
Citation: Contini, C.; Manconi, B.;

Olianas, A.; Guadalupi, G.; Schirru, A.;

Zorcolo, L.; Castagnola, M.; Messana,

I.; Faa, G.; Diaz, G.; et al. Combined

High—Throughput Proteomics and

Random Forest Machine-Learning

Approach Differentiates and Classifies

Metabolic, Immune, Signaling and

ECM Intra-Tumor Heterogeneity of

Colorectal Cancer. Cells 2024, 13, 1311.

https://doi.org/10.3390/cells13161311

Academic Editors: Sandra Martha

Gomes Dias, Sara Rinalducci,

Douglas Adamoski Meira and

Jon Oakhill

Received: 12 June 2024

Revised: 24 July 2024

Accepted: 31 July 2024

Published: 6 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Article

Combined High—Throughput Proteomics and Random Forest
Machine-Learning Approach Differentiates and Classifies
Metabolic, Immune, Signaling and ECM Intra-Tumor
Heterogeneity of Colorectal Cancer
Cristina Contini 1 , Barbara Manconi 2,* , Alessandra Olianas 2 , Giulia Guadalupi 3 , Alessandra Schirru 2,
Luigi Zorcolo 3, Massimo Castagnola 4 , Irene Messana 5 , Gavino Faa 1,6 , Giacomo Diaz 7

and Tiziana Cabras 2,*

1 Department of Medical Sciences and Public Health, Statal University of Cagliari,
09042 Monserrato (CA), Italy; cristina.contini93@unica.it (C.C.); gavinofaa@gmail.com (G.F.)

2 Department of Life and Environmental Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy;
olianas@unica.it (A.O.); aschirru75@unica.it (A.S.)

3 Department of Surgical Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy;
giulia.guadalupi@unica.it (G.G.); lzorcolo@aoucagliari.it (L.Z.)

4 Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia,
00143 Roma, Italy; maxcastagnola@outlook.it

5 Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche,
00168 Roma, Italy; imessana53@gmail.com

6 Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
7 Department of Biomedical Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; gdiaz@unica.it
* Correspondence: bmanconi@unica.it (B.M.); tcabras@unica.it (T.C.)

Abstract: Colorectal cancer (CRC) is a frequent, worldwide tumor described for its huge complexity,
including inter-/intra-heterogeneity and tumor microenvironment (TME) variability. Intra-tumor
heterogeneity and its connections with metabolic reprogramming and epithelial–mesenchymal
transition (EMT) were investigated with explorative shotgun proteomics complemented by a Random
Forest (RF) machine-learning approach. Deep and superficial tumor regions and distant-site non-
tumor samples from the same patients (n = 16) were analyzed. Among the 2009 proteins analyzed,
91 proteins, including 23 novel potential CRC hallmarks, showed significant quantitative changes.
In addition, a 98.4% accurate classification of the three analyzed tissues was obtained by RF using
a set of 21 proteins. Subunit E1 of 2-oxoglutarate dehydrogenase (OGDH-E1) was the best classifying
factor for the superficial tumor region, while sorting nexin-18 and coatomer-beta protein (beta-COP),
implicated in protein trafficking, classified the deep region. Down- and up-regulations of metabolic
checkpoints involved different proteins in superficial and deep tumors. Analogously to immune
checkpoints affecting the TME, cytoskeleton and extracellular matrix (ECM) dynamics were crucial
for EMT. Galectin-3, basigin, S100A9, and fibronectin involved in TME–CRC–ECM crosstalk were
found to be differently variated in both tumor regions. Different metabolic strategies appeared to
be adopted by the two CRC regions to uncouple the Krebs cycle and cytosolic glucose metabolism,
promote lipogenesis, promote amino acid synthesis, down-regulate bioenergetics in mitochondria,
and up-regulate oxidative stress. Finally, correlations with the Dukes stage and budding supported
the finding of novel potential CRC hallmarks and therapeutic targets.

Keywords: CRC proteomics; intra-tumor heterogeneity; extracellular matrix; ROS; S100A9; galectin-3;
sorting nexin-18; GRASP-1; basigin; mitochondrial metabolism

1. Introduction

Colorectal cancer (CRC) is the third most common cancer worldwide, accounting for
approximately 10% of all cancer cases, and it is the second leading cause of cancer-related
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deaths worldwide [1]. The high capacity of CRC to infiltrate and develop metastasis has
the consequence that 40% of patients with CRC already have metastasis in the liver at the
time of diagnosis. The prognosis of CRC is closely related to the stage, but the classification
of patients is affected by a great variability in response to therapy and clinical outcome.
The CRC complexity increases in relation to the localization of the tumor, which determines
a huge inter-tumor heterogeneity, and to the intra-tumor heterogeneity connected to the
tumor microenvironment (TME) [2,3]. The heterogeneity typical of CRC is also associated
with several oncogenic signaling pathways, among them the glucose-related pathways.
Indeed, the glucose metabolic reprogramming of cancer cells appears to be implicated in
the malignant progression of CRC [4,5]. This metabolic alteration seems to be associated
with the epithelial–mesenchymal transition (EMT), which is considered the main event
promoting the invasion and migration of CRC cells [4,5]. However, developing a full under-
standing of the molecular mechanisms associated with EMT in CRC is still a challenge, and
despite decades of research, the process of tumor dissemination is insufficiently understood.
In our previous studies [6,7], we suggested a key role for thymosin β4 and thymosin β10 in
colorectal cancer progression and the promotion of cancer invasion. Accordingly with other
studies, both thymosins might be considered good candidates for diagnostic/prognostic
biomarkers and therapeutic targets [8]. Indeed, thymosin β4-triggered EMT is considered
the main event inducing the invasion and migration of CRC cells [7,8]. The connection
between intra-tumor heterogeneity and molecular mechanisms leading to EMT is one of the
focal factors for the development of precision medicine in CRC [2], and it was highlighted
by several previous studies at the transcriptomic and proteomic levels [3]. From this point
of view, the discovery of clinically relevant protein biomarkers correlated with intra-tumor
heterogeneity was suggested to be promising for the diagnosis, prognosis, and treatment
of CRC [2]. Proteomic investigations were shown to be optimal strategies for highlighting
differential protein profiles due to quantitative or qualitative (post-translational modifica-
tions (PTMs) and isoforms) variations, which can be correlated with a different regulation
of biological processes during carcinogenesis and in various developing stages of CRC.
Several proteomic strategies have been applied in the last ten years on colon tissues or
body fluids to discover candidate biomarkers for risk prediction, diagnosis, prognosis,
staging, and monitoring the treatment response in CRC [2,3,9–11]. This investigation was
an exploratory proteomic study on CRC to discover novel potential protein hallmarks able
to distinguish, with high specificity and sensitivity, the tumor tissue from the healthy colon
mucosa and to classify the superficial and the internal deep regions of the tumor. The two
tumor regions represent functionally and histologically different areas, as demonstrated
in previous studies [2,6,7]. The superficial region is the area from which the tumor grows
inward and expands. It is mainly related to cancer cell proliferation, which interfaces
with the intestinal lumen and communicates with the gut microbiota. The deep region is
the part of the tumor that infiltrates the healthy tissue layers of the intestinal wall. From
this front of invasion, the budding of cancerous cells develops and the metastases mature
and detach. The knowledge of the intra-heterogeneity between the surface and the deep
region of CRC at the proteomic level could be of interest in finding possible therapeutic
targets and hallmarks with diagnostic potential, which are useful in developing effective
and specific therapies. To this aim, we applied a shotgun proteomic approach based on
micro-HPLC separation coupled with high-resolution (HR) mass spectrometry analysis and
label-free quantitation (LFQ). Mass spectrometry data were analyzed using nonparametric
Mann–Whitney (MW) and Kruskal–Wallis (KW) tests to identify proteins with different
abundance in the healthy colon mucosa and in the superficial and deep internal regions of
the tumor. In addition, Random Forest (RF) was used to identify the proteins that most
effectively discriminate between the three tissue regions at the level of single samples.
Such an approach was in line with the purpose of exploring possible correlations between
proteomic data and clinical outcomes to identify potential biomarkers for CRC diagnosis
and prognosis and/or possible therapy targets. Moreover, an enrichment analysis of the
proteomic data was applied to highlight the intra-tumor heterogeneity regarding the bio-
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logical processes that underlie EMT, metabolism, extracellular matrix (ECM) changes, and
immune regulation in the TME. Finally, the possible protein–protein interactions (PPIs) and
topological features of all identified proteins were evaluated and the possible key role of
the protein hallmarks identified by our proteomic investigation. All the findings obtained
from this explorative proteomic study represent a stimulus for further studies aimed at
validating the proposed hallmarks.

2. Materials and Methods

Reagents and Instruments

All chemicals, reagents and disposable items were of analytical grade and were
purchased from Sigma–Aldrich/Merck (Darmstadt, Germany), Roche Diagnostics (Basel,
Swisse), Pierce™ (Thermo Fisher Scientific, Waltham, MA, USA), and Agilent (Santa Clara,
CA, USA). HPLC–HR–MS experiments were carried out using an Ultimate 3000 micro-
HPLC (Dionex, Sunnyvale, CA, USA) equipped with a FLM-3000-Flow manager module
and coupled with a nano-electrospray source to an LTQ-Orbitrap Elite MS apparatus
(ThermoFisher Scientific, San Jose, CA, USA).

Study subjects

The study included sixteen patients undergoing surgical resection of colorectal tumors
performed by the unit of Colorectal Surgery, Department of Surgical Sciences (Cagliari
University). Ethics committee approval was obtained for the study (protocol number
2020/10912; code: EMIBIOCCOR), and full written consent forms were obtained from
all participants. Patients with colon cancer were included if they exhibited budding
margins with evident morphological signs of EMT. Clinical and demographic data of
the sixteen patients are reported in Table 1: six females and ten males were included in
the study (average age ± SD 69 ± 13, and 72 ± 9, respectively). In Table 1, the original
identification number assigned to the patients at the moment of the surgery was used.
Patients were classified as A, B, or C according with the Dukes stage: one patient was in
stage A (carcinoma limited to colon mucosa), eleven patients were designated as stage
B (carcinoma confined to the muscular layer), and four patients as stage C (metastases
present in the regional lymph nodes) [12]. Regarding the tumor budding index, namely the
presence of de-differentiated single cells or small clusters of up to five cells at the invasive
front of CRC [13], these were absent (0) in two patients, slight (1) in six patients, discrete (2)
in three patients, and marked (3) in five patients.

Table 1. Demographic and clinical information, type of tumor, Dukes stage, and budding index of
each patient included in the study.

Patients Gender and Age Dukes Stage Budding

#4 F, 79 yr B 3
#5 M, 78 yr B 3
#6 F, 55 yr B 2
#7 M, 83 yr B 1
#8 M, 70 yr B 2
#9 F, 81 yr B 0

#11 M, 75 yr B 1
#12 M, 66 yr B 3
#13 F, 52 yr C 1
#14 M, 52 yr C 3
#15 M, 64 yr C 3
#17 M, 76 yr A 1
#19 M, 76 yr C 1
#22 M, 80 yr B 0
#23 F, 66 yr B 2
#24 F, 80 yr B 1
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Sample Preparation

Three kinds of tissues were collected from each patient: (i) the surface layer of the
tumor, named “S”; (ii) the deep region of the tumor, named “D”; (iii) the healthy colon
mucosa, named “H”. The three different tissue samples were of different sizes (but not
exceeding 1 × 1 cm). S and D region samples were obtained with a section parallel to the
luminal surface, which divided the tumor sample into two approximately equal parts. H
region samples were obtained from colon mucosa with normal histology at sites distant
from the tumor. Corresponding parts of the tumor and of healthy colon mucosa were
histologically analyzed, as is clinically routine.

Immediately after the surgical resection, fresh tissue samples were washed from blood
residues with a physiological solution and dipped in 600 µL of protein extraction buffer
(25 mM Hepes pH 7.8, 50 mM KCl, beta-Octyl-glucopyranoside 0.2%, 1 mM dithiothreitol)
to be homogenized in an ice bath. To inhibit proteases, one Mini-Complete ™ tablet (Roche
Diagnostics, Basel, Swisse) was added to 10 mL of buffer. Homogenization, performed with
an Ultra Turrax apparatus, was followed by three sonication cycles of 5 min. Homogenized
tissues were centrifuged at 19,000× g, 4 ◦C for 10 min. The supernatant fraction of each
sample was collected, while the insoluble fractions obtained were suspended in 200 µL
of hydro-organic solution (0.05% trifluoroacetic acid and 20% acetonitrile), sonicated for
2 cycles of 5 min, and finally centrifuged at 19,000× g, 4 ◦C, for 10 min. The second
supernatant fractions were added to the first ones to obtain a unique extract of soluble
proteins and peptides from each sample. Protein extracts were dialyzed under stirring in
40 mM ammonium bicarbonate pH 7.8, at 4 ◦C for 3 h, using a Float-A-Lyzer G2 dialysis
device with a 500 Da molecular cutoff (Sigma–Aldrich/Merck, Darmstadt, Germany).

After dialysis, samples were lyophilized, and the powder suspended in 200 µL of
40 mM ammonium bicarbonate pH 7.8. Two aliquots of 5µL of each sample were used
to determine in duplicate the total protein concentration by a bicinchoninic acid assay
(QuantiPro BCA micro-assay kit, from Sigma–Aldrich/Merck). Proper volumes of each
sample were calculated to collect aliquots of 4 µg of total protein to submit to tryptic
digestion. Cysteine reduction in proteins was achieved by adding 10 mM dithiothreitol
in 100 mM ammonium bicarbonate pH 7.8 to each sample and incubation at 100 ◦C for
5 min, followed by 30 min at 65 ◦C. Alkylation of cysteines was achieved by incubation
with 55 mM iodoacetamide in the same buffer in the dark for 45 min at room temperature.
Highly specific trypsin MS Grade (Pierce™, Thermo Fisher Scientific, Waltham, MA, USA)
at 0.5 µg/µL was prepared in 40 mM ammonium bicarbonate pH 7.8, and mixed with pure
acetonitrile at ratio 10:1 v/v. Trypsin solution was added to each sample at a ratio of 1:50
w/w enzyme/substrate, and incubation occurred overnight at 37 ◦C. All the samples were
then dried desalted with OMIX C18 pipette tips (Agilent, Santa Clara, CA, USA) following
the manufacturer’s instructions. The concentration of total proteins was not determined
after the desalting step. However, after this step all the samples were diluted in 40 µL of
0.1% formic acid considering that 4 µg of total proteins in each sample was used for the
digestion. Thus, we assumed that the 10 µL of final solution analyzed by HPLC–HR–MS
contained tryptic peptides generated from 1 µg of total protein.

HPLC–HR–MS/MS analysis

HPLC separation of tryptic peptides was performed immediately after the desalting
step using a reversed phase Easy Spray C18 nano-column (ThermoFisher Scientific, San
Jose, CA, USA) with a 150 mm length, 50 µm inner diameter, and 2 µm particle size. The
mobile phases were as follows: A, aqueous 0.1% formic acid; B, 20% aqueous 0.1% formic
acid/80% acetonitrile (v/v). Chromatographic separation occurred in 100 min with a flow
rate of 0.3 µL/min and the following gradient: 0–3 min at 4%B, 50% B in 67 min, 80% B
in 20 min, 90% B in 2 min, continuing 90% B for further 2 min. Full HR–MS experiments
were performed in positive ion mode from 350 to 1600 m/z with a resolution of 120,000 (at
400 m/z). The capillary temperature was set at 275 ◦C, the source voltage at 1.7 kV, and
the S-Lens RF level at 67%. In the data-dependent acquisition mode, the 10 most intense
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ions were fragmented by collision-induced dissociation (35% normalized collision energy
for 10 ms, 2 m/z isolation width, activation q of 0.25). HR–MS and MS/MS data were
generated by Xcalibur 3.0.63 (Thermo–Fisher Scientific, San Jose, CA, USA). MS/MS spectra
were analyzed by Proteome Discoverer software (version 2.2, Thermo Fisher Scientific, San
Jose, CA, USA) with the SEQUEST HT cluster search engine (University of Washington,
licensed to Thermo Electron Corporation, San Jose, CA, USA) against the UniProtKB human
database (reviewed, 26,806 entries, release 2023_01, available online: https://www.uniprot.
org/). Proteins were identified with at least one unique peptide and the database search
parameters were as follows: peptide mass tolerance 10 ppm; fragment ion mass tolerance
0.6 Da; 2 missed tryptic cleavages; false discovery rate (FDR) 0.01 (strict) and 0.05 (relaxed);
carbamidomethylation of cysteine as fixed modification; oxidation of methionine and
tryptophane, serine/threonine phosphorylation, N-terminal pyroglutamic residue, and
N-terminal lysine acetylation as dynamic modifications. Peptides were filtered for high
confidence and a minimum length of 6 amino acids. Only proteins identified in at least 30%
of one group (D, S, or H) were submitted to label-free quantification (LFQ) by using the
feature mapper and precursor ions quantifier nodes for the precursor quantification. To
maximize the settings of the software, the MS data from all the samples were loaded in
a unique comparison analysis in the Proteome Discoverer software (version 2.2), so that
LFQ abundances could be determined with high confidence. LFQ quantification included
all the unique peptides identified for each protein, thus at least one unique peptide, and
excluded peptides which can be shared with different protein groups (razor peptides).
All the LFQ abundances were normalized by the software on the total peptide amount
measured in each sample. Keratins and hemoglobin were considered contaminants and
thus excluded.

The mass spectrometry proteomics data have been deposited into the ProteomeX-
change Consortium via the PRIDE [14] partner repository with the dataset identifier
PXD050863.

Statistical analysis

The abundances of 2009 proteins were automatically normalized against the total
amount of tryptic peptides by Proteome Discoverer software. Data above the limit of
detection (LOD) of our MS apparatus were log2 transformed and normalized with respect
to the medians. Data below the LOD were conventionally set as log2(1000), a value below
the minimum of the entire dataset (Supplementary File S1). The choice of this value was
not critical as none of the statistical methods adopted (non-parametric tests and Random
Forest) required specific data distributions.

Non-parametric Mann–Whitney (MW) and Kruskal–Wallis (KW) tests were applied
to identify proteins with different abundances among the three groups of samples, S, D,
and H. Even if data were paired (i.e., obtained from the same subjects), MW tests were
performed in unpaired mode to evaluate the average changes among subjects, and not
within subjects, which is more relevant for diagnostic considerations. Given the large
number of proteins (2009) and tests (4 for each protein), FDR was controlled by the method
of Benjamini–Hochberg [15]. Only tests with p-values < 0.05, an absolute fold change (FC)
± 1.5, and a cumulative FDR < 5% were considered significant.

Random Forest (RF) analysis [16] was used to provide a classification of the samples
in the three types of samples (S, D, and H), using a subset of relevant proteins selected
by the Boruta method [17]. Selection was performed by comparing the ability of proteins
to discriminate different groups with that of shadow variables obtained by random per-
mutations. Only proteins determined to be significantly more important than shadow
variables were selected for RF. The RF parameters, such as the number of trees to grow and
the number of proteins sampled for each split, were preliminarily tuned to optimize the
classification accuracy. RF classification was validated by the “out–of–bag” samples. This
method consists in using only about two-thirds of the samples for each decision tree. The
classification obtained with these samples is then tested using the remaining one-third of
the samples (“out–of–bag”). This procedure is repeated for each of the planned number
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of trees (from which the term of Random Forest comes), each time randomly selecting the
samples for classification and those for validation. The overall accuracy was ultimately
assessed as the average of the “out-of-bag” errors. The importance of the selected proteins
for RF classification was assessed by the mean decrease accuracy score (MDA). This was
computed as the decrease in classification accuracy resulting after permuting each protein.
Diagrams of RF classifications were obtained by multidimensional scaling using proximity
values between each pair of samples. Proximity between a pair of samples was evaluated
as the normalized frequency of trees that contained the two samples in the same end node.
Multidimensional scaling was computed using the singular value decomposition method,
which ensures a matrix factorization that is numerically accurate even in the presence of
a high degree of multicollinearity.

Non-parametric tests and RF analysis were performed using the software R (version
4.4.1) [18].

GraphPad Prism software (version 5.0) was used to analyze correlations among LFQ
abundances and clinical and demographic data. Either the Pearson or Spearman correlation
test was applied based on the normality condition of data assessed by the D’Agostino and
Pearson omnibus normality test. A p-value < 0.05 was considered accepted.

Pathway/process enrichment analysis

Pathway/process enrichment analysis was performed following the protocol of
Reimand J. et al. [19] for defined gene lists. Briefly, two separate gene lists were ana-
lyzed: one including all the proteins identified in the present study, and one containing
the proteins that were significantly varied according to the statistical analysis. g:Profiler
(version e111_eg58_p18_30541362, database updated on 25 January 2024) was used with
the functional profiling tool g:GOSt against the Homo sapiens organism with the follow-
ing data sources: biological process annotations from gene ontology and the Reactome
database. Electronic GO annotations were excluded, and p-values were subjected to
Benjamini–Hochberg FDR correction. For the gene list of the 2009 identified proteins,
only biological processes and pathways with a p-value < 0.01 were considered, while
a p-value < 0.05 was considered for the gene list of the significantly varied proteins. The
results from the pathway enrichment analysis were then visualized on Cytoscape (version
3.10.1, latest access on 21 May 2024) [20] using the “EnrichmentMap Pipeline Collection”.
The platform DisGeNET (version 7.0, latest access on 31 May 2024) [21] was used to verify
the correspondence of our results with respect to proteins previously linked to CRC. Briefly,
CRC was searched on DisGeNET using the specific disease code C0009402 and selecting
the “summary of Gene–Disease Associations” (GDA). The list of proteins deposited on
the platform was then compared with the list of proteins which varied among the groups
according to the statistics. The GO annotations for the molecular functions and the bio-
logical processes associated with these proteins were provided by QuickGO, available in
the EMBL–EBI website (available online: https://www.ebi.ac.uk/QuickGO/annotations
accessed on 22 May 2024).

Protein–Protein interaction network and topological analysis

Protein–protein interaction (PPI) analysis was performed on the 2009 identified pro-
teins by Cytoscape (version 3.10.1, latest access on 1 July 2024), and STRING (version
2.0.3, latest access on 1 July 2024) based on protein queries to obtain a full network with
a confidence cutoff of 0.7 against the Homo sapiens database. The topological parameters
of the PPI network were calculated using the Network Analyser tool on Cytoscape, and
the degree, betweenness centrality, and closeness centrality were utilized to evaluate the
importance of the network nodes [22]. For accessing key nodes in the extended network,
members were first ranked by their degree and betweenness centrality values. The top-
scoring proteins, corresponding to 10% of the total number of nodes, were then selected.
Key nodes close by high degrees were considered hub proteins, showing a high number
of connections with other partner proteins, while nodes with high betweenness centrality,
namely bottleneck proteins, were considered key connectors in the network and form

https://www.ebi.ac.uk/QuickGO/annotations
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the backbone network. The nodes with the highest closeness centrality values represent
the topological center of the network. Among the hubs and bottlenecks, three key node
subgroups were identified: (i) mixed hub–bottleneck proteins, which showed both high
degrees and large betweenness centrality values; (ii) pure hub proteins, with high degrees
but small betweenness centrality values; and (iii) pure bottlenecks, with large betweenness
centrality values and low degrees [23].

To evaluate a possible correlation between the results of the topological analysis and
those of the statistical analysis, the list of proteins whose levels were significantly varied
was compared with those of key nodes in the backbone network.

3. Results
3.1. Statistical Analysis of LFQ Abundances Measured in S, D, and H Samples
Differential Statistical Analysis

The extensive proteomic analysis of samples from the three types of analyzed tissues
yielded a total of 2009 identifications (Supplementary File S1 and ProteomeXchange entry
PXD050863). The complete data, including the normalized log2 LFQ abundances of the 2009
identified proteins in the three groups S, D, and H, medians, and interquartile ranges, are
also shown in Supplementary File S1. Naturally occurring peptides and small proteins, with
an MW ranging from 5 kDa to 20 kDa, comprised 321 out of the 2009 identifications, among
which 24% were identified with a unique peptide. Overall, 17% of the 2009 identifications
were obtained with a unique peptide.

Ninety-one proteins showed significant differences in at least one comparison among
the three groups. The results of the statistical tests (p values and absolute FC) are reported in
Table 2. Considering the individual tests, the significantly varied proteins were as follows:

• 30 in the S vs. H comparison (MW test), with 19 less-abundant and 11 more-abundant
proteins in the S tumor region;

• 31 in the D vs. H comparison (MW test), with 16 less-abundant and 15 more-abundant
proteins in the D tumor region.

The proteins changing simultaneously in multiple comparisons were as follows:

• 20 in both S vs. H and D vs. H comparisons (MW test), with 18 less-abundant and 2
more-abundant proteins in both tumor regions;

• 2 in both S vs. D and D vs. H comparisons (MW test).

KW tests highlighted 64 proteins with levels that significantly varied among the S, D,
and H groups. Fifty-six of significant KW tests concerned proteins already found by the
MW tests. Eight proteins were significantly varied only based on the KW tests (Table 2),
showing variations among the three groups and including three proteins never detected
in D tumor samples, two proteins never detected in S tumor samples, and one protein
(complement C4-B) never detected in either S or H samples. Finally, NADH dehydrogenase
ubiquinone flavoprotein subunit 1 (NDUFV1) was not detected in any tumor sample.

For simplicity, proteins with significantly lower or higher levels in tumor samples are
indicated in the text as “less-abundant” or “more-abundant”, respectively.

Overall, 61% of FCs were between 2 and 10, and 38% were higher than 100. Such high
FCs were due to the lack of detection of some proteins, i.e., they were below the LOD of
our apparatus. Only one protein, 182 kDa tankyrase-1-binding protein (TAB182), had an
FC less than 2 between S and H samples, with S<H.

Twenty-two percent of the proteins showed similar changes when comparing tissues
from tumor regions (both S and D) and healthy colon mucosa, suggesting they may be basal
hallmarks of CRC but not distinctive of the intra-tumor heterogeneity represented here
by the superficial layer and the inner deep region. Among the 18 proteins with the lowest
levels in tumor samples, one peptide YY (PYY), was never detected in D samples (Table 2).
The two more-abundant proteins in both analyzed tumor regions were transforming growth
factor-beta-induced protein ig-h3 (beta ig-h3) and guanine nucleotide binding protein G(i)
subunit alpha 2 (Galphai2).
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Table 2. Proteins (n = 91) with significant changes between groups (p-values < 0.05, cumulative FDR < 5%, FC ± 1.5). “p”: p-value; “change”: direction of the
variation; “FC”: absolute fold change. Proteins are grouped based on the type and direction of the variation. When a short name of the protein is commonly used,
it is reported. “ND”: failure to detect the protein. The 21 proteins selected by the Boruta method for the RF classification analysis are highlighted in gray. MW,
Mann–Whitney test; KW, Kruskal–Wallis test. The GDA score from DisGeNET analysis is also indicated, as well as a previous reference (Ref.) associating the protein
with CRC and the technique used for protein identification.

UniProt KB
Code (Gene) Protein ND MW S vs. D

p Change FC
MW S vs. H
p Change FC

MW D vs. H
p Change FC

KW
p

GDA
Score

Ref. for CRC and
Used Technique

Proteins changing in the comparison S–D and D–H
Q4V328 (GRIPAP1) GRASP-1 ND in S 0.00001 S<D >100 0.0001 D>H >100 0.00001
Q96RF0 (SNX18) Sorting nexin-18 ND in D 0.00001 S>D >100 0.0003 D<H >100 0.0001 LC–MS/MS [24]

Proteins changing in the comparison S–H with S↓
P15090 (FABP4) A-FABP ND in S 0.0007 S<H >100 0.0009 0.02 qPCR a, IF b [4]
P02511 (CRYAB) AlphaB-crystallin 0.0009 S<H >100 0.0016 0.04 qPCR, IHC c, WB d [25,26]
P50995 (ANXA11) Annexin A11 0.0011 S<H 2.8 0.01 MALDI–TOF MS e, IHC [27]
P00403 (MT–CO2) Cytochrome c oxidase subunit 2 ND in S 0.0007 S<H >100 0.5 Gene expression, WB, IHC [28]
P08294 (SOD3) EC–SOD 0.0001 S<H 4.1
Q13642 (FHL1) FHL-1 0.0002 S<H 10.1 0.0003 mRNA expression [29]
P21695 (GPD1) GPDH-C ND in S 0.0001 S<H >100 0.0004 MALDI–TOF [30]
P10915 (HAPLN1) HPLPN1 ND in S 0.0003 S<H >100 0.0004 0.5 Gene expression, qMSP f [31]
P51884 (LUM) Lumican 0.0001 S<H 7.2 0.0004 0.01 WB, IHC, PCR [32]
P20774 (OGN) Mimecan (osteoglycin) 0.0004 S<H 11.7 0.0004 0.03 IHC, WB, IF [33]
Q02218 (OGDH) OGDH-E1 0.0008 S<H >100 0.0002 0.01 LC–MS/MS, WB [5]
Q9UIQ6 (LNPEP) OTase ND in S 0.0000 S<H >100 0.00001
P11177 (PDHB) PDHE1-B 0.0002 S<H >100 0.0005
P36871 (PGM1) PGM-1 0.0009 S<H 3.2 0.3 qPCR, WB IHC [34]
Q5T013 (HYI) Putative Hyi ND in S 0.0007 S<H >100
Q9HD15 (SRA1) SRA1 ND in S 0.0007 S<H >100 WGCNA g [35]
Q9C0C2 (TNKS1BP1) TAB182 0.0009 S<H 1.6
P09936 (UCHL1) UCH-L1 0.0002 S<H >100 0.0004 0.04 WB, gene expression, qMSP [36]
P51452 (DUSP3) VHR ND in S 0.0007 S<H >100

Proteins changing in the comparison S–H with S↑
P13674 (P4HA1) 4-PH alpha-1 ND in H 0.0003 S>H >100 0.0006 LC–MS/MS [37]
P55957 (BID) BH3-interacting domain death

agonist 0.0012 S>H >100 0.01 qPCR [38]
P02788 (LTF) Lactotransferrin 0.0001 S>H 6.0 0.0004 qPCR, IHC, WB [39]
P49321 (NASP) NASP 0.0012 S>H 4.3
P48681 (NES) Nestin ND in H 0.0007 S>H >100 0.01 IHC [40]
P02775 (PPBP) PBP 0.0004 S>H 2.2 0.03 mRNA analysis, WB, IF [41]
O15212 (PFDN6) Prefoldin subunit 6 0.0006 S>H 2.8
Q9Y2Z0 (SUGT1) Protein SGT1 homolog ND in H 0.0003 S>H >100 0.0008
P05109 (S100A8) S100-A8 0.0006 S>H 7.7 qPCR, WB, IHC [42]
P06702 (S100A9) S100-A9 0.0000 S>H 8.1 0.0001 0.08 qPCR, WB, IHC [42]
P61964 (WDR5) WDR5 ND in H 0.0003 S>H >100 0.0008 0.01 qPCR, WB [43]
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Table 2. Cont.

UniProt KB
Code (Gene) Protein ND MW S vs. D

p Change FC
MW S vs. H
p Change FC

MW D vs. H
p Change FC

KW
p

GDA
Score

Ref. for CRC and
Used Technique

Proteins changing in the comparison D–H with D↓
P15121 (AKR1B1) Aldo-keto reductase 1B1 0.0008 D<H 3.7 0.05 gene expression, qMSP [44]

P17050 (NAGA) Alpha-N-
acetylgalactosaminidase 0.0009 D<H 5.1

P35613 (BSG) Basigin 0.0002 D<H 4.8 0.0011 0.06 WB [45]
P17174 (GOT1) cAspAT 0.0002 D<H 2.4 0.01 qPCR [46]
Q9Y5K6 (CD2AP) CD2-associated protein 0.0012 D<H 3.7 0.02 LC–MS/MS, IHC [47]
P10606 (COX5B) Cytochrome c oxidase sub. 5B 0.0012 D<H 4.5
Q13011 (ECH1) DI (mitochondrial) 0.0007 D<H 3.3
P36957 (DLST) DLST 0.0008 D<H 3.4 0.0011
O95571 (ETHE1) ETHE1 0.0000 D<H 4.0 0.0002 0.02 IHC, WB, LC–MS/MS [48]
Q05315 (CLC) Gal-10 0.0011 D<H 4.9 0.03 RNA analysis [49]
P00390 (GSR) GRase 0.0002 D<H 4.6 0.0012 0.01 Enzymatic assay [50]
P06870 (KLK1) Kallikrein-1 0.0006 D<H >100 0.0003
O00401 (WASL) N-WASP 0.0009 D<H >100 0.01 qPCR [51]
Q8IV08 (PLD3) PLD3 0.0005 D<H >100 0.0012
O95716 (RAB3D) Rab-3D 0.0010 D<H >100 IHC, WB, qPCR [52]
O43760 (SYNGR2) Synaptogyrin-2 ND in D 0.0007 D<H >100 0.0015 GSEA h [53]

Proteins changing in the comparison D–H with D↑

Q15121 (PEA15) 15 kDa phosphoprotein enriched
in astrocytes 0.0009 D>H >100 0.0011 0.02 WB, cell assays [54]

O94875 (SORBS2) ArgBP2 0.0007 D>H >100
P53618 (COPB1) Beta-COP 0.0002 D>H 5.7 0.0001 0.01 WB, IHC, LC–TOF MS [55]
P08572 (COL4A2) Collagen alpha-2(IV) chain 0.0003 D>H >100 0.0005 0.1 LC–MS/MS [37]

P02751 (FN1) FN 0.0002 D>H 2.9 0.0004 0.4 RNA analysis, WB, IHC, GSEA
[56]

P29279 (CCN2) CTGF ND in H 0.0003 D>H >100 0.0012 0.08 WB, qPCR [57]
P13639 (EEF2) EF-2 0.0002 D>H 10.7 0.01 MALDI–TOF, IHC, WB, ELISA

[58]
P84243 (H3–3A) Histone H3.3 0.0012 D>H >100 0.01 RNA analysis [49]
O14979 (HNRNPDL) hnRNP D-like 0.0001 D>H 2.0 0.0009 0.03 LC–MS/MS [59]
P14174 (MIF) MIF 0.0007 D>H 2.4 0.03 IHC, WB, qPCR [60]
P14543 (NID1) NID-1 0.0002 D>H >100 0.000001 0.3 qPCR [61]
P42696 (RBM34) RNA-binding protein 34 0.0009 D>H >100 0.0013 qPCR, WB, IHC [62]
P50454 (SERPINH1) Serpin H1 0.0004 D>H 3.4 0.01 DEGs i, WGCNA [63]
Q8WUH6 (TMEM263) Transmembrane protein 263 ND in

S/H 0.0003 D>H >100 0.000001 0.02 DEGs, ML j [64]
P18887 (XRCC1) XRCC1 ND in H 0.0001 D>H >100 0.00001 0.4 Gene expression, IHC [65]
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Table 2. Cont.

UniProt KB
Code (Gene) Protein ND MW S vs. D

p Change FC
MW S vs. H
p Change FC

MW D vs. H
p Change FC

KW
p

GDA
Score

Ref. for CRC and
Used Technique

Proteins changing in the comparison D–H and S–H with D↓ and S↓
P27348 (YWHAQ) 14-3-3 protein theta 0.0001 S<H 8.2 0.0003 D<H 8.3 0.0001
P00325 (ADH1B) ADH1B 0.0010 S<H 9.5 0.0013 D<H 8.3 0.0006 0.4 Gene expression [66]
P00326 (ADH1C) ADH1C 0.00001 S<H 22.3 0.00001 D<H 26.3 0.00001 0.06 DEGs, ML, IHC, WB, qPCR [67]
P48047 (ATP5PO) ATP synthase subunit O 0.0008 S<H 16.5 0.0013 D<H 3.5 0.0004 LC–MS/MS, qPCR, WB [68]
O75363 (BCAS1) Breast carcinoma-amplified

sequence 1 0.0011 S<H 3.5 0.00001 D<H 7.4 0.0001 qPCR [69]
A8H7I4 (CLCA1) CaCC-1 0.00001 S<H 9.2 0.00001 D<H 22.1 0.00001 0.06 ELISA, IHC, WB [70]
P00918 (CA2) CA-II 0.00001 S<H 5.7 0.00001 D<H 8.0 0.00001 0.02 IHC [71]
O00748 (SULT2) CE-2 0.0006 S<H 9.2 0.0004 D<H 10.9 0.0004 0.03 WB [72]
P34913 (EPHX2) CEH 0.0002 S<H 4.8 0.00001 D<H >100 0.00001 IHC, qPCR, WB [73]
P10645 (CHGA) CgA, pro-protein 0.0001 S<H 8.7 0.00001 D<H 18.2 0.00001 0.03 ML of gene data, qPCR [74]
P07585 (DCN) Decorin 0.0002 S<H 9.7 0.0008 D<H 5.7 0.0001 0.08 IF [75]
P16422 (EPCAM) Ep-CAM 0.0001 S<H >100 0.0001 D<H >100 0.00001 0.1 IHC [76]
Q9UHB6 (LIMA1) EPLIN 0.0010 S<H 4.0 0.0000 D<H 5.6 0.0001 0.1 LC–MS/MS [59]
P17931 (LGALS3) Gal-3 0.0008 S<H 2.2 0.0007 D<H 2.5 0.0008 0.1 IHC [77]
Q9Y6R7 (FCGBP) IgGFc-binding protein 0.00001 S<H 9.8 0.00001 D<H 35.7 0.00001 DEGs and ML [78]
P10082 (PYY) PYY ND in D 0.0010 S<H >100 0.0000 D<H >100 0.000001 0.01 LC–MS/MS, qPCR, IHC [79]
Q15661 (TPSAB1) Tryptase-1 0.0003 S<H 10.1 0.0002 D<H 6.5 0.0003
O60701 (UGDH) UDP-GlcDH 0.0001 S<H 3.4 0.0000 D<H 5.0 0.0001 qPCR, WB [80]

Proteins changing in the comparison D–H and S–H with D↑ and S↑
Q15582 (TGFBI) Beta ig-h3 0.0008 S>H 3.1 0.0000 D>H 2.7 0.0001 0.02 LC–MSMS, GSEA [81]
P04899 (GNAI2) Galphai2 0.00001 S>H 6.3 0.0003 D>H 5.4 0.00001 IF, WB, qPCR [82]

Proteins changing in KW comparisons among all three groups but not in MW pairwise comparisons

Q9NZK5 (ADA2) Adenosine deaminase 2 N.D in D 0.0006
P35611 (ADD1) Alpha-adducin 0.0012 0.01 Gene expression [83]
P0C0L5 (C4B) Complement C4-B ND in

S/H 0.0013
Q96S86 (HAPLN3) HPLPN3 ND in D 0.0009
C9JLW8 (MCRIP1) MCRIP1 ND in S 0.0001
P49821 (NDUFV1) NDUFV1 ND in

S/D 0.0003 WB, enzyme assay [84]
Q96IQ7 (VSIG2) VSIG2 0.0015 WGCNA [85]
O75312 (ZPR1) Zinc finger protein ZPR1 (ZPR1) ND in S 0.0005

a qPCR, quantitative real-time polymerase chain reaction; b IF, immunofluorescence; c IHC, immunohistochemistry; d WB, Western blot; e MALDI–TOF MS, matrix-assisted laser
desorption ionization time of flight MS; f qMSP, quantitative methylation analysis; g WGCNA, gene co-expression network analysis; h GSEA, gene set enrichment analysis; i DEGs,
differentially expressed genes; j ML, machine-learning analysis.
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Sixty percent of the proteins showed significant changes either in S or in D tumor
samples with respect to the H samples, while their levels were not significantly different
between the two tumor regions. Notably, among the less-abundant proteins in S vs. H
and D vs. H comparisons, eight were never detected in S, and one, synaptogyrin-2, was
never detected in D tumor samples (Table 2). Among the more-abundant proteins in S vs.
H and D vs. H comparisons, six proteins were never detected in H control samples, and
one, transmembrane protein 263, was never detected in either S or H samples (Table 2). The
variations were significant in only one of the tumor regions, even if not strong enough to
distinguish S from D samples by means of the differential statistical analysis, and appeared
as signals of divergence, which was demonstrated by the RF classification analysis described
in the next paragraph.

Only two proteins showed significant differences not only in the comparison with H
control samples, but also between the S and D tumor regions: GRIP1-associated protein
1 (GRASP-1), with the highest levels in D samples and never detected in S samples; and
sorting nexin-18, with the highest levels in S samples and never found in D samples.

The gene ontology (GO) ID annotations for the molecular function and biological
processes related to these 91 proteins with statistically significant variations are reported in
Table S1 (Supplementary File S2). Moreover, to obtain information about the association
among proteins of interest and previous literature focused on CRC protein biomarkers,
we tested the 91 proteins with the DisGeNET tool, and the resulting DGA scores are
indicated in Table 2. About 55% of the 91 varied proteins were already associated with
CRC in previous investigations based on DisGeNET results. Table 2 also reports references
concerning the association of these proteins and CRC found through classical bibliographic
research, which in some cases accomplishes the DisGeNET results. The techniques used for
protein identification in previous studies are indicated in the last column of Table 2. As far
as we know, 23 of the 91 proteins have never been associated with CRC before this study.

3.2. RF Classification Analysis

RF classification was performed using 21 proteins selected by the Boruta method
among the entire dataset of 2009 identified proteins. Interestingly, the 21 proteins selected
for RF (highlighted in gray in Table 2) were all included among the 91 proteins with signifi-
cant changes identified by the MW and KW tests. RF analysis correctly classified almost all
samples using the 21 selected proteins, with an overall accuracy of 98.4% (Figure 1a). No
errors were found in the classification of S and D tumor samples. The only misclassification
occurred with a sample from the H group that was attributed to the S group. The different
contributions of the 21 proteins to this highly accurate RF classification are expressed by the
MDA score. The MDA score evaluates the decrease in classification accuracy after randomly
permuting (i.e., scrambling) the LFQ abundance values of a single protein among the three
groups, S, D, and H: the greater the decrease in classification accuracy after permuting
a certain protein, the greater the importance, or MDA score, of that protein. Figure 1b shows
the MDA scores of the 21 proteins calculated for each group, S, D and H, (blue columns),
and the average MDA score (red column). The corresponding numerical values of MDA
scores are reported in Table S2 (Supplementary File S2). Based on the average MDA score,
Galphai2, carbonic anhydrase 2 (CA-II), GRASP-1, sorting nexin-18, bifunctional/cytosolic
epoxide hydrolase 2 (CEH), alcohol dehydrogenase 1C (ADH1C), coatomer subunit beta
(beta-COP), and the protein binding the Fc portion of IgG (IgGFc-binding protein) appeared
to be the most important proteins for the classification of the three types of analyzed tissues.
All these eight proteins achieved an average score > 0.020 (Table S2). Based on the MDA
scores of the single groups, Galphai2, CA-II, ADH1C, CEH, and IgGFc-binding protein,
showing the highest MDA score in the H sample group, appeared to classify the non-tumor
control tissue well. GRASP-1 was a good classifier for both superficial and deep regions of
the tumor, showing the highest MDA scores in both the S and D sample groups. Meanwhile,
sorting nexin-18 and beta-COP, with the highest MDA score in the D sample group, more
accurately classified the deep tumor region.
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Figure 1. (a) Confusion matrix and sensitivity/specificity of RF classification. (b) Sparkline graphic 
representing the relative importance of the 21 proteins selected for RF classification of the S, D, and 
H groups, calculated as MDA. Proteins with a higher average MDA have a greater importance in 
the RF model. Blue columns show the MDA scores calculated for each group. The red column shows 
the average MDA score. 

A 2D representation of RF classification is shown by the multidimensional scaling 
plot obtained from the proximities among samples (Figure 2). The separation of the three 
groups of samples is strongly evident. All the samples from healthy mucosa are very 
detached from the S and D tumor samples, with the only exception of the H4 sample, also 
resulting from a confusion matrix. The perfect discrimination between the internal and 
the peripheral region of the tumor emphasizes different proteomic profiles that could not 
be predicted due to the few significant differences between these two groups obtained by 
single univariate tests. 

The significant differences in the LFQ abundances of the 91 proteins among the three 
groups are also evident in the heatmap of Figure 3. In addition, the heatmap allows for 

Figure 1. (a) Confusion matrix and sensitivity/specificity of RF classification. (b) Sparkline graphic
representing the relative importance of the 21 proteins selected for RF classification of the S, D, and H
groups, calculated as MDA. Proteins with a higher average MDA have a greater importance in the
RF model. Blue columns show the MDA scores calculated for each group. The red column shows the
average MDA score.
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A 2D representation of RF classification is shown by the multidimensional scaling
plot obtained from the proximities among samples (Figure 2). The separation of the three
groups of samples is strongly evident. All the samples from healthy mucosa are very
detached from the S and D tumor samples, with the only exception of the H4 sample, also
resulting from a confusion matrix. The perfect discrimination between the internal and
the peripheral region of the tumor emphasizes different proteomic profiles that could not
be predicted due to the few significant differences between these two groups obtained by
single univariate tests.
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homogeneity in the protein profiles of the H control samples compared to the two tumor 
regions, S and D, which, instead, were shown to be more heterogeneous among 
individuals. 

 
Figure 2. Multidimensional scaling plot showing the relationships among the three groups of 
samples (S, red; D, blue; H, green), using the proximity values calculated by RF. Patient 
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dispersion ellipse with a confidence of 1.6 standard deviations. 

Figure 2. Multidimensional scaling plot showing the relationships among the three groups of
samples (S, red; D, blue; H, green), using the proximity values calculated by RF. Patient identification
numbers correspond to those shown in Table 1. Each group is delimited by a dispersion ellipse with
a confidence of 1.6 standard deviations.

The significant differences in the LFQ abundances of the 91 proteins among the three
groups are also evident in the heatmap of Figure 3. In addition, the heatmap allows for
the identification of the differential pattern of the 21 proteins (marked as “RF” in the
first column of the figure) used for the RF classification, which were spread across all the
major clusters produced by the 91 proteins. Overall, it is interesting to underline a major
homogeneity in the protein profiles of the H control samples compared to the two tumor
regions, S and D, which, instead, were shown to be more heterogeneous among individuals.
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Figure 3. Heatmap of the 91 proteins showing significant changes among the three groups of 
samples. Each row of the heatmap represents a specific protein, and each column represents a single 
subject. The “RF” labels indicate the 21 proteins used for RF classification. For each protein, the color 
of each cell reflects the percentile value of each subject relative to all 48 subjects present in the same 
row. Shades of green and red represent decreasing and increasing percentiles, respectively, from 
the median. To obtain homogeneous blocks of color, the proteins were preliminarily ordered 
vertically based on the output of a hierarchical cluster analysis. Note that the 21 RF proteins are 
spread across all the major clusters produced by the 91 differentially expressed proteins. This 

Figure 3. Heatmap of the 91 proteins showing significant changes among the three groups of samples.
Each row of the heatmap represents a specific protein, and each column represents a single subject.
The “RF” labels indicate the 21 proteins used for RF classification. For each protein, the color of
each cell reflects the percentile value of each subject relative to all 48 subjects present in the same
row. Shades of green and red represent decreasing and increasing percentiles, respectively, from the
median. To obtain homogeneous blocks of color, the proteins were preliminarily ordered vertically
based on the output of a hierarchical cluster analysis. Note that the 21 RF proteins are spread across
all the major clusters produced by the 91 differentially expressed proteins. This suggests that the
RF proteins span the full range of the different relationships among the proteins found to be varied
among the three groups.
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3.3. Enrichment Analysis of Biological Processes and Pathways

An enrichment analysis was first performed on all the 2009 identified proteins, high-
lighting a predominant involvement in biological processes and pathways related to
metabolism (both synthesis and catabolic pathways) and in its regulation, especially re-
garding proteins, fatty acids, and nucleic acids. Furthermore, highly significant FDR values
were obtained for biological processes/pathways included in the innate immune system, re-
sponse to infections and oxidative stress, apoptosis, proteasome activity, actin cytoskeleton
organization and assembly, cellular and protein localization, transport, and membrane traf-
ficking. Figure 4a shows the functional network defined by processes with p-values < 0.01.
Supplementary File S3 reports the GO/Reactome entries, FDR, and proteins associated
with each process.
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Figure 4. Enrichment analysis via g:Profiler coupled with Cytoscape EnrichmentMap Pipeline
Collection of the following: (a) of all the 2009 proteins identified in the study, only functional networks
defined by the processes with p-values < 0.01 are shown; (b) the 91 proteins showing significant
variations in the statistical differential analysis. Colors refer to FDR, from the least significant (light
yellow, FDR 0.04) to the most significant (red, FDR 0.002).

Considering the 91 proteins showing significant variations in the statistical differential
analysis, the enrichment analysis identified the networks of biological processes (GO) or
pathways (Reactome) with an FDR < 0.05, as described in Table 3 and shown in Figure 4b.
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Table 3. Networks of the biological processes (GO) or pathways (Reactome) with FDR < 0.05 obtained by including all the 91 proteins listed in Table 2. GO and/or
Reactome entries, FDR, and implicated proteins are reported. When commonly used, short names are indicated.

Biological Processes/
Pathways GO/Reactome Entry (FDR) Proteins

Degradation of the ECM REAC:R-HSA-3560782
(0.02) Decorin; lumican; mimecan; basigin; collagen alpha-2(IV) chain; FN; NID-1, tryptase-1

ECM proteoglycans REAC:R-HSA-3000178
(0.01) Decorin; lumican; HPLPN1; collagen alpha-2(IV) chain; FN

ECM organization REAC:R-HSA-1474244
(0.003)

Decorin; lumican; HPLPN1; basigin; collagen alpha-2(IV) chain; FN; tryptase-1; 4-PH alpha-1;
NID-1; serpin H1

Aerobic respiration/
Cellular respiration

GO:0009060/GO:0045333
(0.02)

PDHE1-B; OGDH-E1; ATP synthase subunit O; cytochrome c oxidase subunit 2; cytochrome c oxidase
sub. 5B; DLST; NDUFV1

Generation of precursor metabolites and energy GO:0006091
(0.02)

PDHE1-B; OGDH-E1; DLST; ATP synthase subunit O; cytochrome c oxidase subunit 2; cytochrome c
oxidase sub. 5B; NDUFV1; PGM-1; ADH1C; ADH1B

Citric acid cycle and respiratory electron transport REAC:R-HSA-1428517
(0.003)

PDHE1-B; OGDH-E1; DLST; ATP synthase subunit O; cytochrome c oxidase subunit 2; cytochrome c
oxidase sub. 5B; NDUFV1; basigin

2-oxoglutarate metabolic process GO:0006103
(0.02) OGDH-E1; DLST; cAspAT

Histone succinylation/
Protein succinylation

GO:0106077/GO:0018335
(0.03)/(0.04) OGDH-E1; DLST

Metabolism REAC:R-HSA-1430728
(0.01)

PDHE1-B; OGDH-E1; DLST; cAspAT; ATP synthase subunit O; cytochrome c oxidase subunit 2;
cytochrome c oxidase sub. 5B; NDUFV1; PGM-1; GPDH-C; ETHE1; ADH1C; ADH1B; CEH; CE-2;

A-FABP; aldo-keto reductase 1B1; UDP-GlcDH; decorin; lumican; mimecan; CA-II; basigin; Galphai2;
PLD3; N-WASP

Neutrophil chemotaxis GO:0030593
(0.03) S100A8; S100A9; Gal-3; PBP; basigin

Leukocyte chemotaxis/
Myeloid leukocyte migration

GO:0030595/GO:0097529
(0.02) S100A8; S100A9; Gal-3; PBP; basigin; CgA; MIF

Leuckocyte migration GO:0050900
(0.04) S100A8; S100A9; Gal-3; PBP; basigin; CgA; MIF; N-WASP

Neutrophil aggregation GO:0070488
(0.02) S100A8; S100A9

Metal sequestration by antimicrobial proteins REAC:R-HSA-6799990
(0.002) Lactotransferrin; S100A8; S100A9

Sequestering of zinc ion GO:0032119 (0.02) S100A8; S100A9
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3.3.1. Proteoglycans and Extracellular Matrix Dynamics

In this first cluster of biological processes/pathways, decorin, lumican, collagen
alpha-2(IV) chain, and fibronectin (FN) were identified with significant FDR, forming
a network of three processes: (i) degradation of the extracellular matrix (ECM), also in-
volving mimecan (or osteoglycin), basigin, nidogen-1 (NID-1), and tryptase alpha/beta 1
(tryptase-1); (ii) proteoglycan dynamics in the ECM, involving hyaluronan proteoglycan
link protein 1 (HPLPN1); (iii) ECM organization also involving HPLPN1, basigin, NID-1,
tryptase-1, serpin H1, and prolyl 4-hydroxylase subunit alpha-1 (4-PH alpha-1) (Figure 4,
Table 3). The process identified with the lowest FDR, among the three, was the ECM
organization involving several less-abundant proteins, such as decorin and tryptase-1,
with the lowest levels in both tumor regions, basigin in the deep part of the tumor, and
lumican, mimecan, and HPLPN1 on the surface of the tumor (Table 2). HPLPN1 was never
detected in S samples. FN, collagen alpha-2(IV) chain, serpin H1, and NID-1 were found to
be, instead, more-abundant proteins in D tumor samples, while 4-PH alpha-1 was more
abundant in S samples and not detected in healthy control samples.

As reported in Supplementary Table S1, the GO annotation ID for molecular function
GO:0030021/30020 “extracellular matrix structural constituent conferring compression
resistance/tensile strength” was associated with decorin, lumican, collagen alpha-2(IV)
chain, mimecan, and HPLPN1. The ID annotation for the “collagen fibril organization”
process (GO:0030199) was associated with lumican, serpin H1, and 4-PH alpha-1, the latter
of which directly modifies collagen molecules with its enzymatic “procollagen–proline
4-dioxygenase activity” (GO:0004656). Collagen alpha-2(IVA) chain was associated with the
processes of “collagen-activated tyrosine kinase receptor signaling pathway” (GO:0038063),
and angiogenesis (GO:0001525). FN is an integrin interactor (GO:0005178). FN and HPLPN1
are associated with ID for the process GO:0007155 “cell adhesion”, and FN and NID-1 are
extracellular matrix structural constituents (GO:0005201) and are associated with the ID
for process GO:0007160 “cell–matrix adhesion”. Basigin is associated with several IDs for
process, among them ID GO:1904466 “positive regulation of matrix metallopeptidase secre-
tion” is well in accordance with the organization and degradation of ECM, as found here.
Analogously, tryptase-1 is associated with the process “extracellular matrix disassembly”
(GO:0022617). Based on their GO annotations (Supplementary File S2, Table S1), several of
these proteins are integrin interactors (GO:0005178). The building and remodeling of ECM,
including the existence of a protein network essential for maintaining the homeostasis of
physical and functional connections in the ECM, require the activity of integrins. We de-
tected integrins alpha-V and alpha-M (Supplementary File S1) but, unlike their interactors,
integrins did not show significant variations among the compared groups.

3.3.2. Metabolic Processes

Eight GO/Reactome entries identified metabolic processes (Table 3, Figure 4), pre-
dominantly concerning the citric acid cycle, the oxidative phosphorylation (OXOPHOS)
processes, and overall mitochondrial processes generating energy. Galphai2 was the only
protein in this cluster of functional networks showing the highest abundance in both S and
D tumor samples. Galphai2 is a component of several signaling pathways regulating the
metabolic processes, with its principal association being the GO annotation GO:0007165,
“signal transduction” (Supplementary File S2, Table S1). All the other proteins were less
abundant in the tumor samples. Among them, ATP synthase subunit O had the lowest
level in both D and S samples, and NDUFV1 was not detected in any tumor samples
(Table 2). Pyruvate dehydrogenase E1 subunit beta (PDHE1-B), 2-oxoglutarate dehydro-
genase E1 (OGDH-E1), and cytochrome c oxidase subunit 2 were less-abundant proteins
in the S tumor samples (Table 2). OGDH subunit E2, namely dihydrolipoyllysine-residue
succinyltransferase (DLST), cytochrome c oxidase subunit 5B (Complex IV), and persulfide
dioxygenase ETHE1 were less-abundant proteins in D tumor samples (Table 2).

The ID GO annotations for the molecular functions and specific processes of these
proteins are indicated in Table S1 (Supplementary File S2). NDUFV1 is a component
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of Complex I of the electron transport chain (GO:0006120), while cytochrome c oxidase
subunit 2 and subunit 5B are components of Complex IV (GO:0006123). OGDH-E1 and
DLST are components of the OGDH complex that converts 2-oxoglutarate to succinyl-CoA
in the Krebs cycle (GO:0006103), while PDHE1-B is a component of the PDH complex that
synthesizes acetyl-CoA from pyruvate (GO:0006086). ETHE1 is an enzyme important for
mitochondrial redox homeostasis and participates in the “glutathione metabolic process”
(GO:0006749). Several proteins participate in lipid metabolism, namely A-FABP and
cytoplasmic glycerol-3-phosphate dehydrogenase (GPDH-C), which were never detected
in S samples; aldo-keto reductase 1B1 was found to be a less-abundant protein in D tumor
samples; CEH and carboxylesterase 2/cocaine esterase (CE-2) showed the lowest level
in both S and D tumor samples (Table 2). As reported in Table S1 (Supplementary File
S2), CEH, CE-2, and aldo-keto reductase 1B1 are associated with the ID GO:0006629 “lipid
metabolic process” and GO:0006693 “prostaglandin metabolic process”. CEH, also known
as EPHX2, is also involved in “cholesterol homeostasis” (GO:0042632). CEH is a cytosolic
bifunctional enzyme with lipid epoxide hydrolase and lipid phosphatase activities, and
it principally metabolizes xenobiotics and cytotoxic epoxides derived from fatty acids.
A-FABP is a long-chain fatty acid transporter (GO:0015909), and GPDH-C is involved in
the glycerol-3-phosphate metabolic process (GO:0006072). Aldo-keto reductase 1B1 is also
involved in the “fructose biosynthetic process” (GO:0046370) and “carbohydrate metabolic
process” (GO:0005975). It catalyzes the NADPH-consuming reduction of glucose to sorbitol,
and the next conversion to fructose in the polyol pathway.

Phosphoglucomutase-1 (PGM-1) was found to be a less-abundant protein on the sur-
face of the tumor. It is noteworthy that the PGM-1 proteoform identified in this study
was phosphorylated at Ser369, a PTM already reported in the human databank UniProt-
KB, and acetylated at Lys370, a novel PTM for this enzyme. The PTMs identified in this
study are reported in Supplementary File S1. PGM-1 is directly involved in the “glucose
metabolic process” (GO:0006006). This functional cluster of proteins was also identified
by proteins involved in proteoglycan metabolism: in addition to lumican, decorin, and
mimecan, UDP-glucose 6-dehydrogenase (UDP-GlcDH) was also identified, with the low-
est level in the tumor (Table 2). UDP-GlcDH is involved in glycoprotein and proteoglycan
biosynthesis, as indicated by the association with the GO ID annotations “heparan sulfate
proteoglycan biosynthetic process” (GO:0015012) and “chondroitin sulfate biosynthetic
process” (GO:0030206). All-trans-retinol dehydrogenase NAD+ (ADH1B), ADH1C, and
CA-II showed the lowest levels in both S and D tumor samples (Table 2). Alcohol dehydro-
genases 1B and 1C (ADH1B and ADH1C) are enzymes principally involved in the “alcohol
metabolic process” (GO:0006066), while CA-II regulates intracellular pH homeostasis
(GO:0051453) (Supplementary File S1, Table S1).

Cytoplasmic aspartate aminotransferase (cAspAT), neural Wiskott–Aldrich syndrome
protein (N-WASP), and 5′–3′ exonuclease phospholipase D3 (PLD3) were identified as
less-abundant proteins in the deep part of the tumor (Table 2). cAspAT is associated
with several GO annotations for biological processes, including GO:0006532 “aspartate
biosynthetic process”, GO:0006094 “gluconeogenesis”, and GO:0006103 “2-oxoglutarate
metabolic process”. N-WASP is involved in “actin cytoskeleton organization” (GO:0030036),
while PLD3 hydrolyzes phosphatidylcholine to generate phosphatidic acid (GO:0004630,
molecular function), and it is associated with the ID annotation “DNA metabolic process”
(GO:0006259) (Supplementary File S1, Table S1).

Finally, basigin was included in this functional cluster due to its multifunctional activ-
ity as a membrane protein regulating different processes (Table S1, Supplementary File S2).
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3.3.3. Leukocyte Migration and Aggregation

Another interesting functional network concerned the “migration and chemotaxis of
neutrophils and myeloid leukocytes” (Figure 4, Table 3) and involved proteins more abun-
dant in S tumor samples, such as S100A9, S100A8, and platelet basic protein (PBP). It also
included more-abundant proteins in the D tumor samples, such as macrophage migration
inhibitory factor (MIF). In addition, proteins less abundant in the tumor, such as basigin,
N-WASP, Galectin-3 (Gal-3), and chromogranin-A (CgA), were identified in this functional
network. Gal-3 and CgA showed the lowest levels in both tumor regions. Moreover, the
S100A9 and S100A8 proteins, together with lactotransferrin, were identified with a highly
significant FDR in the process of “metal sequestration by antimicrobial proteins”, which
was linked to “neutrophil aggregation” and “zinc ion sequestration” (Figure 4, Table 3). As
evidenced by the GO annotations reported in Table S1 (Supplementary File S2), S100A8
and S100A9 show several associations with the dynamics of the innate immunity and the
inflammatory response (GO:0006954, GO:0061844), as well as PBP. MIF exhibits “cytokine
activity” (GO:0005125) and is linked to several signaling pathways, similarly to basigin.
PBP is a potent chemoattractant and activator of neutrophils (GO:0006935). Lactotransferrin
plays a role as a defense protein (GO:0031640). The regulatory activity on the cytoskeleton
carried out by N-WASP is fundamental for the motility of leukocytes. CgA and Gal-3 are
associated with GO annotations concerning the chemotaxis of immune cells, including
GO:0002551 “mast cell chemotaxis”, GO:0002548 “monocyte chemotaxis”, and GO:0030593
“neutrophil chemotaxis”.

3.4. PPI Network and Topological Analysis

The examination of the topological features of the PPI network, such as the node
degree, betweenness centrality, and closeness centrality, highlighted that nodes with high
degrees were identified as hub proteins. Because of their high number of interacting part-
ners, these nodes can be considered key nodes. On the other hand, proteins with large
betweenness centrality values were also identified as key nodes, known as bottlenecks,
due to their central role in facilitating communication and information flow between dif-
ferent parts of the network. The extended network of identified proteins was composed
of 1967 nodes, interacting with 20,967 edges. Proteins in the top 10% for degree values
(min 59, max 200) were considered hub proteins (n = 197), and proteins in the top 10% for
betweenness centrality values (min 0.003, max 0.08) were considered bottleneck proteins
(n = 196). Bottlenecks constitute the backbone network consisting of 196 nodes intercon-
nected by 1787 edges; the size of each node corresponds with the betweenness centrality
values (Figure S1 in Supplementary File S2). Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH in the Figure S1), with the highest closeness centrality, betweenness centrality,
and degree values, represented the topological center of the backbone network, allowing
the flow of information among its portions. Heat shock protein 90-alpha (HSP90AA1)
and actin (ACTB) assumed important positions within the backbone network, second
and third, respectively, for their high closeness centrality and high values of betweenness
centrality and degrees. FN and elongation factor 2 (EF-2) belong to the group of mixed
hub–bottleneck proteins, as they have both high degrees and large betweenness centrality
values. They showed varied levels according to the statistical analysis, and their topological
parameters in the backbone network are reported in Table 4. Some proteins, showing large
betweenness centrality values but low degrees (<59), were considered pure bottlenecks:
beta-COP, dipeptidyl peptidase 4 (ADABP), cAspAT, Immunoglobulin heavy variable
3–43D, Gal-3, lactotransferrin, PDHE1-B, N-WASP, and WD repeat-containing protein 5
(WDR5). These proteins are indicated with an asterisk in Table 4.
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Table 4. Key nodes of the backbone network that showed varied levels from statistical analysis. Pure
bottleneck proteins are evidenced by an asterisk.

Gene Closeness
Centrality Degree Betweenness

Centrality Protein

COPB2 * 0.36 6 0.002 Beta-COP
DPP4 * 0.37 5 0.0001 ADABP
EEF2 0.52 44 0.022 EF-2
FN1 0.51 37 0.025 FN

GOT1 * 0.32 5 0.0002 cAspAT
IGHV3–43D * 0.31 2 0.0001 Immunoglobulin heavy variable 3–43D

LGALS3 * 0.43 12 0.004 Gal-3
LTF * 0.38 10 0.003 Lactotransferrin

PDHB * 0.41 9 0.0003 PDHE1-B
WASL * 0.41 14 0.003 N-WASP
WDR5 * 0.41 9 0.002 WD repeat-containing protein 5

3.5. Correlation between Proteomic and Clinical Data

The LFQ abundances of the 91 proteins showing variations in relation to the intra-
tumor localization and to the healthy tissue were also analyzed to verify possible corre-
lations with stratification of the patients according to the Dukes classification (A, B, and
C stages), and to the budding index, ranging from 0 to 3. Figure 5 shows the r values of
the significant positive and negative correlations with the Dukes stage (Figure 5a), and
budding index (Figure 5b). All the results are reported in Supplementary Table S2 with the
p-values and r coefficients.
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In the superficial region of the tumor, significant positive correlations with the wors-
ening of the Dukes stage, from A to C, were observed for alpha-adducin, sorbin-SH3
domain-containing protein 2 (also known as Arg-binding protein 2, ArgBP2), collagen
alpha-2(IV) chain, extracellular superoxide dismutase (EC-SOD) and FN, while negative
correlations were found for N-WASP and synaptogyrin-2. In the deep region of the tu-
mor, 14-3-3 protein theta and Galphai2 correlated positively with the advancement of the
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Dukes stage, while beta ig-h3, nuclear autoantigenic sperm protein (NASP), and V-set-
immunoglobulin domain-containing protein 2 (VSIG2) exhibited negative correlation.

Significant correlations were also found with the budding index. Synaptogyrin-2 and
Gal-3 abundances decreased in superficial tumor regions as the budding index increased.
In the deep tumor region, a similar correlation was observed for PLD3, alphaB-crystallin,
CCN family member 2 or connective tissue growth factor (CTGF), and CD2-associated
protein, while OGDH-E1 showed an opposite trend.

4. Discussion

Proteomic data obtained from colorectal carcinoma samples were analyzed using
a machine-learning approach for the evaluation of different aspects: (i) significant quan-
titative variations in the proteins among the compared groups to evidence less- or more-
abundant proteins in different regions of the tumor, superficial and deep, and with respect
to the distant healthy colon tissue from the same patients; (ii) identification of sensi-
tive and specific proteins capable of classifying S and D tumor regions and H samples;
(iii) significant correlations between protein abundances and diagnostic clinical parameters,
such as the Dukes stage and budding index; (iv) identification of biological processes
associated with the proteins that differentiate and categorize tumor and healthy samples;
(v) identification of key proteins acting as central nodes in PPI networks associated with the
tumor. It is worth noting that CRC budding growth and the budding index are associated
with EMT. Indeed, EMT is evidenced by alterations in the tissue architecture at the deep
invasive tumor margins, referred as “budding margins”, which are infiltrative margins
with solid cell nests formed by one to five cancer cells that acquire motility and infiltrate
the peritumor connective tissue [13].

Our study found a panel of proteins that, based on these considerations, appeared
to have a diagnostic potential and were shown to be of interest for further targeted inves-
tigations devoted to the data validation with an immunological independent approach.
As expected, given the great intra- and extra-tumor heterogeneity already documented
for CRC [2,3], the two parts of the tumor were clearly distinguishable at the proteomic
level from each other and from the non-tumor samples, despite coming from the same
individual. Moreover, several proteins were varied only in one of the two tumor regions,
and, in several cases, proteins were never detected in either the superficial or deep tumor
region. The divergence in the protein profiles between the superficial and deep tumor
regions, suggested by MW and KW comparison tests, was confirmed by the RF classifi-
cation analysis. Consequently, the same biological process was down- or up-regulated
in the two different regions of the tumor. This suggested that the two parts of the tumor
employ different metabolic, signaling, and regulatory strategies and adapt differently to
the environment in which CRC cells differentiate and proliferate. The superficial region
of the CRC is the original area from which the tumor grows inwards and expands into
healthy tissue, it is the area in contact with the intestinal lumen and the gut microbiota.
The deep region is the part of the tumor that infiltrates and invades the healthy tissue
layers of the intestinal wall, where the budding of cancerous cells develops and from which
the metastases mature and detach. CRC cells, to ensure their survival, must be capable
of controlling the TME, modifying the ECM, initiating EMT, altering the metabolism of
neighboring cells and differentiating them, as well as transforming the locally recruited
immune cells. All processes were individuated in association with CRC by this proteomic
study. It should be emphasized that this study highlighted quantitative and qualitative
variations in protein profiles among the three types of compared tissues, variations that
may be associated with differential gene expression or protein clearance rather than the
regulation of protein activity.
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4.1. Quantitative Differences in Protein Profiles in Tumor and Healthy Tissues and the Implication
of Biological Processes/Pathways

Ninety-one proteins with significantly different abundances among tumor and healthy
samples were identified. The predominant changes concerned 60% of varied proteins,
which were less abundant in either superficial or deep tumor tissue, or in both regions com-
pared with non-tumor control samples. Only about 31% of the varied proteins were found
to be more abundant in the tumor tissue. The quantitative protein changes determined
in tumor and healthy tissues reflect the biological processes and pathways in which these
proteins are involved. It was evident that many of the identified proteins are implicated in
various type of tumors, where their roles and activity regulation may change depending
on the specific microenvironment of the tumor. In addition, several processes appeared
to be affected by different regulatory proteins showing opposite variation trends in the
two analyzed areas of the tumor, suggesting very complex networks of possible protein
interactions distinctly utilized by the two types of CRC cells. Finally, the results of the
topological analysis emphasized the findings obtained from the statistical comparison and
RF-classification, confirming the biological significance of some proteins in the context of
CRC. The analysis of PPI networks identified a complex backbone network consisting of
196 nodes, in which some proteins, showing significant variations by statistical comparison,
were central nodes, such as FN and EF-2. These proteins have constrained evolution and
crucial roles for cell life, mediating numerous interaction paths and protein connections’
flow. These properties are crucial in the context of CRC; for instance, FN can bind signaling
receptors in the ECM, and it can stimulate CRC cell proliferation and differentiation by
participating in several PPI networks [56]. The data found on FN and EF-2 suggested that
their down- or up-regulation can affect the different biological pathways that flow through
FN and EF-2, and this may be of interest for studying the multifaceted carcinogenesis and
progression of CRC. Among the pure bottleneck proteins, beta-COP, cAspAT, Gal-3, lacto-
transferrin, PDHE1-B, N-WASP, and WDR5 resulted in significantly varied tumor samples
based on statistical comparisons. Beta-COP was also found as a classifying component
by RF analysis. These proteins, based on topological analysis, can interact with other key
nodes of the PPI network and connect co-expressed proteins. Moreover, as pure bottleneck
proteins, they may be proposed as potential drug targets. In addition, Gal-3, N-WASP, and
FN, were shown to correlate with the main diagnostic outcomes, such as the Dukes stage
and budding index.

4.1.1. Proteins Implicated in Processes Related to Proteoglycans and ECM

The findings concerning this protein cluster were suggestive for a decreased robust-
ness of the ECM in CRC. It is well known that oncogene activation destabilizes cell–cell
adhesions and stimulates the remodeling and stiffening of the ECM to reach a physical
equilibrium with its microenvironment. The disruption of tissue architecture can, in turn,
promote malignant transformation and tumor progression [27]. Indeed, we found a cluster
of proteins typically involved in the organization, disassembly, and remodeling of ECM
that showed significant variations in tumor compared to healthy control samples. Decorin,
lumican, and mimecan/osteoglycin are extracellular proteoglycans that regulate colla-
gen fiber assembly, mechanical properties of the tissue, mechano-signaling, and ECM
robustness. Proteoglycans are considered tumor-suppressor and anti-metastatic agents [86],
as supported by the GO annotations indicating the negative regulation of endothelial
cell migration and angiogenesis. However, their expression is cancer type- and tumor
stage-specific [86]. Our results were in accordance with previous studies: decorin was
found to decrease in the ECM of primary CRC [75], as was osteoglycin, which can in-
hibit the transcription of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial
growth factor (VEGF) in CRC cells [33]. The alteration of ECM organization was also
demonstrated by other proteins found to be less abundant in the tumor samples, namely
basigin, tryptase-1, and HPLPN1. It is interesting to note that hyaluronate and proteogly-
can link proteins HPLPN1 and HPLPN3, also identified in this study, are part of a unique
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“link module superfamily”, together with proteoglycans/hyaluronate receptors, such as
Cluster of Differentiation 44 (CD44) and endothelial growth factor receptor (EGFR), and
other proteins that aggregate with proteoglycans [87]. Notably, CD44 is important for
cell adhesion, colonization, and priming of the metastatic niche in CRC [88], and it was
suggested as a novel prognostic marker and potential therapeutic target for metastatic CRC
patients [89]. The isoform CD44v6 is considered responsible for the formation of metastatic
lesions in the liver and lung. CD44 (UniProt code P16070, Supplementary File S1) did
not show any significant difference among the three compared groups. Basigin, also
known as CD147 and a strong interactor of CD44, is a transmembrane glycoprotein with
pleiotropic functions and a crucial modulating role in the transport of nutrients, migration
of inflammatory leukocytes, and induction of matrix metalloproteinases [90]. The strong
complex basigin–CD44, formed in the cell membrane, is a signaling membrane receptor
(GO:0007166) for various protein partners, including nutrient transporters, EGFR, S100A9,
and GaL-3. It has been demonstrated that the enhanced expression of basigin triggers the
formation of a lipid raft-associated supramolecular complex basigin–CD44–EGFR, which
appears to favor the invasive properties of tumor cells. The basigin–CD44–EGFR complex
can induce the differentiation of metastatic cells through the basigin positive regulation
of matrix metallopeptidase secretion [90]. It was recently found that basigin is highly
expressed in serum exosomes from CRC patients [45]. Conversely to what was expected
from the tumor-promoting action of basigin, we observed a down-regulation/expression
of basigin in the deep region of the tumor, which appeared associated with variations in
interactors different from CD44, such as GaL-3, identified as a less-abundant protein in the
deep area of the tumor.

Tryptase is one of the most powerful angiogenic mediators released by human mast
cells participating in the degradation of ECM components. Different mast cell populations
may regulate the homeostasis of the intestinal barrier and the responsiveness during infec-
tions. Mast cell proteases can either exert pro-tumorigenic or anti-tumorigenic functions,
and thus their contribution to invasion and metastasis [91]. The lowest levels of tryptase-1
in our tumor samples suggested a probable tumor-suppressing effect that has never been
proposed before. It would be interesting to investigate in a future study the distributions
of the mast cell populations in different regions and in the TME in CRC patients, as well
as to evaluate tryptase-1 levels with immune-detection techniques complementary to the
MS approach.

The identified integrin interactors, FN, collagen alpha-2(IV) chain (constituent of
collagen type I), serpin H1, NID-1, and 4-PH alpha-1 protein, were found to be more
abundant in the deep tumor samples. The proteomic study of Torres and coll., investigating
the secretion of cancer-associated fibroblasts (CAFs) isolated from the colon tissue of
a mouse model, demonstrated that CAFs, which intensely proliferate in the tumor stroma,
can release FN, NID-1, collagen alpha2(IV) chain, other ECM components, and ECM-
degrading proteases, to support growth, the invasion of the tumor, angiogenesis, and
pro-fibrotic processes [37]. It is amazing to hypothesize that several of the ECM components
and modulators identified in our samples were originated by CAFs rather than CRC cells.
Moreover, NID-1 is directly involved in the paracrine induction of EMT and cell migration
in CRC [61]. The positive correlation of FN and collagen alpha-2(IV) with the progression of
Dukes stage found in the tumor surface was in accordance with their recognized prognostic
power in CRC [37]. Interestingly, the variation in FN in our samples was the opposite
to that of CD2-associated protein, a scaffold/adaptor component of molecular hubs in
signaling pathways. CD2-associated protein was found to be less abundant in the deep part
of the tumor, consistent with a study demonstrating the increased FN expression in silenced
cells for CD2-associated protein, and the capacity of this protein to regulate migration and
EMT-related pathways in CRC cells [47]. In this context, the finding of CTGF, an integrin
interactor with key roles in ECM dynamics, such as the regulation of fibroblast growth and
cell differentiation, is notable. CTGF was a more-abundant protein in deep tumor tissue
like the other integrin-interactors, and in accordance with a recent study that reveals its
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tumor-promoting action in CRC [57]. CD2-associated protein and CTGF, despite exhibiting
opposite variations in the deep part of the tumor, showed a similar negative correlation
with the budding index, with higher abundances in patients with lower budding.

Another interesting protein in this context was alphaB-crystallin, a molecular chap-
erone promoting cell survival and preventing apoptosis, as indicated by GO annotations.
An in vitro study observed that alphaB-crystallin can promote the invasion and metastasis
of CRC cells through EMT processes, with a molecular mechanism negatively affecting
the expression of the epithelial cell adhesion marker E-caderin and positively affecting
the expression of mesenchymal markers such as vimentin and FN [25]. Despite these
tumor-promoting effects, alphaB-crystallin was a less-abundant protein in the superficial
tumor samples and in the deeper region its abundancy was significantly lower in patients
with higher budding index, consistent with the recent study of Pagano et al. [27]. Although
the enrichment analysis did not include beta ig-h3 among the proteins identifying the ECM
dynamics, it is an ECM constituent that interacts with integrins and inhibits cell adhesion
(Table S1). Beta ig-h3, found with the highest abundance in both regions of the tumor, has
been proposed as a marker of metastatic primary colon carcinomas, and its pro-tumorigenic
activity was found more relevant in the less severe Dukes stages [81], in accordance with
our results highlighting that the beta ig-h3 abundance in the deep tumor was lower in
patients with an advanced Dukes stage.

All these data point out both the significance of the ECM as a structural scaffold in the
tumor stroma of CRC and the ECM participation in the TME affecting CRC cells’ behavior
and metastatic potential. ECM composition has been linked to patient outcome and the
response to surgical and oncological therapy in CRC patients, suggesting that ECM may be
a valuable area for developing novel biomarkers and targeted therapy [75]. The activity of
ECM factors is strictly associated with that of secreted components implicated in the innate
immunity and in inflammatory processes. It has been proposed that the transition from the
chronic intestinal inflammation to CRC involves changes in ECM matrix proteins, such as
FN, matrix regulators like serpin H1, and matrix enzymes and inflammatory factors, such
as S100A8 and S100A9 [92].

4.1.2. Proteins Implicated in Leukocyte Migration and Aggregation

The impairment of processes and pathways concerning the migration and chemotaxis
of myeloid leukocytes was suggested by quantitative variations in CRC tissues of proteins
that are involved in the creation of an immune microenvironment able to suppress the
immune response and to favor the survival of tumor cells. S100A9 and S100A8 are the
principal components of this functional cluster of proteins. Our results highlighted S100A9
and S100A8 as more-abundant proteins in the superficial tumor samples, in accordance
with previous studies [41]. They were both found to be up-regulated in tumor-infiltrated
myeloid cells that in the TME may differentiate into “S100A8/9-expressing myeloid-derived
suppressor cells” or M2 macrophages. S100A9 was indicated as a potential marker of CRC
because myeloid-derived suppressor cells recruited in the TME can secrete high amount
of exosomal S100A9 under hypoxic conditions [93]. S100A8 and S100A9 participate in
the regulation of the TME affecting tumor genesis, progression, and metastasis through
various pathways [93,94]. Moreover, they can suppress T-cell responses to weaken the
tumor-killing effect [93,94]. An abolishment of the immune responses against cancer cells
was also sustained by results on VSIG2, a transmembrane protein that ensures tumor
immune surveillance and was found to be down-regulated in CRC [85]. Accordingly, the
decreased abundance of VSIG2 in the deep part of the tumor significantly correlated with
the worsening of the Dukes stage.
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Based on our results, PBP and MIF, which could affect the immune microenviron-
ment of the tumor in different regions, may be also considered CRC tumor-promoters:
PBP as a growth factor stimulating the chemotaxis and aggregation of neutrophils in
the superficial area; MIF as a pro-inflammatory cytokine in the deep area. Their associa-
tion with CRC was already suggested, as it was shown that a direct interaction between
platelet and colon cancer cells promotes lung metastasis dissemination inducing EMT [41].
Moreover, MIF can modify the TME by promoting angiogenesis, inhibiting apoptosis,
and stimulating fibroblast proliferation [60]. Lactotransferrin is also part of this class of
inflammatory/immune-regulatory proteins. A down-regulation of lactotransferrin was
found in CRC [39], contrary to our results, which suggested its tumor-suppressing action
in CRC cells. Gal-3 is a ubiquitous protein with intra- and extra-cellular localizations, and
it has also been found as a high-level circulating protein in CRC patients [77]. Moreover,
during CRC progression its expression increases and it moves from the nucleus to the
cytoplasm [77]. Gal-3 regulates several transduction pathways and exerts anti-apoptotic
activity and pro- or anti-inflammatory effects depending on the tissue and subcellular
localization, as indicated by GO annotations. The secreted Gal-3 interacts with the ECM
and cell-surface glycans and it oligomerizes forming a lectin scaffold that supports the cell
surface signaling receptors. This activity improves the survival of tumor cells under stress
conditions, induces tumor cell detachment and migration, and modifies the cell compo-
sition of the TME [77]. It could be amazing to hypothesize that the lowest levels of Gal-3
determined in tumor tissues could be connected to its capacity for oligomerization when
secreted in the TME. This hypothesis could explain the negative correlation between the
Gal-3 level and the budding that we observed in the superficial tumor. Similarly to Gal-3,
N-WASP and basigin may affect not only the ECM dynamics but also the inflammatory and
immune conditions of the TME in CRC. In addition, CgA contributed to delineate the clus-
ter of immune-regulatory proteins. Indeed, based on GO annotations, CgA can induce mast
cell migration and degranulation. The usual processing of CgA generates several bioactive
peptides, which regulate a broad spectrum of activities. However, the sequencing of tryptic
peptides showed intact cleavage sites from which bioactive peptides are generated from the
CgA pro-protein. Therefore, in our samples the pro-protein was intact. The lowest levels
of CgA in both tumor regions might suggest a loss of activity and/or a down-expression
of this protein in CRC, in accordance with a previous study [74]. IgGFc-binding protein
and calcium-activated chloride channel regulator 1 (CaCC-1), identified as less-abundant
proteins in both tumor samples, can be included in this cluster of proteins, even if they were
not recognized by the enrichment analysis. The down-expression of IgGFc-binding protein,
a tumor-suppressor capable of reducing cancer progression and metastatic behavior, as well
as that of CaCC-1, has been evidenced in CRC [70,78]. Indeed, both proteins participate
in protective immunity and inflammation. CaCC-1 is able to reduce CRC growth via the
inhibition of Wnt/β-catenin signaling [70].

4.1.3. Proteins Implicated in Metabolic Processes

The majority of the analyzed proteins were involved directly or indirectly in metabolic
processes. This was an expected result, because the metabolic reprogramming was closely
connected to the initiation and progression of CRC. The activation of oncogenic pathways
and the down-regulation of tumor suppressor genes reprogram several processes, such as
glycolysis, glutaminolysis, one-carbon metabolism and lipid metabolism [4,5]. The anoma-
lous metabolic reprogramming guarantees energy, nutrients, and redox conditions required
to support the tumor growth and metastasis. The metabolic reprogramming of CRC cells
is supplemented by dysbiosis of the gut microbiota and by impaired metabolism in TME
cells. It was suggested that the alteration of the metabolite fluxes, signaling pathways, and
regulatory processes may generate metabolic crosstalk among CRC cells, TME cells, and
he intestinal microbiota, which favors CRC invasion and metastasis [4,5]. In this scenario,
the components of the ECM in the tumor stroma can establish crosstalk with secreted
proteins that regulate inflammation and innate immunity, as suggested by the interaction
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among basigin, Gal-3, and S100A9. The immunosuppressive microenvironment generated
by the contribution of S100A9 supports the metabolic reprogramming of tumor cells and
TME cells. Moreover, S100A9 released into the TME by monocytes and myeloid-derived
suppressor cells can affect the carbohydrate and lipid metabolism and induce abnormal
oxidative metabolism by the activation of NADPH oxidase of both tumor cells and their
surrounding cells [93,94]. The production of reactive oxygen species (ROS) activates molec-
ular pathways, promoting tumor development and abolishing the T-cell response to the
tumor growth. Other proteins identified in this study may contribute to these events,
which based on our results are prevalent in the tumor surface. EC-SOD was found to be
a less-abundant protein in superficial tumor samples, in contrast to S100A9, leading to
a lack of defense against ROS in the extracellular environment. Figure 6 represents the
probable metabolic changes occurring on the surface of the tumor (panel a) and in the deep
region (panel b), suggested by our results. It was demonstrated that the loss of extracellular
EC-SOD promotes the TME, favoring cancer progression, while its overexpression inhibits
tumor growth and metastasis [95]. Moreover, EC-SOD induces the vascular normaliza-
tion and specific intra-tumor infiltration of effector T-cells by altering the WNT/β-catenin
pathway in endothelial cells [95]. Even if it was found as a less-abundant protein in the
tumor surface, EC-SOD showed a positive significant correlation with the worsening of
the Dukes stage in this part of the tumor, suggesting that its tumor-suppressing effect
is down-regulated in the low-stage tumor, while CRC cells could exploit EC-SOD for
their ROS homeostasis with the stage progression, whereas in the deep part of the tumor,
a down-regulation of mitochondrial antioxidant activities was revealed and associated
with ETHE1 and glutathione reductase (GRase). They were both found to be less-abundant
proteins in this tumor area (Figure 6, panel b), and they were both involved in glutathione
metabolism. ETHE1 contributes to the containment of oxidative stress in mitochondria
caused by hydrogen sulfide. Contrary to our results, it was shown that CRC cells suppress
the toxic effects of hydrogen sulfide, overexpressing sulfide oxidation pathway enzymes
and likely changing ETHE1’s cellular localization [48].

Our study, therefore, evidenced conditions that favor oxidative stress in CRC cells
at the intracellular and extracellular levels. We could not establish if this event exerted
positive or negative effects on CRC cells; however, we might suppose tumor-promoting
effects from the increased conditions of oxidative stress. Indeed, it was reported that
cancer cells can exploit the tumor-promoting effects of ROS with different mechanisms, and
simultaneously implement repair systems against oxidative damage [96]. The principal
source of altered ROS homeostasis in cells is the mitochondrial electron transport chain. In
cancer cells, oncogenic pathways take over the electron transport chain enhancing its ROS
production by increasing electron flow or by interrupting its organization [96]. This study
showed that proteins implicated in OXOPHOS, as well as in the citric acid cycle, were
overall less abundant in the tumor regions of CRC compared to healthy mucosa. NDUFV1,
subunit 1 of the Complex I core of the electron transport chain, was not detected in any
tumor sample, consistent with a recent study showing the down-regulated expression of
Complex I in CRC [84]. Mutations and deletions in the mitochondrial DNA cause defective
assembly and/or function of the complexes working in the electron transport chain [28].
Defective Complex I and cytochrome c oxidase are associated with CRC, contributing to
ROS production and activating the related downstream signaling pathways [28]. Our inves-
tigation showed that both subunit 2 of cytochrome c oxidase, encoded by the mitochondrial
genome, and subunit 5B, encoded by the nuclear genome, could be defective in CRC in
different areas of the tumor (Figure 6). While defective subunit 2 was already associated
with CRC [28], the result on subunit 5B was novel. In addition, we found ATP synthase
subunit O with the lowest levels in the tumor, as evidenced in another proteomic study [68].
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Other enzymes crucial for the mitochondrial bioenergetics were less abundant in
tumor samples, including OGDH-E1 and DLST, components of the OGDH complex, and
PDHE1-B, a component of the PDH complex. As observed for cytochrome c oxidase, differ-
ent subunits of the OGDH complex showed significant quantitative changes in the different
regions of the tumor: OGDH-E1 was less abundant on the surface and DLST in the deep
tumor regions, both novel outcomes never evidenced before (Figure 6). This suggested
the adoption of different strategies by the two different analyzed tissues of the CRC to
reprogram the metabolite flux of the Krebs cycle. In the context of the mitochondrial redox
homeostasis, the OGDH complex is a critical redox sensor. OGDH complex dysregula-
tion contributes to increased ROS levels and interrupts substrate fluxes, leading to the
production of oncometabolites, such as L-2-hydroxyglutarate, during the process of cancer
pathogenesis and development [5,97] (Figure 6). Moreover, different factors during cancer
growth, such as decreases in glucose-derived citrate, defective OGDH complexes, and isoc-
itrate dehydrogenase, great glutamine demand, and the glutaminolysis process, support
the reductive glutamine metabolism. Indeed, the accumulation of 2-oxoglutarate drives
a reversion of the isocitrate dehydrogenase reaction in reductive carboxylation, which re-
sults in citrate accumulation followed by lipid synthesis [4,5,96] (Figure 6). Hypoxia ampli-
fies these conditions and stabilizes HIF-1α, enhancing the accumulation of oncometabolites
deriving from the Krebs cycle and impairing DNA methylation to remodel intracellular en-
vironments optimal for cancer growth. HIF-1α facilitates ubiquitination and proteolysis of
the E1 subunit of the OGDH complex [5,97], an outcome in accordance with the OGDH-E1
variation determined in this study on the surface of the tumor.

Moreover, the levels of OGDH-E1 in the deep tumor tissue, even if similar to those
in healthy tissue, increased in patients with a higher budding index. Like OGDH-E1,
a defective DLST in the deep part of the tumor probably drives the same reversed Krebs
cycle (Figure 6b). DLST was first associated with CRC in this study.

Furthermore, the defective PDH complex inhibits the mitochondrial pyruvate metabolism,
and it was consistent with the defective OGDH complex in the superficial tumor regions
(Figure 6). In addition, the failure to detect GPDH-C on the surface of the tumor was
coherent with the down-regulation of PDH complex activity and suggested a re-oxidation
of glycolytic NADH attributed to the lactic fermentation of cytosolic pyruvate (Figure 6)
rather than through the electron transfer chain by the glycerophosphate shuttle. Our results
were in contrast with the study of Krasnov et al., which associated increased levels of GPDH-
C to CRC [30], but were coherent with a decreased mitochondrial carbohydrate metabolism
and increased cytosolic use of glucose. Based on these results, glycolysis and the citric acid
cycle appeared uncoupled in the CRC cells of the tumor surface, supporting the metabolic
flux reprogramming occurring in CRC cells and favored the Warburg effect [5,97]. Despite
this, the present study surprisingly did not highlight significant variations in glycolytic
enzymes. L-lactate dehydrogenase chains A and B were detected in all the samples, as
well as pyruvate kinase M, but it was not possible to distinguish between the M2 or M1
isoforms (Supplementary File S1). The only significant variation regarding the cytosolic
metabolism of glucose was shown by PGM-1, identified as less abundant in the superficial
tumor regions (Figure 6a). In addition, its Lys370-acetylated derivative was identified for
the first time in this study. PGM-1 is essential to address glucose to glycogen synthesis; thus,
a reduction in PGM-1 levels in CRC cells could stimulate cellular proliferation and tumor
growth by enhancing the glycolytic pathway as previously proposed [34]. However, PGM-
1 can play a tumor-promoting or tumor-suppressing role in an environment-dependent
manner [34]. Regarding the lipid metabolism, the results suggested a down-regulation
of some metabolic pathways in the two different regions of the tumor. Considering the
GO annotations, the failure to detect A-FABP in superficial tumor samples indicated
an impairment of the extracellular and/or intracellular utilization of fatty acids released by
lipolysis from lipid droplets (Figure 6a). Consequentially, defective fatty acid trafficking
may increase the accumulation of intracellular lipid droplets useful to support the survival,
invasion, and drug resistance of CRC cells. From this point of view, our results were in
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accordance with the tumor-promoting action of A-FABP leading to EMT [4]. In our CRC
samples, a stimulating effect on lipid droplet storage was also enabled by low levels of CEH
and CE-2 in both the analyzed tumor regions (Figure 6). They are enzymes involved in the
lipid and xenobiotic metabolism, as indicated by their GO annotations. Consistent with our
results, they were found down-regulated in CRC and were indicated as tumor-suppressors
in previous studies [72,73]. It was demonstrated that CEH inhibits CRC progression
and invasion and promotes the apoptosis of CRC cells inducing fatty acid β-oxidation,
the depletion of lipid droplets, and the consequent increased content of toxic ROS. The
deep part of the tumor was also characterized by defective processes involving aldo-keto
reductase 1B1 (Figure 6b), previously indicated as a tumor-promoter in CRC [44]. Aldo-keto
reductase 1B1, involved in prostaglandin synthesis, could have a role in inflammation and
the induction of cell cycle progression in CRC and its expression could change depending
on the stages, types, and invasiveness of the tumor cells [44].

cAspAT was identified as a less-abundant protein in the deep tumor region, and
this result can be rationalized by considering that in CRC cells of the internal tumor
part, the defective transamination of cytosolic aspartate in oxalacetate may favor the use of
aspartate in the synthesis of asparagine, proteins, and nucleotides promoting the cell growth
(Figure 6b). As a consequence, the metabolic axis aspartate–oxalacetate–malate–pyruvate
expected to contain the oxidative stress is disfavored [98], a condition consistent with our
hypothesis that oxidative stress conditions may be implemented under the control of CRC
cells. CRC cells can also utilize this axis to produce lactate [46]. It is remarkable that cAspAT,
also known as AST1, participates in the malate–aspartate shuttle, which transfers electrons
from glycolytic NADH to OHOPHOS. Therefore, we could suppose that defective cAspAT
activity may contribute to the re-oxidation of cytosolic NADH by L-lactate-dehydrogenase
(Figure 6b). Moreover, the results found on putative hydroxypyruvate isomerase (putative
Hyi), which converts β-hydroxypyruvate in 2-hydroxy-3-oxopropanoate and participates
in glyoxalate metabolism (GO annotation) were interesting. β-hydroxypyruvate, obtained
by serine catabolism, can sustain gluconeogenesis, and through an inverse path can be
precursor of the serine utilizing phosphoserine-AST1, an aminotransferase coupled to
cAspAT activity [46]. Putative Hyi, not detected in any superficial tumor samples, was
never associated with CRC before. Three hypotheses arise: (i) an alteration of the glyoxalate
metabolism in CRC cells; (ii) an enhancement of the metabolic flux to serine synthesis
necessary to obtain glycine, glutathione, NADPH, and nucleotides, suggesting probable
tumor-promoting effects as consequences of the putative lost Hyi activity; (iii) a probable
action of putative Hyi as a tumor-suppressor of CRC that is inhibited by cancerous cells
specifically in the superficial region of the tumor (Figure 6a).

Regarding the proteoglycan metabolism, this study found significant decreased levels
of UDP-GlcDH in tumor samples, as well as of lumican, decorin, and mimecan (Figure 6).
With a not-defined mechanism, UDP-GlcDH might participate in CRC carcinogenesis as
part of a functional network with several proteins involved in ECM regulation and with
cancer-related functions, like A-FABP [80]. N-WASP, implicated in actin and cytoskeleton
metabolism (Figure 6a), was found to be a less-abundant protein in the deep part of the
tumor, and its abundance significantly decreased in the superficial tumor samples in relation
to the worsening of the Dukes stage, consistent with a previous investigation [51]. Similarly
to N-WASP, LIM domain-actin-binding protein 1 (also known as epithelial protein lost in
neoplasm, EPLIN) is associated with the regulation of actin dynamics. We identified EPLIN
as a less-abundant protein in both tumor regions, in accordance with previous studies
evidencing that its loss affects CRC cell migration, invasion, and metastatic potential [59]
(Figure 6). Prefoldin subunit 6 was another interesting protein involved in the cytoskeleton
dynamics, especially in the correct folding of newly synthetized cytoskeletal proteins (GO
annotations). It was significantly more abundant in superficial tumor samples (Figure 6b),
a novel insight on the association between prefoldin family and CRC. Basigin was one
of the most interesting proteins identified in this study, able to establish different protein
interactions and to participate into several processes, including the regulation of metabolic
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processes/pathways. Basigin controls glucose and lactate membrane transport due to
the association of the basigin–CD44 complex with GLUT1 and MCT, and it is required
for their cell surface translocation and activity [91]. The low levels of basigin in the deep
part of the tumor may affect the dependent switching of the Warburg effect in CRC cells,
from classical to reverse, which depends on the transmembrane L-lactate distribution
(Figure 6b). In addition, CA-II and PLD3 are proteins influencing metabolism regulation
(Figure 6). In accordance with our results, CA-II was found to be down-regulated in
CRC [71]. Carbonic anhydrase activity is needed by the tumor cells to maintain a neutral
intracellular pH, while the pH of the TME decreases during tumor growth, interrupting
physiological processes of the neighboring normal tissue. PLD3, which is involved in many
signaling pathways (Figure 6b), was indicated as a CRC hallmark for the first time in this
study, and it underlines the negative correlation exhibited by PLD3 with the budding index
in the deep part of the tumor where the protein was shown to be a less-abundant protein.

Galphai2 belonging to the Galpha inhibitory subfamily of G proteins may evoke signal-
ing through a broad range of effectors and regulate metabolic pathways (Figure 6). A recent
study evidenced tumor-suppressing GNAI2 mutations leading to β-catenin degradation
and consequent decreased cell proliferation in CRC [82]. Probably, Galphai2 may show
tumor-suppressing or promoting effects in a context-dependent manner. Our study did
not identify Galphai2 variants, and the highest abundance demonstrated in both the two
regions of the tumor suggested its tumor-promoting actions. Moreover, it is significant
that this protein showed a positive correlation with the Dukes stage in the deep part of the
tumor, suggesting that Galphai2 has prognostic potential.

4.1.4. Other Interesting Proteins Potentially Hallmarks of CRC
Hallmarks Implicated in Nucleic Acid Processing

Several proteins identified in this study are involved in the homeostasis and metabolism
of nucleic acids, DNA repair, posttranscriptional regulation of gene expression, mRNA
processing, splicing and transport, and chromatin assembly, as indicated by their GO
annotations for function and processes. They could be proposed as tumor-promoters
since they were found to be more-abundant proteins either in the superficial region, such
as WDR5, or in the deep area of the tumor, such as X-ray repair cross complementary
1 (XRCC1), NASP, heterogeneous nuclear ribonucleoprotein D-like (hnRNP D-like), histone
H3.3, EF-2, and RNA-binding protein 34. XRCC1 and WDR5 were not present in healthy
control tissues, suggesting their specific tumor-associated roles. XRCC1 mutations occur
in the precancerous stage of CRC and favor the progression from adenoma to carcinoma.
It was suggested that this phenomenon is associated with the up-regulation of immune
checkpoint expression that leads to T-cell dysfunction or exhaustion in the TME [65],
so our finding on XRCC1 was consistent with the results obtained on S100A9 and EC-
SOD. EF-2 is a crucial factor for the protein synthesis, which is typically dysregulated
in CRC carcinogenesis. The EF-2 up-regulation in CRC and its importance for cancer
progression and migration especially in stress conditions have been demonstrated [58].
NASP is a component of the multichaperone nucleosome-remodeling complex important
for the assembly of chromatin after DNA replication. Due to the decreasing abundance
in the deep tumor area in relation to the worsening of the Dukes stage, NASP could be
proposed as novel CRC hallmark with tumor-promoting effects and useful for monitoring
tumor extension.

Hallmarks Implicated in Protein Trafficking

Similarly to basigin, several proteins showing significant variations in the tumor
samples regulate extra- and/or intracellular protein trafficking. Among them, sorting
nexin-18 and GRASP-1 were the only proteins with significantly different levels between
the surface and the deep part of the tumor. These results suggested a tumor-promoting
action for GRASP-1 and tumor-suppressing action for sorting nexin-18 in the deep tumor
region, where sorting nexin-18 showed the lowest abundance and GRASP-1 the highest.
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Consequently, in the same CRC cells the processes involving sorting nexin-18 and GRASP-1
could be down-regulated and up-regulated, respectively. Among those here identified,
sorting nexin-18 was the only isoform showing significant variations in the tumor samples.
It regulates membrane/intracellular protein trafficking and protein sorting in the endoso-
mal system (GO annotations). Sorting nexin-18 was indicated as a marker discriminating
primary CRC from the corresponding liver metastasis [24]. GRASP-1 is a guanine nu-
cleotide exchange factor for the Ras family of small G proteins, and it forms a complex with
glutamate receptor interacting protein 1 that modulates the glutamate receptor function.
In addition, GRASP-1 could modulate the delivery and organization of transmembrane
proteins at the membrane surfaces (GO annotations). A down-regulation of membrane
trafficking and exocytosis was also evidenced by the results obtained on synaptogyrin-2,
which was less abundant in the deep area of the tumor, contrary to a previous study report-
ing an up-regulation of this protein in CRC and evidencing its contribution to the immune
infiltration in the TME [53]. Moreover, the synaptogyrin-2 abundance in the tumor surface
showed a decreasing trend significantly correlated with the worsening of the Dukes stage
and budding index. The results on these three proteins were novel in the CRC research
field; they have not been associated so strongly and specifically to CRC before, and they
inspire future targeted investigations.

Coatomer subunit beta (beta-COP) can mediate forward and reverse trafficking of
proteins between the endoplasmic reticulum and the trans Golgi network. Beta-COP
was found to be abundant in extracellular vesicles released by CRC cells cultured under
hypoxia [55], and it has been identified as a hallmark capable of distinguishing two different
populations of exosomes released from CRC cell-derived organoids [99]. From this perspec-
tive, the identification of beta-COP as a more-abundant protein in the deep part of the tumor
could be associated with the ability of this CRC region to release exosomes/extracellular
vesicles. These vesicles, transporting their protein/metabolite/lipid/mRNA content, might
improve the TME ability to guarantee cancer survival, progression, and direct communi-
cations among the TME cells by connecting the cytoplasm of neighboring cells through
membranous bridges [99].

Hallmarks Implicated in Regulation of Intra-/Extracellular Signaling Paths

Dual specificity protein phosphatase 3, also known as Vaccinia H1-related phosphatase
(VHR), TAB182, four and a half LIM domains protein 1 (FHL-1), leucyl-cystinyl aminopep-
tidase, also known as oxytocinase (OTase), and mapK-regulated corepressor-interacting
protein 1 (MCRIP1) were found as less-abundant proteins on the surface of the tumor.
MCRIP1 was never detected in the S samples. Moreover, except for FHL-1, they were novel
hallmarks potentially interesting in CRC. Epithelial-cell adhesion molecule (Ep-CAM) and
14-3-3 protein theta showed the lowest levels in both the tumor regions here analyzed. Most
of these proteins often affect the growth and progression of tumors in a context-dependent
manner, due to their capacity to participate in the regulation of several processes. Our
results on Ep-CAM confirmed those of a previous study [76]. This protein, also known
as CD326, gathers great interest in the recent CRC research as a potential biomarker for
tumor-initiating cells and for identifying cancer stem cells within a tumor population,
which is significant in CRC early diagnosis [100]. Ep-CAM is a membrane glycoprotein
that can be cleaved, generating three proteoforms with different roles and localizations,
namely cell membrane-sited, extra- and intracellular. The extracellular proteoform is im-
plicated in cell–cell adhesion, while the intracellular form translocates into the nucleus
where it interacts with several signaling proteins, including β-catenin. The detection of the
Ep-CAM intracellular form in the nucleus correlates with increased tumor cell dissociation,
EMT activation, and the potential for invasive CRC phenotypes [100]. The detection of
both truncated forms of Ep-CAM correlates with advanced stages of CRC and vascular
invasion. Finally, a complete loss of Ep-CAM in the membrane distinctly marks Lynch
syndrome-associated CRC [100]. The present study identified the extracellular domain
(high-MS/MS data deposited on ProteomeXchange repository). The role of Ep-CAM in
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tumor progression is still questionable, and the function of this marker could change in
an environment-dependent manner. It would be interesting in a future study to investigate
with targeted approaches based on HR-MS and immunochemical analyses the cellular
localization and the ratio of the three possible proteoforms of Ep-CAM.

14-3-3 protein theta is a scaffold protein supporting the formation of multi-protein
complexes and interactions with numerous phosphoproteins. Through this activity it can
participate in the regulation of several cellular processes and signaling pathways (GO
annotations). Our data showed for the first time that the isoform theta may be considered
as a hallmark of CRC, due to the positive correlation found in the deep part of the tumor
with the worsening of the Dukes stage.

ArgBP2 is an adapter protein for the assembling of signaling complexes in the cy-
toskeleton. ArgBP2 was associated with CRC for the first time in this study, where it was
found to be more abundant in deep tumor samples. ArgBP2 may be an interesting protein
marker to be investigated for its potentially tumor-promoting role and considering its
significant positive correlation with the worsening of the Dukes stage on the surface of
the tumor.

4.2. Identification of Highly Sensitive and Specific Classifying Proteins

RF classification analysis allowed us to build a machine-learning approach able to effec-
tively discriminate the three types of tissues, superficial and deep tumor tissues and healthy
mucosa, based on 21 selected proteins with the highest classification power. Indeed, RF
classification analysis not only accurately classified samples into the three different groups
but also identified which proteins, and to what degree, most effectively discriminated them.
Unlike comparisons that use statistical tests, RF does not consider differences between
means or distributions, but differences that discriminate individual samples [16,17]. The
separation of the three groups was remarkably evident not only between the tumor regions
and the healthy mucosa, but also between the deep and peripheral regions of the tumor
from the same patient, despite the few differences found. The heatmap of the quantitative
MS data evidenced differential patterns among the 91 proteins exhibiting significant varia-
tions in the comparative statistical test. Notably, the 21 proteins used for RF classification
were distributed across all major clusters formed by the 91 proteins, suggesting that these
21 classification components covered the full range of relationships among the proteins
varying among the three groups. The protein profiles of the non-tumor samples used as
internal healthy controls showed greater homogeneity than the superficial and deep tumor
regions, which were more varied among the individuals. This outcome is likely connected
to the intrinsic heterogeneity of CRC cells, as well as differences in growth, aggressiveness,
invasiveness, and staging, as demonstrated by the correlation analysis of proteomic data
with some clinical characteristics of the patients. All these proteins exhibited significant
variations by quantitative differential analysis, which provided suggestions for protein
expression, regulation, or clearance. Furthermore, these proteins proved to be accurate,
sensitive, and specific classifying factors for the different types of tissues analyzed, thus
accurately distinguishing the superficial layer from the internal deep part of the tumor at
the proteomic level. From this perspective, our approach provided novel insights and was
shown to be effective in highlighting the intratumor heterogeneity typical of CRC [2,3].
Galphai2, CA-II, GRASP-1, sorting nexin-18, CEH, ADH1C, beta-COP, and IgGFc-binding
protein were the most important proteins for classifying the three types of tissues analyzed.

The non-tumor tissue was well classified by Galphai2, CA-II, ADH1C, CEH, and
IgGFc-binding protein, while ADH1B contributed with a lower MDA score. They are all
involved in metabolic processes and regulation, except for IgGFc-binding protein. These
proteins could be considered potential diagnostic markers useful during the diagnostic iter
of CRC, as they can accurately classify healthy tissue even if taken from the same patient at
a site distant from the tumor. Future studies should confirm these results by investigating
the intestinal tissue from healthy individuals. Galphai2 was one of the most promising
novel biomarkers of CRC; its highest concentration in cancer cells affects several biological
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processes downstream of the signaling pathways where it participates, and defective
Galphai2 can provoke a dysregulation of metabolism in CRC cells. CA-II, ADH1C, CEH,
IgGFc-binding protein, and ADH1B were all found to be less-abundant proteins in both
regions of the tumor analyzed, suggesting their possible down-expression in CRC cells.
Among them, IgGFc-binding protein was also a novel hallmark of suppression of the
intestinal inflammatory/immune response that can be pursued in future studies.

GRASP-1 and MCRIP1 could be proposed as novel candidates in CRC biomarker dis-
covery. They were able to classify tumor tissue with respect the non-tumor tissue, especially
GRASP-1. The deep region of the tumor was accurately classified by sorting nexin-18 and
beta-COP, while peptide YY (PYY), NID-1, and XRCC1 contributed weakly. Like sorting
nexin-18, PYY was never detected in the deep region of the tumor and was identified as
a less-abundant protein in superficial tumor tissue. PYY could not be associated with any
cluster of proteins identifying biological processes/pathways; indeed, it is a gastrointestinal
peptide inhibiting exocrine pancreatic secretion and intestinal mobility. From this study,
PYY may potentially be considered a tumor-suppressor for CRC, as was suggested by
a recent proteomic study demonstrating its low expression in CRC tissues and proposing
it as a potential therapeutic target due to its ability to promote apoptosis and inhibit the
proliferation, migration, and invasion of CRC-cell lines [79]. Beta-COP, NID-1, and XRCC1
could be considered tumor-promoters playing a role mainly in the part of the tumor that
invades and progresses into the internal tissues of the colon, and from which CRC cells
migrate, mature and metastasize. Since they are involved in biological processes regulating
ECM organization, protein trafficking by extracellular vesicles, DNA repair, and events
that inhibit apoptosis, modulate the TME, and support EMT and CRC cell detachment and
migration, it was significant that these proteins classified the deep tumor tissue.

Superficial tumor regions were mainly categorized by OGDH-E1, proposed as a strong
hallmark of the Krebs cycle diversion towards reductive glutamine metabolism and li-
pogenesis. We found two proteins, CaCC-1 and CgA, as discriminating factors of both
healthy non-tumor and deep tumor tissues with respect to the tumor surface. Both proteins,
showing the highest abundance in the healthy control samples, were good hallmarks of
alteration in CRC cells’ regulatory processes implicated in inflammation and innate immu-
nity. On the other hand, Ep-CAM, 14-3-3 protein theta, S100A9, and OTase categorized
both healthy non-tumor and superficial tumor tissues.

5. Conclusions

The study, based on a high-throughput proteomic strategy and highly accurate statisti-
cal and enrichment analysis, not only confirmed potential biomarkers already proposed
in other studies, but also revealed novel biomarkers able to distinguish the deep tumor
region from the superficial one and from the healthy colon mucosa with high sensitiv-
ity and specificity. This study had some limitations, such as a small number of patients,
the lack of technical verification of proteomic data (e.g., by Western blot for the most
interesting proteins), and the absence of technical replication of the proteomic analysis.
Despite these limitations, the results obtained appeared robust and reliable. Indeed, the
application of rigorous analysis parameters, the high homogeneity of the protein profiles of
the healthy control samples, the high accuracy of RF classification analysis in classifying
each sample, the highly significant p-values obtained from statistical comparison (all < 0.01,
mainly < 0.001), and the fold changes, confirmed that the experimental plan and the data
analysis were conducted accurately and that the described data had scientific significance.
The classifying proteins identified in this study can rightly be proposed as hallmarks of
CRC cell heterogeneity. This finding is strengthened by the fact that the MW and KW tests
confirmed the RF data, and, moreover, the data were obtained from the same subjects,
increasing the reliability of the tests used. Our investigation revealed a huge and complex
panel of protein hallmarks of CRC, most of which are implicated in catalytic and regulatory
activities of metabolic pathways and processes that can be impaired as a consequence of
the significant variations in specific key proteins. This outcome was especially evident
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regarding the mitochondrial dynamics and the redox homeostasis in the mitochondrial,
cytosolic, and extracellular environment. Several of the protein hallmarks here identified
might contribute to generate and modulate a metabolic and immune-suppressive TME that
favors the cancer cell survival, progression, EMT, and metastatic potential of the tumor.
In this context, the protein hallmarks implicated in the ECM assembly and modulation
were revealed to be crucial, as well as those involved in cellular communication, protein
trafficking, signaling pathways, and nucleic acid homeostasis. Moreover, the investigation
highlighted different strategies adopted by cancer cells on the surface and in the deep zones,
adapting metabolic, ECM, and immune checkpoints. This characteristic could be essential
in developing effective therapeutics plans, and it suggests not only possible therapeutic
targets but also the diagnostic potential of several proteins, especially those significantly
correlated with classical clinic outcomes.
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Abbreviations

4-PH alpha-1 = prolyl 4-hydroxylase subunit alpha-1; ACTB = actin; ADH1B = alcohol dehydro-
genase 1B; ADH1C = alcohol dehydrogenase 1C; ArgBP2 = Arg-binding protein 2, also known as
sorbin-SH3 domain-containing protein; beta ig-h3 = transforming growth factor-beta-induced protein
ig-h3; Beta-COP = coatomer subunit beta; CA-II = carbonic anhydrase 2; CaCC-1 = Calcium-activated
chloride channel regulator 1; CAFs = cancer-associated fibroblasts; cAspAT = Cytoplasmic aspartate
aminotransferase; CD44 = Cluster of Differentiation 44; CEH = bifunctional/cytosolic epoxide hydro-
lase 2; CgA = chromogranin-A; CRC = colorectal cancer; CTGF = connective tissue growth factor;
DI = ∆3,5-∆2,4-dienoyl-CoA isomerase; DLST = Dihydrolipoyllysine-residue succinyltransferase;
ECM = extracellular matrix; EC-SOD = extracellular superoxide dismutase; EGFR = endothelial
growth factor receptor; EF-2 = elongation factor 2; EMT = epithelial–mesenchymal transition;
Ep-CAM = epithelial cell adhesion molecule; EPLIN = epithelial protein lost in neoplasm, also
known as LIM domain-actin-binding protein 1; FHL-1 = four and a half LIM domains protein 1;
FN = fibronectin; Gal-3 = Galectin-3; Galphai2 = guanine nucleotide binding protein G(i) sub-
unit alpha 2; GAPDH = Glyceraldehyde-3-phosphate dehydrogenase; GDA = Gene–Disease
Association; GO = gene ontology; GPDH-C = cytoplasmic glycerol-3-phosphate dehydrogenase;
GRase = glutathione reductase; GRASP-1 = glutamate receptor interacting protein 1-associated
protein 1; HIF-1α = hypoxia inducible factor-1α; hnRNP D-like = heterogeneous nuclear ribonu-
cleoprotein D-like; HPLPN1 = hyaluronan proteoglycan link protein 1; HR = high-resolution;
HSP90AA1 = Heat shock protein 90-alpha; IgGFc-binding protein = protein binding the Fc por-
tion of IgG; KW = Kruskal–Wallis test; LFQ = label-free quantification; MCRIP1 = mapk-regulated
corepressor-interacting protein 1; MDA = mean decrease accuracy; MIF = migration inhibitory factor;
MW = Mann–Whitney test; NASP = nuclear autoantigenic sperm protein; NDUFV1 = NADH dehy-
drogenase ubiquinone flavoprotein subunit 1; NID-1 = nidogen-1; N-WASP = neural Wiskott–Aldrich
syndrome protein; OGDH-E1 = 2-oxoglutarate dehydrogenase subunit E1; OTase = oxytocinase, also
known as leucyl-cystinyl aminopeptidase; OXOPHOS = oxidative phosphorylation; PBP = platelet ba-
sic protein PBP; PDHE1-B = Pyruvate dehydrogenase E1 sub. beta; PGM-1 = Phosphoglucomutase-1;
PLD3 = 5′–3′ exonuclease phospholipase D3; PPI = protein–protein interactions; PTMs = post-
translational modifications; Putative Hyi = putative hydroxypyruvate isomerase; PYY = peptide
YY; RF = Random Forest; ROS = reactive oxygen species; SR-alpha = signal recognition particle
receptor subunit alpha; TAB182 = 182 kDa tankyrase-1-binding protein; TME = tumor microenviron-
ment; UDP-GlcDH = UDP-glucose 6-dehydrogenase; VEGF = vascular endothelial growth factor;
VHR = Vaccinia H1-related phosphatase, also known as dual specificity protein phosphatase 3;
VSIG2 = V-set-immunoglobulin domain-containing protein 2; WDR5 = WD repeat-containing protein
5; XRCC1 = X-ray repair cross complementary 1.
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