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Abstract: Online platforms have become the primary means for travellers to search, compare, and
book accommodations for their trips. Consequently, online platforms and revenue managers must
acquire a comprehensive comprehension of these dynamics to formulate a competitive and appealing
offerings. Recent advancements in natural language processing, specifically through the development
of large language models, have demonstrated significant progress in capturing the intricate nuances
of human language. On the other hand, knowledge graphs have emerged as potent instruments
for representing and organizing structured information. Nevertheless, effectively integrating these
two powerful technologies remains an ongoing challenge. This paper presents an innovative deep
learning methodology that combines large language models with domain-specific knowledge graphs
for classification of tourism offers. The main objective of our system is to assist revenue managers
in the following two fundamental dimensions: (i) comprehending the market positioning of their
accommodation offerings, taking into consideration factors such as accommodation price and avail-
ability, together with user reviews and demand, and (ii) optimizing presentations and characteristics
of the offerings themselves, with the intention of improving their overall appeal. For this purpose,
we developed a domain knowledge graph covering a variety of information about accommodations
and implemented targeted feature engineering techniques to enhance the information representation
within a large language model. To evaluate the effectiveness of our approach, we conducted a compar-
ative analysis against alternative methods on four datasets about accommodation offers in London.
The proposed solution obtained excellent results, significantly outperforming alternative methods.

Keywords: knowledge graphs; natural language processing; BERT; classification tasks; feature
engineering; tourism; hospitality

1. Introduction

In the digital transformation era, online platforms have become the primary means
for travellers to search, compare, and book travel accommodations. With the vast amount
of information available, finding the most suitable option can be overwhelming for users.
Moreover, travellers often have distinct preferences, such as location, amenities, price
range, and specific interests. Consequently, online platforms and revenue managers (In the
tourism domain, a person whose job is to optimize the performance of an accommodation
is commonly referred to as a “revenue manager” or a “revenue optimization manager”) in
the hospitality industry must acquire a comprehensive comprehension of these dynamics
to formulate a competitive and appealing offering [1].
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Recent advancements in Natural Language Processing (NLP), specifically through the
development of large language models based on transformers, have demonstrated signifi-
cant progress in capturing the intricate nuances of human language [2]. Transformer-based
models have exhibited remarkable capabilities in diverse natural language understanding
tasks, including language generation, sentiment analysis, and question answering [3–6]. A
wide range of systems now rely on these technologies, including modern conversational
agents [7,8], medical applications [9], translation systems [10], and even tools for literature
reviews [11]. On the other hand, knowledge graphs have emerged as potent instruments
for representing and organizing structured information in a semantic manner [12]. These
knowledge bases effectively capture the relationships between entities and attributes, pro-
viding a machine-readable depiction of the domain to various intelligent services [13].
Typically, knowledge graphs structure information based on a domain ontology [14], which
formally describes entity types and relationships while supporting reasoning processes.
They can also be automatically refined by means of link prediction techniques, which aim
to identify additional relationships between domain entities [15,16].

Nevertheless, effectively integrating these two powerful technologies remains an
ongoing challenge, giving rise to several intriguing issues [17]. The primary challenges
revolve around effectively combining information from unstructured and structured data
sources, as well as appropriately encoding knowledge graph information [18].

This paper presents KGE-BERT (Knowledge Graph Enhanced BERT), an innovative
deep learning methodology that combines large language models with domain knowledge
graphs with the goal of classifying tourism offers. Our approach employs transformer
models to acquire a comprehensive understanding of accommodation descriptions that are
expressed as unstructured texts. This acquired knowledge is then seamlessly combined
with a detailed depiction of the tourism domain obtained from a knowledge graph that
we generated using Airbnb data, improving the classification capabilities of the system.
The underlying knowledge graph (Tourism Knowledge Graph—London) describes over
65,000 accommodations modelled according to the Tourism Analytic Ontology (TAO) (see
http://purl.org/tao/ns, accessed on 1 July 2024).

The main objective of our system is to assist revenue managers in the following two
fundamental dimensions: (i) comprehending the market positioning of their accommoda-
tion offerings, taking into account price and availability, together with user reviews and
demand, and (ii) optimizing their offerings on online platforms. This optimization can be
achieved through improvements in the style and level of detail provided in the descriptions
or through modifications to the accommodations themselves. For instance, introducing
new amenities that are typically associated with better reviews can enhance the overall
appeal of the offering.

More specifically, we focus on a set of classification tasks that were identified by
collaborating with Linkalab S.R.L, an Italian company specialized in data science and data
engineering, which has developed an industrial project about Tourism 4.0 called Data Lake
Turismo (“Turismo” means tourism in Italian) that collects and analyzes tourism-related
data from the web. Hospitality business strategy needs to be informed by a variety of infor-
mation about the business audience’s consumer behaviour to maximize revenue ensure
competitiveness. When it comes to revenue management, it is critical to create specific
strategies and adapt them to the current conditions. Therefore, revenue managers need
tools to analyze various aspects, such as pricing, availability, and distribution channels.
Our system aims to provide additional support through the classification of offer position-
ing based on the following four predicted dimensions: (1) price range, (2) user interest,
(3) relevance within a specific market, and (4) user appreciation after utilization. We
describe each relevant classification task in detail in Section 4.

We evaluated our approach by comparing it to a BERT classifier and a baseline logistic
regression classifier on a dataset of more than 15,000 accommodation offers for each
classification task. We also performed a study on various combinations of feature types
that highlighted how these have a significant impact on the performance of the models.

http://purl.org/tao/ns
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The proposed solution obtains excellent results and significantly outperforms alternative
methods, such as transformers models trained on the texts.

The main contributions of our work are summarized as follows:

• We propose a novel methodology that effectively integrates large language models
and knowledge graphs in the context of the tourism domain.

• We provide a comprehensive evaluation demonstrating the advantages of the pro-
posed solution compared to conventional transformer models.

• We conduct an in-depth analysis of feature engineering techniques to identify the most
effective combination of features.

• We offer the full codebase (https://github.com/luca-secchi/kge-bert, accessed on 15
June 2024) of our methodology, which successfully addresses four classification tasks
within the tourism domain.

This manuscript is structured as follows. In Section 2, we report previous related work.
Section 3 presents the materials (e.g., ontology and knowledge graph) considered in our
study. Section 4 discusses and formalizes the four tasks we tackle, while Section 5 describes,
in detail, the dataset used for training of the machine learning models. Section 6 discusses
a variety of alternative strategies for feature engineering. Section 7 presents the architecture
of our system, and Section 8 reports the experimental evaluation. Section 9 discusses the
obtained results. Finally, Section 10 discusses conclusions and future research directions.

2. Related Work

We devote this section to reviewing the literature according to the two main themes
surrounding this research endeavour, namely (i) knowledge graphs in the tourism domain
and (ii) knowledge injection into deep learning models.

2.1. Knowledge Graphs in the Tourism Domain

In recent years, several endeavours have been made to construct knowledge graphs in
the tourism domain, typically by extracting information from websites and social media.
Researchers introduced an approach and tools to support the entire knowledge graph
life cycle, encompassing creation, hosting, curation, and deployment [19]. Their curation
process focuses on maintaining the knowledge graph’s correctness and completeness. They
provided process models and evaluated the developed tools using knowledge graphs in the
tourism domain. Additionally, they shared insights and lessons learned from implementing
this approach in both open and commercial settings across several use cases.

An example of a knowledge graph in the tourism domain was developed for Expo
Milano 2015 by Troncy et al. [20]. They developed the 3cixty platform to establish com-
prehensive knowledge bases encompassing event and activity descriptions, places and
landmarks, transportation facilities, and social activities. Another notable initiative, the
Tourpedia platform, aimed to serve as the tourism equivalent of DBpedia and was de-
veloped within the OpeNER Project [21]. Various other projects demonstrate successful
applications of semantic technologies and knowledge graphs in the tourism domain, ex-
tracting information from curated proprietary data sources. Noteworthy examples include
the La Rioja Turismo Knowledge Graph [22], which integrates information on attractions,
accommodations, tourism routes, activities, events, restaurants, and wineries from diverse
management systems, and the Tyrolean Tourism Knowledge Graph [23], where data with
Schema.org annotations are collected from destination management organizations (DMOs)
and their IT service providers. State-of-the-art solutions also encompass the generation of
tourism knowledge graphs in the Chinese language [24,25], where authors extract knowl-
edge from existing encyclopedia knowledge graphs and unstructured web pages in Chinese.
Knowledge graphs can accommodate all kinds of data and metadata in a flexible schema
and can be easily extended and interconnected with existing linked open-data global space,
leveraging other existing knowledge graphs like DBpedia (see Section 3.3). Thanks to these
characteristics, they are often used as a source of curated information that can be used in
conjunction with AI models to develop intelligent applications. Xiao et al. [24] proposed a

https://github.com/luca-secchi/kge-bert
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systematic framework for constructing a tourism-domain knowledge graph specifically
for Hainan, a Chinese province. The authors addressed the challenges of multi-source and
heterogeneous data by developing two distinct pipelines—one for semi-structured data
using tourism InfoBox and another for unstructured data employing deep learning algo-
rithms. This dual approach not only enhances the accuracy of entity and relation extraction
from noisy travel notes but also ensures a more comprehensive integration of various data
sources. The resulting TKG includes 13 entity types and 46 relation types. In their work,
the authors of [25] constructed a Chinese knowledge graph focused on the tourism domain.
They extracted knowledge from the existing Chinese encyclopedia knowledge graph and
unstructured web pages. Additionally, they developed a storage scheme for RDF triples
within a graph database and created a tourism knowledge application platform based on
this infrastructure. Different authors proposed a German tourism knowledge graph that
integrates tourism-related data from 16 federal states of Germany and various other sources
to create a curated knowledge base for multiple applications [26]. Launched in May 2023,
it is updated daily by the regional marketing organizations of each German state and is
publicly accessible through GUIs and an API.

Other researchers developed a cultural perspective-based knowledge graph by fine
tuning ERNIE 3.0 (FT-ERNIE) and ChatGPT to recognize cultural types, aiming to strengthen
the link between tourism resources and cultures [27]. Using an annotated dataset of
2745 cultural tourism resources spanning 16 cultural types, they found that FT-ERNIE
achieved an accuracy of 0.81 and a micro-F1 score of 0.93, outperforming ChatGPT, which
had an accuracy of 0.12 and a micro-F1 score of 0.67. This highlights FT-ERNIE’s supe-
rior performance and ChatGPT’s limitations due to insufficient Chinese training data.
They designed a novel ontology for CuPe-KG, incorporating elements such as cultural
types, historical figures, events, and intangible cultural heritage, effectively addressing the
information retrieval needs of cultural tourism visitors.

2.2. Knowledge Injection into Deep Learning Models

In the last few years, several attempts have been made to address the challenge of
injecting structured knowledge into deep learning models to tackle various tasks. For
example, Liu et al. [28] proposed K-BERT, which extends BERT with a knowledge-enabled
language representation model, where knowledge graph triples are injected into sentences
during fine tuning. However, K-BERT is not able to consistently beat baselines like BERT for
simple classification tasks. Furthermore, Ostendorff et al. [29] proposed a method for book
genre classification by combining knowledge graph embeddings of authors with book titles
and other metadata features to efficiently tackle classification tasks. Ref. [30] introduced a
novel approach incorporating entity-related knowledge into encoder–decoder large pre-
trained language models (PLMs) through generative knowledge infilling objective during
continued pre-training. In contrast, Emelin et al. [31] proposed injecting domain-specific
knowledge before fine tuning task-oriented dialogue tasks using lightweight adapters.
These adapters can be easily integrated with PLMs and serve as a repository for facts
learned from different knowledge bases. Additionally, Moiseev et al. [32] described a
method to integrate structured knowledge into LLMs by directly training T5 models on
factual triples from knowledge graphs (KGs). Finally, Wang et al. [33] proposed a method
that keeps the original parameters of the pre-trained model fixed and enables continuous
knowledge infusion through a neural adapter for each type of infused knowledge, serving
as a plug-in connected to the LLM. Nevertheless, these methods tend to concentrate on
specific domains, employing domain-specific solutions and features that are not easily
adaptable to the tasks addressed in this paper. Our proposed methodology integrates
the advantages of previous approaches by incorporating knowledge graph information
using an effective feature engineering strategy with the aim of improving the accuracy of
four tasks related to revenue management in the context of the tourism domain. To the best
of our knowledge, no previous attempts have been made to combine knowledge graphs
and language models to solve classification tasks within the tourism domain.
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3. Materials

In this section, we introduce the materials used to build the classification system for
optimization of accommodation offers, namely the Tourism Analytic Ontology (TAO), the
Tourism Knowledge Graph (TKG), DBpedia, and BERT (Bidirectional Encoder Represen-
tations from Transformers). We also discuss different knowledge injection strategies for
transformers.

3.1. The Tourism Analytic Ontology

The Tourism Analytic Ontology (TAO), introduced in [34], is an ontology to describe
the complex dynamics of the tourism domain and supports intelligent services in this space.
It models various aspects of tourism, including lodging facilities (i.e., the physical place
where actual accommodations are located), accommodations (i.e., units of the lodging
facility that are offered for rental, such as hotel rooms), amenities (i.e., additional services,
features, or facilities that are provided to guests), accommodation lease-out offerings,
tourist destinations (i.e., a place that is central in a tourist’s decision to take the trip),
tourist locations (i.e., geographic points or areas of interest), and tourist reviews and
ratings. It was developed in the OWL Web Ontology Language [35] following a data-
driven design methodology to support the creation of a knowledge graph focused on
hospitality and tourist attractions. TAO builds on several other open ontologies, including
the Accommodation Ontology (https://www.sti-innsbruck.at/results/ontologies, accessed
on 15 June 2024), GoodRelations (https://www.heppnetz.de/projects/goodrelations/,
accessed on 15 June 2024), and Schema.org (https://schema.org/, accessed on 15 June 2024).
It also includes four taxonomies structured as hierarchies of OWL classes with respect to
(i) amenities, (ii) lodging facilities, (ii) accommodations, and (iv) tourist locations. TAO
is capable of modelling information from several commonly used data sources within
the tourism domain, such as Booking.com (Booking.com is a digital travel company that
specializes in providing information about accommodations and related offers such as
hotels, B&Bs, and other types of hospitality. The website also allows users to share their
opinions in the form of reviews) and Airbnb (Airbnb is a peer-to-peer company based
in America that links hosts who offer their accommodation spaces, such as apartments
and rooms, with travellers who are searching for a place to stay. Its website provides
information on accommodations, as well as reviews from users).

3.2. Generation of a Tourism Knowledge Graph

Following the methodology introduced in [34], we built a tourism knowledge graph
(TKG) based on TAO whose aim is to store and analyze information about tourism destina-
tions and to support the creation of intelligent applications in collaboration with Linkalab.
The version presented in this paper and used to produce the benchmark for the experiments
focuses on 69 Kaccommodations in London. The knowledge graph stores information
in the form of a data graph where nodes represent real objects (like accommodation, a
tourism destination, or a tourist location) and edges represent specific relations among
these entities or between an entity and its properties. The data graph is expressed in RDF
(The RDF (Resource Description Framework) language is a framework for representing
information about resources on the Semantic Web in a structured, machine-readable format)
language to be fully compliant with W3C standards for the Semantic Web. All data from
Airbnb are, thus, converted to RDF using the RDF Mapping Language (RML) (The RDF
Mapping Language (RML) is a mapping language designed to define customized mapping
rules for transforming heterogeneous data structures and serializations into RDF), which
is used to transform tabular data into triples (subject, object, predicate). The produced
triples are stored in RDF files that are loaded, using a batch procedure, into the triple store
implemented using GraphDB (GraphDB is an enterprise-ready semantic graph database,
compliant with W3C Standards. See https://graphdb.ontotext.com/, accessed on 15 June
2024) that can be queried using SPARQL (SPARQL Protocol and RDF Query Language).

https://www.sti-innsbruck.at/results/ontologies
https://www.heppnetz.de/projects/goodrelations/
https://schema.org/
https://graphdb.ontotext.com/
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TKG covers Airbnb’s London accommodations and was built reusing open data from
the Inside Airbnb project (See http://insideairbnb.com/about, accessed on 15 June 2024).
Inside Airbnb is a mission-driven project that provides data and advocacy about Airbnb’s
impact on residential communities all over the world. For our analysis, we used the
information about the accommodations and their hosts that was collected for London on
the 10th of September 2022. The data contain 69,351 records with 75 fields (A data dictionary
describing each field is available online at https://docs.google.com/spreadsheets/d/1iW
CNJcSutYqpULSQHlNyGInUvHg2BoUGoNRIGa6Szc4, accessed on 15 June 2024) and
describe specific accommodations (called listings in Airbnb) identified with unique listing
IDs (“id” field). We can distinguish the following three types of information: the textual
description of the accommodation (e.g., description), the categorical fields that describe
the characteristic of the accommodation and the amenities (e.g., amenities), and other
fields that can be treated as numbers or transformed into numbers and that specify some
attributes of the accommodation (e.g., price). The initial file undergoes a series of dedicated
data pipelines to transform its content into triples, generating the knowledge graph. Each
field is processed in a distinct manner, depending on the nature of the information it holds.
Specifically, the description field, which contains unstructured text, undergoes processing to
identify semantic entities such as places, food, and amenities. These entities are then linked
to DBpedia, as described in Section 3.3. Through the process of entity linking, new triples
are generated, explicitly representing the previously unstructured information extracted
from the text in the knowledge graph. The information in the categorical amenities field
is also transformed by means of an ontology mapping process that substitutes the short
text describing an amenity with the corresponding class in the TAO ontology. This process
unifies the way amenities are described and allows us to refer to concepts instead of
names. For instance, we use the specific TAO class Television in place of terms such as
“tv”, “television”, “tv with standard cable”, “hdtv”, and “screen tv”. Numeric columns
are encoded in the KG by generating triples where the subject is the accommodation, the
predicate is the property represented by the column (e.g., price), and the object is a literal
value found in the column (e.g., 100).

3.3. DBpedia

DBpedia [36] is a widely recognized and extensively curated knowledge graph that
is often used to enhance textual information from structured data. It was generated by
extracting structured information from Wikipedia and interlinking it with other knowledge
graphs, providing a rich network of interconnected entities and relationships. In the last
few years, DBpedia Spotlight [37] has emerged as a robust, multi-domain entity-linking
tool. DBpedia Spotlight employs NLP techniques to identify mentions of entities in the text
and link them to their corresponding DBpedia resources. This tool is often used to connect
domain knowledge graphs in a variety of fields with a common base of concepts [38,39].

In our system, we leverage DBpedia Spotlight to extract supplementary information
from the descriptions of Airbnb accommodations. This extracted information serves as
additional features for our classifier and encompasses various aspects, including accom-
modation details, related named entities, and other relevant aspects conveyed by entities
mentioned in the text. As an example, we report a description with words highlighted
in bold, followed by a list of the corresponding DBpedia entities’ IRIs (Internationalized
Resource Identifiers) (See https://datatracker.ietf.org/doc/html/rfc3987, accessed on 15
June 2024).

Description text: Perfectly situated within a short distance of Hampton Court Palace, Bushy
Park, Kempton Park, Sandown and Twickenham Stadium. [. . . ] Featuring a high end kitchen,
underfloor heating and luxury en suite bathroom.

Linked entities extracted from text: dbp:Hampton_Court_Palace (We use the prefix
domain format for short where dbp:Enity_Name) corresponds to the IRI http://db
pedia.org/resource/Entity_Name, accessed on 15 June 2024,

dbp:Bushy_Park, dbp:Kempton_Park_Racecourse,

http://insideairbnb.com/about
https://docs.google.com/spreadsheets/d/1iWCNJcSutYqpULSQHlNyGInUvHg2BoUGoNRIGa6Szc4
https://docs.google.com/spreadsheets/d/1iWCNJcSutYqpULSQHlNyGInUvHg2BoUGoNRIGa6Szc4
https://datatracker.ietf.org/doc/html/rfc3987
http://dbpedia.org/resource/Entity_Name
http://dbpedia.org/resource/Entity_Name
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dbp:Sandown_Park_Racecourse, dbp:Twickenham_Stadium,
dbp:Underfloor_heating.

3.4. BERT

BERT (Bidirectional Encoder Representations from Transformers) is a prominent lan-
guage model capable of capturing comprehensive contextual representations of words
and sentences [4]. One of the key applications of BERT is text classification [40]. By fine
tuning BERT on labeled data specific to a particular classification task, it can effectively
learn to predict the correct class labels for new, unseen text inputs. BERT’s bidirectional
nature enables it to capture both the preceding and following context of each word, en-
abling a deeper understanding of the dependencies and relationships within the text. BERT
has emerged as a state-of-the-art model for text classification [41], providing significant
improvements in performance and the ability to handle complex linguistic patterns and
contexts. The BERT base model consists of an encoder comprising 12 transformer blocks,
each with 12 self-attention heads and a hidden size of 768. Before a text can be processed by
BERT, it must be split into individual tokens. These tokens can represent words, subwords,
or even characters, depending on the chosen tokenization strategy. BERT operates on input
sequences of up to 512 tokens, generating a representation of the sequence. With regard
to text classification, BERT employs the final hidden state (h) of the first token [CLS] as
the representation for the entire sequence. To predict the probability (p) of a label (c), a
pooling layer is implemented with a fully connected layer with a tanh activation function.
The pooling layer’s output is subsequently fed into a sigmoid classifier, which is placed
on top of BERT. This classifier utilizes the task-specific parameter matrix (W) to make
predictions.

p(c|h) = sigmoid(tanh(Wh))

The parameters of BERT and W are fine-tuned together by maximizing the log proba-
bility of the correct label.

4. Task Formulation

We identified four classification tasks that can be used to optimize an accommodation
offer. These were derived from discussions with stakeholders and revenue managers in the
context of our collaboration with Linkalab.

We defined and labeled them as follows:

Task 1 Price value: Predict if the accommodation can be considered to be of high-value.
Task 2 User interest: Predict if potential customers would be interested in a specific accom-

modation.
Task 3 Relevance: Predict if the accommodation offer is competitive for the market.
Task 4 User appreciation: Predict if users would appreciate the accommodation after

trying it.

We encode each of them as a binary classification task, enabling the use of the out-
comes as practical checklists for revenue managers. This approach allows users of our
systems to experiment with various options and observe how their decisions affect the
predicted dimensions.

The price value classification task uses two labels, namely low and high. Low-valued
accommodations have a single-night stay price that is lower than the median of the price
for Airbnb accommodations in the destination after removing outliers (Prices that are too
big are removed. We first calculate the mean (µ) and the standard deviation (σ) for all prices
(p), then remove all prices, where p ≥ µ + 2σ). If the opposite is true, the accommodation is
labeled as high value. This categorization helps users comprehend the appropriate pricing
to propose, whether it is an initial proposal or a response to market fluctuations.

For the user interest task, we use the number of reviews to measure user interest.
Indeed, Airbnb’s review system mandates that users can only provide a review once they
have actually stayed at a property. Consequently, the number of reviews can be perceived
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as an indirect indicator of the property’s occupancy and, correspondingly, the volume of
booking requests received by the host. Even when the user gives a negative evaluation
after trying it, it still means that the user has booked and stayed in the first place, thus
manifesting a concrete interest in the offer. In this case, we define the following two classes:
uninteresting and interesting. Uninteresting accommodations do not have any reviews in the
last 12 months, while interesting accommodations have one or more reviews in the same
interval of time.

To evaluate the relevance, we considered the availability calendar for 365 days in the
future for each accommodation. We define the following two classes: high relevance if there
is at least one date bookable in the next year and low relevance otherwise (Even if it is not
possible to know why an accommodation is not available for booking on a specific date, it
is very unlikely that it is booked for all days in the following year). If an accommodation
becomes unavailable for booking for long periods (365 days) we suppose that this happens
because it is not competitive for the market and that this can be related to what it offers
and how. Thus this classification works like an alert about the relevance of the offering in
the long run.

Finally, we evaluated user appreciation by using the average review score. In Airbnb,
each user must give six different review scores about specific aspects of their experience,
namely accuracy, cleanliness, check-in, communication, location, and value. The average
review score is a number from 1 to 5 calculated as the average of these six scores. We define
the following two classes: highly appreciated if the average review score is higher than 4.5
and normally appreciated otherwise.

5. The Datasets

We used TKG, introduced in Section 3, to produce all the data to train and evaluate
our model on the four classification tasks.

Because TKG is stored in a triple-store database (We used the free version of GraphDB,
an enterprise-ready semantic graph database that is compliant with W3C standards; see ht
tps://graphdb.ontotext.com/, accessed on 15 June 2024), we could extract all relevant
data using the SPARQL language. The extraction process is illustrated in the A block of
Figure 1. The data extraction process produces the following three different datasets (i, ii,
and iii in the diagram) that are then used for feature engineering: (i) a dataset where each
accommodation is associated with its description text and with all its properties expressed
as numbers, dates, or true/false flags (e.g., number of rooms, first review date, and instantly
bookable flag); (ii) a dataset where each accommodation is associated with all the included
amenities expressed by TAO classes; and (iii) a dataset where each accommodation is
associated with all related DBpedia entities expressed as IRIs.

Figure 1. Data extraction from the knowledge graph and feature engineering. (A) shows how data
is extracted from the knowledge graph to produce three different datasets. (B) shows the feature
engineering processes.

https://graphdb.ontotext.com/
https://graphdb.ontotext.com/
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6. Feature Engineering

The datasets extracted from TKG were processed to produce the following four types
of features: (i) textual features, which constitute a natural input for transformer models such
as BERT; (ii) numerical features; (iii) categorical features; and (iv) linked entities, i.e., DBpedia
entities extracted from the descriptions. The process is illustrated in the B block of Figure 1.

The process includes the following steps. First, accommodation properties (i) are pro-
cessed by a data transformation process (3) to preprocess the textual descriptions (a), which
are then transformed into text features expressed as tokens (f) by a BERT tokenizer (6). The
same data transformation also produces a vector of numeric values (b) that is normalized
by a dedicated process (8) to produce a vector of numeric features (h). Amenities (ii) are
transformed into numeric vectors (e) using a one-hot encoding process (5). DBpedia entities
(iii) are reduced to a manageable number by discarding the ones associated with fewer than
100 accommodations (2), then transformed into numeric vectors (d) using a one-hot encod-
ing process (4). Finally, we use a text augmentation process (9) to generate an augmented
version of the descriptions that also include numeric features and amenities (c). This is
processed by a BERT tokenizer (7) and transformed into another set of text features (g) that
will be used to evaluate the ability of transformers to directly process structured features.

The longest textual description in our dataset consists of 198 words, with an average
length of 114 words. Consequently, these descriptions can be conveniently processed by
BERT, which accommodates texts with a maximum token limit of 512. Additionally, we
have ample “room” within this limit to incorporate supplementary features in text format.

The numerical features encompass a range of metrics already in numeric format,
including the number of bedrooms and beds, the number of bathrooms, minimum night
stays, and so on. All dates (e.g., the first review date) are expressed as the number of
days in the past with respect to the day the original data were retrieved from Airbnb (in
our case, 10 September 2022). Finally, the true/false flag values, like instantly bookable
flags, are transformed into numeric values of 1 or 0. Concatenating the numerical features,
we produce an n-dimensional vectorwhose length differs slightly for each task, as we
exclude the predicted variables specific to that task as well as all correlated values. For
example, for the user interest classification task, we hide all metrics about the number of
reviews (e.g., number_of_reviews, first_review, and last_review) or those related to review
scores (e.g., review_scores_rating, review_scores_accuracy, and so on). Similarly, for the
relevance classification task, we hide all variables about availability (e.g., availability_30,
availability_60, availability_90, and availability_365). As a final step, we performed unity-
based normalization on this vector, aiming to scale all values within the range of [0, 1].
This normalization process ensures a standardized representation of the vector, facilitating
comparisons and analysis across different variables.

Information Injection as Text

In order to enhance the classification process, transformers such as BERT can be
provided with additional information by extending the description texts with injected
knowledge in the form of key terms and numbers. This can be considered a form of prompt
addition as described by [42]. To assess this methodology, we produced the augmented
descriptions (g) depicted in Figure 1. We did so by appending numeric and categorical
features after the accommodation description. Entities extracted from the description in the
previous steps are excluded to avoid redundancy.

More specifically, we used the following approach: (i) numeric properties’ values
were incorporated as text, with each value separated by spaces; (ii) TAO amenities were
included by adding their corresponding labels, separated by spaces. Regarding numeric
value injection as text, previous works [43,44] have proven that BERT can handle numeric
values expressed as text.

What follows is an example of an accommodation description text extended with the
list of amenities (in bold) and the numerical features (in underlined text).
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“This beautifully decorated two-bedroom serviced apartment is conveniently located in
the vibrant Shoreditch area [. . . ] dishes and silverware cable tv cooking basics
bathtub carbon monoxide alarm smoke alarm heating lockbox first aid kit [. . . ]
1 2.0 3.0 4.0 [. . . ]”.

In this example, we list four numeric properties associated with the accommodation
whose meanings are based on their positions in the sequence, namely the host-is-super-host
binary flag (value 1), the number of bedrooms (value 2.0), the number of beds (value 3.0),
and the minimum nights bookable (value 4.0).

7. Architecture

We propose an approach, labelled in the following as KGE-BERT (Knowledge Graph
Enhanced BERT), that integrates a transformer model for textual data processing and a
Multi-Layer Perceptron (MLP) for incorporation of other types of features. Figure 2 illus-
trates the architecture. The model supports knowledge injection from TKG by combining
the four types of features discussed in Section 6, namely textual, numeric, categorical, and
linked entities.

Figure 2. KGE-BERT model architecture.

During the model-training phase, we conduct an end-to-end optimization process
for each classification task. This process involves two distinct operations. First, the BERT
transformer is fine-tuned on the set of descriptions. Second, the MLP component is trained
from scratch on the features. By combining these two operations, our approach achieves
a comprehensive training procedure that maximizes the potential of both the fine-tuned
BERT transformer and the newly trained MLP.

The tokenized text is processed by BERT (using the English uncased model; see the
Hugging Face repository https://huggingface.co/bert-base-uncased, accessed on 15 June
2024). As BERT output, we adopt the hidden vector state associated with the first character
of the input, which is represented by the [CLS] token. The tanh output of the pooling layer
attached to BERT is scaled from 0 to 1 in order to be in the same range as other non-textual
feature vectors. The numerical features are encoded as vectors of real numbers normalized
from 0 to 1, while categorical and linked entities’ features are expressed as hot encoding.

The four resulting vectors are concatenated and used as input for the MLP, which has
two layers with 1024 units each and uses ReLu as the activation function. All the MLP
layers are subject to a dropout process with default probability of p = 0.1 during the training
phase to prevent over-fitting. The MLP output layer is a sigmoid layer that provides the
probability output for the classification.

To support research practitioners in implementing our proposed methodology, we
have released all necessary software components as open-source (https://github.com/l
uca-secchi/kge-bert, accessed on 15 June 2024). This includes tools to apply KG-BERT to
specific tourist destinations. Key features include the following:

https://huggingface.co/bert-base-uncased
https://github.com/luca-secchi/kge-bert
https://github.com/luca-secchi/kge-bert
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• Data acquisition and transformation: We provide a Python notebook with supporting
scripts for entity linking, enabling users to produce the training dataset.

• Training and evaluation: The complete Python code to implement the training and
evaluation phases described in our work is also available.

With these tools, users can train KG-BERT on a new destination by following the
following simplified procedure:

• Identify the tourist destination: Download all relevant data about Airbnb listings.
• Entity linking: Use the entity-linking tool to map each Airbnb listing to relevant

DBpedia entities.
• Data engineering: Run the data engineering tool to create the training, development,

and test datasets.
• Model training: Train the KG-BERT model on the target destination using the training

dataset with the provided tools.
• Model testing: Test the performance of KG-BERT on the test dataset to validate

the model.

8. Evaluation

In order to assess the validity of our system, we compared it against several baselines
for the four tasks defined in Section 4.

8.1. Evaluation Protocol

We created a different balanced dataset for each of the four classification tasks, starting
from the complete datasets defined in Section 5. We split the balanced dataset of each task
into the following three parts: training, validation, and test sets. Subsequently, starting
from the complete training set, we produced four distinct training sets for each task,
progressively increasing in size to 3000, 6000, 9000, and 12,000 accommodations. The
objective of this process was to evaluate the influence of varying data quantities on the
performance of the classification tasks. This holds particular significance for real-world
applications where acquiring a substantial training set may pose challenges. We used the
same validation and test sets for each task, with a fixed size of 1800 elements in order
to obtain comparable results. We used the validation sets to perform hyperparameter
tuning for the classification threshold. Because the sigmoid layer of the model produces the
probability (p(1)) that the predicted label is 1 and (p(0) = 1 − p(1)) that the predicted label
is 0, instead of using a fixed classification threshold of 0.5 to decide the output class, we
chose it with a hyperparameter search using the validation dataset by exploring all possible
values of the threshold from 0.1 to 0.9 with increments of 0.1. The best threshold was then
used as part of the model during the final evaluation of the test set.

We adopted the macro averages of precision, recall, and F1 score as performance
metrics.Specifically, we repeated training and hyperparameter tuning (using the evaluation
set) five times, producing five versions of the trained model for each experiment. Then,
we evaluated each version of the model on the test set and computed the mean value of
each metric (macro-average F1 score, recall, and precision). Indeed, it has been shown in
previous works that when fine tuning a BERT-based model multiple times on the same
dataset with only the random seed being changed, significant fluctuation in the accuracy
can be produced [4,45].

8.2. Approaches

We ran our experiments using the following seven approaches, which are also summa-
rized in Table 1:

1. Logistic regression: A simple logistic regression classifier that we adopted as a baseline
was implemented as a network with one hidden layer of one unit, ReLu activation
functions, and a final sigmoid layer to produce the binary classification probability.
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Since it could not process text, it was fed with only numerical, categorical, and linked
entity features.

2. BERT: The BERT-based uncased model was trained on text features. It is worth noting
that BERT produces a classification for each accommodation, uniquely considering
the original description in English (The BERT model’s pooled output is fed to a last
inner layer with one unit and a final sigmoid layer).

3. BERT-injected: A variation of the previous approach was adopted that uses the tech-
nique for knowledge injection described in Section 6, also including numerical, cat-
egorical, and linked entity features in the text. The BERT approach differs from the
BERT-injected approach because in the latter, the accommodation description is en-
riched by appending additional information to the original text before it is fed to
the BERT model for classification. The information is incorporated as text, includ-
ing amenities mapped to TAO classes and numeric properties (like the number of
bedrooms).

4. KGE-BERT-1hot: As described in Section 7, KGE-BERT-1hot uses only accommodation
descriptions and the one-hot encoding of the categorical entities from TAO and linked
entities from DBpedia.

5. KGE-BERT-num: KGE-BERT-num uses only accommodation descriptions and numeri-
cal features

6. KGE-BERT-full: KGE-BERT-full uses the complete set of features.
7. KGE-BERT-injected-full: KGE-BERT-injected-full uses the complete set of features

and also injects the textual descriptions with additional information, as described in
Section 6.

All BERT models were fine-tuned by adapting the original hyperparameters proposed
in the seminal BERT paper [4], namely a batch size of 8 (to support our GPU limitations and
to obtain better results during training), a learning rate of 2−5, Adam as the optimization
method, a dropout probability of 0.1, and five training epochs.

Table 1. Experimental descriptions.

Experiment Name Text Features Numeric Features Linked Entities Categorical

Logistic Regression - Numeric properties DBPedia TAO Amenities

BERT Description - - -

BERT-injected Description injected - - -

KGE-BERT-num Description Numeric properties - -

KGE-BERT-1hot Description - DBPedia TAO Amenities

KGE-BERT-full Description Numeric properties DBPedia TAO Amenities

KGE-BERT-injected-full Description injected Numeric properties DBPedia TAO Amenities

We ran all experiments on a workstation with the following characteristics: CPU,
INTEL CORE I9-7900X 3.3 G (4.3 G TURBO) 10 CORE; GPU, Nvidia GTX1080 TI 11 GB
VRAM; SSD, 1 TB; RAM, 65 GB.

8.3. Results

In the following four subsections, we discuss the results for each classification task.
To enhance readability, all results for macro-averages of F1-score, precision, and recall are
presented in percentage points.

8.3.1. Price Value Classification

Table 2 reports the results, while Figure 3 shows a multi-line chart for a more immediate
interpretation.
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KGE-BERT-full outperforms all the other methods, thanks to its ability to integrate
different features. KGE-BERT-injected-full is the second best, suggesting that injecting
features both as vectors and in the text can sometimes reduce the performance. However,
BERT-injected performs better than BERT, highlighting the value of incorporating a set of
diverse features in the model.

Perhaps surprisingly, the use of numerical features alone (KGE-BERT-num) seems to
have a negative effect on performance for this task.

Figure 3. F1-value macro-average results for each experiment in the value classification task.

Table 2. Price value classification task: macro-average values for F1 score, precision, and recall.

F1 Score % Precision % Recall %
Max_Train_Size Experiment 3000 6000 9000 12,000 3000 6000 9000 12,000 3000 6000 9000 12,000

Logistic Regression 71.38 76.27 77.94 78.78 71.94 76.65 79.18 79.34 71.50 76.32 78.10 78.84
BERT 79.26 80.25 80.79 81.86 79.73 80.81 80.94 81.28 78.97 79.87 80.72 82.62

BERT-injected 80.58 82.45 83.03 83.89 80.56 82.29 82.61 84.04 80.73 82.70 83.53 83.89
KGE-BERT-num 70.24 76.95 77.52 78.63 71.28 77.42 77.64 78.71 70.51 77.02 77.55 78.64
KGE-BERT-1hot 81.85 82.88 83.45 83.05 81.99 83.05 83.57 83.19 81.86 82.89 83.45 83.06
KGE-BERT-full 83.26 85.05 84.93 85.22 83.28 85.25 85.03 85.25 83.26 85.06 84.93 85.22

KGE-BERT-injected-full 82.76 84.43 84.73 85.00 82.90 84.55 84.81 85.18 82.76 84.43 84.73 85.00

8.3.2. Relevance Classification

As before, the results for this task are reported both in Table 3 and in Figure 4.
KGE-BERT-injected-full obtains the best results here, showing that injecting features

both as vectors and in the text can lead to better performance. For this task, BERT performs
poorly (F1 score of < 67%), and it is even outperformed by the linear regression baseline.
This suggests that accommodation descriptions may not be the best predictors of relevance.
Conversely, numerical features appear to hold the greatest significance. Indeed, KGE-BERT-
num achieves outstanding results.
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Figure 4. F1-value macro-average results for each experiment in the relevance classification task.

Table 3. Relevance classification task: macro-average values for F1 score, precision, and recall.

F1 Score % Precision % Recall %
Max_Train_Size Experiment 3000 6000 9000 12,000 3000 6000 9000 12,000 3000 6000 9000 12,000

Logistic Regression 66.09 68.63 68.82 69.92 66.98 69.11 68.82 70.01 66.33 68.83 68.83 69.98
BERT 58.96 64.63 65.77 66.34 62.73 66.69 65.87 66.27 61.30 63.56 66.12 66.81

BERT-injected 77.25 78.07 79.14 79.68 78.16 78.31 79.34 80.25 76.93 78.44 79.31 79.87
KGE-BERT-num 77.44 79.99 81.35 81.41 77.89 80.57 82.16 82.18 77.60 80.18 81.57 81.63
KGE-BERT-1hot 71.56 73.72 74.29 75.22 71.66 73.77 74.44 75.41 71.61 73.74 74.35 75.21
KGE-BERT-full 75.54 78.75 80.40 81.02 76.47 79.12 80.74 81.91 75.83 78.89 80.52 81.26

KGE-BERT-injected-full 78.45 79.51 82.58 83.61 79.07 80.08 82.92 84.47 78.65 79.69 82.69 83.83

8.3.3. User Interest Classification

The results for this task are reported in Table 4 and in Figure 5. KGE-BERT-injected-full,
again, yields the best results, especially with regard to the experiments using high numbers
of training samples (9000 and 12,000). KGE-BERT-full is competitive, obtaining the best F1
score on 6000 training samples. As before, BERT-injected outperforms BERT.

Table 4. User interest classification task: macro-average values for F1 score, precision, and recall.

F1 Score % Precision % Recall %
Max_Train_Size Experiment 3000 6000 9000 12,000 3000 6000 9000 12,000 3000 6000 9000 12,000

Logistic Regression 72.94 76.30 78.05 78.68 73.09 76.74 78.06 79.08 72.98 76.40 78.05 78.76
BERT 64.44 67.29 66.97 67.92 65.57 66.82 66.96 67.57 64.76 68.14 67.61 68.53

BERT-injected 81.33 82.50 83.26 83.91 81.78 82.56 82.80 83.77 81.24 82.61 83.90 84.26
KGE-BERT-num 83.63 83.34 83.66 83.65 83.85 83.69 83.94 84.07 83.67 83.40 83.71 83.71
KGE-BERT-1hot 80.79 80.82 82.15 82.11 80.82 80.92 82.16 82.12 80.80 80.85 82.15 82.11
KGE-BERT-full 85.16 85.67 85.63 86.02 85.45 85.86 86.10 86.32 85.21 85.70 85.70 86.06

KGE-BERT-injected-full 86.05 85.36 87.09 88.22 86.92 85.82 87.89 88.65 86.15 85.41 87.18 88.27
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Figure 5. F1-value macro-average results for each experiment in the user interest classification task.

8.3.4. User Appreciation Classification

The results for this task are reported in Table 5 and in Figure 6. This seems to be the
most challenging of the four classification tasks, as highlighted by the relatively low F1
scores. This is due to the fact that user reviews are given after the visit and are influenced
by what is actually experienced by the user, which is hard to predict starting from the
accommodation information available to the model.

KGE-BERT-injected-full and KGE-BERT-full yield similar results, clearly outperform-
ing all the other methods. The other variations of KGE-BERT also perform better than
BERT, in line with BERT-injected. This suggests, again, that combining multiple features
has clear value.

Figure 6. F1-value macro-average results for each experiment in the user appreciation classification
task.
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Table 5. User appreciation classification task: macro-average values for F1-score, precision, and recall.

F1 Score % Precision % Recall %
Max_Train_Size Experiment 3000 6000 9000 12,000 3000 6000 9000 12,000 3000 6000 9000 12,000

Logistic Regression 56.64 61.99 64.75 65.62 56.67 62.00 64.76 65.72 56.65 62.00 64.75 65.64
BERT 61.97 63.90 64.16 64.52 63.07 63.90 64.44 64.81 61.64 64.61 64.09 64.70

BERT-injected 64.48 65.08 66.31 65.49 64.35 64.53 66.46 65.63 65.50 65.83 66.56 65.66
KGE-BERT-num 64.54 64.30 65.55 66.08 64.67 64.36 65.61 66.32 64.60 64.32 65.56 66.17
KGE-BERT-1hot 64.15 65.49 65.67 66.01 64.95 65.98 66.48 66.38 64.40 65.63 65.90 66.11
KGE-BERT-full 69.76 69.43 69.38 69.78 70.47 70.67 70.98 71.51 69.90 69.70 69.74 70.16

KGE-BERT-injected-full 69.36 69.71 69.60 70.76 70.15 70.84 70.96 71.58 69.53 69.95 69.90 70.92

9. Discussion

The experimental results demonstrate that the KGE-BERT approach confers notable
advantages when compared to conventional transformer methods. In all the tested com-
binations, we measured better F1-score values for the two KGE-BERT variations using
all available features (textual, numerical, categorical, and linked entities). KGE-BERT-
injected-full and KGE-BERT-full produced comparable results. The first approach may
be best-suited when the texts to be processed are shorter than the maximum number of
tokens allowed for the transformer so that the extra space can be used to also inject knowl-
edge as text. The second approach can be employed even with longer texts and uses less
computation power during training and inference.

Overall, our experiments show the clear advantage of combining textual, categorical,
and numerical features in this complex domain.

To further highlight the difference between the standard BERT and KGE-BERT-injected-
full approaches (0), we indicate, in Table 6, the increment of F1 score. The values shown in
the table were calculated with the following formula:

∆F1 = F1KGE−BERT−injected− f ull − F1BERT

The observed maximum gain demonstrates a notable improvement of over 21 per-
centage points. In the context of price value classification, where the BERT model exhibits
the best performance, the introduction of knowledge injection still yields a significant
enhancement of more than three percentage points. This finding implies that even when
BERT performs well, there is still room for improvement through knowledge injection.

As far as the proposed methodology is concerned, it can be easily extended to other
tourist destinations, whether a city or an entire region, wherever appropriate data are
available. In [34], we demonstrated that a tourism knowledge graph could be created from
Airbnb data for both London and the Sardinia region. This shows that diverse destinations
can be successfully modeled using the TAO ontology and DBpedia entities and described
as a knowledge graph containing all the necessary information to support the feature
engineering phase and the subsequent training phase for the KG-BERT neural model.

The widespread and consistent nature of Airbnb listings worldwide ensures the pro-
posed methodology’s generality. In 2023, there were 7.7 million active Airbnb listings across
220+ countries, covering over 110,000 cities and towns, which means nearly every country
in the world has an Airbnb presence (https://news.airbnb.com/about-us/, accessed on 15
June 2024). All Airbnb listings are characterized by a common set of metadata (numeric
features for KG-BERT) and presented with textual descriptions following a standardized
set of best practices and writing rules (text features for KG-BERT).

We provided a notebook that allows users to easily reproduce our methodology
with similar data. It is designed to be adaptable for use with any destination (https:
//github.com/luca-secchi/kge-bert, accessed on 15 June 2024).

Thanks to this common framework, any tourist destination can be modeled and
represented in a suitable form for the KG-BERT model to be trained and used for predictions
by following the methodology introduced in this paper.

https://news.airbnb.com/about-us/
https://github.com/luca-secchi/kge-bert
https://github.com/luca-secchi/kge-bert
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Table 6. ∆F1—increments of F1 score for BERT-KG-injected-full compared to BERT.

Max_Train_Size 3000 6000 9000 12,000

Relevance classification task 19.49 14.88 16.81 17.27
User interest classification task 21.61 18.07 20.12 20.29
Price value classification task 3.50 4.18 3.94 3.13

User appreciation classification task 7.38 5.81 5.44 6.24

10. Conclusions

In this paper, we presented a hybrid system that supports the optimization of ac-
commodation offers by combining large language models and knowledge graphs in the
tourism domain. We applied our method to four classification tasks that are crucial to
optimizing how accommodation offerings can be positioned in terms of price value, rele-
vance, user interest, and user appreciation. For this purpose, we introduced a knowledge
injection approach that leverages a knowledge graph to provide numeric data, categorical
information, and linked entities to improve standard transformer models for classifica-
tion. We also evaluated an alternative knowledge injection strategy that reiterates the
injected knowledge using the above approach by including the same information directly
as text. Our approach using this solution (KGE-BERT-injected-full) clearly outperformed
the standard BERT model, obtaining a mean F1-score increment of 11.7 percentage points
(varying from a minimum of 3.1 to a maximum of 20.6, depending on the task). When the
combined injection strategy cannot be applied due to constraints on the maximum number
of tokens, it is possible to use the other injection approach. This solution (KGE-BERT-full)
also outperformed BERT, with a mean increase of 11.0 in F1 score (varying from a minimum
of 3.4 to a maximum of 20.7).

The methodology presented in the paper was evaluated using a dataset of accom-
modation offers in London. However, it is a general methodology that can be easily
applied to any accommodation characterized by the same metadata. Therefore, the re-
sulting approach can be used for any other tourist destination (e.g., a city or an entire
region) where the appropriate data are available. To further support our statement, we
have provided a notebook that allows users to easily reproduce our methodology with
similar data (https://github.com/luca-secchi/kge-bert, accessed on 15 June 2024).

A compelling avenue for future research involves enhancing the system to facilitate
multi-class classification and regression, enabling more fine-grained outcomes for each
dimension. Additionally, an extension of the current work could involve examining the
extent to which a classifier trained for a particular tourist destination (e.g., London) can
be applied to another destination (e.g., Rome), and exploring the potential for transfer
learning. Furthermore, we are investigating methods to deliver explanations to users
and provide tailored suggestions for how to modify accommodation descriptions and
characteristics. To accomplish this, we intend to utilize explainable AI techniques [46] and
generative language models [2], which offer a promising approach. The ultimate goal is
to offer transparent and interpretable insights, empowering users to make well-informed
decisions and enhance the quality of accommodation offers.
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