with the NVIDIA RTX 2080 GPU). Among the compute systems used, this is the
most affordable one, and using a consumer-grade GPU which is not necessarily
the most performing device in the market can be of broader interest for users that
want to use this library on local systems.
The balanced network model is composed of AdEx neurons, which are integrated
using the fifth-order Runge-Kutta (5th-RK) method with adaptive step size. Usu-
ally, the adaptive step size for GPU simulators is not used, since GPU simulations
would largely benefit from fixed step size because of the SIMD parallelism. Indeed,
it is not obvious a priori that a GPU simulator would be faster than a CPU-based
code using this kind of integration method. Indeed, one of the next steps for the
simulation of AdEx models in NEST GPU would include the possibility of using
the 5th-RK method without the adaptive step size in order to speed-up simulations
with these neuron models.
To perform the scaling, we chose to simulate a network with 5000 (4000 excitatory
and 1000 inhibitory) connections per neuron. This is a reasonable number of con-
nections for a natural density network, which can span from a few thousand to
10000 connections per neuron. The cortical microcircuit model of [12], for exam-

4Having a similar evaluation for multi-GPU simulations is an object of current work; indeed,
we are currently implementing of the so-called HPC benchmark introduced in [124]. However, this
object will not be discussed in this thesis.
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ple, has on average 4000 connections per neuron and the multi-area model of [89]
has 6000 connections per neuron on average5. The total number of neurons spans
from 10000 to 130000. A greater amount of neurons can not be simulated for GPU
memory limits, which depends on the GPU device used for simulation (here, 11
GB). Figure 6.9 shows the weak scaling performance for the simulation of 1 s of
biological activity of the balanced network, which shows an average firing rate of
around 25Hz. The results are averaged over 10 simulations using different seeds
for random number generation.
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Figure 6.9: Scaling of the balanced network model for NEST GPU using an RTX
2080Ti GPU card. The network is simulated using a variable number of neurons
and 5000 connections per neuron. (A) Network construction time as a function of
the number of neurons simulated. (B) Real-time factor as a function of the number
of neurons. All the values are averaged over 10 simulations using different seeds.

As can be seen in Figure 6.9, the behavior of network construction and real-time
factor is approximately linear as a function of the number of neurons simulated.
Moreover, when comparing these results to the one obtained in the simulation of
the cortical microcircuit model (with around 80000 neurons), we notice that the
network construction is compatible with the data shown in Figure 6.1, whereas the
results of the real-time factor are different from the shown in Figure 6.5. Indeed,
this is due to a different firing rate of the neurons of the simulations and also to
the fact that the neuron models are different and, most importantly, integrated
using different techniques. However, in this regard, it is interesting to provide the
performance on a type of neuron model that is integrated differently that was not
used before in the simulations of the large-scale models treated here in this thesis.

5These are just rough estimations; indeed, each layer or model area has a different indegree.
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Chapter 7
How to model Working Memory: an
STP-driven spiking model

Summary

This chapter first introduces the synaptic theory of Working Memory. Then,
we present and describe the reproduction of the working memory spiking
network model with STP introduced in [23]. The model has been imple-
mented using the Python interface of the NEST simulator with the aim of
paving the way for further research oriented toward the study of the rela-
tionship between working memory and synaptic mechanisms.

7.1 Synaptic theory of Working Memory

As discussed in Section 2.1.1, Working Memory is a cognitive process that handles
information manipulation and storage for a short time. Indeed, this cognitive pro-
cess has a limited capacity, i.e., there is a limit on the number of items that can be
kept in memory in order to manipulate them, and this number varies depending
on the task that has to be performed [125–127]. The first computational models
rely on attractor network dynamics to explain how neural circuits are able to en-
code pieces of information for a short amount of time [31,32,94], and thus these
studies were all based on the fact that these items (or chunks) were only recalled
by the persistent spiking activity of a neuron population, making the population
converging to a high-rate attractor. This fact was also grounded by experimental
results on delayed-response tasks [28, 29], according to which the neural activ-
ity is enhanced during the delay. However, a mechanism based only on spiking
activity can be biologically expensive, and experimental observations suggested
also that the item can be kept in memory even after a brief interruption of the
enhanced neural activity during the delay [33]. Moreover, it was observed that
the higher activity during the delay takes place in the prefrontal cortex (PFC),
which shows an abundance of facilitating synapses with respect to other regions
of the brain [128]. In 2008, Mongillo et al. [23] proposed that working mem-
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ory can be sustained by a synaptic mechanism so that an item can be stored in
synaptic connections as an activity-silent event. The item can then emerge in a
spiking fashion after a small stimulation [129]. The synaptic theory of working
memory relies uniquely on short-term synaptic plasticity, and in particular on the
mechanism of facilitating synapses, described in Section 2.1, related to the neu-
rotransmitter and presynaptic calcium concentration dynamics. Facilitation leads
to a short-term enhancement of synaptic efficacy in synapses that were previously
utilized (i.e. triggered by an external input) and, this way, synapses encode the
item silently and retrieve it when a subsequent signal (called readout signal) is
injected.
To understand the mechanism underlying the activity-silent item upkeep, let us
consider a network formed by several neuron populations, each one able to en-
code a different item thanks to a previous learning process. When an external
signal targets a neural population increasing its spiking activity, the synapses con-
necting neurons of the targeted population remain facilitated for a time in the
order of the facilitation time constant τf . The connections between neurons inside
the pre-stimulated population are potentiated because of prior long-term Hebbian
learning, and also because of the STP modulation. On the other hand, connec-
tions between neurons belonging to other populations are relatively weaker be-
cause they lack short-term potentiation, while the connections between neurons
belonging to different selective populations are weaker because they have not been
previously potentiated by long-term Hebbian learning. A similar effect could be
driven by random fluctuation of neuron activity, inducing an autonomous winner-
take-all (WTA) mechanism, according to which the selective excitatory population
with the highest firing rate stimulates the inhibitory population eliciting a sup-
pression of the spiking activity of the other excitatory populations [130] due to
the global inhibition. Indeed, the global inhibition is provided by the non-specific
inhibitory connectivity, in agreement with experimental observations [131]. This
mechanism decreases the amount of available neurotransmitters in the presynaptic
terminal and increases the calcium concentration across the pre-stimulated pop-
ulation. Since the neurotransmitter dynamics is faster than the calcium one hav-
ing synaptic facilitation, the connection strength becomes large enough to trigger
again the WTA mechanism. This process can be reactivated periodically, and the
period of reactivation is related to the neurotransmitter dynamics and in partic-
ular to the time constant of the synaptic depression τd. This oscillatory behavior
can last as long as the net synaptic efficacy remains above a critical level, with a
spiking outcome that strongly depends on the input provided to the network.
Indeed, such a mechanism has also a lower metabolic cost than a mechanism re-
lying on persistent activity. As shown in [132] and [133], only about 8% of the
ATP consumption for a neuron emitting at 4Hz is related to the mechanism STP is
inspired from, whereas spike transmission accounts for around 50%, meaning that
activity-silent mechanisms are considerably more efficient from an energy con-
sumption point of view. Moreover, since the items are stored in a synaptic fashion,
a small input is enough to retrieve the memory.
The work of Mongillo was supported by spiking network simulations of integrate-
and-fire neurons. In [3] we reproduced the results shown in that work, with
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qualitative agreement, using the NEST simulator (version 3.1) [134]. The next
section describes the spiking network model in detail, showing the results of the
simulations and the tests performed on the network model. More details on the
compatibility of the results with experimental observations are also provided.

7.2 Spiking model and reproduction of the results

7.2.1 Model description

For a better understanding, here is reported the system of differential equations
of STP, as described in Section 2.1. Being x the normalized amount of available
resources into the presynaptic terminal and u the fraction of resources used in a
spike emission, and considering a synapse connecting the presynaptic neuron i
and the postsynaptic neuron j, STP is described by

dui,j

dt
= −ui,j − U

τf
+ U(1− ui,j)

∑
s

δ(t− t(i)s )

dxi,j

dt
=

1− xi,j

τd
− ui,jxi,j

∑
s

δ(t− t(i)s )

(7.1)

where δ(·) is the Dirac delta function, U modulates the increase of calcium con-
centration due to the spike incoming into the presynaptic terminal and the sum
is over the spike times t

(i)
s of the presynaptic neuron i. The synaptic modulation

takes place during the spike emission, so that

Ji,j(t) = J (abs)
i,j ui,j(t− δ̂i,j)xi,j(t− δ̂i,j) (7.2)

where J (abs)
i,j is the absolute synaptic efficacy for the synapse connecting neurons i

to neuron j and δ̂i,j is the synaptic delay. The synaptic efficacy is described by the
product Jux.
Now the network model proposed in [23] and reproduced in [3] can be described.
A simplified scheme of the spiking network architecture is depicted in Figure 7.1.
The network is composed of NE excitatory and NI inhibitory leaky integrate-and-
fire (LIF) neurons with exponential postsynaptic currents. The sub-threshold dy-
namics of the LIF neuron model is described by the differential equation

τm
dVj

dt
= −Vj +Rm(I

exc
j + I inh

j + Iext,j) (7.3)

where τm is the membrane time constant, Vj is the neuron’s membrane potential,
Rm is the membrane resistance, Iexc

j and I inh
j represent the excitatory and inhibitory

synaptic current received as input from the connections within the other neurons
of the network and Iext,j represents the external input to the network.
The network external input is modeled with Gaussian white noise currents defined
by the following

Iext,j(t− δ̂j) = µext + σextGk for k∆tng ≤ (t− δ̂j) ≤ (k + 1)∆tng (7.4)
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Figure 7.1: Schematic representation of the network. Colored circles represent
excitatory neurons of different selective populations (i.e., populations that code for
a certain item), whereas the black open circles represent excitatory neurons of the
non-selective population. Black circles represent inhibitory neurons. Strengthened
connections are represented by thicker black lines. Figure from [3].

In particular, the noise is approximated by a piecewise constant current with mean
µext and standard deviation σext, with constant current during time intervals of
length ∆tng = 1ms. Denoting the index of the time interval with k, for each inter-
val the current is given by µext + σextGk, with Gk a random number extracted from
a standard Gaussian distribution. The term δ̂j indicates the delays.
The synaptic current shown in Equation (7.3) is the sum of the contributions given
by the connections with the neurons of the network, and it is characterized by exci-
tatory and inhibitory contributions defined as Iexc

j (t) and I inh
j (t) respectively. Thus,

the synaptic input for a neuron j of the network, with exponential postsynaptic
currents, is given by the following equations for excitatory and inhibitory currents
respectively:

τexc
dIexc

j

dt
= −Iexc

j +
∑
i

αJi,j(t)
∑
s

δ(t− t(i)s − δ̂i,j)

τinh
dI inh

j

dt
= −I inh

j +
∑
i

αJi,j
∑
s

δ(t− t(i)s − δ̂i,j)

(7.5)

where i is the index of the presynaptic neurons targeting the neuron j. τexc and τinh

represent the time constant of the excitatory and inhibitory synaptic currents re-
spectively. In this model τexc = τinh = 2ms. δ̂i,j is the synaptic delay for the synapse
connecting neurons i and j. All the delays are uniformly distributed between
0.1ms and 1.0ms. The time dependence of the synaptic efficacy Ji,j is only due
to short-term plasticity modulation and it is described in Equation (2.3), whereas
synapses not modulated by the STP dynamics have fixed values of Ji,j. Since in
this model, only the connections between excitatory neurons employ short-term
plasticity, the connections with inhibitory neurons do not show a time-dependent
synaptic efficacy. In addition, since the synaptic efficacies J (abs)

i,j are expressed in
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mV, a factor α is needed in order to be consistent with the units of Equation (7.5).
This term derives the variation of current input needed to elicit a unit of variation
of the postsynaptic potential, and has been derived in Section 1.4 (see Equation
(1.19)).
The excitatory neurons are organized in p = 5 selective populations, each of which
including a fixed fraction of neurons, and a non-selective population that includes
the rest of the excitatory neurons of the network. Selective populations code for a
certain item so that when an item has to be recalled in the model, the respective
selective population is targeted by an additional stimulus. In the base model, the
selective populations of excitatory neurons have no overlap, so a neuron can not
belong to different selective populations. However, in an extension of the model, it
is possible to simulate it with overlapping selective populations. In such a frame-
work, the neurons belonging to each selective population are randomly chosen
from the whole excitatory population, enabling the possibility of having neurons
belonging to more than one selective population.
Regarding network connectivity, short-term plasticity is implemented in all the
excitatory-to-excitatory connections using the same time constants in order to
show synaptic facilitation. These connections are thus characterized by the STP
variables x and u and a weight J , that represents the absolute synaptic efficacy.
The weights of the connections within excitatory neurons belonging to the same
selective population are assigned a potentiated value Jp, emulating the result of
prior long-term Hebbian learning. On the other hand, connections between exci-
tatory neurons belonging to different selective populations, or linking a selective
population with the non-selective one, are set to a baseline value Jb. The rest of
the excitatory-to-excitatory connections have the baseline synaptic efficacy except
for the 10% of them, randomly chosen, that show the potentiated value in or-
der to provide additional "noisy" internal input. This percentage is expressed in
the model by a factor γ. While the excitatory-to-excitatory connections show STP
dynamics, the other connections are static connections with hard-coded synaptic
weights. The overall connectivity is structured so that each neuron of the network
receives a fixed amount of connections from the network’s populations, both exci-
tatory and inhibitory, with a non-specific inhibitory connectivity. The possibility of
having more than one synapse with the same two neurons is also enabled.
The next tables describe, following [100] guidelines, the network model intro-
duced above, providing additional details on the network architecture and param-
eters.
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Summary
Populations excitatory population E , inhibitory population I
Connectivity sparse random connectivity
Neurons leaky integrate-and-fire (LIF)
Synapses linear input integration with exponential postsynaptic currents

(PSCs), short-term synaptic plasticity (STP) for connections be-
tween excitatory neurons

Input Gaussian white noise-like currents

Populations
Name Elements Size
E ≡ Ens ∪ Es∀s ∈
{1, . . . , p}

LIF neurons NE

Es∀s ∈
{1, . . . , p}

LIF neurons NE × f

Ens LIF neurons NE × (1− fp)

I LIF neurons NI

Neuron
Type leaky integrate-and-fire (LIF) dynamics
Description dynamics of membrane potential Vi(t) and spiking activity of neu-

ron i ∈ {1, . . . , N}:

• emission of kth (k = 1, 2, . . .) spike of neuron i at time t
(i)
k if

Vi

(
t
(i)
k

)
≥ θ

with spike threshold θ;

• reset and refractoriness:

∀k, ∀t ∈
(
t
(i)
k , t

(i)
k + τref

]
: Vi(t) = Vreset

with refractory period τref and reset potential Vreset;

• subthreshold dynamics of membrane potential Vi(t):

∀k, ∀t /∈
[
t
(i)
k , t

(i)
k + τref

)
:

τm
dVi(t)

dt
=

[
EL − Vi(t)

]
+RmIi(t)

with membrane time constant τm, membrane resistance Rm,
resting potential EL, and total synaptic input current Ii(t).

Table 7.1: Description of the network model (continues on next page).
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Connectivity (part 1)
Source Target Pattern
Es∀s ∈
{1, . . . , p}

Es’∀s′ ≡ s ∈
{1, . . . , p}

• random, independent; homogeneous in-degree KE,j =
fcEEspNE (∀j ∈ Es’);

• static synaptic weights Jp with STP modulation (∀j ∈
Es’);

• uniformly distributed spike-transmission delays δij ∈
[0.1, 1.0]ms (∀i ∈ Es, j ∈ Es’).

Es∀s ∈
{1, . . . , p}

Es’∀s′ ̸= s ∈
{1, . . . , p}

• random, independent; homogeneous in-degree KE,j =
fcEENE (∀j ∈ Es’);

• static synaptic weights Jb with STP modulation (∀j ∈
Es’);

• uniformly distributed spike-transmission delays δij ∈
[0.1, 1.0]ms (∀i ∈ Es, j ∈ Es’).

Es∀s ∈
{1, . . . , p}

Ens

• random, independent; homogeneous in-degree KE,j =
fcEENE (∀j ∈ Ens);

• static synaptic weights Jb with STP modulation (∀j ∈
Ens);

• homogeneous spike-transmission delays dij = d (∀i ∈
Es, j ∈ Ens).

Ens Ens ∨ Es∀s ∈
{1, . . . , p}

• random, independent; homogeneous in-degree KE,j =
cEE(1− fp)NE (∀j ∈ Es);

• static synaptic weights Jb with STP modulation (∀j ∈
Es);

• homogeneous spike-transmission delays dij = d (∀i ∈
Ens, j ∈ Es).

Table 7.1: Description of the network model (continues on next page).
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Connectivity (part 2)
Source Target Pattern
Es∀s ∈
{1, . . . , p}

I

• random, independent; homogeneous in-degree KE,j =
cIEfNE (∀j ∈ I);

• static synaptic weights JIE (∀j ∈ I);

• homogeneous spike-transmission delays dij = d (∀i ∈
Es, j ∈ I).

Ens I

• random, independent; homogeneous in-degree KE,j =
cIE(1− fp)NE (∀j ∈ I);

• static synaptic weights JIE (∀j ∈ I);

• homogeneous spike-transmission delays dij = d (∀i ∈
Es, j ∈ I).

I E

• random, independent; homogeneous in-degree KI,j =
cEINI (∀j ∈ E);

• static synaptic weights JEI (∀j ∈ E);

• homogeneous spike-transmission delays dij = d (∀i ∈
I, j ∈ E).

I I

• random, independent; homogeneous in-degree KI,j =
cIINI (∀j ∈ I);

• static synaptic weights JII (∀j ∈ E)

• homogeneous spike-transmission delays dij = d (∀i ∈
I, j ∈ I).

self-connections (“autapses”) and multiple connections (“multapses”) allowed

Table 7.1: Description of the network model (continues on next page).
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Stimulus
Type white noise-like Gaussian current
Description External current is given by a Gaussian white noise current, with

mean µX, standard deviation σX and constant current during time
intervals of length ∆tng. Denoting the index of the time interval
with k, for each interval the current is given by µX + σXGk, with
Gk a random number extracted from a standard Gaussian distri-
bution.

IX,i(t− δ̂i) = µX + σXGk for k∆tng ≤ (t− δ̂i) ≤ (k + 1)∆tng)

External stimulation such as the item loading signal and the read-
out signal is designed in the same way and modulated using a
contrast factor A so that the total current injected to the targeted
population has mean AµX.

Synapse: transmission
Type current-based synapses with exponential postsynaptic currents

(PSCs)
Description

• total synaptic input current of neuron i

Ii(t) = IE
i + I I

i + IX,i

• excitatory, inhibitory synaptic input currents

τE
dIE

i

dt
= −IE

i +
∑
i

αJi,j(t)
∑
s

δ(t− t(i)s − δ̂i,j)

τI
dI I

j

dt
= −I I

j +
∑
i

αJi,j
∑
s

δ(t− t(i)s − δ̂i,j)

where δ(t− t
(i)
s − δ̂i,j) represents the spike train considering

also the synaptic delay of the connections (δ̂). τE and τI are
the excitatory and inhibitory time constants and α is the PSC
amplitude (that gets the value of the synaptic weight in pA
in order to elicit a given depolarization of the membrane
potential);

• PSC amplitude (synaptic weight) α (see Equation (1.19)).

Table 7.1: Description of the network model (continues on next page).
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Synapse: plasticity
Type short-term synaptic plasticity (STP) for connections between ex-

citatory neurons
Description dynamics of synaptic weights Jij(t) ∀i ∈ E , j ∈ E:

∀Jij, given the absolute weight (Jb or Js in the model,

here J (abs) for simplicity) :

dui,j

dt
= −ui,j − U

τf
+ U(1− ui,j)

∑
s

δ(t− t(i)s )

dxi,j

dt
=

1− xi,j

τd
− ui,jxi,j

∑
s

δ(t− t(i)s )

Ji,j(t) = J
(abs)
i,j ui,j(t− δ̂i,j)xi,j(t− δ̂i,j)

where

• u(t) and x(t) are the STP variables, representing the normal-
ized concentration of calcium ions in the presynaptic termi-
nal and the normalized amount of neurotransmitters ready
for release, respectively;

• τd and τf are the time constant for short-term depression and
facilitation. In this model τf ≫ τd;

• U is related to the increase of calcium concentration due to
the spike incoming in the presynaptic terminal;

• δ̂ is the synaptic delay.

Initial conditions
Type STP parameters, membrane potential, input current
Description

• STP variables: xi,j(0) = 1.0, ui,j(0) = U ;

• membrane potential: Vi = 0.0mV ∀i ∈ E , I;

• input current IX,i = 0.0 pA ∀i ∈ E , I.

Table 7.1: Description of the network model.
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Network and connectivity
Name Value Description
f 0.1 fraction of neurons in a synaptic population
p 5 number of selective populations
cEEsp 0.2 connectivity level for neurons belonging to the same

selective population
cEE 0.2 connectivity level for other E→E connections
cIE 0.2 connectivity level for E→I connections
cEI 0.2 connectivity level for I→E connections
cII 0.2 connectivity level for I→I connections
NE 8000 number of excitatory neurons
NI 2000 number of inhibitory neurons

Neuron
Name Value Description
Vth 20mV spike threshold
EL 0mV resting potential
τm 15ms membrane time constant
Cm 250 pF membrane capacitance
Vreset 0mV reset potential
τref 2ms absolute refractory period

Synapse
Name Value Description
Jb 0.10 mV baseline weight (PSP amplitude) for excitatory to ex-

citatory synapses
Jp 0.45 mV potentiated weight of excitatory to excitatory

synapses
JIE 0.135 mV weight of excitatory to inhibitory synapses
JEI 0.25 mV weight of inhibitory to excitatory synapses
JII 0.2 mV weight of inhibitory to inhibitory synapses
γ0 0.0 fraction of potentiated synapses across different exci-

tatory sub-populations
δ̂ U(0.1, 1.0)ms synaptic delays uniformly distributed
U 0.19 baseline STP utilization factor
u U (initial) fraction of resources released for a spike
x 1.0 (initial) fraction of resources ready to be released
τf 1500.0ms facilitation time constant
τd 200.0ms depression time constant

Table 7.2: Model parameters (continues on next page).
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Stimulus
Name Value Description
ηE

X variable mean external current for excitatory neurons
ηI

X 20.5mV mean external current for inhibitory neurons
ΣE

X 1.0mV standard deviation of external current for excitatory
neurons

ΣI
X 1.0mV standard deviation of external current for inhibitory

neurons
Tcue 350.0ms item loading signal duration
Acue 1.15 item loading signal contrast factor
Treac 250.0ms readout signal duration
Areac 1.05 readout signal contrast factor
T period

reac 100.0ms periodic readout signal duration
Aperiod

reac 1.075 periodic readout signal contrast factor

Table 7.2: Model parameters.

Table 7.2 illustrates the synaptic parameters used in this spiking network model
to build the external stimuli. It should be noted that the external stimulus, mod-
eled as a Gaussian white noise current, shows mean ηext and standard deviation
Σext expressed in mV and not in pA. In [3] we derived1 that, given the mean µ
and standard deviation σ of a piecewise constant current injected to a neuron,
with standard deviation changing at fixed intervals of length ∆tng, the membrane
potential will show a mean η and the standard deviation Σ described as follows:

η = µ
Cm

τm

Σ =

√
2

τm∆tng
Cmσ

(7.6)

7.2.2 Results of the simulation

In this section, we present the results of the spiking network simulations per-
formed using the NEST simulator (version 3.1) [134].
The network is composed of 8000 excitatory and 2000 inhibitory LIF neurons with
exponential postsynaptic currents, whose dynamics are described by Equations
(7.3), (7.4) and (7.5) (see also Equations 1, 2, 4 and 5 in [135] and Equation
3 in [136]). The neuron model differs from the one employed in the original
work, as [23] employs a LIF neuron model with instantaneous rise and decay
times for postsynaptic currents. As shown in Tables 7.1 and 7.2, the excitatory

1We followed the derivation of the NEST Documentation, please see https:
//nest-simulator.readthedocs.io/en/v3.1/model_details/noise_generator.html?
highlight=noise_generator#Hans-Ekkehard-Plesser,-2015-06-25
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population is further divided into p = 5 selective populations of 800 neurons each
and a non-selective population that includes the rest of the excitatory neurons. All
excitatory-to-excitatory connections follow a STP dynamics whereas the rest of the
connections have fixed synaptic efficacies.
The simulations are performed using a time step of 0.05ms, with the system
of Equation (7.3) and Equation (7.5) integrated following the exact integration
scheme of [13] and assuming that the external current Iext,j is piecewise constant
over time intervals of width ∆tng. This is an additional difference with respect
to [23], in which both Equation (7.3) describing the neuron sub-threshold dy-
namics and Equation (2.2) describing the STP mechanism are integrated using the
Euler scheme. Indeed, the implementation here adopted is also different from the
NEST default implementation2. Further details on these differences are described
in Appendix C. In this model, the STP timescales are set so that the network shows
synaptic facilitation, in fact, τd = 200ms and τf = 1500 ms in agreement with the
parameters chosen in [23].
All the simulations begin with a time period of 3000ms in which only the back-
ground input is injected into the whole network in order to allow the network
to enter its baseline state illustrating spontaneous activity. This stimulation, as
well as all the other external signals, is created using the NEST noise_generator,
which injects a Gaussian white noise current as described in Equation (7.4). The
background input targets both excitatory and inhibitory neurons with different
mean current values. Later in this section, it will be shown how network behavior
can be modulated by changing excitatory background activity.
After the network reaches its spontaneous activity, an additional current, designed
as a Gaussian white noise current which is added to the background input, is in-
jected only into a selective population for a time Tcue = 350ms. As a result, an item
is loaded into the model. This signal, called item loading, increases the synaptic
activity of the target population and thus permits a temporary strengthening of
synaptic efficacies by changing the STP variables u and x across the connections of
neurons belonging to the target population. Thus, even after the end of the item
loading signal, the reloaded memory can be synaptically facilitated especially be-
cause of the slow decaying dynamics of the variable u. Figure 7.2 shows the
raster plot for two selective populations when an item is loaded in one of them,
having different values of background input. The values of the mean excitatory
background current (i.e., ηXE) used in Figure 7.2 are 22.7mV, 23.7mV and 24.1mV
respectively for the panels A, B and C.
As can be seen, the memory-specific response of the network depends on the back-
ground activity level of the excitatory neurons. This figure shows the raster plot of
two selective populations, one targeted by the additional current which re-loads
the item and a non-targeted one, together with the STP variables x and u averaged
over the connections outbound from the neurons of the targeted selective popu-
lation. In Figure 7.2A, to reactivate a memory, a supplemental external signal
targeting the entire excitatory population is given. Although this external signal
is nonspecific, only the population in which the memory was previously restored

2The NEST version provided with the synapse model used here can be found at https://
github.com/gmtiddia/nest-simulator-3.1.
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responds with the emission of a single synchronized activity, called population
spike. The network can also autonomously exhibit a memory-specific spiking ac-
tivity when a higher excitatory background current is injected (see Figure 7.2B
and 7.2C).

Figure 7.2: Raster plots of a subset of neurons of a targeted (green) and non-
targeted (black) selective population for different values of excitatory background
input. Averaged STP variables (x in red and u in blue) of the synaptic connec-
tions belonging to the target population are also shown. (Left) (A) The net-
work needs the injection of a nonspecific input (lighter gray shading) to show
a memory-specific response. (B) Increasing the background input, the network
autonomously reactivates the memory by showing periodic synchronized events.
(C) With a further increase in the background stimulus, the network shows an
asynchronous enhanced spiking activity of the re-loaded memory. In (B) and (C),
the network returns to its spontaneous state when background input diminishes.
(Right) Histograms representing the difference in firing rate between the delay
period (orange line at the bottom of the left panels) and the spontaneous state
for the selective population targeted by the item loading signal (sky blue line at
the bottom of the panels). In (A) the delay period is defined as the time between
the end of the item loading stimulus and the beginning of the nonspecific external
input, whereas in (B) and (C) is the time between the end of the item loading and
the decreasing of the external background input (here at 5.2 s). Figure from [3].
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In Figure 7.2B the targeted selective population shows an autonomous and syn-
chronous emission of population spikes. It should be noted that after each pop-
ulation spike the STP variable u increases and returns to similar values reached
at the end of the item loading signal injection, interrupting the exponential de-
crease due to the calcium removal mechanism and thus enabling a new popula-
tion spike to emerge. This behavior, together with the fast exponential growth
of available resources described by the variable x, leads to a new stable state for
the network together with the one representing spontaneous activity. To interrupt
the network persistent activity we set the excitatory background current to the
value of Figure 7.2A. In Figure 7.2C the background input is further increased,
and the network spontaneously shows an asynchronous higher rate activity. In
this state, the memory is maintained in both spiking and synaptic form since the
STP parameters reach stable values during the high activity state followed by a
population spike. As in the previously described state, the network could pass
from the memory-specific activity state to the spontaneous state by diminishing
the background input. Indeed, without the diminishing of the background input,
the network would continue to behave showing the asynchronous higher rate ac-
tivity or the synchronous emission of population spikes.
Moreover, we quantitatively estimate the difference in firing rate for the targeted
selective population between the delay period and the spontaneous activity state.
The difference in firing rate for a neuron population is obtained by measuring the
spike-count rate for each neuron of the population in two time intervals. Naming
rs the firing rate measured during the spontaneous activity state and rd the firing
rate measured during the delay period, the firing rate difference for a neuron i of
the population is

∆r(i) = r
(i)
d − r(i)s =

N
(i)
d

∆td
− N

(i)
s

∆ts
(7.7)

where N (i) is the number of spikes emitted by the neuron i in a certain time in-
terval ∆t. Those values are obtained for each neuron of the targeted selective
population and are collected in the histograms on the right side of Figure 7.2. In
panel 7.2A the delay period is defined as the time between the end of item loading
and the beginning of the nonspecific signal (i.e., the stimulus targeting the whole
excitatory population represented with the lighter gray shading), whereas in the
other panels is identified between the end of the item loading and the decreas-
ing of the external input (happening at 5.2 s for both panels). The time intervals
related to the spontaneous activity and the delay period are indicated with hori-
zontal lines (sky blue and orange respectively) in the left panels of Figure 7.2. It is
possible to notice that in panel 7.2A there is no significant difference in firing rate,
and a relevant part of the network shows a decrease in firing rate during the delay
period. In panels 7.2B and 7.2C is observed an increase in firing rate of about 4Hz
and 7Hz respectively, with an average baseline firing rate of about 0.7Hz. These
changes in firing rate are lower with respect to the ones shown in network models
relying only on persistent activity to show working memory behavior such as [94]
and they are in agreement with experimental measures on single-cell activity dur-
ing delay period [137], according to which the changes in firing rate are mostly
below 5Hz.
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In comparison with the work of [23], the network simulated with NEST shows
qualitatively similar results, with comparable behavior when modulating the back-
ground input targeting the excitatory neurons. However, we noticed some relevant
differences with respect to the original work. For instance, on the left side of Fig-
ure 7.2B, it is possible to see that the time interval between adjacent population
spikes is around 300ms, whereas in [23] this value is closer to 200ms, same order
of τd. Further, while the behavior of the variable u is mostly comparable to the one
shown in the original article, the behavior of the variable x shows a considerably
higher drop of the averaged variable in correspondence to a population spike. This
pronounced drop in the value of x is probably the reason for the difference in the
time interval between two population spikes previously mentioned.
Since one of the main features of a working memory network is the holding of mul-
tiple items, we load two items into two different selective populations at different
times to analyze the behavior of the STP variables of the targeted populations and
the capacity of such a network of maintaining multiple items. Figure 7.3 shows
a subset of two selective populations targeted by the item loading signal in the
single stable state regime (Figure 7.3A) and in the regime showing synchronous
and autonomous reactivation (Figure 7.3B), obtained using the same values of
background input used in Figure 7.2A and Figure 7.2B respectively.
Moreover, both simulations are provided with noise, injected into a fraction of
all the excitatory neurons in order to check the robustness of the network state.
The noise signal is designed as the item loading one but targets the 15% of the
excitatory neurons randomly. In Figure 7.3A the reactivation of the selective pop-
ulations is enabled by a periodic nonspecific input (with a period of 300ms). It
can be noticed that in this framework the two targeted selective populations do
not emit the population spike during the same periodic readout signal, but they
alternate in order to reach suitable values of STP variables to enable the emis-
sion of a population spike in the following readout signal. This peculiar behavior
can be seen also when the network autonomously shows the synchronous spik-
ing activity (Figure 7.3B). In this case, similarly to Figure 7.3A, the synchronous
activity of the targeted selective populations is alternated, increasing the average
value of x for a population when the other one is emitting the population spike.
However, in Figure 7.3B, this mechanism is completely autonomous. In both the
network states the slow dynamics of u have a key role in holding the information,
in particular when another selective population shows a higher spiking activity. In
addition, it can be observed that the higher spiking activity of a selective popula-
tion inhibits the other populations. This is due to the network’s connectivity which
enables a winner-take-all mechanism, i.e. the competition between different pop-
ulations through a mechanism of global inhibition, as previously described. For
this reason, it is not possible to correctly load multiple items at the same time and
it is not possible to have population spikes from different selective populations at
the same time. As can be seen in Figure 7.3A, even if the readout signal targets
all the selective populations, only the targeted selective population which has the
highest STP-modulated synaptic efficacy is capable of emitting a population spike,
inhibiting the excitatory neurons of the competing selecting populations.
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Figure 7.3: Raster plots of a subset of neurons of two targeted selective popula-
tions when two items are loaded into the network (gray shading). An additional
noise (cyan shading), which targets 15% of the excitatory neurons, is injected to
test the network’s robustness. (A) Network showing a single stable activity state
injected with a periodic readout signal targeting all the excitatory neurons. After
the second memory is loaded into the network, the populations show alternat-
ing population spikes. (B) Network in the bi-stable regime showing synchronous
spiking activity. Here the network does not receive the periodic input since the syn-
chronous activity autonomously shows up after the item loading. After the second
memory is loaded the population spikes of the stimulated selective populations
alternates, refreshing the synaptic variables in order to maintain the synchronous
spiking activity. Figure from [3].

The behavior of the network in Figure 7.3 is comparable with respect to the results
shown in [23]. The main differences that emerge are related, as stated before, to
the dynamics of the STP variable x which shows a more pronounced drop when
neurons show synchronous firing activity. We slightly increased the time inter-
val between two consecutive stimulations in Figure 7.3A, from 250ms to 300ms,
to make the STP variable x recover enough to enable the synchronous activity
response as in Figure 7.2A. Shorter time intervals between subsequent readout
signals could result in stimulation that leads to a population spike right after the
end of the stimulus.
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Figure 7.4: Raster plot for a simulation with overlapping populations. Here only
a subset of the two targeted selective populations is shown. An additional noise
(cyan shading) is also injected. The network is in the bi-stable regime showing
synchronous spiking activity. Figure from [3].

Hitherto we presented the results of the simulations for the model with non-
overlapping populations, ergo an excitatory neuron can only belong to a selective
population at most. To verify the network’s behavior in more realistic conditions
we also performed simulations in which there is the possibility of having overlaps
between the selective populations. Figure 7.4 shows the raster plot of a simulation
with the same parameters used in Figure 7.3B but with overlapping populations.
Here, the population spikes are less synchronized and not all the neurons belong-
ing to the selective population emit a spike during the synchronous spiking activity.
For this reason, the STP variable x drops caused by the population spikes are less
pronounced. To obtain a qualitatively similar behavior with respect to the network
with non-overlapping populations the value of the potentiated synaptic efficacy Jp
has been slightly increased to 0.49mV.

Study on network’s memory capacity

In [39] (see also [138] for a similar derivation) is provided an analytical expres-
sion to estimate the maximal number of items that can be maintained in a working
memory model sustained by STP. This number is determined by the ratio between
Tmax, i.e. the maximal period of the limit cycle of the network, and ts, i.e. the time
interval between two successive population spikes. Indeed, the maximal period of
the limit cycle is only dependent on STP parameters and can be expressed by [39]

Tmax ≃ τd ln
τf/τd
1− U

(7.8)

This equation is then validated in [39] by performing simulations using a spiking
neural network with a similar structure to the one shown in [23], thus we decided
to perform simulations similar to the one of [39] using our implementation and
test the validity of Equation (7.8). To this end, we perform simulations with ad-
ditional item loading signals targeting other selective populations for the network
state showing synchronous spiking activity (same value of background input as in
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Figure 7.2B). We noticed that the network was able, using these parameters, to
keep up to three items. The raster plot, together with the averaged STP variables
for the three targeted selective populations, is depicted in Figure 7.5.

Figure 7.5: Raster plot of a subset of neurons of three targeted selective popula-
tions when three items are loaded into the network. The network is in the bi-stable
regime showing synchronous spiking activity. Item stimuli are loaded into the net-
work at 3000, 6000, and 9000ms. Figure from [3].

As shown in Figure 7.5, the network is able to maintain three selective populations
in the persistent activity state similar to Figure 7.3B so that, when all the items
are loaded, population spikes alternate within the population keeping appropriate
values for the STP variable. Moreover, it should be noted that each selective popu-
lation in the synchronous spiking activity regime diminishes the average value for
the STP variable u when other items are loaded into the network. This behavior
is clearly visible for the first selective population of Figure 7.5. Indeed, this is due
to the increased distance between population spikes related to the activity of the
other targeted selective populations. For an increasing number of items loaded,
this can lead to a loss of synchronicity, since persistent activity state needs rela-
tively high values of u to be maintained. In this case, only a subset of the targeted
selective population are able to keep showing the memory-specific response, with
other populations that interrupt the emission of the population spikes and return
in the low activity regime.
Using the parameters employed to produce Figure 7.5, in which up to three items
can be stored, Tmax ≃ 445ms, whereas the time separation between the population
spike, once the three items have been loaded into the network, is approximately
ts ≃ 160ms, with the ratio between these times being

Nc ≈ Tmax/ts ≃ 2.8

not far from the number of items stored at the same time, confirming the general-
ity of the analytical estimation proposed in [39].
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We also performed a similar calculation for a network able to store more items.
To do so, an increase in the value of τf is needed to enhance facilitation, thus
enabling the upkeep of more items. Moreover, we decided to increase the net-
work size. The default network model has 10000 LIF neurons and has a total of
p = 5 selective populations. Since in [39] a network of 20000 LIF neurons and
ten selective populations is described, we decided to use similar parameters to
perform simulations with a larger network having a higher number of selective
populations. To do so, we chose f = 0.4, p = 10, NE = 16000, NI = 4000, Jb = 0.05
(as in [39]). A simulation with a single item loaded was performed to tune the
external background input targeting the excitatory neurons in order to show syn-
chronous spiking activity. We found that µext = 26.5mV was able to show the
desired behavior. We simulated the network using different values of τf to notice
the change in the number of items that can be simultaneously maintained, and
we observed a similar behavior discussed with the smaller network, so a higher
value of τf is needed to keep a larger number of items in memory. In particular,
we observed that with τf = 4000ms, τd = 250ms seven memories can be loaded
into the network at the same time. The raster plot of the selective populations in
this configuration of the model is shown in Figure 7.6.

Figure 7.6: Raster plot of a subset of the ten selective populations of the model.
An item loading signal is injected every 3000ms for each of the first seven selective
populations starting from 2000ms. The network, simulated using τf = 4000ms,
τd = 250ms, is able to maintain seven targeted selective populations in the syn-
chronous activity state. Figure from [3].

Regarding the theoretical estimation of the working memory capacity, using the
parameters employed to obtain Figure 7.6, we estimate that the maximal period
of the limit cycle of the network is Tmax ≃ 745ms, whereas the time between
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two successive population spikes after having loaded all the seven items is ts =
140 ± 40ms. Those values lead to an analytical estimation of working memory
capacity between 4.1 and 7.5, with the average estimation being equal to 5.3, which
is slightly smaller than the effective number of items kept in memory. However, it
is still compatible with it considering the large uncertainty in this estimation.

7.3 Discussion of the results

In this chapter we have shown the results of the working memory spiking network
model proposed by [23] reproduced in [3] using NEST and following the network
description and the parameters shown in the original work. However, we have
not limited to a reproduction of the model, and we explore the flexibility of the
STP-driven mechanism through several tests.
Indeed, the spiking network model proposed here has some differences with re-
spect to the original one of [23]. First, we employed a LIF neuron model with ex-
ponential postsynaptic currents, whereas the original one used a LIF model with
instantaneous rise and decay times for postsynaptic currents. Furthermore, the
neuron model is integrated following the exact integration method of [13], with
synaptic variables for the neuron i synapses updated when the neuron i emits
a spike. The implementation of the STP dynamics follows Equations (2.2) and
(C.3). The implementation of the STP dynamics further differs with respect to the
original work. In fact, in [23] and [39] the absolute synaptic efficacy is modu-
lated using the values of the variables u and x immediately before the emission of
the spikes. As described in Equation (C.3), the implementation used in this work
considers the value of the variable x immediately before the spike emission, but
with the variable u updated at the time of the emission of the spike, in agreement
with [18]. This change in the implementation leads to higher modulated synaptic
efficacies for the implementation employed in this work (see also [139] for a com-
parison of the two different implementations in a network of QIF neurons), and
thus can be responsible for the more pronounced drop of the variable x noticed in
the spiking model presented in this work. Despite these differences, we were able
to obtain a similar behavior with respect to the original model by slightly adjusting
some parameters. However, other parameters were missing, like the integration
time step, which we set at 0.05ms, verifying that lower or higher time steps do
not entail significant changes in the network behavior. Moreover, the connection
scheme in the NEST simulator opens the possibility of having multiple connections
with the same two neurons or self-connections. We thus checked that enabling or
disabling this possibility does not change significantly the spiking activity, main-
taining the same qualitative results as the one shown in this chapter. Furthermore,
we also performed simulations with the same neuron model integrated with a dif-
ferent integration scheme with respect to the exact integration method of [13].
Specifically, we employed the stochastic Runge-Kutta method, more suitable in
the presence of noise signals modeled as the background input employed in this
network. We found that the results of the simulations are comparable with respect
to the one presented here. The results of these studies are shown in Appendix D.
Figure 7.2, showing the raster plot of a selective population targeted by an item
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loading signal and a non-targeted population, exhibits comparable results with
respect to the original work, showing that the network can operate at relatively
low firing rate and with modest (or even negligible) increase in firing rate during
the delay period. These results are consistent with several experimental observa-
tions. For instance, [140,141] show that, during the delay period, the information
held in memory can be reactivated by a non-specific stimulus (as in Figure 7.2A).
This result is also shown by [142], in which transcranial magnetic stimulation pro-
duced a brief reactivation of the held item. Moreover, the silent dynamics can lead
to interference between information from different trials [143], and the relation
between STP dynamics and the so-called serial effects in WM tasks has recently
been explored in [144] and [145]. Furthermore, the firing rate changes between
the spontaneous state and the delay period shown in the right panels of Figure 7.2
are in agreement with single-cell firing rates, which is mostly below 5Hz and only
rarely can reach values greater than 10Hz [137]. Indeed, since a higher spiking
activity would be more metabolically demanding, this behavior makes the model
energetically efficient underlining the importance of activity-silent dynamics dur-
ing working memory tasks, as suggested in [132] and [133].
On the other hand, this model has some limitations, the main one being that it
assumes a prior long-term Hebbian learning. The way items are encoded in se-
lective populations is extremely simplified, as all the connections within the same
population have equal synaptic strength. Furthermore, this value remains con-
stant during the simulation. A more realistic model would be a combination of
long-term and short-term plasticity, enabling the learning of new items.
In conclusion, to provide a qualitative comparison of the results, this chapter
shows simulation protocols and raster plots similar to the ones of the original
work. Indeed, the original work does not provide the code or the data of the
spiking activity of the network, thus only a qualitative comparison was possible.
The work of [3] has reproduced the results, with the aim of providing the sim-
ulation code and the data needed for further studies oriented towards a better
understanding of working memory mechanisms and the link between short-term
synaptic plasticity and long-term cognitive processes such as learning3.
Indeed, more studies on this model have been performed during my research stay
at the Institute of Neuroscience and Medicine (INM-6) of the Jülich Research Cen-
ter, in the group of Computational Neurophysics under the supervision of Dr. Tom
Tetzlaff. These studies are focused on a direct comparison based on specific test
protocols between working memory mechanisms sustained by attractor network
dynamics or synaptic mechanisms such as STP. These tests are oriented towards
the applicability of such mechanisms in hierarchical network models performing
sequence learning. In [146] it is shown a spiking model able to reproduce the
temporal-memory part of the Hierarchical Temporal Memory (HTM) algorithm
of [147], which is able to learn sequences of inputs, making predictions and au-
tonomously replay the sequence. In order for this model to assume a hierarchical
structure and be able to encode sequences of sequences, a further mechanism is
needed to keep a sequence in memory for a longer time. Thus, I worked on the

3The implementation of the model and the analysis code can be found at https://github.
com/gmtiddia/working_memory_spiking_network.
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possible implementation of the STP-driven working memory mechanism in such a
model. However, such a project is still ongoing with some preliminary results, so I
decided not to report them in the main body of this thesis. Some of the preliminary
results are reported in Appendix D.
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Chapter 8
Learning through structural
plasticity: a theoretical framework

Summary

This chapter presents the framework for learning with structural plasticity
described also in [5]. The chapter focuses in particular on the description of
the theoretical framework and all the options that can be chosen to include
some important features. In the first part of the chapter, a feed-forward net-
work model is discussed, with the last part focusing on an extension of the
latter provided with recurrent connections and additional neuron popula-
tions.

8.1 Model introduction

As described in Section 2.3, it is commonly believed that learning is influenced
not only by a change in the synaptic efficacy of existing synapses but also by the
change in the connection structure of neural circuits have a relevant role. In re-
cent years, several computational models for structural plasticity were developed
showing intriguing results regarding the relation of this mechanism in learning
and other cognitive processes.
Here we propose a novel model for learning through a mechanism of structural
plasticity. Since the biochemical and biophysical mechanisms underlying struc-
tural plasticity are extremely complex and only partially understood to date, this
model exploits a relatively simple phenomenological model, including both the
activity-driven and the homeostatic contributions according to what is discussed
in Section 2.3. Despite the lower complexity, this model accounts for the effects of
structural plasticity in terms of the consolidation of synaptic connections between
neurons with a high activity correlation as well as those of pruning and rewiring
the connections for which this correlation is lower. This approach is also justified
by the requirement for a simple and effective computational model suitable for
simulating networks with a relatively large number of neurons and connections
and for representing learning processes with sizable numbers of training and vali-
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dation patterns.
This model serves as the foundation for the creation of a mean-field-based theoret-
ical framework for learning through synaptic plasticity capable of accounting for a
variety of biological network properties. This framework is used in a training and
validation procedure to characterize the learning and memory capacity of plastic
neuronal networks as the number of training patterns and other model parameters
vary. The proposed approach is capable of accounting for different probabilistic
connection rules, firing rate probability distributions, presence of noise in stimuli,
thus providing a general framework to study the impact of structural plasticity in
learning on large-scale neuronal network models. The next section introduces the
theoretical framework and how we implemented structural plasticity.

8.2 Model overview

Here we present the general model of two neuron populations connected feed-
forwardly, and then the theoretical framework is divided into two possible ap-
proaches: a simple, discrete rate model in which neurons can only assume two
possible firing rate values and a more realistic continuous rate model in which
firing rates follow a continuous probability distribution. The following framework
has been discussed in [5], and the following description entirely refers to this
work.
The neuronal network model consists of two neuron populations, P1 and P2, of
105 neurons each. This number corresponds roughly to the number of neurons
in a 1 mm2 section of the cerebral cortex, considering its cortical thickness. The
exchange of information between the two populations takes place through the
connections from the population P1 to the population P2 (i.e. in a feed-forward
fashion), which in the model are on average 5 × 103 per neuron of P2, for a total
of 5× 108 connections. Each connection has an initial synaptic weight of Wb. The
first population (P1) receives an input stimulus (e.g., visual) mimicked by the ac-
tivation of the neurons with a firing rate pattern associated with it.
During the training stage, in addition to the signal from P1, the second population
receives another stimulus (e.g., auditory), that we identify as a contextual stimulus.
Figure 8.1 depicts a simple scheme of the network. Structural plasticity is modeled
following the categories described in Section 2.3 and [47], i.e., activity-dependent
and homeostatic. The firing rate patterns of the two populations have a role in the
activity-dependent structural plasticity. The consolidation of a synaptic connection
occurs when the firing rates of both the presynaptic and the postsynaptic neurons
are concurrently above a certain threshold. The synaptic weight of a consolidated
connection increases from Wb to a value Wc > Wb. This is an effect of LTP, ac-
cording to which we have the formation of new synapses, but also the growth
of dendritic spines that increases synaptic efficacy of already existing synapses.
Thus, the mechanism of consolidation proposed here embraces both structural
and functional synaptic modifications, both mediated by LTP [148]. Moreover,
consolidated connections not only show an increased connection weight, but the
connection is also prevented from being pruned in further steps of the simulation.
We flank this mechanism with synaptic rewiring, which handles the redistribution
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of the connections during the simulation. Indeed, this is a relevant mechanism,
which relocates connections that have not been consolidated yet, mimicking the
mechanism of connection pruning together with the creation of new connections
handled by homeostatic structural plasticity. The mechanism of synaptic rewiring
will be discussed in detail later in this chapter. Once a synaptic connection has
been consolidated, it will maintain the synaptic weight Wc, without the possibility
of returning to the initial state Wb. This approach is a computationally-effective
way of representing the biological structural changes that make a consolidated
connection strong and durable.
To model the injection of input and contextual stimuli, neurons of the two popula-
tions show independent firing-rate patterns randomly generated from predefined
firing rate probability distributions, which can be either discrete or continuous.
The training process is performed using T independent input patterns, together
with the corresponding contextual stimuli, evolving the dynamics in discrete steps
in which single input patterns are provided. A diagram of the training and valida-
tion processes is shown in Figure 8.1.

Figure 8.1: Schematic representation of the network model through a block dia-
gram. During training (left), a visual stimulus is injected into P1, and an auditory
stimulus is injected into P2 as contextual stimulus. In the test phase (right) one of
the visual patterns is injected without the corresponding contextual stimulus. The
cat image is adapted from Golden tabby and white kitten by Marie-Lan Nguyen /
Wikimedia Commons / CC-BY 2.5. Figure from [5].

During training, when both input and contextual stimulus are used, a fraction of
the neurons in the population P2 will assume a rate above the threshold. These
neurons, called coding, or selective neurons, play a vital role in input coding. The
existence of neurons showing selective firing rates in response to specific stimuli
is largely confirmed by experimental results. The average input signal to these
neurons will be called ⟨S2⟩. The non-selective neurons of P2 will instead be called
non-coding or background neurons, and their average input signal will be indicated
with ⟨Sb⟩. The proposed model accounts for the ability of the network to learn
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the association between input patterns and the corresponding contextual stimuli
by measuring the input signals incoming to coding or non-coding neurons of P2.
Indeed, the output signals of P2 neurons can be calculated, as will be seen in
Section 8.3.
We may distinguish two different types of models based on the potential values
that the neuron firing rate can assume:

• Discrete model, in which neurons rate can assume only two discrete values
νℓ (low rate) and νh (high rate);

• Continuous model, in which neurons rate follow a continuous probability
distribution (here lognormal).

In the next section, we will derive the mean-field equations for these two models,
which are summarized in the following tables.

Summary
Populations P1, P2

Connectivity sparse random connectivity
Neurons firing-rate-based models of point-like neurons
Synapses structural plasticity
Input firing rate pattern extracted from a discrete or continuous proba-

bility distribution

Populations
Name Elements Size
P1 point-like neurons N1

P2 point-like neurons N2

Neuron
Type firing-rate-based neuron model
Firing rate dis-
tribution

• discrete model: the firing rates can assume only two discrete
values νh (high rate) and νℓ (low rate);

• continuous model: the firing rates can assume values from
a continuous probability distribution (here lognormal).

Table 8.1: Description of the network model (continues on next page).
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Synapse
Type structural plasticity
Description initial synaptic weight are set to Wb for all the instantiated con-

nections; when a training pattern is used, considering a connec-
tion between a P1 neuron i and a P2 neuron j:

• (discrete model) Wb → Wc if νi = νj = νh;

• (continuous model) Wb → Wc if νi > νt,1 and νj > νt,2.

Once a connection is consolidated, it cannot return to the initial
weight.

Connectivity
Source Target Pattern
P1 P2

• random, independent; in-degrees can be homogeneous,
with a fixed number of C connections per neuron of P2, or
extracted using a Poisson distribution of mean C;

• synaptic weights are Wb for unconsolidated connections and
Wc for consolidated ones, with Wc > Wb;

• multiple connections between the same couple of presinap-
tic and postsinaptic neurons (“multapses”) are allowed by
default, but they can be disabled.

Connection rewiring
Description periodically, unconsolidated connections are pruned, and new

connections are created: if h is the number of consolidated in-
coming connections of a neuron of P2, C −h new connections will
be created, were C is a fixed number if the fixed-indegree connec-
tion rule is used, while it is extracted from a Poisson distribution
if the Poisson-indegree rule is selected; in both cases, the presy-
naptic neurons are randomly extracted from P1.

Input stimulus
Description firing rate pattern of the neurons of P1 selected from the training

or from the test set.

Contextual stimulus
Description firing rate pattern of the neurons of P2 selected from the training

set; used only in the training phase.

Table 8.1: Description of the network model (continues on next page).
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Train set
Type set of T independent firing-rate patterns of the neurons of P1 (in-

put stimulus) and P2 (contextual stimulus).
Description each pattern is randomly generated from predefined firing rate

probability distributions, which can be discrete or continuous:

• discrete model: the firing rates can assume only two discrete
values νh (high rate) and νℓ (low rate) with probabilities p1
and q1 = 1 − p1 in the P1 population, p2 and q2 = 1 − p2 in
the P2 population.

• continuous model: the firing rates can assume values on the
basis of a continuous probability distribution; this work uses
a lognormal distribution.

Test set
Type set of V firing-rate patterns of the neurons of P1 (input stimulus)
Description each pattern is randomly extracted from the train set and eventu-

ally altered by adding noise from a predefined distribution:

• discrete model: the pattern is left unchanged;

• continuous model: the firing rate of each neuron is modified
by adding a random deviation extracted from a predefined
probability distribution; in this work, we used a truncated
Gaussian distribution.

Table 8.1: Description of the network model (continues on next page).

Regarding the choice of the test set, since we provide the network sets of indepen-
dent firing-rate patterns, it is not possible to generate a proper test set in the case
of the discrete model. For this reason, we decided to test the network with the
same firing-rate pattern used during training, even if this clearly leads to a bias in
the learning process. However, in the continuous model, it is possible to create sets
of firing-rate patterns and separate training and test sets. To generate the test set,
we thus added Gaussian noise to the training patterns in order to mimic a different
input to the one provided during training (i.e., a different element belonging to
the same class).

8.3 Discrete rate model

As previously mentioned, in this model the input and contextual stimuli are rep-
resented by discrete firing-rate patterns of the two populations, P1 and P2 respec-
tively, in which the firing rate of each neuron can assume only two possible values,
νh (high rate) or νℓ (low rate). Each training example consists of two patterns, one
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representing the input stimulus to the population P1, the other representing the
contextual stimulus to the population P2. The pattern representing the input stim-
ulus is generated by randomly setting the firing rate of each neuron of P1 from
the two values, νh and νℓ, with probabilities p1 and q1 = 1 − p1, respectively. The
corresponding pattern for the contextual stimulus is generated in a similar way, ex-
tracting the values of the firing rates of the P2 neurons, νh or νℓ, with probabilities
p2 and q2 = 1− p2, respectively.

Network and connectivity
Name Value Description
N1 100000 number of neurons of P1

N2 100000 number of neurons of P2

C 5000 number of connection in-degrees per neuron of P2

T variable number of training patterns
s 100 connection rewiring step

Neuron
Name Value Description
νℓ 2.0 spikes/s low firing rate
νh 50 spikes/s high firing rate

Synapse
Name Value Description
Wb 0.1 pA baseline synaptic weight
Wc 1 pA consolidated synaptic weight

Stimulus
Name Value Description
p1 0.001 probability for a neuron of P1 of having high rate

when an input stimulus is injected
p2 0.001 probability for a neuron of P2 of having high rate

when a contextual stimulus is injected

Table 8.2: Model parameters.

The mean number of high-rate neurons in the two populations will be:

Nh,1 = N1p1

Nh,2 = N2p2
(8.1)

where N1 and N2 indicate the number of neurons of P1 and P2, respectively. A
connection will be consolidated in a training example if both the presynaptic and
the postsynaptic neuron assume a high firing rate νh. The probability that a generic
connection is consolidated in a single example is p1p2, and thus the probability that
it is not consolidated after T training examples is (1 − p1p2)

T . The probability p
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that a connection is consolidated in at least one of the T training examples is given
by the complement of the previous expression:

p = 1− (1− p1p2)
T (8.2)

The product of this expression by the number of incoming connections per neuron
C gives us the average number of consolidated connections per neuron:

⟨k⟩ = C
[
1− (1− p1p2)

T
]
= Cp (8.3)

For each neuron, we will therefore have on average ⟨k⟩ consolidated connections
with synaptic weight Wc and C − ⟨k⟩ unconsolidated connections with synaptic
weight Wb.
The test set consists of V firing-rate patterns of the neurons of P1, randomly ex-
tracted from the T input patterns of the train set. In the discrete rate model, the
patterns are unaltered, thus each input pattern of the test set is identical to an
input pattern of the train set. The contextual stimuli are not used in the validation
phase.
The average rate of the neurons in the population P1 is

⟨ν⟩ = p1νh + (1− p1)νℓ (8.4)

The input signal targeting a non-coding neuron of P2 (i.e., a background neuron)
is equal to the weighted sum of the signals coming from the C connections:

Sb = Wc

k∑
i=1

νi +Wb

C−k∑
i=1

ξi (8.5)

where C is the number of incoming connections, k is the number of consolidated
connections, νi are the firing rates of the neurons connected to the consolidated
connections, and ξi are the firing rates of the neurons connected to the unconsoli-
dated connections. From the linearity of Sb with respect to νi and ξi and from the
fact that the rates of presynaptic neurons have the same mean value ⟨ν⟩, it follows
that

⟨Sb⟩ = [Wc⟨k⟩+Wb(C − ⟨k⟩)]⟨ν⟩ (8.6)

In this equation, we can clearly observe two distinct contributions: one related
to consolidated connections, which depends on the mean value ⟨k⟩, and the other
related to unconsolidated connections, which depends on C−⟨k⟩. From this result,
we can now calculate the variance on the background signal, which is defined as:

σ2
b = ⟨(Sb − ⟨Sb⟩)2⟩ (8.7)

Using Equations (8.5) and (8.6), we can compute the variance as:

σ2
b = ⟨

[
Wc

k∑
i=1

νi +Wb

C−k∑
i=1

ξi − [Wc⟨k⟩+Wb(C − ⟨k⟩)]⟨ν⟩
]2
⟩ (8.8)
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Taking advantage of the equality ⟨k⟩ = k + (⟨k⟩ − k), we can rewrite:

Wc⟨k⟩+Wb(C − ⟨k⟩) = Wck +Wc(⟨k⟩ − k) +Wb

[
(C − k) + (k − ⟨k⟩)

]
= (8.9)

= Wck +Wb(C − k) +Wc(⟨k⟩ − k) +Wb(k − ⟨k⟩)

Inserting this last expression in Equation (8.8) and rewriting the terms with the
multiplicative factors k and C−k with summations, such as for example Wck⟨ν⟩ =
Wc

∑k
i=1⟨ν⟩, we obtain:

σ2
b = ⟨

[
Wc

k∑
i=1

(νi − ⟨ν⟩) +Wb

C−k∑
i=1

(ξi − ⟨ν⟩) + (k − ⟨k⟩)(Wc −Wb)⟨ν⟩
]2
⟩ (8.10)

Taking into account that the mixed terms go to zero since
∑

i⟨(xi − ⟨x⟩)⟩ = 0,
setting

∑
i(xi − ⟨x⟩)2 = σ2

x, we will have that:

σ2
b =

[
W2

c ⟨k⟩+W2
b (C − ⟨k⟩)

]
σ2
ν + (Wc −Wb)

2σ2
k⟨ν⟩2 (8.11)

where σ2
k = ⟨(k − ⟨k⟩)2⟩. In the previous formula, we note two contributions

depending respectively on the variance of the firing rate and on the variance of
the number of consolidated connections. The value of the variance of k is not
shown here, but is derived in Appendix F, whereas the variance of the rate is, by
definition, σ2

ν = ⟨ν2⟩ − ⟨ν⟩2.
Now we estimate the average input to a coding neuron of P2. The neuron receives
signals from neurons of P1 coming from both consolidated and unconsolidated
connections. If C is the number of incoming connections, the average number of
high-rate presynaptic neurons will be p1C, while those with low rates will be on
average C ′ = C(1 − p1). Since the input pattern used for validation is identical
to the corresponding training pattern, the p1C connections coming from high rate
neurons will certainly be consolidated. The remaining C ′ connections come from
neurons of P1 at low rate, however, they may have been consolidated in other
training examples. The average number of consolidated connections from low-
rate neurons can be calculated using Equation (8.3):

⟨k′⟩ = C ′p = C(1− p1)p = ⟨k⟩(1− p1) (8.12)

For a better understanding, the following scheme represents an example of coding
and non-coding neurons during the test phase.
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Figure 8.2: Scheme of a subset of the network during the test phase. Red and am-
ber triangles represent single neurons of P1 having high or low rates, respectively.
Dark and light blue arrows represent consolidated and unconsolidated connec-
tions, whereas green and black triangles represent coding or non-coding neurons
of P2.

As we can see, a coding neuron receives, from high rate neurons of P1 only con-
solidated connections, but it can have consolidated or unconsolidated connections
from low rate neurons. Summing up all the contributions, the average value of S2

is

⟨S2⟩ = WcCp1νh +Wc⟨k′⟩νℓ +Wb(C ′ − ⟨k′⟩)νℓ =
= WcCp1νh +Wc⟨k⟩(1− p1)νℓ +Wb(C − ⟨k⟩)(1− p1)νℓ =

= WcCp1νh +
[
(Wc −Wb)⟨k⟩+ CWb

]
(1− p1)νℓ

(8.13)

The previous formula does not consider the rewiring of the connections; the effect
of rewiring will be described in Section 8.4.2, where we will derive the expres-
sion of S2 that takes it into account. We identify this case as "with rewiring" to
distinguish it from the case in which unconsolidated connections are not pruned
and rewired. Indeed, this distinction is useful to estimate the contribution of this
mechanism on the input signal on coding neurons of P2.
Now, it is possible to obtain the input signal-difference-to-noise-ratio (SDNR) us-
ing the formula

SDNR =
|⟨S2⟩ − ⟨Sb⟩|

σb

(8.14)

Here the SDNR is calculated on the input signal to the coding and non-coding
neurons of the P2 population due to the connections coming from the P2 popu-
lation, rather than on the firing rates of the P2 neurons. This choice is justified
by the need to evaluate the memory capacity associated with the plasticity of the
connections from P1 to P2. In general, in addition to the signal from the P1 popu-
lation, the P2 neurons will receive other excitatory and inhibitory signals in input.
As described in Section 1.5, in rate-based models, the response of neurons to the
overall input signal is generally described by an activation function that expresses
the firing rate as a function of that signal. A common choice is the threshold-linear
(or ReLU) function described also in Equation (1.21):
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Φ(x) = αmax{0, x} (8.15)

where α is a multiplicative coefficient. With this choice, the average rates of
coding and non-coding neurons of P2 can be written as

⟨νc⟩ = Φ(⟨S2⟩+ ⟨So⟩ − Sthresh)

⟨νnc⟩ = Φ(⟨Sb⟩+ ⟨So⟩ − Sthresh)
(8.16)

where ⟨So⟩ is the average input signal from (excitatory and/or inhibitory) neuron
populations different from P1 and Sthresh is the activation threshold. Assuming
that the total input signal is above the threshold for both coding and non-coding
neurons, the average rates will be linear functions of the input signals:

⟨νc⟩ = α(⟨S2⟩+ ⟨So⟩ − Sthresh)

⟨νnc⟩ = α(⟨Sb⟩+ ⟨So⟩ − Sthresh)
(8.17)

while the variance of the non-coding neuron rate will be

σ2
nc = α2(σ2

b + σ2
o) (8.18)

The SDNR calculated on the rate will therefore be

SDNRν =
|⟨νc⟩ − ⟨νnc⟩|

σnc
=

|⟨S2⟩ − ⟨Sb⟩|√
σ2

b + σ2
o

(8.19)

which has an expression similar to that reported in Equation (8.14), with the only
difference that there is an additional contribution to the noise due to the signal
coming from other populations.
Note also that the definitions of SDNR reported in Equations (8.14) and (8.19)
refer to the mean signal difference between single coding and non-coding neurons.
However, the overall memory capacity of the synaptic connections between the
two populations can be best quantified by the SDNR evaluated on the total input
signal to coding neurons and to an equivalent number of non-coding neurons.
Calling Nh,2 the mean number of coding neurons in the population P2, we can
define

SDNRpop =
|Nh,2⟨S2⟩ −Nh,2⟨Sb⟩|√

Nh,2σb
=

√
p2N2|⟨S2⟩ − ⟨Sb⟩|

σb
(8.20)

where we used Equation (8.1) and
√
Nh,2σb is the standard deviation of the total

input signal to Nh,2 non-coding neurons. Thus, SDNRpop scales with the square
root of p2N2.
Table 8.3 summarizes the equations of the discrete rate model.
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Discrete rate model

Name Symbol Equation

Rate mean ⟨ν⟩ p1νh + (1− p1)νℓ

Rate variance σ2
ν

(
p1ν

2
h + (1− p1)ν

2
ℓ

)
−
(
p1νh + (1− p1)νℓ

)2

Average background sig-
nal

⟨Sb⟩ ⟨k⟩Wc⟨ν⟩+ (C − ⟨k⟩)Wb⟨ν⟩

Variance of background
signal

σ2
b

[
W2

c ⟨k⟩+W2
b (C − ⟨k⟩)

]
σ2
ν + (Wc −Wb)

2σ2
k⟨ν⟩2

Average coding neu-
ron signal (without
rewiring)

⟨S2⟩ WcCp1νh +
[
(Wc −Wb)⟨k⟩+ CWb

]
(1− p1)νℓ

Table 8.3: Summary of the equations for the discrete model.

8.4 Continuous model

In this model, the firing rate patterns are generated from a continuous probability
distribution, ρ(ν). The distinction between high-rate and low-rate neurons is based
on two rate thresholds, νt,1 for the population P1 and νt,2 for the population P2.
The values of these thresholds are related to the fraction of neurons above the
threshold for the two populations, p1 and p2, respectively, by the equations:

p1 =

∫ ∞

νt,1

ρ(ν)dν

p2 =

∫ ∞

νt,2

ρ(ν)dν

(8.21)

The average rates of the neurons of P1 below and above the threshold, ⟨νℓ,1⟩ and
⟨νh,1⟩, can be computed from the firing rate distribution as:

⟨νℓ,1⟩ =
∫ νt,1

0

νρ(ν)dν
/∫ νt,1

0

ρ(ν)dν =
1

q1

∫ νt,1

0

νρ(ν)dν

⟨νh,1⟩ =
∫ ∞

νt,1

νρ(ν)dν
/∫ ∞

νt,1

ρ(ν)dν =
1

p1

∫ ∞

νt,1

νρ(ν)dν
(8.22)

where q1 = 1 − p1. Similar equations can be used to compute ⟨νℓ,2⟩ and ⟨νh,2⟩.
From these equations the average firing rate of P2 can be expressed as

⟨ν⟩ =
∫ ∞

0

νρ(ν)dν = q1⟨νℓ,1⟩+ p1⟨νh,1⟩ = q2⟨νℓ,2⟩+ p2⟨νh,2⟩ (8.23)

In a training example, a connection will be consolidated if both the presynaptic
and the postsynaptic neuron assume a firing rate above the threshold. Figure 8.3
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Figure 8.3: Lognormal distribution of firing rate. The black solid line indicates the
probability distribution, which is divided into two sections by the rate threshold
νt (blue, vertical line). The amber band represents the distribution of rate below
the threshold, whose mean is νℓ (amber, vertical line). The red band represents
the distribution of neurons whose rate is above threshold. Here the average of this
section is νh (red, vertical line). Figure from [5].

depicts an example of firing rate distribution, with the threshold and the average
values of low and high firing rates. Adopting such a threshold mechanism, we are
able to identify high and low rate neurons as in the discrete case, resembling thus
the scheme shown in Figure 8.2 for the discrete model during test phase. The only
difference is that since in this case the rate is not discrete, instead of having νh or
νℓ we have ⟨νh⟩ and ⟨νℓ⟩.

As in the discrete model, the test set consists of V firing-rate patterns of the neu-
rons of P1, randomly extracted from the T input patterns of the train set. Here
we consider the case where the patterns are unchanged, thus each input pattern
of the test set is identical to an input pattern of the train set. In a later section, we
will discuss the effect of altering these patterns by adding noise. To estimate the
values of ⟨S2⟩, ⟨Sb⟩, and σ2

b we proceed in a similar way as for the discrete model.
First of all, we calculate the input signal to a generic non-coding neuron of P2. Let
C be the number of incoming connections to this neuron, P (k) the probability that
k of these connections are consolidated, ν1,· · · , νk the firing rates of the presynap-
tic neurons of the consolidated connections and ξ1,· · · , ξC−k the firing rates of the
presynaptic neurons of the unconsolidated connections. The probability of having
k consolidated connections and rates in the range (ν1, ν1 + dν1),· · · , (νk, νk + dνk),
(ξ1, ξ1+dξ1),· · · , (ξC−k, ξC−k+dξC−k) is P (k)ρ(ν1)· · · ρ(νk)ρ(ξ1)· · · ρ(ξC−k)dν1· · · dνkdξ1· · · dξC−k.
To calculate the average background signal we should average the expression of
Sb, given by Equation (8.5), over all the possible values of k and of the firing rates,
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thus

⟨Sb⟩ =
∑
k

P (k)

∫
dν1· · ·

∫
dνk

∫
dξ1· · ·

∫
dξC−kρ(ν1)· · · ρ(νk)ρ(ξ1)· · · ρ(ξC−k)·

·
[
Wc(ν1 +· · ·+ νk) +Wb(ξ1 +· · ·+ ξC−k)

]
=

=
∑
k

P (k)
[
Wck⟨ν⟩+Wb(C − k)⟨ν⟩

]
= [Wc⟨k⟩+Wb(C − ⟨k⟩)]⟨ν⟩

(8.24)

where we used the fact that
∫
νρ(ν)dν =

∫
ξρ(ξ)dξ = ⟨ν⟩. Note that the result

obtained in Equation (8.24) is the same as the one obtained for the discrete model
(see Equation (8.6)).
The variance of the background signal can be similarly derived:

σ2
b = ⟨(Sb − ⟨Sb⟩)2⟩ =

∑
k

P (k)

∫
dν1· · ·

∫
dνk

∫
dξ1· · ·

∫
dξC−kρ(ν1)· · · ρ(ξC−k)·

·
[
Wc

k∑
i=1

νi +Wb

C−k∑
i=1

ξi − [Wc⟨k⟩+Wb(C − ⟨k⟩)]⟨ν⟩
]2

=

=
∑
k

P (k)

∫
dν1· · ·

∫
dξC−kρ(ν1)· · · ρ(ξC−k)

[
Wc

k∑
i=1

(νi − ⟨ν⟩) +Wb

C−k∑
i=1

(ξi − ⟨ν⟩)+

+ (k − ⟨k⟩)(Wc −Wb)⟨ν⟩
]2

(8.25)

Where in the last line we used the substitution ⟨k⟩ = k + (⟨k⟩ − k) as done
for Equation (8.10). The mixed terms of the equation above are null because∫
ρ(x)(x− ⟨x⟩)dx = 0, ergo we can write the variance of the background signal as

follows:

σ2
b =

∑
k

P (k)

∫
dν1· · ·

∫
dξC−kρ(ν1)· · · ρ(ξC−k)

[
W2

c k⟨(ν − ⟨ν⟩)2⟩+W2
b (C − k)⟨(ν − ⟨ν⟩)2⟩+

+ (Wc −Wb)
2(k − ⟨k⟩)2⟨ν⟩2

]
=

[
W2

c ⟨k⟩+W2
b (C − ⟨k⟩)

]
σ2
ν + (Wc −Wb)

2σ2
k⟨ν⟩2

(8.26)

The variance of k has the same expression as for the discrete case, and is derived
in Appendix F. S2 can be derived similarly to the discrete case as well. We have
a contribution from p1C neurons of P1 at high rate connected by consolidated
connections. The remaining C ′ = C − p1C neurons have a low rate and can be
connected either by unconsolidated connections or by connections that have been
consolidated in input patterns different from the current one. Calling ⟨k′⟩ the av-
erage number of consolidated connections outgoing from the C ′ low-rate neurons
and using the definition of ⟨νℓ⟩ and ⟨νh⟩ given by Equation (8.22) we can write

⟨S2⟩ = Wcp1C⟨νh⟩+ (Wc −Wb)⟨k′⟩⟨νℓ⟩+WbC(1− p1)⟨νℓ⟩ =

= Wcp1C⟨νh⟩+
[
(Wc −Wb)⟨k⟩+ CWb

]
(1− p1)⟨νℓ⟩

(8.27)
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where we used the expression of ⟨k′⟩ from Equation (8.12). As can be seen, Equa-
tion (8.27) differs from (8.13) only because the rates are not discrete but can
assume continuous values, thus the discrete values νh and νℓ are replaced by the
averages ⟨νh⟩ and ⟨νℓ⟩. The modified formula of S2 that takes into account con-
nection rewiring will be derived in Section 8.4.2.
In this work, we use a lognormal distribution of the firing rates for the continuous
model. Indeed, it is known that rate distribution in the cortex is long-tailed and
skewed with a lognormal shape [149]. The lognormal distribution is a continuous
probability distribution of a random variable ν whose logarithm ln(ν) is normally
distributed. The probability density function of this distribution is

ρLN(ν) =
1√
2πσν

· exp
(
−(ln(ν)− µ)2

2σ2

)
(8.28)

where µ and σ are the mean and standard deviation of ln(ν). The expressions of
the mean value and standard deviation of ρLN(ν) will be derived in Appendix E.

8.4.1 Poisson distribution of incoming connections per neuron

Hitherto we considered a model in which each neuron of P2 has a fixed number
of incoming connections, i.e., a fixed in-degree, C. However, a more general and
realistic approach would consider C as a variable across the neurons of P2 accord-
ing to an appropriate probability distribution P (C). Here we focus on the case
where the number of incoming connections follows a Poisson distribution (i.e. a
Poisson-indegree connection rule), however, the approach we will present can be
easily extended to other distributions. The values of ⟨S2⟩ and ⟨Sb⟩, previously av-
eraged over the rate ν and the number of consolidated connections k, should be
also averaged over the number of incoming connections, so that

⟨⟨Sb⟩ν,k⟩C =
∑
c

P (C)⟨Sb⟩ν,k

⟨⟨S2⟩ν,k⟩C =
∑
C

P (C)⟨S2⟩ν,k
(8.29)

where ⟨S2⟩ν,k is given by Equation (8.27) and ⟨Sb⟩ν,k is given by Equation (8.24).
Since these equations are linear in C and since

∑
C CP (C) = ⟨C⟩, Equations (8.27)

and (8.24) would show ⟨C⟩ instead of C when averaged over the number of in-
coming connections per neuron.
The variance can be obtained from the equation:

Var(⟨⟨Sb⟩ν,k⟩C) = σ2
ν,k,C = ⟨⟨S2

b⟩ν,k⟩C − ⟨⟨Sb⟩ν,k⟩2C (8.30)

Knowing that ⟨σ2
b⟩C = ⟨⟨S2

b⟩νk −⟨Sb⟩2ν,k⟩C = ⟨⟨S2
b⟩ν,k⟩C −⟨⟨Sb⟩2ν,k⟩C and that ⟨k⟩ = pC

we can write
σ2
ν,k,C = ⟨σ2

b⟩C + ⟨⟨Sb⟩2ν,k⟩C − ⟨⟨Sb⟩ν,k⟩2C =

= ⟨σ2
b⟩C +

{
⟨ν⟩

[
Wb + p(Wc −Wb)

]}2[
⟨C2⟩ − ⟨C⟩2

]
=

= ⟨σ2
b⟩C + ⟨ν⟩2

[
Wb + p(Wc −Wb)

]2
σ2
C

(8.31)

This equation is also valid for the discrete model.
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8.4.2 Connection Rewiring

In the proposed approach, rewiring is implemented by periodically pruning uncon-
solidated connections and creating new ones. Indeed, the former resembles the
LTD effects of pruning synapses from neurons with uncorrelated activity, and the
process of new connection creation is related to the homeostatic mechanism. We
decided to model these two mechanisms together as a single process of connec-
tion rewiring, in which connections that are not yet consolidated are redistributed
across the network. These procedures are performed with a fixed step on the num-
ber of training examples, which we will call rewiring step, denoted by the letter
s. The redistribution of connections is made in such a way as to keep the distri-
bution of the number of incoming connections per neuron unchanged. If h is the
number of consolidated incoming connections of a neuron of P2, after pruning
all the unconsolidated connections, C − h new connections will be created. C is
a fixed number if the fixed-indegree connection rule is used, while it is extracted
from a Poisson distribution if the Poisson-indegree rule is selected; in both cases,
the presynaptic neurons are randomly extracted from P1. For this reason, rewiring
leaves the expressions of the background signal and of the variance on this signal
unchanged, while, as we will see, it modifies the input signal to coding neurons.
A diagram of the rewiring process is shown in Figure 8.4, which illustrates the
activity of a high-rate neuron of P2 and of the presynaptic neurons of its incoming
connections in a training example, and the effect of connection rewiring.

Figure 8.4: Scheme of the rewiring process and of its effect on the average signal
in input to coding neurons of the population P2. Red and amber triangles rep-
resent high and low rate neurons respectively. Blue and green connections are
consolidated for the current example and for a previous example, whereas pink
connections are not consolidated. After rewiring these connections are pruned
(here indicated with a dotted arrow), thus the relative presynaptic neurons do
not project anymore to the postsynaptic neuron under consideration. For better
readability, the new instantiated connections are not shown in this scheme. Figure
from [5].
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The average number of incoming connections that are consolidated in the current
example (blue lines) is equal to the average number of high-rate presynaptic neu-
rons, p1C. The average number of incoming connections that are consolidated in
other examples after the entire training, ⟨k′⟩, is given by equation (8.12):

⟨k′⟩ = pC(1− p1) (8.32)

Let t be the next training index for which rewiring will be applied, and k′
t the num-

ber of connections from low-rate neurons that are consolidated before t (green
lines in the figure). These connections will not be affected by rewiring, so even
in the test phase with the same input pattern they will have low-rate presynaptic
neurons. The average value of k′

t is

⟨k′
t⟩ = ptC(1− p1) (8.33)

where pt is given by an expression analogous to the one obtained for p (Equation
(8.2))

pt = 1− (1− p1p2)
t (8.34)

On the other hand, there will be k′−k′
t connections displaced by rewiring and con-

solidated in training examples of index greater than t. Putting all the contributions
together, we obtain the following expression for S2:

⟨S2⟩ = p1CWc⟨νh⟩+ (⟨k′⟩ − ⟨k′
t⟩)Wc⟨ν⟩+ ⟨k′

t⟩Wc⟨νℓ⟩+Wb(C − p1C − ⟨k′⟩)⟨ν⟩ =
= p1CWc⟨νh⟩+ ⟨k′⟩Wc⟨ν⟩+Wb[C(1− p1)− ⟨k′⟩]⟨ν⟩ − ⟨k′

t⟩Wc(⟨ν⟩ − ⟨νℓ⟩)
(8.35)

To obtain the average value of S2 over all examples, ⟨k′
t⟩ must be averaged over

all values of the index t for which rewiring is done. This calculation is shown in
Appendix G.1. Equation (8.35) is also valid in the case for which neurons can
assume discrete values of firing rate. In that case, ⟨νℓ⟩, ⟨νh⟩ and ⟨ν⟩ have to be
replaced with the discrete values νℓ, νh and the average rate ⟨ν⟩ shown in Table
8.3.

8.4.3 Introduction of noise into input patterns

In a realistic learning model, the test patterns will never be exactly the same as
the training ones. The ability of a learning model to generalize is linked to the
ability to recognize which training pattern or patterns are most similar to a given
test pattern, according to appropriate metrics. To study the generalization capac-
ity of the model proposed in this work, the test input patterns were generated
starting from the corresponding training input patterns by adding noise, which is
represented by a deviation extracted from a given probability distribution with an
assigned standard deviation. In Appendix G we describe the effect that noise with
a truncated Gaussian distribution has on the firing rates and on the variables Sb,
S2, σ2

b, and SDNR, and we derive the modified equations.
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8.4.4 Summary of theoretical model equations

Table 8.4 summarizes the equations of the continuous rate model in case of a
fixed number of incoming connections per neuron. As mentioned before, when
the value of C follows a Poisson distribution, ⟨Sb⟩ and ⟨S2⟩ are given by the same
expression obtained for the fixed in-degree connection rule with C replaced by ⟨C⟩.
The variance of the background signal has an additional term in that case and is
given by Equation (8.31).

Continuous rate model

Name Symbol Equation

Rate distribution ρ(ν) 1√
2πσν

· exp
(
− (ln(ν)−µ)2

2σ2

)
Mean of the normal dis-
tribution of ln(ν)

µ ln(⟨ν⟩)− σ2

2

Standard deviation of
the normal distribution
of ln(ν)

σ erf−1(q1)− erf−1
(

q1⟨νℓ⟩
⟨ν⟩

)
Rate threshold νt exp

(
erf−1(q1)σ + µ

)
Average high rate ⟨νh⟩ 1

p1

∫∞
νt

νρ(ν)dν

Average low rate ⟨νℓ⟩ 1
q1

∫ νt

0
νρ(ν)dν

Average rate ⟨ν⟩ q1⟨νℓ⟩+ p1⟨νh⟩

Rate standard deviation σ2
ν

(
eσ

2 − 1
)
e2µ+σ2

Average background sig-
nal

⟨Sb⟩ (Wc −Wb)⟨k⟩⟨ν⟩+WbC⟨ν⟩

Variance of background
signal

σ2
b

[
W2

c ⟨k⟩+W2
b (C − ⟨k⟩)

]
σ2
ν + (Wc −Wb)

2σ2
k⟨ν⟩2

Average coding-
neuron signal (without
rewiring)

⟨S2⟩ Wcp1C⟨νh⟩+
[
(Wc −Wb)⟨k⟩+ CWb

]
(1− p1)⟨νℓ⟩

Average coding-neuron
signal (with rewiring)

⟨S2⟩
Wcp1C⟨νh⟩+

[
(Wc −Wb)⟨k⟩+ CWb

]
(1− p1)⟨ν⟩ −

⟨k′
t⟩Wc(⟨ν⟩ − ⟨νℓ⟩)

Table 8.4: Summary of the equations for the continuous model. Equations shown
here refer to the case in which the number of incoming connections per neuron C
is constant.
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8.5 Recurrent neuron model

Here we describe the recurrent network model, in which population P2 shows
recurrent connections and projects to an inhibitory population Pi from which it
receives a global inhibitory signal1. Indeed, self-connections and inhibitory feed-
back are fundamental ingredients to realize realistic networks oriented towards
the study of learning process [130], and several other spiking learning models
are based on a similar structure to the one depicted in Figure 8.5 (see, for exam-
ple, [150,151]). Figure 8.5 depicts a scheme of the network.

Figure 8.5: Schematic representation of the recurrent network model through a
block diagram.

In this case, we follow an approach similar to the one proposed in Section 1.5, in
particular describing each population with a differential equation of the average
rate similar to Equations (1.24) and (1.25), in which every population is provided
with time constant τ needed to describe the time needed for the population to
reach a steady state firing rate. In this case, only the time constant between exci-
tatory and inhibitory population is distinguished.
In this section, we derive the expressions for the background signal Sb and cod-
ing neuron signal S2 to the neurons of population P2. To this aim, several input
average rates yi have to be considered:

• y0: average input rate from non-coding neurons and non-consolidated con-
nections;

• y1: average input rate from non-coding neurons and consolidated connec-
tions;

1N.B. this theoretical framework is still in development, additional work is required to provide
an appropriate framework to be compared with computational simulations.
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• y2: average input rate from coding neurons and non-consolidated connec-
tions;

• y3: average input rate from coding neurons and consolidated connections;

• y4: average input rate from inhibitory neurons.

The reason for such an input grouping will be clear with the following derivation
of the equations for Sb and S2. The differential equations describing the listed
average rates are, according to Section 1.5

τi
dyi
dt

= −yi + F
( 4∑

j=0

Wijyj + Ei − Sth,i

)
(8.36)

Where τi is the time constant for the input i, Wij is the matrix of the synaptic
weights multiplied by the average number of indegrees from the population j to
population i, Ei is the input rate from other populations, including the input com-
ing from P1, and Sth,i represent the activation threshold for the neuron population
i and, eventually, F is the activation function. Choosing the ReLU (see Equation
(1.21)) as activation function, a reasonable assumption we can make is consid-
ering to be over threshold for every neuron population since both excitatory and
inhibitory neurons show significant activity also during rest. Thus, the ReLu can
be reduced to a linear function

F(x) = αxH(x) = αx with x =
4∑

j=0

Wijyj + Ei − Sth,i and x > 0 (8.37)

Hence, Equation (8.36) becomes

τi
dyi
dt

= −yi + α
( 4∑

j=0

Wijyj + Ei − Sth,i

)
(8.38)

Now we can rewrite the equation in a matrix form. Given Cij = 1
τi
(−δij + αWij)

and bi =
α
τi
(Ei − Sth,i) we have

dyi
dt

=
4∑

j=0

Cijyj + bi (8.39)

which can be written as follows

dy⃗

dt
= Cy⃗ + b⃗ (8.40)

Here we focus on the study of the steady state of the previous equation, in which
the average firing rates of the different neuron populations do not change anymore
over time. Thus, we can set the derivative of Equation (8.36) to zero, obtaining

0 = −yi + α(
4∑

j=0

Wijyj + Ei − Sth,i) (8.41)
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from which we can obtain a matrix equation in which we have to solve for the
average rates yi:

yi − α
4∑

j=0

Wijyj = α(Ei − Sth,i)

(I − A)y⃗ = b⃗ =⇒ y⃗ = M−1⃗b

with Aij = αWij and bi = α(Ei − Sth,i) and M = I − A

(8.42)

Thus, we can solve this equation by computing M−1. Before obtaining the equa-
tions for ⟨Sb⟩ and ⟨S2⟩ we should motivate the introduction of the four different
rates yi instead of having neurons with only high or low rates νh and νℓ. The dis-
tinction between these four input rates is necessary because of self-connections.
Indeed, there is a correlation between connection consolidation and average input
rate. We present an example to make this clear.
Let us consider some neurons of population P2 when the network is trained with
T = 105 patterns. Having a probability p2 = 10−3 for a neuron to be representa-
tive of a pattern, this means that, on average, a neuron will be representative for
⟨m⟩ = 10 patterns. The variable m will have a variance σ2

m ∝
√
m, hence some

neurons can be representative for more than 10 patterns, and consequently these
neurons will have more consolidated connections both in input and output due to
the self-connections. Thus, neurons with higher m have more consolidated con-
nections, ergo they are likely to show a higher firing rate. This way a correlation
between the average rate and the number of synaptic connections comes about,
and the theoretical framework should take account of such a correlation. In or-
der to show that, we need to do some calculations similar to the ones reported in
Appendix F in which we compute the variance of the number of consolidated con-
nections k for the feed-forward model. In particular, it is important to remember
that Q(m,h) (see Equation (F.1)) represents the probability that a neuron of P2 is
representative of m patterns (i.e., is trained for recognizing m input patterns) and
has h consolidated indegrees from neurons of P1. Analogously, we can derive an
expression to represent the probability for a neuron of P1 to be representative of
m patterns and with h consolidated outdegree to neurons of P2. In the following,
we call C in

12 the average number of connections in input for a neuron of P2 coming
from population P1, and Cout

12 the number of outcoming connections to neurons of
P2 from each neuron of P1. Generally speaking, C in

12 ̸= Cout
12 since the number of

neurons of the two populations might differ. However, the outcoming connections
from P1 to P2 should equate the incoming connections to P2 from P1, hence

N2C
in
12 = N1C

out
12 (8.43)

Similarly, we can define C in
22 and Cout

22 , but since input and output population is the
same we should have

C in
22 = Cout

22 = C22 (8.44)

Now let us define Qout
12 (m,h) the probability that a neuron of P1 is selective for

m patterns over T and with h outcoming consolidated connections over Cout
12 to

P2, and Qin
12(m,h) the probability for a neuron of P2 to be selective for m patterns
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over T and with h incoming consolidated connections over C in
12 from P1. Self-

connections of P2 will be discussed considering that input and output populations
are the same.
The number of outcoming connections from neurons of P1 representative for m
patterns over T is

Hout
12 (m) = N1

∑
h

hQout
12 (m,h) = N1ξ

out
12 (m) (8.45)

where

ξout
12 (m) =

∑
h

h Qout
12 (m,h) (8.46)

The total number of consolidated connections is thus

H tot
12 =

∑
m

Hout
12 (m) = N1

∑
m,h

hQout
12 (m,h) = N1⟨hout

12 ⟩ (8.47)

This way, we can compute the probability pout
12 (m) that a consolidated connection

has a presynaptic neuron which is representative of m patterns

pout
12 (m) =

Hout
12 (m)

H tot
12

=
N1ξ

out
12 (m)

N1⟨hout
12 ⟩

=
ξout
12 (m)

⟨hout
12 ⟩

(8.48)

Similarly, the number of non-consolidated connections outgoing from neurons of
P1 representative for m patterns is

Zout
12 (m) = N1

∑
h

(Cout
12 − h)Qout

12 (m,h) = N1ζ
out
12 (m) (8.49)

where

ζout
12 (m) =

∑
h

(Cout
12 − h)Qout

12 (m,h) (8.50)

The total number of connections is

Z tot
12 =

∑
m

Zout
12 (m) = N1

∑
m,h

(Cout
12 − h)Qout

12 (m,h) = N1(C
out
12 − ⟨hout

12 ⟩) (8.51)

and thus the probability qout
12 (m) that a non-consolidated connection is outgoing

from a neuron representative for m patterns is

qout
12 (m) =

Zout
12 (m)

Z tot
12

=
N1ζ

out
12 (m)

N1(C
out
12 − ⟨hout

12 ⟩)
=

ζout
12 (m)

Cout
12 − ⟨hout

12 ⟩
(8.52)

The probability that a neuron of P1 is selective for m patterns is

G1(m) =

Cout
12∑

h=0

Qout
12 (m,h) (8.53)
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and multiplying the latter with N1 we get the total number of neurons of P1

representative for m patterns. Remembering that N1ξ
out
12 (m) represents the total

number of consolidated connections from neurons of P1 representative for m pat-
terns, the average number of consolidated connections outcoming from a neuron
of P1 representative for m patterns is

κout
12 (m) =

N1ξ
out
12 (m)

N1G1(m)
=

ξout
12 (m)

G1(m)
(8.54)

The equation above can be reduced to the following

κout
12 (m) = Cout

12

[
1− (1− p2)

m
]

(8.55)

where p2 represents the probability for a neuron of P2 of being selective for a pat-
tern.
Using a similar procedure, it is possible to obtain the average number of consoli-
dated connections incoming to a neuron of P2 representative for m patterns from
neurons of P1:

κin
12(m) = C in

12

[
1− (1− p1)

m
]

(8.56)

and the average number of consolidated connections to neurons of P2 coding for
m patterns and coming from neurons of the same population is

κ22(m) = C22

[
1− (1− p2)

m
]

(8.57)

Notice that in this case, the average number of incoming or outcoming consoli-
dated connections is the same.
Previous expressions show that the average number of consolidated connections,
both incoming and outcoming, is higher for neurons representative of more pat-
terns (i.e., higher m), as anticipated.
Now that we have an expression for the average number of consolidated connec-
tions coming from different neuron populations, we can derive the values of Sb

and S2. We use the following notation to refer to the average input rates for the
self-connections of P2:

• rnc
l,2: average input rate to non-consolidated connections outgoing from non-

representative neurons for the current pattern;

• rc
l,2: average input rate to consolidated connections outgoing from non-

representative neurons for the current pattern;

• rnc
h,2: average input rate to non-consolidated connections outgoing from rep-

resentative neurons for the current pattern;

• rc
h,2: average input rate to consolidated connections outgoing from represen-

tative neurons for the current pattern;

• rI: average input rate of inhibitory neurons.

Gianmarco Tiddia 129 Part III



CHAPTER 8. STRUCTURAL PLASTICITY AND LEARNING: THEORY

The average input to a non-representative neuron of P2 having κ22 consolidated
indegrees from the same population and κ12 consolidated indegrees from neu-
rons of P1 can be computed as discussed in the feed-forward model. The only
difference here is the addition of the different average rates for consolidated or
non-consolidated connections. Thus, we can compute the background signal Sb in
input to a neuron of P2 as follows:

Sb,2(κ12, κ22) = Wcκ22r
c
av,2 +Wb(C22 − κ22)r

nc
av,2+

+Wcκ12rav,1 +Wb(C
in
12 − κ12)rav,1 +WIECIErI + E

(8.58)

where rav,1 is the average rate of the neurons of P1, and rc
av,2 is the average rate

from other neurons of P2 that are representative for the current pattern and con-
nected with consolidated connections. Similarly, rnc

av,2 is the average rate from
neurons of P2 connected with non consolidated connections. WIE is the synaptic
weight for the inhibitory-to-excitatory connections, and CIE is the average number
of connections to a neuron of P2 coming from the inhibitory population Pi. Fi-
nally, E is the average input signal from other populations. The first two terms of
Equation (8.58) represent the contribution due to the self-connections, whereas
the third and the fourth are the contributions of P1 to the input, ergo the same
expression that represented Sb in the feed-forward model. Eventually, the last two
terms are related to external stimulation and inhibitory feedback.
The two average rates rc

av,2 and rnc
av,2 can be written in term of the rate previously

listed (i.e., rc
h,2, r

c
l,2,r

nc
h,2 and rnc

l,2) following the expression:{
rc

av,2 = p2r
c
h,2 + (1− p2)r

c
l,2

rnc
av,2 = p2r

nc
h,2 + (1− p2)r

nc
l,2

(8.59)

The average rates have a linear dependence from κ12 and κ22 because of the fact
that in Equation (8.41) we have a term like Sb,2(κ12, κ22) − Sth,i. The linearity
enables us to write the different rates as

rc
l,2 = rl,2(⟨κ12⟩cons, ⟨κ22⟩cons)

rc
h,2 = rh,2(⟨κ12⟩cons, ⟨κ22⟩cons)

rnc
l,2 = rl,2(⟨κ12⟩nocons, ⟨κ22⟩nocons)

rnc
h,2 = rh,2(⟨κ12⟩nocons, ⟨κ22⟩nocons)

(8.60)

where expectation values refer to presynaptic neurons of consolidated or non-
consolidated self-connections of P2.
To compute ⟨κ12⟩cons we can refer to Equation (8.56) for κin

12(m), representing the
average number of consolidated connections from neurons of P1 to a neuron of
P2 representative for m patterns. Starting from that equation, we have to do a
weighted average over m taking account of the probability that a consolidated
self-connection of P2 comes from a representative neuron for m patterns, to that

⟨κ12⟩cons =
T∑

m=0

p22(m)κin
12(m) =

T∑
m=0

ξ22(m)

⟨h22⟩
κin
12(m) (8.61)
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Analogously, we can derive the expectation value of κ12 for presynaptic neurons
of non consolidated self-connections

⟨κ12⟩nocons =
T∑

m=0

q22(m)κin
12(m) =

T∑
m=0

ζ22(m)

C22 − ⟨h22⟩
κin
12(m) (8.62)

The expressions for ⟨κ22⟩cons and ⟨κ22⟩nocons can be obtained in a similar way:

⟨κ22⟩cons =
T∑

m=0

ξ22(m)

⟨h22⟩
κ22(m)

⟨κ22⟩nocons =
T∑

m=0

ζ22(m)

C22 − ⟨h22⟩
κ22(m)

(8.63)

After a few calculations (not reported here) it is possible to obtain the expressions
for ⟨κ12⟩cons, ⟨κ12⟩nocons, ⟨κ22⟩cons e ⟨κ22⟩nocons as a function of the probability of
being representative for a pattern as a neuron of P1 or P2, i.e., p1 and p2:

⟨κ12⟩cons = C in
12

1− (1− p1p2)
T − (1− p22)

T + (1− p1p2 − p22 + p1p
2
2)

T

1− (1− p22)
T

⟨κ12⟩nocons = C in
12

[
1−

(1− p1p2 − p22 + p1p
2
2

1− p22

)T ]
⟨κ22⟩cons = C22

1− 2(1− p22)
T + (1− 2p22 + p32)

T

1− (1− p22)
T

⟨κ22⟩nocons = C22

[
1−

(1− 2p22 + p32
1− p22

)T ]
(8.64)

These expressions should replace the term κ12 and κ22 in Equation (8.58) for Sb,2

to find the average input signal for non-representative neurons of P2. The calcu-
lation for the average input signal to representative neurons of P2, i.e., S2,2 can
be obtained using similar techniques and properly replacing the rate contributions
due to the self-connections of P2.
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Chapter 9
Learning through structural
plasticity: firing rate-based network
simulations

Summary

This chapter presents the simulations of the network of firing-rate-based
neurons designed following the theoretical framework described in the pre-
vious chapter with the aim of validating the theoretical estimations. The
simulation framework has been formalized by Bruno Golosio, me, and Luca
Sergi, a Master’s student. Luca Sergi and I performed the simulations and
cured the data analysis.

The validation of the equations derived in the previous chapter is done through
simulations with firing-rate-based neuronal network models. The code of the sim-
ulator was written in the C++ programming language and was compiled with GCC
(https://github.com/gcc-mirror/gcc) (version 10.2.0) and with GSL (https:
//www.gnu.org/software/gsl/) (version 2.7) scientific libraries. The simulations
have been performed using the supercomputers Galileo 100 and JUSUF [121].
The networks used for the simulations are generated according to the selected
connection rule. In particular, in the case of the fixed-indegree rule, C incoming
connections are created for each neuron of the P2 population, where C has a fixed
value. In the case of the Poisson-indegree rule, for each neuron of the population
P2 the number of incoming connections C is extracted from a Poisson distribution
with mean ⟨C⟩. In both cases, the indices of the presynaptic neurons are ran-
domly extracted on the P1 population. The connection weights are initially set to
the baseline value, Wb. Each training input pattern of the discrete model is gen-
erated by extracting, for each neuron of P1, a random number r from a uniform
distribution in the interval [0, 1]; if r < p1 the rate of the neuron is set to the high
level, νh, otherwise it is set to νℓ. An analogous procedure is used to generate the
corresponding contextual stimulus pattern on the neurons of the population P2. A
connection is consolidated in a training example if both the presynaptic and the
postsynaptic neuron are in the high-rate level, νh. In the continuous case, the firing
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rates of the input pattern and those of the contextual pattern are extracted from
a log-normal distribution. In this case, a connection is consolidated if the firing
rates of both the presynaptic and postsynaptic neurons are above the thresholds
νt,1 and νt,2, respectively. Connection rewiring is performed every s training steps,
as described in Section 8.4.2. The test set is generated by randomly extracting V
input patterns from the train set. In the discrete case, the patterns are not modi-
fied. In the continuous case, the patterns of the test set are altered by adding noise
extracted from a truncated Gaussian distribution.
To estimate ⟨Sb⟩ and ⟨S2⟩ we compute the input of each P2 neuron as the sum of
the rate of the presynaptic neurons of its incoming connections multiplied by the
synaptic weights (i.e., Wc or Wb). The variance σ2

b is evaluated by the formula

σ2
b = ⟨S2

b⟩ − ⟨Sb⟩2 (9.1)

where the mean values are calculated over the input signals to all non-coding
neurons of P2.

9.1 Two neuron population simulations

This section, presented also in [5], compares the results of the simulations of
the firing rate model with the theoretical predictions described in the previous
chapter. Since we proposed several versions of the model, with different features
implemented, the section is divided into different parts that sum up the main
characteristics of the model. We present the results of the approaches employing
discrete and continuous values for neuron firing rates, comparing the theoretical
values of the average input signal to background neurons ⟨Sb⟩, the average input
signal to coding neurons ⟨S2⟩, the variance of the background input signal σ2

b and
the signal-difference-to-noise ratio with the values obtained from the simulations.
This way, we are able to assess the capacity of the population P2, and thus of
the network, to recognize a pattern memorized in the training phase. Here, we
present simulation results with a Poisson-driven number of incoming connections,
with ⟨C⟩ = 5000. We opted for such an approach since it is more realistic for
biological neural circuits with respect to a fixed amount of connections per neuron.
Each simulation is repeated 10 times using a different seed for random number
generation to ensure the robustness of the simulation results. The values shown
in the plots are a result of averaging over the different seeds.

9.1.1 Comparison between continuous and discrete firing rate

As previously mentioned, the main difference in calculating ⟨Sb⟩ and ⟨S2⟩ with
the continuous rate model versus the discrete model is that the discrete values
of νl and νh are replaced, respectively, by the average values of the rate below
and above threshold, calculated on the continuous probability distribution. On
the other hand, the variance of the background signal differs in the two models,
because it depends on the variance of the rate, σ2

ν , which is different in the two
cases.
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The first study we present is oriented towards the estimation of these parameters
as a function of the number of training patterns T . As the number of training
patterns increases, so does the number of patterns encoded by each individual
neuron. Since p2 is the probability that a neuron of P2 is in a high-rate level for
a single training pattern, on average such neuron will encode p2T patterns of the
entire training set. This multiple selectivity of individual neurons is also present in
biological neural networks, in which the same neuron can be selective for several
stimuli [152].
The test set consists of V = 1000 input patterns, generated as described in Section
8.2. Thus, the simulation outcome used for our analysis is an average over the
entire test set of the Sb, S2, σ2

b, and SDNR values obtained for each test pattern.
Figure 9.1 shows the comparison of the simulation outcomes using discrete and
continuous rate values.

Figure 9.1: Comparison between ⟨Sb⟩, ⟨S2⟩, σ2
b, and SDNR obtained from simu-

lations using discrete (blue triangles) or continuous (red dots) firing rate distri-
bution. The values are given as a function of the number of training patterns T .
Background and coding signals are expressed in the unit pA × Hz since the input
received from the neurons of P2 is defined by the product between the firing rate
of the presynaptic neurons (in Hz) and the synaptic weight (in pA, since the input
received by a neuron is an electric current).

We can see that the curves of ⟨Sb⟩ and ⟨S2⟩ obtained from the simulations using
the continuous firing rate distribution are superimposed on those obtained using
the discrete model; this is due to the fact that the choice of the threshold on the
log-normal distribution is done so that the average values for low and high rates,
⟨νl⟩ and ⟨νh⟩, correspond to the values adopted in the discrete rate model. On the
other hand, the variance of the background signal σ2

b differs in the two models
because it depends on the variance of the firing rate, σν , which is different in the
two cases. This leads also to the different behavior of the SDNR.
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9.1.2 Comparison between theoretical predictions and simula-
tion results

The results shown in the previous section are obtained from simulations. This
section presents a comparison between simulation results and theoretical expec-
tations. To provide a quantitative estimation of the discrepancy between the theo-
retical predictions and the simulations, we evaluate their relative error, using the
theoretical values as a reference.

Figure 9.2: Values of ⟨Sb⟩, ⟨S2⟩, σ2
b and the SDNR and percent error with respect

to the theoretical prediction, as a function of the number of training patterns T .
Upper subplots represent the values of the quantities considered as a function of
T for different noise levels, whereas each lower subplot represents the percentage
error of the values shown in the upper subplot. Simulation data is represented
with triangles, whereas the theoretical predictions are depicted with dotted lines.
The different color families identify the simulation and theory results when having
a noise standard deviation of 1Hz (red-orange), 2Hz (blue-light blue), 3Hz (black-
grey), 4Hz (green-light green) and 5Hz (magenta-pink).
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As previously described, the test input patterns used in the continuous rate model
are altered from the corresponding training input patterns by adding noise ex-
tracted from a truncated Gaussian distribution, with assigned standard deviation.
In this section, we present simulation results and comparisons with theoretical
predictions for standard deviation values ranging from 1Hz to 5Hz. These values
are relatively high in relation to the average firing rate of P1, which is slightly
higher than 2Hz.
Figure 9.2 shows the curves obtained for the continuous rate model using differ-
ent values for the standard deviation of the noise, together with the relative error
with respect to theoretical predictions.
It can be observed that the curves obtained from the simulations are compatible
with the theoretical ones for all the noise levels.
Regarding ⟨Sb⟩ and ⟨S2⟩, the curves corresponding to different noise levels ap-
pear perfectly superimposed. This is due to the fact that the noise is driven by a
distribution with zero mean, and thus the addition of noise to the quantities repre-
sented in the curves does not alter their average (see Appendix G for the details).
Regarding σ2

b, the values corresponding to different noise levels differ from each
other and increase with the standard deviation of the noise, in agreement with the
theoretical model.
The relative error between simulation results and theoretical prediction is quite
small: for ⟨Sb⟩ and ⟨S2⟩ the errors span between 0.01% and 0.4%, whereas σ2

b
shows a relative error of around 1% for all the simulations performed with a dif-
ferent number of training patterns.
The addition of noise with fluctuations greater than or comparable to the average
firing rate can produce negative rate values for a fraction of the neurons. Con-
sidering that negative rate values are not physically possible, this behavior can
be corrected in the simulations by simply replacing negative values of the firing
rates with zero, i.e. saturating negative rates to zero. This correction is equivalent
to having a different noise distribution, with an average value greater than zero.
However, the current theoretical model is not able to take this effect into account.
Since negative values are replaced by zeros, we would expect the average values
of Sb and S2 evaluated by the simulations that exploit saturation to be greater than
the values predicted by the theoretical model. Figure 9.3 shows the behavior of
the model with this correction on the neurons’ firing rate.
As can be seen from the figure, the discrepancies between simulations and theoret-
ical predictions are much higher and can arrive at 40%. This is due to the fact that
the current theoretical framework is not able to take this correction into account.
However, it should be considered, as discussed above, that the noise levels are
relatively high when compared with the average rate used in these simulations.
Indeed, a different choice for the values of ⟨νℓ⟩ and ⟨νh⟩ (and thus a different
average rate of the whole distribution) would have an impact on the discrepan-
cies shown here. In particular, a higher average rate would strongly diminish the
amount of neurons having negative firing rate as a result of the noise addition.
The relative error of σ2

b is greater than that shown for ⟨Sb⟩ and ⟨S2⟩ in Figure 9.2;
this is due to a simplification used in the theoretical model to derive the expres-
sion of the variance. The values of Sb from which we compute the variance are
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obtained by incoming connections from neurons of P1, but since connections are
created randomly, different neurons of the P2 population may have presynaptic
neurons in common, and therefore their input signals are correlated. The theo-
retical model does not take this correlation into account. The average number of
presynaptic neurons in common to two arbitrary neurons of P2 depends on the
total number of neurons of P1 and on the number of incoming connections per
neuron of P2.

Figure 9.3: Values of ⟨Sb⟩, ⟨S2⟩, σ2
b and SDNR, and percent error with respect

to the theoretical predictions, as a function of the number of training patterns
T when negative rates due to noise addition are saturated to zero. Simulation
data is represented with triangles, whereas the theoretical predictions are depicted
with dotted lines. The different color families identify the simulation and theory
results when having a noise standard deviation of 1Hz (red-orange), 2Hz (blue-
light blue), 3Hz (black-grey), 4Hz (green-light green) and 5Hz (magenta-pink).

Calling N1 = N , we can state that the bias due to this simplification becomes
more and more relevant when the ratio C/N increases. In order to estimate this
bias as a function of the C/N ratio, we performed a series of simulations with a
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Figure 9.4: Values of σ2
b as a function of the C/N ratio for different values of

N . On the left panel, lines represent the theoretical prediction (Th), whereas
dots represent the values obtained from the simulation (Sim). On the right panel,
dotted lines represent the relative error between simulation results and theoretical
prediction.

fixed number of training patterns, T = 5000, changing the C/N ratio. Figure 9.4
shows the results of this analysis.
As can be seen in the right panel of Figure 9.4, a greater value of C/N leads to a
higher discrepancy between theoretical prediction and simulation. However, such
a ratio, for natural density circuits in the brain, is very far from values of C/N
near unity. Indeed, a plausible value of the ratio would be less than 0.1, resulting
in negligible relative errors.

9.1.3 Impact of synaptic rewiring

In the simulations discussed so far, the rewiring mechanism was always performed
with a rewiring step s = 100. This means that every 100 training patterns, all
the unconsolidated connections are removed, and new connections are created.
This operation represents the effect of homeostatic structural plasticity, which
aims at keeping the network balanced by reorganizing connections, while activity-
dependent structural plasticity focuses on the consolidation of connections.
To motivate the choice of this step for connection rewiring, we show here the re-
sults for networks trained for T = 5000 patterns with a different rewiring step s.
We also show the results of a simulation that does not perform rewiring, in order
to highlight the different behavior of a network that combines connection consol-
idation with periodic rewiring and that of a network that exploits only connection
consolidation. Figure 9.5 shows the results obtained by these simulations using
different rewiring intervals.
As can be noticed, the values of Sb, S2, σ2

b, and SDNR do not change significantly
as the rewiring step varies. This means that the value of the step s chosen for the
connection rewiring has no impact on the results of the simulations. On the other
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Figure 9.5: Values of ⟨Sb⟩, ⟨S2⟩, σ2
b and SDNR for a network trained with 5000

patterns as a function of the rewiring step s. The simulations used a continuous
rate distribution and a noisy input driven by truncated Gaussian distribution with
a standard deviation of 1Hz. The red dot indicates the simulation outcome when
connection rewiring is disabled, whereas the blue dots show the simulation results
with connection rewiring, using different values of s. Blue error bars represent the
standard deviation of the mean obtained from 10 simulations using different seeds
for random number generation.

hand, significant differences emerge when comparing the results of simulations
with or without connection rewiring; it can be observed that the signal-difference-
to-noise ratio has a lower value when the rewiring is disabled. This confirms that
connection rewiring grants a higher capability of recognizing an input pattern
among the several patterns for which the network was trained.
We also applied a similar protocol for simulations enabling or disabling connection
rewiring as a function of the number of training patterns T . The results are shown
in Figure 9.6.
We can say that the performance of the model is improved when connection
rewiring is enabled, and the relative difference between a rewired or just con-
solidated connectivity increases when the number of training patterns increases as
well.
The effect of rewiring can become more relevant when a greater number of con-
nections is consolidated at every step (i.e., with greater values of p1 and p2). Fur-
thermore, the importance of the rewiring mechanisms can significantly change
when the average number of connections is not constant but increases or decreases
as a result of rewiring itself. This aspect will be explored in future work.
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Figure 9.6: Comparison between simulations exploiting the connection rewiring
mechanism performed every 100 training patterns (blue dots) and simulations
without rewiring (red triangles) for a network trained with a variable number of
training patterns T . Green lines in the lower panels show the difference between
the values obtained with connections rewired or not rewired (indicated with nr)
as percentage error.
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This thesis covers several aspects of computational neuroscience, from simulation
technology to a better understanding of the synaptic mechanisms underlying high-
level cognitive processes. To better organize the discussion of the results presented
in this thesis, different topics are presented in different sections.

GPU-based simulations using NEST GPU

In Part II of this thesis we focused on the simulation of spiking networks accel-
erated by the GPU simulation code NEST GPU. In the context of this thesis, we
implemented network models such as the cortical microcircuit of [12] and the
multi-area model of [88, 89] and we validated the results of the network activ-
ity with the ones of the spiking network simulator NEST through the comparison
of some relevant statistical distributions. The validation protocol is described in
Chapter 4 and the results of the validation of these models are shown in Chap-
ter 5, showing optimal compatibility between NEST GPU and NEST. In particular,
the validation protocol aims to perform a statistical comparison between the fluc-
tuation in some distributions of the spiking activity, which have been employed
in several other works (see, for example, [74, 86, 97, 99]). First, the fluctuations
within NEST simulations (i.e., when different seeds for random number genera-
tion are employed) and with NEST and NEST GPU are evaluated. Comparability
of these fluctuations would lead to the conclusion that the simulation on a differ-
ent simulator does not add additional variability in the simulation of the neural
activity. The results shown in Chapter 5 show an optimal compatibility with the
statistical distributions of the neural activity of NEST, both in the simulation of the
cortical microcircuit model and in the simulations of the multi-area model. This
is a theme of fundamental importance for better integration of NEST GPU in the
software of the NEST Initiative. Indeed, this work focuses also on the integration
of neuron, synapse models and connection rules already integrated in NEST. Fur-
thermore, to enable the users to take advantage of all the features of the library,
a documentation similar to the one of NEST has been written and periodically up-
dated.
Another relevant topic is the evaluation of the performance of NEST GPU. To bet-
ter study the different simulation stages, we divided the total time-to-solution into
two phases: network construction (i.e., the time needed to create and organize
the network before the simulation of the dynamics) and simulation (i.e., the actual
simulation of the network dynamics). Indeed, these phases can be further divided
into different stages, as described in Chapter 6. Regarding network construction
time, this thesis and [4] presented a novel algorithm for network construction,
which dynamically creates the network exploiting the high degree of parallelism
of GPU devices. In the first version of the library (see [1]), connections were first
created on the CPU side and then copied from the RAM to GPU memory. This
approach benefited from the standard C++ libraries and, particularly, the dynamic
allocation of container classes of the C++ Standard Template Library. However, it
had the drawback of relatively long network construction times, not only due to
the costly copying of connections and other CPU-side initialization, but also be-
cause the connection creation process was performed serially. The new approach,
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so far applied to single-GPU simulations, enables much faster connection creation,
initialization, and organization while preserving the advantages of dynamic con-
nection building, particularly the ability to create and initialize the model at run-
time without the need for compilation. With the current version, it is possible to
construct a network such as the cortical microcircuit model of [12] in around half
of a second, two orders of magnitude less than the previous method. Comparing
this result with other simulation codes, NEST GPU network construction times are
also shorter compared to the CPU version of NEST and the code generation frame-
work GeNN (see Figure 6.2); if code generation and compilation are not required
in GeNN, the results of NEST GPU and GeNN are compatible. We also verified
that the time to simulate the network dynamics after network construction is not
compromised by the novel approach. Regarding the network dynamics, Figure
6.4 shows the improvement in the simulation performance of the full-scale corti-
cal microcircuit model of [12] between the first version of the GPU library (i.e.,
NeuronGPU [1]) and the most recent version of the library employed in [4] using
both data center and consumer GPUs. We can notice that the optimization per-
formed on the library on many aspects of the code led to an improvement in the
simulation performance spanning from 55% to 75% depending on the GPU hard-
ware employed. In particular, the best result is achieved with the NVIDIA RTX
4090, with a real-time factor, averaged over 10 simulations with different seeds,
of 0.4707± 0.0008 [4]. This result is obtained with the external drive of the model
being a Poisson signal generator. Figure 6.5 shows the real-time factor when a DC
input is given to the network instead of the Poisson stimulation, obtaining a real-
time factor of 0.386 ± 0.001 when employing the same GPU. We can thus notice
that in both the configurations, NEST GPU can perform sub-realtime simulation of
this model, even outperforming the CPU simulator NEST in an optimal paralleliza-
tion configuration (see Figure 6.5A and [73] for additional details). Moreover, the
same Figure shows the results for the simulation of the same model performed us-
ing the GPU code GeNN (version 4.8.0), which mimics the incoming Poisson spike
trains via a current directly applied to each neuron. Thus, the implementation of
the external stimulation is not the same as the one of NEST or NEST GPU. How-
ever, it can be seen that GeNN currently simulates faster than NEST GPU. Indeed,
this indicates that there is room for improvement, which could be exploited via
further parallelizations of the simulation kernel of NEST GPU. Moreover, the algo-
rithm for runtime network construction directly on GPU devices is being extended
in order to be exploited into multi-GPU simulations. This would lead to a further
increase in NEST GPU performance on network construction for large-scale mod-
els that have to be simulated on MPI-GPU clusters.
Indeed, NEST GPU was also designed to perform an efficient algorithm for spike
delivery and communication across different compute nodes via MPI-GPU clusters.
Furthermore, NEST GPU distributes neurons across MPI processes exploiting their
locality, i.e., an entire neuron population is created and simulated on a single MPI
process, to be specified by the user. In this regard, in [2] we validated NEST GPU
with the simulation of the multi-area model of [88, 89] describing the dynamics
of the vision-related areas of the macaque cortex. The results of the validation
(see Chapter 5 and Appendix B) show optimal compatibility with the results ob-

Gianmarco Tiddia 146 Discussion



tained with the NEST simulator, both for the ground and in the metastable state
of the model. Moreover, Figure 6.6 shows the real-time factor of the CPU and
GPU code of NEST in both the ground and metastable state, noticing that the
locality exploitation of NEST GPU is one of the major contributors to the better
performance of NEST GPU with respect to NEST, in which neurons are distributed
in a round-robin fashion. Indeed, both these approaches show advantages and
disadvantages: in NEST every MPI process handles the same amount of compute
load, whereas in NEST GPU the compute load differs (see for example Figure 6.7).
However, in the case of the multi-area model, the locality exploitation is a more
efficient approach since the vast majority of the spikes emitted in a simulation of
the network is exchanged between neurons belonging to the same area, i.e., the
same MPI process according to the NEST GPU approach. This way, only a fraction
of the spikes have to be delivered remotely. In summary, NEST GPU is able to
perform simulations of spiking networks taking advantage of both data center and
consumer GPUs. The library achieves network construction times comparable to
or shorter than those obtained with other state-of-the-art simulation technologies
while still meeting the flexibility of runtime network construction. The library is
able to take advantage of multi-GPU systems and thanks to an efficient algorithm
for spike delivery and network locality exploitation, it is particularly suitable in
the simulation of modular large-scale models that can not be simulated on a sin-
gle GPU card.
To be thorough, in [90], it is shown that GeNN was able to simulate the multi-area
model previously mentioned on a single GPU by exploiting the procedural connec-
tivity approach mentioned in Chapter 3. With this method, the network generates
the network connectivity on the go, without saving data on the GPU memory and
thus being able to simulate a larger network on a single card. However, such a
network would not be suitable when plastic connections have to be employed,
thus is not applicable in cases in which learning or the interplay between synaptic
changes and brain dynamics are of interest (e.g., in [150,151,153]).
Without any doubt, NEST GPU has room for improvement in several aspects, from
additional optimization of the simulation phase (e.g. increasing the level of par-
allelization of several subtasks) to further integration of the library into the NEST
Initiative. A further alignment to the NEST simulator is needed to enable the same
code to be run on both the CPU and GPU simulators, and also additional neuron,
synapse models and connection rules have to be implemented on NEST GPU to
have an appropriate variety and flexibility. Moreover, the support of NESTML, a
domain-specific language that allows the modification or the creation of neuron
or synapse models, would be fundamental for implementing new models in a sim-
ple format. In addition, to fully benefit from the features of the library, updated
documentation is needed to guide the user in the choice of the most appropriate
neuron, synapse models and parallelization approaches.
Finally, from a general perspective, recent advances in GPU technology and the
development of exascale MPI-GPU clusters would surely contribute to an increase
in the performance on the simulation of large-scale spiking network models, but
most importantly would open to the development of even larger network models,
with several millions of neurons and billions of synapses. In this regard, with NEST
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GPU we provided a tool able to exploit the most recent technology, paving the way
for more and more detailed network models, that could be able to explore, with a
neuron resolution, the dynamics of brain networks handling high-level cognitive
processes.

Short-term plasticity and working memory

In Part III of this thesis we focused on the study of synaptic mechanisms underly-
ing cognitive processes. In Chapter 7 we present a spiking network model able to
show a typical working memory behavior only by implementing short-term synap-
tic plasticity in the excitatory-to-excitatory synapses. The hypothesis of a synaptic
theory of working memory was initially presented in the work of Mongillo [23],
together with the simulations of a spiking network that we reproduce in the con-
text of this thesis to provide a well-documented spiking model implemented on
a widely used spiking network simulator (i.e., NEST). To this aim, we edited the
implementation of the short-term plasticity model of NEST (more details on Ap-
pendix C) and we propose a similar network model based on the instructions pro-
vided in the original work. Despite some differences in the implementation and
in the value of the parameters, we were able to qualitatively reproduce the results
of [23], and we were also able to estimate the working memory capacity according
to the work of [39], in which a similar network model was employed to estimate
the working memory capacity as a function of synaptic and neuron parameters.
As discussed in Section 7.3, this work aims to pave the way for further studies on
the relation between synaptic processes such as short-term plasticity and working
memory. In this regard, such studies can shed light on the mechanisms that con-
tribute to high-level cognitive processes.
Furthermore, the model reproduced in this thesis, in which the only ingredient to
obtain a memory-specific response is an STP-modulated synaptic efficacy and prior
long-term Hebbian learning, has several limitations. For instance, the previously
mentioned prior learning process is needed, and the synapses can assume only
two values of absolute synaptic efficacy (i.e., Jb or Jp). A more realistic network
would implement a proper training protocol in order to mimic a realistic learning
process, with connections having heterogeneous synaptic strengths. Additionally,
the STP variables u and x have the same initial values for all the connections of
the network. An interesting work would thus add heterogeneity to synapse pa-
rameters, from synaptic weights to STP time constants and variables, to provide
the results of a more realistic network able to underlie working memory. Indeed, a
study related to a different model relying on persistent activity, revealed that het-
erogeneity in neurons and synapse parameters is able to prevent the appearance
of persistent activity [154], showing that persistent activity regime can be restored
when some compensating mechanisms are added (e.g., homeostatic synaptic plas-
ticity, an increase in the number of neurons or in the external input). A similar
study can thus be interesting for our model, in particular adding heterogeneity to
synaptic efficacies and STP parameters.
Another limit of the model reproduced in this thesis is related to the fact that once
the network enters the regime of persistent population spikes or higher-rate ac-
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tivity (see panels B and C of Figure 7.2) it can return to the lower activity state
only with a decrease of the background current. Thus, for such an activity to have
a selected duration, another mechanism has to be added to the network. Recent
work of [155] suggests that, together with neurons, astrocytes can modulate neu-
ral activity. Thus, interactions between glia and synapses contribute to synaptic
transmission and can underlie multiple forms of working memory. Another in-
teresting work on astrocytes involved in working memory was able to show that
astrocytic mechanisms are involved in the duration modulation of the persistent
activity state [156]. In particular, this work employed the model of Mongillo [23]
with the addition of an astrocytic mechanism with a proper time constant and a
parameter that influences the calcium dynamics described by the variable u. This
way the network is able to show the population spike or the high-asynchronous
activity regime for a limited time, determined by the dynamics of the astrocytic
mechanism.
As we can see, the quest to account for synaptic mechanisms in working memory
is leading to several models in which many processes should be taken into account
to better model a high-level cognitive process such as working memory. Indeed,
the synaptic theory of working memory suggests that activity-silent processes take
place to encode chunks for a limited time, whereas the theory proposed at the
beginning relied on persistent activity as the key mechanism underlying working
memory. Several experimental findings support both these hypotheses, and the
idea that both regimes coexist has also been proposed [157, 158]. Novel experi-
ments will be needed to shed light on the neural and synaptic mechanisms under-
lying this high-level cognitive process, and more detailed computational modeling
of different processes that can contribute to working memory will be of funda-
mental importance to flank experiments and provide tools to further analyze the
impact of these mechanisms in working memory.

Structural plasticity and learning

The last chapters of Part III presented a theoretical framework for learning through
a structural plasticity mechanism, described also in [5]. The predictions of the the-
oretical framework, based on a mean-field approach, have been compared with the
results of simulations performed using firing-rate-based neuronal networks. The
comparison shows that the proposed framework is able to accurately predict the
values of various quantities relevant for assessing learning and memory capacity
in the presence of structural plasticity mechanisms, taking into account numer-
ous characteristics of biological neuronal networks. The rates of neurons in the
training and test patterns can be distributed according to an arbitrary probability
distribution. Here, two cases have been considered: a simplified one in which the
rates can assume only two values, high rate and low rate, and a more realistic
one in which the rates follow a log-normal distribution in agreement with [149].
Connectivity between regions can be achieved through different connection rules,
with a fixed number of connections per target neuron or, more realistically, with
random connectivity in which the number of incoming connections of each target
neuron follows a Poisson distribution.
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Since the biochemical and biophysical mechanisms underlying structural plasticity
are multiple and extremely complex, we opted for a phenomenological approach
to capture their main aspects. This way, we exploited a simple model of structural
plasticity able to represent plasticity processes driven by neuronal activity as well
as mechanisms that lead to homeostasis, in agreement with [47], which divides
structural plasticity mechanisms into these two categories. Structural plasticity
driven by neuronal activity is achieved through the consolidation of synapses con-
necting neurons that are concurrently at a high-rate level. This process can be
triggered by other forms of plasticity that modify synaptic efficacy, such as STDP,
followed by mechanisms involving cytoarchitectural changes, such as the creation
of novel connections next to the already existing ones.
The homeostatic form of structural plasticity involves a balance between pruning
connections that are not utilized over time and the creation of novel connections.
This is achieved in the simulations through periodic connection rewiring, which
consists of the removal of unconsolidated connections followed by the creation of
new connections. The results show that connection rewiring leads to an increase
in SDNR, conducting to a higher capability of recognizing the input patterns when
this mechanism is enabled.
In order to evaluate the generalization capability of the framework with the con-
tinuous firing-rate distribution model, the test patterns were generated by altering
the training input patterns through the addition of noise from a given probability
distribution and assigned standard deviation. In particular, a truncated Gaussian
distribution has been used for the noise. The results of the simulations are compat-
ible with the theoretical predictions, with differences in the order of 1–2%, which
is a remarkable result for our purpose.
However, such an approach can lead to a fraction of the neurons with a negative
firing rate as a result of noise addition. Since negative firing rates are not phys-
ically possible, a more realistic model would apply a saturation to zero for these
rates. Saturation can be activated in the neuronal network simulations, but the
current version of the theoretical framework is still unable to account for it. This
leads to a discrepancy between the simulations with saturation turned on and the
theoretical predictions, which grows as the noise increases and becomes relevant
when the noise gets significantly greater than the average firing rate. Future work
on this model should be devoted to the development of a theoretical framework
capable of taking into account the saturation of negative firing rates.
Another limitation of the framework comes from a simplification in the calcu-
lation of the background signal variance, which does not take into account the
correlations between the contributions of presynaptic neurons to the input signals
to distinct neurons of the target population. However, the results show that the
impact of this simplification is very small, at most in the order of a few percent.
The theoretical model can be surely extended. It can potentially provide a power-
ful tool to describe the impact of structural plasticity in cognitive processes such
as learning in a large-scale model of the cortex with natural density and plausi-
ble characteristics. For instance, the consolidation mechanism can be probability-
driven, with a probability depending on the rate of pre-and postsynaptic neurons.
This would replace the current deterministic mechanism that requires a firing rate
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threshold to be exceeded by both neurons to have synaptic consolidation. More-
over, the probability could depend on other variables not necessarily related to
the firing rate. In particular, it has been hypothesized that plasticity mechanisms
may also depend on the bursting activity of neurons [159,160]. The consolidation
probability of a connection could therefore depend, in addition to the firing rate
of the presynaptic and postsynaptic neurons, also to their bursting activity. In this
regard, it would be interesting to expand this work through simulations of spiking
neural networks. Indeed, simulators such as NEST [64] and its GPU implemen-
tation [2, 4] can lead to fast and efficient simulations of large-scale models on
supercomputer clusters.
In Chapter 8 we have mainly considered the connections between two distinct
populations P1 and P2. However, the proposed framework also lends itself to the
study of structural plasticity in the self-connections of population P2, together with
an inhibitory population in order to have a more realistic architecture of excitatory
and inhibitory neurons. Indeed, it is known that the mechanisms of competition
through lateral inhibition play a key role in biological learning [130]. Section 8.5
of this thesis is devoted to the description of such a recurrent network model. In
this extended model, the theoretical framework allows to obtain the differential
equations governing the dynamics of the activity of the population P2 and the de-
pendence of the coefficients of these equations on the number of training patterns
and on the other model parameters [161]. Such an extension is currently under
development and additional work has to be done to provide an extensive descrip-
tion of all the features of this model and for an appropriate choice of simulation
parameters.
Another extension of the model could describe more in detail the mechanisms of
synaptic pruning and rewiring. Indeed, connection rewiring as intended in the
feed-forward model preserves the total number of connections over time, which
is a typical behavior of a healthy adult brain [52]. However, to shed light on
the importance of this mechanism in neurological disorders, or to perform stud-
ies focused on this mechanism in different life stages, this mechanism should be
extended to enable different "speed" for the processes embedded in structural plas-
ticity.
In conclusion, this work intends to provide a sufficiently general theoretical frame-
work for learning through structural plasticity. This framework is able to describe
synaptic consolidation, pruning, and rewiring, and includes several features that
can be added in a modular fashion. The validation has been performed through
simulations with firing-rate-based neuronal network models, showing remarkable
compatibility between the results of the simulations and theoretical predictions.

Outlook

This thesis makes several contributions to computational neuroscience, with a par-
ticular focus on simulation technology and the understanding of synaptic mecha-
nisms in high-level cognitive processes.
Chapters 3–6 are devoted to the validation of a new simulation code (i.e., NEST
GPU) able to exploit the most recent GPU technology advancements. Indeed,
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GPUs, with their high degree of parallelism, are particularly suitable to handle the
simulation of spiking neural networks and the rapid growth of the GPU industry
is leading to more performing cards and, most importantly, gradual improvements
in the GPU memory. Moreover, supercomputers are entering the exascale era and
entrust GPUs with a significant part of their computing power. In this framework,
a simulator able to take advantage of this technology is fundamental to open to
more detailed simulations of the neuronal dynamics of large-scale networks. Most
importantly, this simulator should be easily accessible to the neuroscientific com-
munity and the compatibility of the results with respect to affirmed and widely
used simulators should be ensured. In this context, the integration of the simula-
tor in the NEST Initiative and the work performed in [1,2,4] go in this direction, by
assessing the compatibility of NEST and NEST GPU for different models running
both on high-end PCs and MPI-GPU clusters with competitive simulation perfor-
mance both on network construction and simulation of the network dynamics.
Chapters 7–9 focus on two synaptic mechanisms that are able to underlie high-
level cognitive processes: short-term synaptic plasticity and structural synaptic
plasticity. The works described in this thesis can be intended as starting points
for future works devoted to clarifying the relationship between these mechanisms
and brain functioning. The first of the two aforementioned chapters analyzes the
relation between short-term plasticity and working memory through spiking net-
work model simulations, whereas the second sheds light on the role of structural
plasticity during learning through a theoretical framework based on a mean-field
approach supported by simulations of firing-rate based neuronal networks.
In conclusion, this thesis aims to provide the instruments needed to face the chal-
lenge of the study of high-level cognitive processes through simulations of large-
scale neuronal networks. In the near future, simulation codes such as NEST GPU
will be able to simulate network models of substantial portions of the brain that
have never been studied on a single neuron scale, and a better understanding of
the role of synaptic scale mechanisms will be needed to evaluate their impact on
such a large-scale perspective, or the impact of their inhibition. In this regard, neu-
ral scale simulation frameworks could be seen as virtual tools able to be employed
for testing novel treatments or to evaluate the large-scale effect of a drug able to
affect a certain brain mechanism. For this reason, it is fundamental to benefit from
the novel technological progress and pave the way for an era in which computa-
tional neuroscience can develop network models and theoretical frameworks able
to flank experiments and advance our knowledge of brain functioning.
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Appendix A
Additional information for the
balanced network model

Here are reported the tables that describe the balanced network model of Section
4.1. The tables follow the guidelines of [100] to provide all the information that
can be needed for the reproducibility of the model. The neuron model, i.e., the
adaptive-exponential integrate-and-fire with conductance-based synapses can be
described by the following equations

Cm
dV

dt
= −gL(V − EL) + gL∆T exp

(
V − Vth

∆T

)
+ gex(t)(V − Erev_ex)+

+ gin(t)(V − Erev_in)− w + Ie

(A.1)

τw
dw

dt
= a(V − EL)− w (A.2)

where gex and gin are the excitatory and inhibitory conductances, modeled as an
alpha function as described in Equation (1.9). The behavior of the adaptation
current w is described in Equation (A.2) and as soon as the neuron emits a spike
the membrane potential resets to a value Vreset and w → w + b.

After the description of the model, the table of network and neuron parameters
will be presented.
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APPENDIX A. BALANCED NETWORK MODEL

Model Summary
Populations excitatory neurons (E), inhibitory neurons (I), external input (P)
Connectivity Random connectivity
Neuron model adaptive exponential integrate-and-fire (AdEx) neuron model
Synapse model conductance-based synapses, conductance modeled by an alpha

function
Plasticity –
Input Independent fixed-rate Poisson spike trains to all neurons
Measurements Spiking activity and average firing rate

Populations
Name Elements Size
E AdEx neurons NE = 4NI

I AdEx neurons NI

P Poisson generator NE +NI

Connectivity
Source Target Pattern
P E ∪ I

• one_to_one connectivity (each neuron receives an indepen-
dent Poisson spike train);

• synaptic weights Wpoisson.

E E ∪ I

• random, independent; homogeneous indegree CE;

• static synaptic weights Wex;

• normally distributed delay with mean µd and standard devi-
ation σd.

I E ∪ I

• random, independent; homogeneous indegree CI;

• static synaptic weights Win;

• normally distributed delay with mean µd and standard devi-
ation σd.

Table A.1: Description of the network model.

Gianmarco Tiddia 172 Appendix



APPENDIX A. BALANCED NETWORK MODEL

Network and connectivity
Name Value Description
NE Variable Number of excitatory neurons
NI NE/4 Number of inhibitory neurons
CE 4000 Number of excitatory indegrees per neuron
CI 1000 Number of inhibitory indegrees per neuron

Neuron
Name Value Description
C 281 pF Membrane capacitance
gL 30nS Leak conductance
EL −70.6mV Leak reversal potential
Vth −50.4mV Spike initiation threshold
∆T 2mV Slope factor
τw 144ms Adaptation time constant
a 4nS Subthreshold adaptation
b 80.5 pA Spike-triggered adaptation
Vreset −60mV Reset value of the membrane potential after a spike
Erev_ex 0mV Excitatory reversal potential
Erev_in −85mV Inhibitory reversal potential
τsyn 1ms Synaptic time constant

Synapses and external stimuli
Name Value Description
Wex 0.05 pA Excitatory connection weight
Win 0.35 pA Inhibitory connection weight
Wpoisson 0.37 pA Poisson spiking devices connection weight
µd 0.5ms Mean synaptic delay
σd 0.25ms Standard deviation of synaptic delay
νext 20000Hz Fixed Poisson spike rate

Table A.2: Model parameters.
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Appendix B

Validation of the multi-area model

In this appendix are depicted the violin plots of distributions and the EMD box
plots for all the populations and the areas of the multi-area model. The model is
provided with 32 areas with 8 populations each (except for the last area, which
lacks layer 4). The following plots indicate the area and the relative label as a
subplot title, with each subplot obtained using the same framework needed for
Figure 5.5 and Figure 5.8.

Figure B.1 represents the violin plots of firing rate, CV ISI, and Pearson correlation
obtained from a simulation of the ground state of the multi-area model using NEST
and NEST GPU for each area of the model. Figure B.2 represents, instead, the
violin plots of the same distributions obtained simulating the metastable state of
the model with NEST and NEST GPU. Similarly, Figures B.3 and B.4 represent the
EMD metric when comparing two sets of NEST simulations or a set of NEST and
NEST GPU simulations.
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Figure B.1: Violin plot of the distributions of firing rate, CV ISI, and Pearson cor-
relation extracted during a simulation of the ground state of the multi-area model
performed on NEST (orange distributions) and NEST GPU (sky blue distributions).
The Central dashed line represents the median of the distributions, and the other
two dashed lines represent the interquartile range.
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Figure B.2: Violin plot of the distributions of firing rate extracted during a simula-
tion of the metastable state of the multi-area model performed on NEST (orange
distributions) and NEST GPU (sky blue distributions). The Central dashed line
represents the median of the distributions, and the other two dashed lines repre-
sent the interquartile range.
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Figure B.3: Earth Mover’s Distance between distributions of firing rate, CV ISI,
and correlation of the spike trains obtained from all the areas of the model in the
ground state simulated with NEST and NEST GPU. EMD boxes obtained comparing
NEST using different seeds (NEST-NEST, orange) and NEST and NEST GPU (NEST-
NEST GPU, sky blue) are placed side by side.
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Figure B.4: Earth Mover’s Distance between distributions of firing rate, CV ISI,
and correlation of the spike trains obtained from all the areas of the model in
the metastable state simulated with NEST and NEST GPU. EMD boxes obtained
comparing NEST using different seeds (NEST-NEST, orange) and NEST and NEST
GPU (NEST-NEST GPU, sky blue) are placed side by side.
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Appendix C
Implementation of STP model

The STP model of [18, 20] describes the behavior of the amount of available re-
sources in the presynaptic terminal by using a system of three differential equa-
tions, together with the differential equation describing the behavior of the uti-
lization factor u:

dx

dt
=

z

τd
− u(ts)x(ts − ϵ)δ(t− ts)

dy

dt
= − y

τsyn
+ u(ts)x(ts − ϵ)δ(t− ts)

dz

dt
=

y

τsyn
− x

τd
du

dt
= − u

τf
+ U(1− u)δ(t− ts)

(C.1)

where x, y, and z are respectively the (normalized) amount of resources in the
recovered, active state and inactive state. Here, the synaptic modulation is driven
by the variable y(t). In this equation and in the following, for simplicity, we
neglect the indexed i, j indicating the presynaptic and the postsynaptic neuron.
The model is already implemented in the NEST simulator under the name of
tsodyks_synapse and it exactly solves Equation (C.1). As mentioned in Section
2.1, this model can be simplified by adopting a system of two differential equa-
tions which describe the behavior of the synaptic resources (x) and the one of the
utilization factor (u) [18] so that

du

dt
= −u− U

τf
+ U(1− u)δ(t− ts)

dx

dt
=

1− x

τd
− uxδ(t− ts)

(C.2)

The model described in Equation (C.2) is the same adopted in [21] and [23] (see
Equations 5 and 6 of the Supporting Material of [23]). Further, such a model
is included in NEST as well under the name of tsodyks2_synapse. In the NEST
implementation, Equation (C.2) is not integrated at every time step, but the values
of the variables xi,j and ui,j are analytically obtained whenever a spike is emitted
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by the presynaptic neuron i. Thus, it performs the temporal evolution from ts−1

and ts.
Indeed, the model used in [3] to describe STP dynamics is a modification of the
latter NEST synapse model, which we named tsodyks3_synapse. The modifica-
tion involves only the order of the variables updates, in agreement with Equation
(3.1) of [18], which leads to a difference in synaptic modulation.
In particular, having two consecutive spikes emitted at times ts and ts+1 and know-
ing x(ts) and u(ts), the variables evolution is computed as follows:

x(t−s+1) = 1 +
(
x(t+s )− 1

)
e−(ts+1−ts)/τd

u(t−s+1) = U +
(
u(t+s )− U

)
e−(ts+1−ts)/τf

u(t+s+1) = u(t−s+1) + U
(
1− u(t−s+1)

)
x(t+s+1) = x(t−s+1)− u(t+s+1)x(t

−
s+1)

(C.3)

where ts represents the spike time, while t−s and t+s represent the times immedi-
ately before and immediately after the spike emission, respectively. More formally,
x(t−s ) and u(t−s ) can be intended as the left-side limits:

x(t−s ) = lim
ϵ→0

x(ts − ϵ) with ϵ ∈ R+

u(t−s ) = lim
ϵ→0

u(ts − ϵ) with ϵ ∈ R+
(C.4)

while x(t+s ) and u(t+s ) can be intended as the right-side limits:

x(t+s ) = lim
ϵ→0

x(ts + ϵ) with ϵ ∈ R+

u(t+s ) = lim
ϵ→0

u(ts + ϵ) with ϵ ∈ R+
(C.5)

Because of the discontinuity due to the spike emission, in general, the left-side
and right-side limits differ from each other for the variables x and u. On the other
hand, the exponential functions appearing in the first two lines of Equation (C.3)
are continuous everywhere, therefore the left and right limits are equal to each
other for these functions. Therefore, the modulation led by short-term plasticity
shown in Equation (2.3) is given by u(t+s+1)x(t

−
s+1), so considering variable x im-

mediately before the spike emission and the variable u updated at the time of the
spike emission as described in [18]. Only after spike emission, the variable x is
decreased because of neurotransmitter release. This order of update stems from
the fact that the presynaptic spike triggers facilitation (i.e. the increasing of the
variable u) just before the spike emission to the postsynaptic neuron. Equation
(C.3) is implemented in the NEST simulator with the tsodyks3_synapse model,
a modified version of the NEST synapse model tsodyks2_synapse model, which
describes the STP dynamics according to Equation (2.2) as well, but modulating
the synaptic efficacy using the term u(t−s+1)x(t

−
s+1). Indeed, such a difference in

the implementation can be relevant, especially with neurons having low firing
rates [139], with tsodyks3_synapse model showing higher modulated synaptic
efficacies than tsodyks2_synapse model.
To verify the reliability of tsodyks3_synapse model, we compare it with the NEST
models tsodyks_synapse and tsodyks2_synapse. To do so, we simulate four LIF
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neurons with exponential postsynaptic currents (same model as the one used in
the network): the first (presynaptic) neuron is injected with a constant current
able to induce the emission of spikes during the first 500ms and the last 500ms
of simulation. Between the two current injections a time interval of 1000ms is
simulated without injecting any current to observe the weight change after a short
period of inactivity. The neuron is then connected to the other neurons using one
of the three synaptic models with the same parameters. Then, the membrane
potential of the three postsynaptic neurons is recorded to analyze the differences
in the peak amplitude (i.e. of the modulated synaptic weight). The postsynaptic
potentials are shown in Figure C.1.

Figure C.1: Excitatory postsynaptic potential of neurons connected to the same
presynaptic neurons using different STP synapses. The blue line is obtained using
the NEST synapse model tsodyks_synapse, the red dashed line is obtained using
the tsodyks2_synapse and the orange line is obtained with tsodyks3_synapse.
The time axis has been adjusted to show only the time intervals in which the
presynaptic neuron is stimulated.

It is possible to notice that the difference in peak amplitude between the neurons
is significant only for the first spikes, after which the models modulate the synaptic
weights producing comparable postsynaptic potentials. The differences that arise
between tsodyks2_synapse and its modification used in this work are only due
to the difference in the order of update of the variable u and the synaptic weight.
Moreover, the differences between such a model and the tsodyks_synapse are less
significant and can be justified by the different behavior of u dynamics. In fact, the
only relevant difference between these models can be observed after a relatively
long-lasting time (in the order of τf) during which the STP variable u can evolve
and reach values near to the resting ones, which differs within the two models.
In this regard, the first postsynaptic potential after the second of biological time
during which the presynaptic neuron does not emit spikes shows the mentioned
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difference.
In summary, we decided to make this modification in order to be consistent with
the order of variables update shown in Equation (3.1) of [18]. The modifications
made of the tsodyks2_synapse model go in this direction, leading to a more com-
parable behavior with respect to the tsodyks_synapse model.
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Appendix D
Additional tests on the working
memory spiking model

D.1 Changes of simulation time step and connectiv-
ity

The working memory spiking network model described in Chapter 7 is designed
in order to be similar to the one proposed in the original work of [23], however,
some information regarding the network was missing. For instance, it is not known
the simulation time step employed in the original work, in which both neuron
and synaptic dynamics are integrated using the Euler scheme. In this work, the
neuron model employed is integrated using the exact integration method of [13].
We decided to perform network simulations using a time step of dt = 0.05ms,
but we performed some tests in order to see whether a change in the value of the
time step would have entailed a significant difference in the network dynamics.
In particular, we performed simulations with dt = 0.1ms and dt = 0.01ms. In the
following Figure D.1 will be shown a similar simulation to the one proposed in
Figure 7.2B, when the network is able to show an autonomous and synchronous
spiking activity (i.e. the population spikes) using dt = 0.1ms, dt = 0.05ms and
dt = 0.01ms.

As can be noticed, the behavior of the network using different simulation time
steps is almost identical, with small differences regarding the time at which the
population spikes occur. Also, the histograms of the firing rate difference between
the spontaneous activity and the delay period are comparable.

Regarding connectivity, in NEST it is possible to have more than one connection
between two neurons (called multapses) and self-connections (called autapses).
We performed all the simulations enabling them (as it is the default option in
the NEST simulator), however in the original model the possibility of having such
connections was not specified. In Figure D.2 it will be shown that disabling this
option when building the model connectivity, the results are comparable.
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Figure D.1: (Left) Raster plots of a subset of neurons of a targeted selective pop-
ulation (green) and a non-targeted one (black) for different values of simulation
time step dt. (Right) Histograms representing the difference in firing rate between
the delay period and the spontaneous state for the selective population targeted by
the item loading signal. The external background input diminishes at 7.2 s. Figure
from [3].

D.2 Stochastic integration methods for neuronal dy-
namics integration: a results’ comparison

As reported in Section 7.2.1, the LIF neuron model employed in the network is
described by the ODE system:

τm
dVj

dt
= −Vj +Rm(I

exc
j + I inh

j + Iext,j)

τexc
dIexc

j

dt
= −Iexc

j +
∑
i

αJi,j(t)
∑
s

δ(t− t(i)s − δ̂i,j)

τinh
dI inh

j

dt
= −I inh

j +
∑
i

αJi,j
∑
s

δ(t− t(i)s − δ̂i,j)

(D.1)

where τm is the membrane time constant, Vj is the neuron’s membrane poten-
tial, Rm is the membrane resistance, Iexc

j and I inh
j the excitatory and inhibitory

synaptic current received as input from the connections within the other neurons
of the network and Iext,j represents the external input to the network, modeled
as Gaussian white noise. The ODE system (D.1) is integrated following the exact
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Figure D.2: (Left) Raster plots of a subset of neurons of a targeted selective popu-
lation (green) and a non-targeted one (black) enabling or disabling the possibility
of having multiple connections between two neurons and self-connections (called
multapses and autapses respectively). (Right) Histograms representing the dif-
ference in firing rate between the delay period and the spontaneous state for the
selective population targeted by the item loading signal. The external background
input diminishes at 7.2 s. Figure from [3].

integration scheme of [13], assuming that the external current Iext,j is piecewise
constant over time intervals of width ∆tng. An alternative approach can be devel-
oped by exploiting the theory of stochastic differential equations and the methods
for their numerical solution.
Stochastic differential equations are generally defined as:

dX = a(t,X)dt+ b(t,X)dW (D.2)

where dW represents the stochastic term and refers to the infinitesimal increment
of the random walk of a Wiener process W , so that dW =

√
dtGn, with Gn random

number extracted from a Gaussian standard distribution. Terms a(t,X) and b(t,X)
are respectively called drift coefficient and diffusion coefficient.
Indeed, the LIF model sub-threshold dynamics shown in Equation (D.1) can be
described with a sum between a stochastic term (i.e. the Gaussian fluctuation of
the external input) and a non-stochastic term. Expanding the term Iext,j and taking
the finite difference of Vj over a small time step ∆t, the first equation of the system
(D.1) can be rewritten as:

τm∆Vj = (−Vj +RmI
exc
j +RmI

inh
j +Rmµext)∆t+RmσextGn∆t (D.3)

where Gn is a random number extracted from a standard Gaussian distribution,
whereas µext and σext are respectively mean and standard deviation of the external
input signal. Defining σext = κext/

√
∆t, the last term in the left side of Equation

(D.3) can be written as:
Rmκext∆Wn (D.4)
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where ∆Wk is the variation of a Wiener process

∆Wn =
√
∆tGn (D.5)

Within each time step, equations for Iexc
j and I inh

j can be solved analytically:

Iexc
j (t) = Iexc

j (tn)e
−(t−tn)/τexc for tn < t < tn+1

I inh
j (t) = I inh

j (tn)e
−(t−tn)/τinh for tn < t < tn+1

(D.6)

By substituting the solutions for Iexc
j (t) and I inh

j (t), Equation (D.3) assumes the
form of Equation (D.2) with a(Vj, t) = (−Vj + RmI

exc
j + RmI

inh
j + Rmµext)/τm and

b = Rmκext/τm.
Indeed, Equation (D.3) is a stochastic differential equation (SDE), which can be
numerically integrated using specifically designed numerical techniques. In this
Section we present the comparison of the network behavior integrated following
the exact scheme of [13] (as in Chapter 7) with respect to the behavior observed
by using a specific SDE numerical integration technique, which will be presented
in the next few lines.
Such a differential equation can be numerically integrated using the Euler-Maruyama
method, which is an extension of the Euler method for SDE. According to this
method, the solution for X in Equation (D.2) is defined as follows:

X(tn+1) = X(tn) + a(tn, X(tn))∆t+ b(tn, X(tn))∆Wn (D.7)

where ∆Wn =
√
∆tGn, and the time interval [0, T ] in which the equation is in-

tegrated is divided into N equal intervals tn, so that tn+1 − tn = ∆t = T/N . As
can be noticed from Equation (D.7), this integration method leads to a systematic
error, since drift and diffusion coefficient are considered constant over each time
interval [tn, tn+1] with the values that they have at the beginning of the interval
tn. This error can be mitigated by reducing the time step, at the expense of the
computational cost of the simulations. The Euler–Maruyama method has a weak
order of convergence 1, however, it has a strong order of convergence 1/2 [162].
A more precise class of methods has been derived through extensions of the
Runge-Kutta method. In particular, [163] proposes an implementation of the
Runge-Kutta method for SDEs which has both weak and strong order of con-
vergence 1, and does not produce the systematic error of the Euler–Maruyama
method mentioned above. Given a SDE as the one of Equation (D.2), a time step
∆t so that tn+1 = tn +∆t and the value X(tn) = Xn, the value for the subsequent
time step X(tn+1) = Xn+1 is determined by:

Xn+1 = Xn +
1

2
(K1 +K2) (D.8)

where

K1 = a(tn, Xn)∆t+ (∆W − Sn

√
h)b(tn, Xn)

K2 = a(tn+1, Xn +K1)∆t+ (∆W − Sn

√
h)b(tn+1, Xn +K1)

(D.9)
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where ∆Wn =
√
∆tGn, with Gn random number extracted from a standard normal

distribution and Sn is a coefficient whose value depends on the SDE integration
scheme. In particular, the Itô integration scheme can be achieved by assigning Sn

the values +1 and −1 with equal probability, while the Stratonovich integration
scheme is obtained by setting Sn = 0 [163]. In this work, we used the Stratonovich
scheme, which is more appropriate for systems with external noise [164].
In Figure D.3 the raster plot for the network simulation using SDE Runge-Kutta
scheme is compared with respect to the simulation obtained using the exact in-
tegration method of [13]. In particular, the simulation is performed using the
background current needed to show the synchronous spiking activity during the
delay period (as the one shown in Figure 7.2B).

Figure D.3: Simulations of the network using different numerical integration tech-
niques. (Left) Raster plots of a subset of neurons of a targeted selective population
(green) and a non-targeted one (black). (Right) Histograms representing the dif-
ference in firing rate between the delay period and the spontaneous state for the
selective population targeted by the item loading signal. Figure from [3].

As can be noticed, the network behavior observed using the SDE Runge-Kutta
integration method (top panel of Figure D.3) is comparable to the behavior of the
network obtained using the exact integration method of [13] (bottom panel of
Figure D.3), which is the method used for all the simulations presented in Chapter
7.

D.3 Applicability of this model on a sequence learn-
ing network

As discussed in Chapter 7, during my research stay at the Jülich Research Center I
worked on a possible implementation of a working memory spiking network such
as the one described in this thesis on a hierarchical spiking model of sequence
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learning. Indeed, such a model (see [146]) is based on some biological assump-
tions: elements of the sequence are learned through a form of structural Hebbian
plasticity and neurons are able to predict the following element of a sequence
through a mechanism of nonlinear synaptic integration mimicking the generation
of dendritic action potentials (dAPs) which, together with a winner-take-all mech-
anism, enables the neuron encoding the following element to be the only ones
showing a synchronous event of spiking activity.

For this model to be able to process sequences of sequences, a further mechanism
able to encode an entire sequence for a limited time is needed. In this regard, we
provide here a biologically plausible simulation protocol according to which the
STP mechanism for working memory can be employed. In Figure 7.2A it is shown
that a memory-specific response can be triggered by a readout signal (i.e., a small
nonspecific excitatory signal). Furthermore, the dAP can last for around 100ms
and can be used as a mechanism to predict the next element of a sequence (or the
next sequence, depending on the hierarchy).

Let us assume that in the neurons of the working memory model the dAP mech-
anism is implemented1. By injecting a readout signal in the working memory
model, we have a memory-specific response that can lead to the formation of
dAPs. If we load an element or sequence right after, the dAP previously created
can lead to the emission of spikes from specific neurons that represent the follow-
ing element of the sequence (or the following sequence, depending on the hierar-
chical level), providing a prediction. To better explain the mechanism, Figure D.4
shows a schematic representation of the simulation protocol for a sequence of two
elements.

This mechanism can be explained by the fact that attention control might be of
thalamic origin. According to [165], which focused on visual attention, visual
stimuli are projected, from the thalamus, not only to the visual area V1 (i.e., the
first hierarchical level) but also to the visual area V2 (i.e., the second hierarchical
level). Thus V2 receives a fast unspecific excitatory signal from the thalamus, and
a slow specific excitatory stimulus from V1 (elaborated from the thalamic stimulus
of V1). These signals can serve, respectively, as readout signals that activate the
population encoding the current element of a sequence and item loading signal
for the following element.

In order to make the working memory spiking network suitable for such a process,
we have to adapt it to the TM model presented in [146]. For instance, the model
should be targeted by a sequence-like item loading signal to mimic the encoding
of a sequence of elements. Further, the TM model is able to encode an item in
populations of a few tens of neurons, which implies that the size of the selective
populations of the working memory model has to be strongly diminished. The
next sections will discuss the results of the tests performed in this regard.

1Currently, the neurons of the working memory model are not provided with the dAP mecha-
nism, and all the simulations shown here are based on the model described in Chapter 7.

Gianmarco Tiddia 198 Appendix



APPENDIX D. WORKING MEMORY SPIKING MODEL

Figure D.4: Schematic representation of the usage of the STP-driven mechanism
in a sequence learning model. Let us consider a sequence of two elements (A,
B). The element A is injected into the network at the beginning of the simulation
and the network can retrieve a memory-specific response when a readout signal
is injected. When the element B is injected, a first unspecific excitatory signal
targets the whole network, triggering the memory-specific response (playing the
role of a readout signal). This activates the dAP (sky blue lines) for the neurons of
the selective population representing B connected with neurons representing the
previous element. Thus, when the specific signal arrives at the neurons encoding
the element B, the subset of neurons is able to emit a spike before the rest of the
population, winning the WTA-like competition.

D.3.1 Sequential stimulation

Here selective populations are targeted with "sequential" item loading signals.
Thus, having an item as a set of N sequences, the item loading time is divided
into N intervals during which only a fraction of 1/N neurons of the population
are targeted with the stimulus. Right after the time interval, the targeted neurons
stop having the additional current and another subset of neurons is targeted, until
the very end of the time dedicated to the item loading signal. Figure D.5 shows
how the new item loading is designed.

Figure D.5: Item loading signal using a sequential stimulus of 4 elements. The
standard item loading signal (left), targets all the neurons of the selective popu-
lation. The sequential input (right) targets a subset of neurons at different times.
The total duration of the input is the same as the standard item loading signal.
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This way, looking at the average values of the STP variables u and x, the value of
u of the first set of targeted neurons rises only during the injection of the signal
A (see Figure D.5), and so on. This means that the amplitude of the sequence
signal can need to be increased to grant an enhancement of the synaptic efficacy
suitable for triggering the memory-specific response. Figure D.6 shows an example
of sequence-like item loading.

Figure D.6: Network behavior using a sequence-like item loading stimulus.
Bottom-left and right panels are the same as Figure 7.2, whereas the top-left panel
indicates the firing rate of each selective population. (A) Simulation where the
readout signal is needed. Here, having a lower background input current, the se-
quential input is clearly visible. We used Acue = 1.6. (B) Simulation where the
population spikes show up autonomously. Here, Acue = 1.15.

For 5 elements per item loading signal, the results would be almost identical.
Generally, when increasing the number of elements, it should be increased the
total time of the item loading, or the amplitude, or both.
We also studied the case in which a sequence element is missing. First of all, we
verified that the position of the missing element does not have an influence on
the final result. Indeed, the prediction mechanism of the TM model is sensitive
to the element position, but the only STP mechanism should not have an order-
dependent response. Here is an example of network behavior when the third
element is missing.
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Figure D.7: Network behavior using a sequence-like item loading stimulus with a
missing element of the sequence.

Interestingly, even if an element is missing, and thus part of the neurons is not
stimulated by the item loading signal, the whole neuron population retrieves the
memory when triggered by a readout signal. Indeed, the further missing element
is not able to properly encode the sequence in the selective population. We thus
decided to evaluate the readout performance. 5-elements item loading signal are
given with a variable number of missing elements. The missing elements are at
random position, since it was previously verified that the order of the element is
independent from the final response. We changed slightly the duration of the total
stimulus in order to see how much its length can be relevant, and we performed
10 simulations using different seeds for random number generation to see how
many simulations show the memory-specific response. The next plot shows the
results obtained.

Figure D.8: Readout performance of the network when giving sequences of 5
elements as input with a different number of elements of the sequence actually
loaded. The two lines are obtained by simulating the network using 10 different
seeds for random number generation and using different element durations.
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As we can expect, a shorter stimulation leads to a minor stimulation of the se-
lective population, leading to a lower readout performance. Indeed, these perfor-
mances can change as a function of the duration of a sequence element stimulus,
the number of elements of the sequence, and the amplitude of the stimulus, and
further tests will be needed to measure the readout performance with parameters
similar to the ones of the TM model.

D.3.2 Selective populations down-scaling

We also worked on the down-scaling of the selective populations. The TM model
encodes a sequence element using a population of around 20-30 neurons. Since
the working memory network has a total of 10000 neurons, with 800 excitatory
neurons per selective population, the idea is to fix the total size of the network
and diminish the size of the selective populations gradually until we reach a few
tens of neurons. This choice leads to encoding a larger number of items and
also to retrieve a memory using even fewer neurons, resulting in a more efficient
mechanism.
Together with this change, we also decided to shorten the duration of the item
loading and readout stimuli (i.e., Tcue and Treac respectively), compensating this
change by increasing the contrast factors (ergo the amplitude of the external stim-
uli). This was done to use parameters more similar to the one of the TM model,
which receives shorter but stronger inputs. To do so, we tried fixing the same
amount of charge deposited when injecting the external signal, to keep constant
the product of duration and contrast factor.
The network described in Chapter 7 has p = 5 selective populations, so that using
the parameters of [3], half of the excitatory population is part of selective popu-
lations, with the other half being non-selective. However, even when increasing
the number of selective populations, the network works in a similar way. In or-
der to properly downscale the selective populations, we adjusted the following
parameters:

• potentiated and baseline excitatory-to excitatory synaptic weights, usually
increasing Jp;

• synaptic time constant (default τs = 2ms), to be increased to enhance the
effect on the postsynaptic potential from a single spike;

• excitatory background current, to be increased;

• contrast factors for item loading and readout signals, to be increased.

Basically, since this model relies on WTA mechanism and population spikes are
led to random fluctuation of spiking activity, increasing the excitatory drive to the
selective populations is fundamental. This can be achieved both by increasing
the background and the external signals and increasing the weight of the spikes
coming from neurons belonging to the same population, since a decrease in the
number of neurons leads to a decrease of the in-degrees from the same selective
population. To this end, another potentially useful parameter is the connectivity
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level, which can be changed from 0.2 (i.e., the default value) to 1.0 (i.e., an all-
to-all connectivity for the selective population).
The following figure shows the raster plot of the network when selective popu-
lations have a size of 50 neurons. To obtain such a result, we used the follow-
ing parameters: ηE

X = 26.5mV, τsyn = (5.0, 5.0, 2.0)ms (respectively, the synap-
tic time constant for intra and inter-population excitatory-to-excitatory connec-
tions, and connections between excitatory and inhibitory neurons), Jb = 0.01mV,
Jp = 1.15mV.

Figure D.9: Raster plot of the spiking activity for a network with selective popula-
tions of 50 neurons. The readout signal starts at 3750.0ms.

Such a result can also be obtained by increasing the connectivity level, which in
this example has not been changed. Moreover, although the STP parameters have
not been changed, the memory specif response here starts showing up around
550ms after the item loading signal, instead of the usual 900ms.
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Appendix E
Lognormal distribution of the firing
rate

The theoretical treatment of the continuous model proposed in this thesis is valid
for a generic firing rate probability distribution. However, the model validation
presented in the result section is focused on a lognormal distribution, which is a
continuous probability distribution of a random variable ν whose logarithm ln(ν)
is normally distributed. The probability density function of this distribution is

ρLN(ν) =
1√
2πσν

· exp
(
−(ln(ν)− µ)2

2σ2

)
(E.1)

where µ and σ are the mean and standard deviation of ln(ν). Expanding Equation
(8.22) using Equation (E.1) we have

⟨νℓ⟩ =
1

q1

∫ yt

−∞
ν(y)Gσ,µ(y)dy =

1

q1

∫ yt

−∞
ey

1√
2πσ2

e
−(y−µ)2

2σ2 dy

⟨νh⟩ =
1

p1

∫ ∞

yt

ν(y)Gσ,µ(y)dy =
1

p1

∫ ∞

yt

ey
1√
2πσ2

e
−(y−µ)2

2σ2 dy

(E.2)

where y is a variable representing the logarithm of the firing rate, y = ln(ν), and
follows a normal distribution Gσ,µ(y), while yt represents the value linked to the
threshold value on the rate νt (yt = ln(νt)).
In the logarithmic representation the area of the portion of the Gaussian Gσ,µ(y)
having y < yt corresponds to the probability that a neuron has a low rate, q1.
Therefore we can write:

q1 =

∫ yt

−∞
Gσ,µ(y)dy =

1

2
+

∫ yt

µ

1√
2πσ2

e−
(y−µ)2

2σ2 dy (E.3)

Substituting x = y−µ√
2σ

we obtain:

q1 =
1

2
+

∫ yt−µ√
2σ

0

1√
π
e−x2

dx =
1

2
+

1

2
erf

(yt − µ√
2σ

)
(E.4)

where with erf(x) we indicate the error function, defined as:
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erf(x) =
2√
π

∫ x

0

e−t2dt (E.5)

and then

yt = µ+
√
2σerf−1(2q1 − 1) (E.6)

where erf−1 is the inverse of the erf function. By substituting z = y − µ we can
rewrite νh from Equation (E.2) as:

⟨νh⟩ =
1

p1

∫ ∞

yt−µ

1√
2πσ2

ez+µ− z2

2σ2 dz =
1

p1

eµ√
2πσ2

∫ ∞

yt−µ

e−
z2−2σ2z

2σ2 dz =

=
1

p1

eµ√
2πσ2

∫ ∞

yt−µ

e−
(z−σ2)2−σ4

2σ2 dz =
1√
2π

eµ+
σ2

2

σp1

∫ ∞

yt−µ

e
−(z−σ2)2

2σ2 dz

(E.7)

Making a further substitution ξ = z−σ2
√
2σ

finally we find:

⟨νh⟩ =
1√
π

eµ+
1
2
σ2

p1

∫ ∞

yt−µ−σ2
√
2σ

e−ξ2dξ =

=
1√
π

eµ+
1
2
σ2

p1

(∫ ∞

0

e−ξ2dξ −
∫ yt−µ−σ2

√
2σ

0

e−ξ2dξ
)
=

=
eµ+

1
2
σ2

p1

[1
2
− 1

2
erf

(yt − µ− σ2

√
2σ

)]
=

=
⟨ν⟩
2p1

[
1− erf

(
erf−1(2q1 − 1)− σ√

2

)]
(E.8)

with ⟨ν⟩ indicating the average rate, which for the lognormal distribution is given
by the known expression

⟨ν⟩ = eµ+
1
2
σ2

(E.9)

With similar steps we obtain the expression of ⟨νl⟩

⟨νl⟩ =
⟨ν⟩
2q1

[
1− erf

(
erf−1(2p1 − 1)− σ√

2

)]
(E.10)

From these two equations we can finally derive the relationships between σ, q1, ν
and νh or νl respectively:

σ =
√
2
[
erf−1(2q1 − 1)− erf−1

(
1− 2p1⟨νh⟩

⟨ν⟩

)]
(E.11)

σ =
√
2
[
erf−1(2p1 − 1)− erf−1

(
1− 2q1⟨νl⟩

⟨ν⟩

)]
(E.12)

Using the equation (E.9) we can rewrite µ as:
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µ = ln(⟨ν⟩)− σ2

2
(E.13)

The average rate ⟨ν⟩ can also be expressed as a function of ⟨νh⟩ and ⟨νℓ⟩:

⟨ν⟩ = p1⟨νh⟩+ q1⟨νℓ⟩ (E.14)

The latter equations allow us to express the parameters of the lognormal distribu-
tion σ and µ as a function of the parameters of the model, p1, ⟨νh⟩ and ⟨νℓ⟩.
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Appendix F
Estimation of the variance of k

In this appendix, we compute the variance of the number of consolidated connec-
tions in input to a neuron of P2 (i.e., σ2

k) which, as we have seen previously, enters
the formula for the variance on the background signal. For the calculation we use
the table below which represents the two states, rate high (1) or rate low (0), for
a single neuron of the population P2 and for the presynaptic neurons of its input
connections in a complete simulation over T patterns.

t O I0 I1 .... Ik−1 Ik .... IC−1

0 1 x00 xk−1,0 0 0
1 1 .. .. 0 0
2 1 .. .. 0 0
.. .. .. .. .. ..

m-1 1 x0m xk−1,m−1 0 0
.. 0
.. ..

T − 1 0

Table F.1: Table representing the two states rate high (1) or rate low (0) for
a single neuron of the population P2 and for the presynaptic neurons of its input
connections in a complete simulation. Each row represents a training pattern, with
index ranging from 0 to T −1. The first two columns represent the training pattern
index t and the rate level O, high or low, of the P2 neuron. The other columns Ij

represent the rate level, high or low, of the presynaptic neurons connected to the
neuron of P2 through its C incoming connections. The entries for rate levels can be
0 or 1 for low rate and for high rate respectively; in case of continuous distribution
of the rate, the two levels correspond to a rate over or under the threshold νt. The
table shows the case in which the P2 neuron is in the high-rate level for the first
m examples and in the low-rate level for T − m examples, while the last C − k
presynaptic neurons are in the low-rate level for the first m examples.

Given the scheme of Table F.1, we call:
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• p1: probability that a neuron of P1 is in the high-rate level, i.e. probability
that a cell of a column Ij is equal to one;

• p2: probability that the neuron of P2 is in the high-rate level for a given
example, i.e., probability that a cell of the column O is equal to one;

• pm2 : probability that the neuron of P2 is in the high-rate level for the first m
patterns;

• (1− p2)
T −m: probability that the neuron of P2 is in the low-rate level for the

remaining T −m patterns;

• (1− p1)
m: probability that a neuron of P1 is in the low-rate level for the first

m patterns;

• 1 − (1 − p1)
m: probability that a neuron of P1 is in the high-rate level for at

least one pattern out of the first m;

• [1 − (1 − p1)
m]k: probability that every neuron of P1 of the columns I0, ....,

Ik−1 is above threshold for at least one pattern among the first m;

• (1− p1)
m(C−k): probability that every neuron of P1 of the last C − k columns

is below threshold for the first m patterns.

Now we can combine all these results to calculate the probability that one neuron
of P2 and k presynaptic neurons of its input connections are high level for m
generic patterns (i.e., not necessarily the first m). To do this we have to take into
account that the neuron of P2 will not necessarily be at the high level in the first
m examples and that the neurons of P1 at the high level will not necessarily be
the first k ( as in the case shown in the table). For this, we have to use binomial
coefficients that will take into account all possible combinations in the choice of m
patterns out of all possible T patterns and in the choice of k presynaptic neurons
out of a total of C connections:

Q(m, k) =

(
T
m

)
pm2 (1− p2)

T −m

(
C
k

)
[1− (1− p1)

m]k (1− p1)
m(C−k) (F.1)

The probability that k connections of a generic neuron of P2 are consolidated can
be calculated by adding Q(m, k) over all possible values of m:

P (k) =
T∑

m=0

Q(m, k) (F.2)

and the average number of consolidated connections can be calculated as:
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⟨k⟩ =
∑
m,k

kQ(m, k) =
∑
m

(
T
m

)
pm2 (1− p2)

T −m

C∑
k=0

k

(
C
k

)
(1− qm1 )

kq
m(C−k)
1 =

=
∑
m

(
T
m

)
pm2 (1− p2)

T −mC(1− qm1 ) =

= C
[ ∑

m

(
T
m

)
pm2 (1− p2)

T −m −
∑
m

(
T
m

)
(p2q1)

m(1− p2)
T −m

]
=

= C
[
1−

∑
m

(
T
m

)
(p2 − p1p2)

m(1− p2)
T −m

]
(F.3)

where q1 = 1− p1 and we have used the formula for the mean value of a binomial
distribution:

n∑
k=0

k

(
n

k

)
pk(1− p)n−k = np (F.4)

Using the relationship:

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k (F.5)

we can get the expression of ⟨k⟩:

⟨k⟩ = C[1− (1− p1p2)
T ] (F.6)

To calculate σ2
k we must also calculate ⟨k2⟩:

⟨k2⟩ =
∑
m,n

Q(m, k)k2

⟨k2⟩ =
∑
m

(
T
m

)
pm2 (1− p2)

T−m ·
C∑

k=0

(
C
k

)
(1− qm1 )

kq
m(C−k)
1 k2

(F.7)

After some calculations, analogous to the case of ⟨k⟩, we obtain the following
formula:

⟨k2⟩ = C(C − 1)[1 + p1p2(p1 − 2)]T − C(2C − 1)(1− p1p2)
T + C2 (F.8)

Finally, the variance can be calculated from equations (F.6) and (F.8) as

σ2
k = ⟨k2⟩ − ⟨k⟩2 (F.9)
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Appendix G
Noise addition during test phase

As anticipated in Section 8.4.3, in order to assess the generalization capacity of the
model proposed in this theoretical framework, the test input patterns were gener-
ated starting from the corresponding training input patterns by adding noise with
a given probability distribution. More specifically, each test pattern is generated
by adding to the rate of the corresponding training pattern the contribution of a
further extraction from a truncated Gaussian distribution G(η)µT,σT. Therefore the
single neuron rate in a test pattern will be given by the following formula:

νtot = ν + η (G.1)

where η is a rate driven by the distribution G(η)µT,σT. The input signal to a neuron
of the population P2 can be expressed as the scalar product between the vector W⃗
of the weights and the vector ν⃗tot of the rates of the presynaptic neurons:

W⃗ · ν⃗tot = W⃗ · ν⃗ + W⃗ · η⃗ (G.2)

Since the noise distribution has zero mean, its contribution to the average values
of the signals in input to the coding and non-coding neurons, ⟨S2⟩ and ⟨Sb⟩, is zero.
On the other hand, it affects the variance of the background signal, σ2

b. Since ν
and η are independent and random variables, the overall variance will be equal to
the sum of the variance in the absence of noise σ2

b (see Equation (8.26)) plus the
variance due to noise. Thus

σ∗2
b = σ2

b + ⟨k⟩(Wcση)
2 + (C − ⟨k⟩)(Wbση)

2 = σ2
b + σ2

ηC
[
pW2

c + (1− p)W2
b

]
(G.3)

where σ2
η = σ2

T is the variance of G(η)µT,σT. Truncating the Gaussian distribution in
the symmetric interval [−2σ, 2σ], the mean is zero, whereas the variance is

σ2
T = σ2

[
1− 4 · e−2

√
2πerf(

√
2)

]
(G.4)
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G.1 Calculation of the mean value of k′t over the rewiring
steps

In Section 8.4 we obtained the expression of S2 in the presence of rewiring and
we observed that this depends on the parameter k′

t, given by (Equation (8.33)):

⟨k′
t⟩ = ptC(1− p1) (G.5)

where, according to Eq. (8.34), pt is given by

pt = 1− (1− p1p2)
t (G.6)

In order to calculate the mean value of S2 for all patterns, k′
t should be averaged

over all the values of the training index t for which the rewiring is performed, i.e.

t = si i = 0, . . . ,
T
s

(G.7)

where s is the rewiring step and for simplicity we assume that T is a multiple of
s and that there is a final rewiring after the last training step. The average of pt
over the rewiring values of t is

⟨pt⟩ =
∑T /s

i=0 1− [(1− p1p2)
s]i

T
s
+ 1

= 1−
∑T /s

i=0 [(1− p1p2)
s]i

T
s
+ 1

= 1− bs

T + s
(G.8)

where we introduced a parameter b defined as

b =

T/s∑
i=0

[(1− p1p2)
s]i =

1− [(1− p1p2)
s]T/s+1

1− (1− p1p2)s
=

1− (1− p1p2)
T+s

1− (1− p1p2)s
(G.9)
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