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Abstract. Seriation is a problem consisting of seeking the best enumeration order of a set of
units whose interrelationship is described by a bipartite graph. An algorithm for spectral seriation
based on the use of the Fiedler vector of the Laplacian matrix associated to the problem was developed
by Atkins et al., under the assumption that the Fiedler value is simple. In this paper, we analyze
the case in which the Fiedler value of the Laplacian is not simple, discuss its effect on the set of the
admissible solutions, and study possible approaches to actually perform the computation. Examples
and numerical experiments illustrate the effectiveness of the proposed methods.

1. Introduction. The seriation problem consists of finding the best enumera-
tion order of a set of units according to a particular similarity rule. Such order can
be chronological, or any sequential structure which characterizes the data. When the
ordering is chronological, seriation is employed when absolute dating methods cannot
be used. Indeed, it concerns relative dating of objects or events. This means that
it determines a sequence for the units which can be read in both directions. The
problem here considered is also denoted by linear seriation, in contrast to circular
seriation [23, 1, 38, 9, 16, 7], which aims at finding a circular order for a set of units,
reflecting their dissimilarity.

Seriation arose for the first time in the context of archaeological studies, where
it is typically formulated as the problem of dating excavation sites on the basis of
the findings discovered inside them, and of determining their relative chronology, i.e.,
a dating which indicates if a given site is chronologically preceding or subsequent to
another. The first systematic formalization of the seriation problem was made by the
English Egyptologist Petrie in 1899 [35].

The idea of seriation successively appeared in various other applicative con-
texts [6, 14, 22, 32]; see Concas et al. [10] for an overview. In genomics, seriation
finds application in the de novo genome sequencing. In this case, from a randomly
oversampled DNA strand (the so-called reads) the whole sequence is reconstructed.
Oversampling is necessary to increase the probability of all parts being covered. The
reads which overlap are then considered as similar and their ordering is obtained by
placing similar reads close to each other. In mathematics, the seriation problem is
strictly connected to the reordering of sparse matrices in order to reduce their so-called
envelope size [3], and to the combinatorial 2-SUM problem, a quadratic minimization
problem over permutations [20]. The interested reader can refer to [39, 15, 31, 21] for
a recent discussion.

Seriation data are usually given in terms of a matrix of size n×m, called the data
matrix, whose row and/or column indices represent the elements to be ordered. In
archaeology, the rows of the data matrix correspond to the units (e.g., the sites) and
the columns represent the types of the archaeological findings detected in the units.
The seriation data matrix has been referred in [36] either as incidence or abundance
matrix. Incidence matrices are associated to binary data, i.e., the (i, j) entry of the
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matrix is 1 if the type j is associated in the unit i, and 0 otherwise. In abundance
matrices, each element represents the number of objects corresponding to a certain
type, or its percentage. Following the usual terminology of complex networks theory,
we will use the term adjacency matrix to denote the binary representation of the
seriation data. More details can be found in [10]. We mention the fact that in the
quadratic assignment problem literature (see, e.g., [34]) the adjacency matrix is often
associated to a weighted graph. In the following, we will use the term mainly for
unweighted graphs.

Solving the seriation problem amounts to ordering the rows and columns of the
data matrix so that the largest nonzero entries are close to the diagonal. Various
algorithms for handling seriation data and solving the problem have been implemented
in software libraries; see [10] for an overview. A spectral algorithm for the solution of
the seriation problem was considered by Atkins et al. [2], and an optimized Matlab
implementation has recently been proposed by Concas et al. [10]. Each solution is
obtained by solving a particular optimization problem. The spectral algorithm is
based on the use of the Fiedler vector of the Laplacian matrix associated with the
problem, and describes the set of solutions in terms of a data structure known as a
PQ-tree.

In this paper, we discuss the implications of the presence of a multiple Fiedler
value on the number of admissible permutations, which have been disregarded up to
now. This issue occurs, for example, in the case of circular seriation [23, 1, 38]. Our
interest is mainly for the case of multiplicity two, for which we illustrate the effects
on the set of solutions. When there is no uniqueness in the choice of the Fiedler
vector, sorting the entries of all the admissible vectors does not necessarily lead to all
possible index permutations, which equals the factorial of the number of units. We
experimentally observed that, in these “noisy” situations, there are constraints in the
solution space that limit the number of permutations produced from sorting a Fiedler
vector. This number appears to be related to the structure of the eigenspace, not
simply to the multiplicity of the Fiedler value.

The impact of a Fiedler value having multiplicity larger than one on applications
is that the spectral method from [2], probably one of the best available algorithms for
seriation, is not able to produce the whole set of solutions. In the software described
in [10] this situation is recognized, to warn the user that the computed solution will
not be exhaustive. Here, after recalling some basic mathematical notions, we study
three particular test networks that exhibit a double Fiedler value, and propose two
algorithms to determine the full set of permutations that solve the problem. Numerical
experiments will show that only one of the algorithms is trustable. The handling of a
Fiedler value with a multiplicity larger than two is still an open problem and will be
the object of future research.

The plan of the paper is the following. Section 2 reviews the necessary mathe-
matical background and sets up the terminology to be used in the rest of the paper.
The special case of a multiple Fiedler value is discussed in Section 3. In Section 4, we
extensively analyze three example networks whose Laplacian admits a double Fiedler
value, showing the consequences on the set of solutions of the seriation problem.
Section 5 describes two practical algorithms for computing the admissible solutions,
and Section 6 reports some numerical results. Finally, Section 7 contains concluding
remarks.

2. Mathematical preliminaries. We recall some basic results from graph the-
ory and seriation. In the following, we will denote vectors by lower case bold letters
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and matrices by upper case roman letters; their elements will be represented by lower
case letters with one or two indices, respectively.

Let G be a simple graph with n nodes and let G ∈ Rn×n denote its adjacency
matrix. If G is weighted, the entry gi,j of G contains the weight of the edge connecting
node i to node j; when two nodes are not connected gi,j = 0. A graph is said to be
unweighted if the weight is either 0 or 1. The adjacency matrix is irreducible if the
graph is connected, it is symmetric if the graph is undirected.

Let G be the adjacency matrix of an undirected connected graph G. The degree
matrix is the diagonal matrix D = diag(d1, . . . , dn), such that di =

∑n
j=1 gi,j , that is,

the ith diagonal element is the sum of the weights of all the edges starting from node
i. In the case of an unweighted graph, di is simply the number of nodes connected
to node i. The (unnormalized) graph Laplacian associated to G is the symmetric
positive semidefinite matrix LG = D − G. A well-known property of the graph
Laplacian is that it always admits λ1 = 0 as an eigenvalue, with associated eigenvector
1 = (1, . . . , 1)T ∈ Rn, and all the remaining eigenvalues are non-negative, that is,

λ1 = 0 ≤ λ2 ≤ · · · ≤ λn.

The Fiedler value, or the algebraic connectivity, of the graph G is the second
smallest eigenvalue of LG; its eigenvector, which is orthogonal to 1, is called the
Fiedler vector [17, 18, 19]. The use of the Fiedler vector is a well-known method
for partitioning a graph. The interested reader can refer to the review [13] and
references therein. The Fiedler vector is also used in the computation of the graph
robustness [24, 25].

By the Courant-Fisher Theorem, the Fiedler vector may also be defined as

min
xT 1=0, xTx=1

xTLGx. (2.1)

The seriation problem is generally formulated in terms of a bipartite graph B,
whose vertices can be divided into two disjoint sets U and V , containing n and m
nodes, such that every edge connects a node in U to one in V . In the archaeological
setting, U and V represent the excavations sites (units) and the findings (types),
respectively. The adjacency matrix B ∈ Rn×m associated to the seriation problem
describes the connections in the bipartite graph B: bi,j = 1 if unit i contains type j,
and bi,j = 0 otherwise. A matrix whose entries are either 0 or 1, such that the 1’s
in each column occur consecutively is often called a Petrie matrix in the literature;
see [27, 28].

The approach described in [5, 40] for solving the seriation problem is based on
the construction of a symmetric similarity matrix S, whose element si,j expresses the
resemblance of the units i, j ∈ U in terms of the types they contain. The similarity
matrix is often defined as S = BBT , where B is the adjacency matrix of the bipartite
graph introduced above, so that si,j denotes the number of types shared between
units i and j. A slightly different definition of the similarity matrix was given by
Robinson in [40]. A permutation for the rows and columns of S that clusters the
largest entries close to the main diagonal, when applied to the elements of U , brings
the units which are similar according to the chosen rule in close positions. Such
permutation constitutes a solution of the seriation problem and it is not uniquely
determined. The solution is generally identified with a permutation matrix P .

When the similarity matrix is correctly permuted, so that larger entries are close
to the main diagonal and off-diagonal entries are nonincreasingly ordered moving away
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from the diagonal, it is said to be in Robinson’s form or in R-form; it is also called
an R-matrix. A similarity matrix is pre-R if and only if there exists a simultaneous
permutation of its rows and columns which takes it to Robinson’s form [8, 29, 30, 37,
41]. This case corresponds to a well-posed seriation problem, but for some non-perfect
data sets such permutation does not exist. When this happens, one may be interested
in obtaining an approximate solution even for a non pre-R matrix.

We now briefly review the spectral algorithm for the seriation problem introduced
in [2]. Starting from a pre-R matrix, it constructs a PQ-tree [4] describing the set of
all the row and column permutations that lead to an R-matrix. The algorithm is also
able to produce an approximate solution when a non pre-R matrix is given as input.

Let a similarity matrix S for a graph G be given. Its entries si,j express the desire
that the units i and j are close to each other in the sought sequence. Introducing
the notation i 4 j to indicate that unit i precedes j in an ordering, the aim of the
algorithm is to find all index permutations such that

i 4 j 4 k ⇐⇒ si,j ≥ si,k and sj,k ≥ si,k. (2.2)

We set S = BBT , where B is the adjacency matrix of the bipartite graph associated
to the seriation problem.

The algorithm proposed in [2] solves the constrained optimization problem

minimize h(x) =
1

2

n∑
i,j=1

si,j(xi − xj)2,

subject to
∑
i

xi = 0 and
∑
i

x2i = 1,

(2.3)

instead of (2.1). The computed minimizing vector xmin is then sorted, either nonin-
creasingly or nondecreasingly, and the corresponding sorting permutation is applied
to the units in U . Such permutation realizes (2.2) and solves the problem. It may
be non unique in the presence of repeated entries in the vector xmin. An optimized
version of the algorithm is available in [10].

In [2], the authors prove that when S is pre-R the algorithm produces all the
index permutations that solve the seriation problem. If a real data set is inconsistent,
i.e., it does not produce a pre-R similarity matrix, sorting the entries of the Fiedler
vector generates orderings that try to bring highly correlated elements close to each
other. Thus, the algorithm furnishes approximate solutions to the seriation problem.
We refer to such orderings as admissible permutations.

In the well-posed case, the above algorithm produces the whole set of solutions
of the seriation problem under the assumption that the Fiedler value is a simple
eigenvalue of the Laplacian LG. When the Fiedler value has multiplicity q larger
than one, solving the optimization problem (2.3) only yields one vector xmin, while
the eigenspace containing the Fiedler vectors has dimension q and its elements may
lead to a number of admissible permutations much larger than those corresponding
to xmin. Therefore, the spectral algorithm is not able to reproduce all the solutions
in the presence of a multiple Fiedler value.

3. Multiple Fiedler values in seriation. In this section we analyze the case
of the presence of a multiple Fiedler value and its effect on the spectral algorithm
discussed above.

Let us assume that the Fiedler value has multiplicity k, and let q1, . . . ,qk be an
orthonormal basis of the corresponding eigenspace F . For each x ∈ F , there is a



The seriation problem in the presence of a multiple Fiedler value 5

vector ỹ = (y1, . . . , yk)T such that

x = Qkỹ,

where Qk = [q1, . . . ,qk]. We remind the reader that a solution to the seriation prob-
lem is determined by sorting the vector x either nonincreasingly or nondecreasingly.

When k = 1 there is in general only one permutation which solves the problem,
together with its reverse. There are multiple solutions if the eigenvector x has ` equal
components. In this case, there will be `! solutions.

When k > 1, after extending Qk to a square orthogonal matrix Q, we can write
x = Qy, with

y =

[
ỹ
0

]
∈ Rn.

Although it is clear that only the first k entries are relevant in determining x, it is
not trivial to understand how many permutations are allowed to sort x when the
components of ỹ vary.

Let us analyze the situation where qi = ei, the vectors of the canonical basis in
Rn, i = 1, . . . , k, so that we may set Q = I, Even in the case x = y, the conclusion
is not trivial. If the first k components of y are different from zero and distinct, then
the indices associated to the last n − k zero components admit (n − k)! equivalent
permutations. We can consider such indices in the whole vector y as grouped in a
unique “vector” index, as the corresponding components all share the same position
in each possible sorting. Under this assumption, the number of different orderings
for y is (k + 1)!. Substituting to the vector index all its possible permutations, the
number of admissible solutions grows to

(k + 1)!(n− k)!. (3.1)

If there are groups of equal components in ỹ, this number is going to increase accord-
ingly. In the general case, that is when Q 6= I, the number of admissible permutations
depends upon the structure of the Fiedler vectors.

Concas et al. [10] pointed out that non pre-R matrices can lead to Laplacian
matrices whose Fiedler value is not simple and conjectured, through the following
simple example, that the number of permutations (3.1) may be incorrect.

Let us consider the seriation problem described by the bipartite graph depicted
in Figure 4.3 (left). The relationship between nodes on the left (units) and nodes on
the right (types) is represented by edges. The adjacency matrix of this graph and the
resulting similarity matrix are, respectively

B =


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

 and S = BBT =


2 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 2

 .
Note that S can be seen as the adjacency matrix of the graph shown in Figure 4.3
(right).

A solution to the seriation problem does not exist in this case, since the associated
graph describes a cycle: each unit is similar to surrounding units and the two extremal
units are similar to each other. This leads to a non pre-R similarity matrix. As shown
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Fig. 4.1: The bipartite graph associated with the data matrix B (4.1) with n = 6
(left) which leads to the star graph S6 (right).

in [10], the Fiedler value of the Laplacian LS = D−S has multiplicity 2, so each vector
belonging to the Fiedler plane can be sorted to obtain the admissible permutations
of the units. In the same paper, the authors considered a randomized approximated
approach, which will be discussed in Section 5, to determine such permutations. They
found only 5 admissible permutations, much less than the number (k + 1)!(n− k)! =
(2 + 1)!(5− 2)! = 36 determined by (3.1).

In the following, we will show that this estimate for the number of admissible
permutations is wrong. Nevertheless, we will confirm the fact that when a Fiedler
value is multiple some constraints are imposed on the admissible permutations of the
units. In particular, we will show that their number does not only depend on the
multiplicity of the Fielder value, but also on the structure of the underlying bipartite
graph.

In the following, we often focus on the number of permutations found. Referring
to such a number is significant only to show that, in the cases analyzed, the number
of admissible solutions is always smaller than the forecast given by (3.1). We stress
the fact that solving the seriation problem consists of listing all the admissible per-
mutations of the nodes. Any theoretical analysis or numerical algorithm must be able
to produce such result.

4. Three case studies. In this section, to gain insight into the behavior of
other similar examples, we analyze three different graphs whose Laplacian exhibits a
double Fiedler value: the modified star graph, the cycle graph, and the generalized
Petersen graph.

4.1. The modified star graph. Consider the bipartite graph represented in
Figure 4.1 (left) whose associated data matrix is

B =

[
1Tn−1

In−1

]
∈ Rn×(n−1), (4.1)

where 1k = (1, . . . , 1)T ∈ Rk, and Ik denotes the identity matrix of size k. As already
stated, bi,j = 1 indicates that unit i contains objects of type j.
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The resulting similarity and Laplacian matrices are given by

S = BBT =

[
n− 1 1Tn−1

1n−1 In−1

]
, LS = D − S =

[
n− 1 −1Tn−1

−1n−1 In−1

]
, (4.2)

where D = diag(d1, . . . , dn), di =
∑n
j=1 si,j , is the degree matrix associated to S.

The matrix S can be interpreted as the adjacency matrix of a star graph; see
Figure 4.1 (right). A star graph Sn is a connected graph with n vertices and n − 1
edges, where one vertex, the center of the star, has degree n− 1 and the other n− 1
vertices have degree 1. It is a special case of a complete bipartite graph in which one
set has one vertex and the other set contains the remaining n− 1 vertices.

Both the Laplacian and the similarity matrix (4.2) are arrowhead matrices, that
is, real symmetric matrices of the form[

α zT

z ∆

]
(4.3)

where α is a scalar, z ∈ Rn−1, and ∆ = diag(δ1, . . . , δn−1). From the Cauchy in-
terlacing theorem [43] for the eigenvalues of Hermitian matrices, it follows that the
sorted eigenvalues λ1, . . . , λn of (4.3) interlace the sorted elements δi of the diagonal
matrix ∆. If δ1 ≥ δ2 ≥ · · · ≥ δn−1 and if the eigenvalues λi, i = 1, . . . , n, are sorted
accordingly, then the following inequality holds

λ1 ≥ δ1 ≥ λ2 ≥ δ2 ≥ · · · ≥ λn−1 ≥ δn−1 ≥ λn. (4.4)

If δi = δi−1 for some i, the above inequality implies that δi is an eigenvalue of the
arrowhead matrix (4.3) considered.

The following theorem identifies the eigenvalues of the Laplacian matrix in the
case of a star graph.

Theorem 4.1. Let S be the adjacency matrix of a star graph Sn. Then, the
spectrum of the Laplacian matrix LS consists of the three eigenvalues 0, 1, and n,
with the second having multiplicity n− 2.

Proof. A well known result states that the smallest eigenvalue of the Laplacian
is λn = 0. From the Cauchy interlacing theorem applied to the matrix LS in (4.2),
it follows (see (4.4)) that 1 is an eigenvalue with multiplicity n − 2. Setting v =
(−(n− 1), 1, . . . , 1)T ∈ Rn, we see that LSv = nv, so that λ1 = n.

Corollary 4.2. Let S be an adjacency matrix of a star graph. Then, the Fiedler
value has multiplicity n − 2 and the n − 2 Fiedler vectors have a null component in
the position corresponding to the center node.

Proof. Without loss of generality we can assume that the first node is the cen-
ter, which has degree n − 1. To determine the Fiedler vectors one has to solve the
homogeneous linear system (LS − In)v = 0, whose coefficient matrix is

LS − In =

[
n− 2 −1Tn−1

−1n−1 0

]
.

The last n − 1 equations of the system show that the first component of the Fiedler
vectors is always 0, while the first equation implies that the sum of the components
is 0.

Since we are focusing on the case of a double Fiedler value, let us consider the
modified star graph obtained by adding some nodes and edges to the data matrix



8 A. Concas, C. Fenu, G. Rodriguez, and R. Vandebril

corresponding to the star graph. We start by considering the bipartite graph on the
left of Figure 4.1. We add n− 4 nodes to the set of the types (nodes 6 and 7, in this
case). Then we connect the first of the new nodes to units 2 and 3, the second one
to units 3 and 4, and so on. We obtain the bipartite graph in Figure 4.2 (left). The
seriation data matrix associated to this graph is

B =

[
1Tn−1 0Tn−4

In−1 Bn−1,3

]
∈ Rn×(2n−5), (4.5)

where 0k ∈ Rk is a null vector, and Bk,` ∈ Rk×(k−`) is the lower bidiagonal ma-
trix whose elements are 1 on the main diagonal and on the sub-diagonal, and zero
otherwise.

The resulting similarity matrix is

S =

 n− 1 1Tn−1

1n−1
Tn−3 O
O I2

 , (4.6)

where O denotes a null matrix of suitable size and Tn−3 is the tridiagonal matrix
2 1
1 3 1

. . .
. . .

. . .

1 3 1
1 2

 . (4.7)

The similarity matrix S can be seen as the adjacency matrix of the modified star
graph in Figure 4.2 (right), which we denote by Ŝ6.
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Fig. 4.2: Bipartite graph represented by matrix (4.5) (left) and resulting graph Ŝ6
(right). The edges in red are the added ones.
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The Laplacian matrix of S is given by

LS = D − S =

 n− 1 −1Tn−1

−1n−1
T̃n−3 O
O I2

 , (4.8)

where O denotes a null matrix of suitable size and T̃n−3 is like (4.7), but with the
elements in the sub- and in the super-diagonal of opposite sign.

The following theorem explains the behavior of the Fiedler value of the Laplacian
matrix in the case of the modified star graph Ŝn.

Theorem 4.3. Let S be the adjacency matrix of a modified star graph Ŝn. Then,
the spectrum of the Laplacian matrix LS (4.8) contains the three eigenvalues 0, 1, and
n, with the second having multiplicity 2, while the remaining n− 4 eigenvalues are in
the interval (1, 5).

Proof. A direct computation shows that λ1 = 0, λ2 = λ3 = 1, and λn = n, are
eigenvalues of LS with associated eigenvectors

v1 = 1n, v2 =

 0
−1n−2

n− 2

 , v3 =


0

−1n−3

n− 3
0

 , vn =

[
1− n
1n−1

]
.

By a simple application of the Gram-Schmidt process, we see that any vector
orthogonal to v1, v2, and vn has a null first and last component, like v3. So, the
remaining n− 4 eigenvectors take the form

vi =

0
ṽ
0

 , i = 4, . . . , n− 1,

with ṽ ∈ Rn−2. Given the expression (4.8) of matrix LS , any such vector ṽ is an
eigenvector of the principal submatrix

L̃S =

[
T̃n−3 0n−3

0Tn−3 1

]
.

Besides the eigenvalue λ2 = 1, the remaining eigenvalues of L̃S are those of T̃n−3.

Since the eigenvalues of T̃n−3 are a subset of those of LS , we will denote them

by (λ3, . . . , λn−1). The Gershgorin circle theorems applied to T̃n−3 yields 1 ≤ λi < 5,
i = 3, . . . , n − 1. It is immediate to observe that λ3 = 1 with associated eigenvector
1n−3. It is a simple eigenvalue because a symmetric tridiagonal matrix with nonzero
subdiagonal elements has distinct eigenvalues [33]. This completes the proof.

Corollary 4.4. Let S be the adjacency matrix of a modified star graph Ŝn.
Then, its Fiedler value is equal to 1 and has multiplicity 2.

In the case of the modified star graph Ŝn, an orthogonal basis for the eigenspace
F corresponding to the Fiedler value is given by

Q2 =
[
q1 q2

]
,
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where q1 = v3 and q2 = v2. For the sake of simplicity, we do not normalize the two
eigenvectors. Letting ỹ = (α, β)T ∈ R2 \ {(0, 0)}, every x ∈ F can be expressed as

x = Q2ỹ =



0 0
−1 −1
...

...
−1 −1
n− 3 −1

0 n− 2


[
α
β

]
=



0
−α− β

...
−α− β

(n− 3)α− β
(n− 2)β


. (4.9)

The admissible permutations are then related to the possible reorderings of the entries
of x ∈ F , and these sortings depend on the values of the coefficients α and β. We
remark that they cannot be both zero, as x is an eigenvector.

We let x1 = 0, x2 = −α − β, xn−1 = (n − 3)α − β, and xn = (n − 2)β. The
relative position of such components is governed by the following inequalities, where
we initially consider only strict inequality

x2 > x1, for α < −β,
xn−1 > x1, for α > 1

n−3β,

xn > x1, for β > 0,

xn−1 > x2, for α > 0,

xn > x2, for α > −(n− 1)β,

xn > xn−1, for α < n−1
n−3β.

(4.10)

Let us denote by x2 = (x2, . . . , x2)T ∈ Rn−3, the subvector of (4.9) containing
the equal components in x. Each particular ordering of the vector x stays unchanged
when the components of x2 are permuted, so there are (n − 3)! index permutations
corresponding to it. To identify such permutations we consider the following cases:

1. α, β > 0: in correspondence to the three inequalities

0 < α <
1

n− 3
β,

1

n− 3
β < α <

n− 1

n− 3
β, α >

n− 1

n− 3
β, (4.11)

we find the following increasingly ordered vectors x,
x2

xn−1

x1
xn

 ,


x2

x1
xn−1

xn

 ,


x2

x1
xn
xn−1

 , (4.12)

respectively.
By permuting the components of x2, we obtain (n − 3)! index permutations
for each of the three vectors, that is, 3(n− 3)! admissible permutations.
For example, for n = 5 we obtain the 6 permutations contained in the columns
of the following matrix 

2 3 2 3 2 3
3 2 3 2 3 2
4 4 1 1 1 1
1 1 4 4 5 5
5 5 5 5 4 4

 .
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2. α > 0 > β: the three inequalities

0 < α < −β, −β < α < −(n− 1)β, α > −(n− 1)β, (4.13)

correspond to the sorted vectors
xn
x1
x2

xn−1

 ,

xn
x2

x1
xn−1

 ,


x2

xn
x1
xn−1

 , (4.14)

which originate 3(n− 3)! further index permutations for x.
For n = 5, we obtain 

5 5 5 5 2 3
1 1 2 3 3 2
2 3 3 2 5 5
3 2 1 1 1 1
4 4 4 4 4 4

 .
The above cases are exhaustive. Indeed, the inequalities α, β < 0 and α < 0 < β

produce permutations which are the reverse of the ones already considered in 1 and
2, respectively. The total number of permutations accounted for so far is

N1 = 6(n− 3)!.

We now consider equalities in (4.10), that is, we seek the values of the parameters
α and β for which some components of the vector x in (4.9) become equal, besides
those of x2.

It is important to remark that if two scalar components are equal, no new permu-
tations are introduced. For example, (n− 3)α = β makes x1 = xn−1, but the vector
orderings deriving from the permutation of these two components have already been
considered in the first two vectors of (4.12).

On the contrary, when x2 is equal to any of the three other different components,
then new index permutations are generated by permuting that component with the
entries of the vector x2. When α ≥ 0 > β, the special cases where x2 = x1, x2 = xn−1,
and x2 = xn, correspond to the conditions

α = −β, α = 0, α = −(n− 1)β, (4.15)

respectively, and lead to the sorted vectors xn
x̃2,1

xn−1

 ,
 xn

x1
x̃2,n−1

 ,
 x̃2,n

x1
xn−1

 , (4.16)

where

x̃2,k =

[
x2

xk

]
= (x2, . . . , x2, xk)T ∈ Rn−2, k = 1, n− 1, n.

Each vector in (4.16) produces (n − 2)! index permutations, from which one must
subtract those already considered in (4.12) and (4.14). For example, for the first
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Fig. 4.3: The bipartite graph associated with the data matrix B in (4.18) for n = 5
(left), which leads to the cycle graph C5 (right).

vector of (4.16) the permutations
xn
x2

x1
xn−1

 ,

xn
x1
x2

xn−1

 ,
have already been considered in the first two vectors of (4.14). This leads to

N2 = 3
(
(n− 2)!− 2(n− 3)!

)
= 3(n− 4)(n− 3)!

permutations. For n = 5 we obtain
5 5 5 5 2 3
2 3 1 1 5 5
1 1 2 3 3 2
3 2 4 4 1 1
4 4 3 2 4 4

 .
To conclude with, the vector x defined in (4.9) possesses

N = N1 +N2 = 3(n− 2)! (4.17)

admissible permutations for α, β ∈ R \ {(0, 0)}. Such permutations are one half of
those foreseen by formula (3.1), that is, 3!(n− 2)!, confirming the conjecture that the
structure of the problem introduces some constraints on the number of admissible
solutions for the seriation problem.

4.2. The cycle graph. The second example of a graph whose Laplacian has a
multiple Fiedler value is the cycle, or circular graph, Cn, whose vertices are connected
in a closed chain. The number of edges in Cn equals the number of vertices and, since
every node has exactly two edges incident to it, every vertex has degree 2. Hence a
cycle is a regular graph, i.e., a graph in which each vertex has the same degree k.

We will apply linear seriation to the cycle graph, but for this kind of networks it
is sometimes relevant to consider circular seriation; see [23, 1, 38].
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Consider the bipartite graph represented in Figure 4.3 (left) with associated data
matrix

B =

[
BTn,1

b
T
n

]
∈ Rn×n, (4.18)

whereBn,1 ∈ Rn×(n−1) is the lower bidiagonal matrix defined in (4.5), bn = (1,0Tn−2, 1)T ,
and 0k is the null vector of length k. As BTn,1bn = bTn−1, its similarity matrix and
Laplacian are, respectively,

S = BBT =

[
Cn−1 bn−1

bTn−1 2

]
, LS = D − S =

[
C̃n−1 −bn−1

−bTn−1 2

]
, (4.19)

where

Cn−1 =


2 1
1 2 1

. . .
. . .

. . .

1 2 1
1 2

 ∈ R(n−1)×(n−1),

and C̃n−1 is the tridiagonal matrix like Cn−1, with the elements in the sub- and
super-diagonal of opposite sign. The matrix S can be seen as the adjacency matrix
of a cycle graph Cn; see Figure 4.3.

The matrix LS is circulant, that is, it is fully specified by its first column, while
the other columns are cyclic permutations of the first one with an offset equal to the
column index [12]. A basic property of a circulant matrix C is that its spectrum is
analytically known. It is given by

σ(C) = {Ĉ(1), Ĉ(ω), . . . , Ĉ(ωn−1)}, (4.20)

where

Ĉ(ζ) =

n−1∑
k=0

ckζ
−k (4.21)

is the discrete Fourier transform of the first column (c0, c1, . . . , cn−1)T of C, ω = e
2πi
n

is the minimal phase nth root of unity, and i the imaginary unit.
The next theorem states the behavior of the eigenvalues of the Laplacian matrix

in the special case of a circular graph.
Theorem 4.5. Let B be the similarity matrix of a cycle graph with at least n ≥ 3

vertices. Then, the eigenvalues of the Laplacian matrix LB = D − B are coupled as
follows

λj = λn−j+2, j = 2, . . . ,
⌊n

2

⌋
+ 1,

where bmc denotes the minimal integer part of m. In particular, if n is odd λ1 = 0 is
the only simple eigenvalue. If n is even, the eigenvalues λ1 = 0 and λn/2, of smallest
and largest modulus, respectively, are the only simple ones.
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The property trivially results from LB being a symmetric circulant matrix. For
the sake of clarity, we give a simple proof.

Proof. First, we recover a well known result in graph theory which states that
the eigenvalue of smallest modulus of the Laplacian is λ1 = 0. Indeed, from (4.20)
and (4.21), it follows that the discrete Fourier transform of the first column of LB is

L̂B(ζ) = 2− ζ−1 − ζ−(n−1),

and that λ1 = L̂B(1) = 0. Next, let k = 1, . . . , n − 1. From (4.20) and (4.21) we
obtain

λk+1 = L̂B(ωk) = 2− e− 2πi
n k − e 2πi

n k = 2− 2 cos(θk),

where θk = − 2πi
n k. The thesis follows from the property ωk = ωn−k.

The theorem immediately implies the following.
Corollary 4.6. Let a graph satisfy the assumptions of Theorem 4.5. Then, its

Fiedler value has multiplicity 2.

The normalized eigenvectors of an n× n circulant matrix are the columns of the
normalized Fourier matrix, that is,

vj =
1√
n

(
1, ω(j−1), ω2(j−1), . . . , ω(n−1)(j−1)

)T
, j = 1, . . . , n. (4.22)

A basis for the eigenspace corresponding to the Fiedler value is given by {v2,vn},
where the entries of vn are the conjugates of those of v2. To obtain eigenvectors with
real entries we consider the vectors

w1 =
(v2 + vn)

2
, w2 =

(v2 − vn)

2i
, (4.23)

with components

(w1)j = cos
2(j − 1)π

n
, (w2)j = sin

2(j − 1)π

n
, j = 1, . . . , n.

These vectors are, in fact, related to the discrete cosine transform (DCT) and the
discrete sine transform (DST), respectively. They have many symmetries,

(w1)j = (w1)n−j+2, (w2)j = −(w2)n−j+2, j = 2, . . . ,
⌊n

2

⌋
+ 1,

and more relations are valid for n either odd or even.
Every Fiedler vector x lies in the eigenspace generated by w1 and w2, so that it

can be expressed as

x = αw1 + βw2, (4.24)

for α and β ∈ R.
The presence of many symmetries in the vectors w1 and w2, makes it difficult to

find a general rule to obtain the number of admissible permutations, i.e., of all the
possible reorderings of the components of x for any n. The task is made harder by the
fact that for specific values of the coefficients α and β, groups of components of the
Fiedler vector x take the same value, generating bunches of admissible permutations.
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We analyzed in detail the situation for n = 4, 5, 6, 7, determining 8, 15, 30, and 49
permutations, respectively. These results will be confirmed numerically in Section 6.
We report here the permutations obtained for n = 4

Px(n=4)
=


2 2 3 3 3 3 4 4
3 3 2 2 4 4 3 3
1 4 1 4 1 2 1 2
4 1 4 1 2 1 2 1

 .
We remark that, according to formula (3.1), the number of admissible solutions for
n = 4, 5, 6, 7 should be 12, 36, 144, and 720, respectively, much larger than the actual
values.

4.3. The generalized Petersen graph. The generalized Petersen graph is an-
other graph whose Fiedler value has multiplicity 2. It was introduced by Coxeter [11]
and it was given its name later, in 1969, by Watkins [42]. We denote it by GPG(n, k).
It has 2n vertices and 3n edges given, respectively, by

V (GPG(n, k)) = {ui, vi|1 ≤ i ≤ n},
E(GPG(n, k)) = {uiui+1, uivi, vivi+k|1 ≤ i ≤ n},

where the subscripts are expressed as integers modulo n (n ≥ 5) and k is the so called
“skip”. Let U(n, k) (respectively, V(n, k)) be the subgraph of GPG(n, k) consisting of
the vertices {ui|1 ≤ i ≤ n} (respectively, {vi|1 ≤ i ≤ n}) and edges {uiui+1|1 ≤ i ≤ n}
(respectively, {vivi+k|1 ≤ i ≤ n}). We will call U(n, k) (respectively, V(n, k)) the
outer (respectively, inner) subgraph of GPG(n, k).

The 2n× 2n data matrix of the graph GPG(n, k) has the block structure

B =

[
U In
In Vk

]
(4.25)

where In is the n×n identity matrix, the block U is the adjacency matrix of the outer
subgraph U(n, k), it coincides with the adjacency matrix (4.19) of a cycle graph, with
the diagonal elements equal to 3. The block Vk is the adjacency matrix for the inner
graph V(n, k), whose structure is determined by the skip k. The matrices U and Vk
are circulant. They are specified by their first column given, respectively, by

c = (0, 1, 0, . . . , 0︸ ︷︷ ︸
n−3

, 1)T , c(k) = (0k, 1, 0, . . . , 0︸ ︷︷ ︸
n−2k−1

, 1,0k−1)T ,

where 0j denotes the null vector of length j, or the empty vector when j = 0. We
will write U = circ(c) and Vk = circ(c(k)).

We consider the data matrix represented by the graph in Figure 4.4 (left) for
n = 5 whose similarity matrix can be seen as the adjacency matrix of the generalized
Petersen graph GPG(n, k) with a skip k = 1; see Figure 4.4 (right). In this particular
case, also the inner subgraph is a cycle graph and the incidence matrix has the block
structure

B̃ =

[
BT In 0n
0n In BT

]
∈ R2n×3n, (4.26)

where B ∈ Rn×n is the incidence matrix of the cycle defined in (4.18). Its similarity
matrix and Laplacian are, respectively

S =

[
F In
In F

]
LS =

[
F̃ −In
−In F̃

]
(4.27)
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Fig. 4.4: The bipartite graph associated with the data matrix B in (4.25) for n = 5
and k = 1 (left), which leads to the generalized Petersen graph GPG(5, 1) (right).

where F and F̃ are n× n circulant matrices given respectively by

F = circ(3, 1, 0, . . . , 0︸ ︷︷ ︸
n−3

, 1) F̃ = circ(3,−1, 0, . . . , 0︸ ︷︷ ︸
n−3

,−1). (4.28)

Theorem 4.7. Let B̃ be the 2n×3n data matrix (4.26). Then, the Fiedler value
of the Laplacian matrix LS has multiplicity 2.

Proof. LS is a block circulant matrix with circulant blocks F̃ and −In. A block
circulant matrix can be expressed as the sum of Kronecker products. In our case, we
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have

LS = P1 ⊗ F̃ + P2 ⊗ (−In),

where P1 = I2 and P2 = circ(0, 1). More in general, one has Pi = circ(ei), with ei
the ith canonical basis vector.

If we define the matrix-valued function

H(x) = x0 ⊗ F̃ + x1 ⊗ (−In),

so that H(P2) = LS , it can be shown (see [26]) that the spectrum of LS is the union of
the spectra of H(λ1) and H(λ2), where λ1 and λ2 are the eigenvalues of P2. Moreover,
the eigenvectors of LS are given by the Kronecker products vi⊗uj , i, j = 1, 2, where
vi are the eigenvectors of P2 and ui are the eigenvectors of both H(λ1) and H(λ2).

In our case, λ1 = 1 and λ2 = −1, so that H(λ1) = F̃ − In and H(λ2) = F̃ + In.
An immediate result is that the eigenvalues of LB are given by

µi =

{
σi − 1 if i = 1, . . . , n

σi−n + 1 if i = n+ 1, . . . , 2n
,

where σi, i = 1, . . . , n, are the eigenvalues of the matrix F̃ . Since F̃ is symmetric
circulant, its eigenvalues are coupled (see Theorem 4.5) and this completes the proof.

Corollary 4.8. Let σ be the second smallest eigenvalue of the matrix F (4.28)
and {w1,w2} be a basis for the eigenspace corresponding to σ. Then, σ − 1 is the
Fiedler value of the Laplacian matrix LS given in (4.27) and {v1,v2} is a basis for
the associated eigenspace, where

v1 =

[
1
1

]
⊗w1 =

[
w1

w1

]
and v2 =

[
1
1

]
⊗w2 =

[
w2

w2

]
. (4.29)

Proof. The proof follows from Theorem 4.7, noting that (1, 1)T is the eigenvector
of P2 associated to the eigenvalue λ1 = 1.

Since the eigenvectors of the matrix F̃ are the columns of the normalized Fourier
matrix, we can obtain the set of admissible permutations from the results obtained
for the cycle graph. Indeed, the vectors v1 and v2 defined in (4.29) have the same
entries as the vectors w1 and w2 in (4.23), but each entry is doubled. This means that
the components of a vector x in the Fiedler plane come in pairs. Consequently, the
number of the admissible permutations for a generalized Petersen graph GPG(n, 1)
is 2n times the admissible permutations obtained for a cycle graph.

For n = 4, 5, 6, 7, we expect at least 128, 480, 1920, and 6272 permutations,
respectively. Other admissible permutations may appear in case other equalities occur
between the entries of v1 and those of v2. Since the graph has 2n nodes, formula (3.1)
in this case produces the much larger estimates 4320, 241920, 2.18 ·107, and 2.87 ·109

respectively, for the number of solutions.

5. Two numerical methods to determine admissible permutations. Let
the Laplacian matrix L of a graph with n nodes have a double Fiedler value λ2, and
let

v = (v1, v2, . . . , vn)T and w = (w1, w2, . . . , wn)T
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be an orthogonal basis for the corresponding eigenspace F of dimension 2. In prin-
ciple, to determine the admissible permutations one should consider all the linear
combinations

x = αv + βw, α, β ∈ R, (5.1)

and list all the different permutations corresponding to sorting the vector x as the
coefficients α and β vary, removing the reversed permutations.

To reduce the number of free parameters, we consider vectors of the type

x = v + γw, γ ∈ R. (5.2)

This representation excludes only the vector x = w, which has to be considered
separately. Then, the problem leads to considering all the possible sortings of the
numbers xi = vi + γwi, i = 1, . . . , n, for γ ∈ R.

This formulation admits an interesting geometric representation. Let

Pi = (vi, wi), i = 1, . . . , n,

be points on the Euclidean plane and consider a straight line passing through the
origin, parallel to the normalized vector d = (1, γ)/

√
1 + γ2. The orthogonal projec-

tions of the points Pi on the line are proportional to the numbers xi, so the admissible
permutations can be found by letting the straight line rotate on the plane, and sorting
the projections of the points for each fixed value of γ. The permutation corresponding
to the vector w is obtained as γ approaches ±∞.

A first possibility to realize this procedure is to resort to a randomized algorithm.
To this end, we developed a simple Monte Carlo approach. In the case of a double
Fiedler value, we consider the Fiedler vectors (5.2) generated by N random values of
γ in R. Each vector is then sorted, and the corresponding permutations of indices
are stored in the columns of a matrix. After removing all the repeated permutations
and the swapped ones, we obtain a set of allowed permutations of the n nodes in the
considered graph.

This approach is easy implemented and it can be generalized immediately to the
case of a Fiedler value with multiplicity larger than 2. The high computational cost,
deriving from determining whether a particular permutation has already been iden-
tified, might be mitigated by optimized hashing and sorting algorithms. Admissible
permutations might be stored in a PQ-tree [4], a very efficient data structure for
storing index permutations which has been used in the spectral algorithm [2] and is
implemented, e.g., in [10]. Nevertheless, the main drawback of this method is that it
is not able to identify index permutations corresponding to particular values of the
coefficients of the linear combination (5.1). For example, the Fiedler vectors (4.16)
for the modified star graph are produced when the parameter α takes exactly the
values given in equation (4.15), condition which has zero probability in the random-
ized process considered. This aspect will be investigated in the numerical examples
of Section 6, where we will apply this numerical method and the following one to the
case studies considered in Section 4.

To efficiently compute all the admissible permutations in the particular case of
a Fielder value with multiplicity 2, we developed a graphical method which uses a
deterministic approach to implement the point projection method described above.

The idea behind the method, described in Algorithm 1, is considering the vector
(5.2) as a function of the parameter γ ∈ R

f(γ) = v + γw = (f1(γ), . . . , fn(γ))T .
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Then, its components fi(γ) = vi + γwi, i = 1, . . . , n, can be interpreted as straight
lines in the Euclidean plane. Letting γ vary, one obtains all the possible Fiedler
vectors, whose components are given by the intersections of a vertical line with the
graphs of the linear functions fi(γ); see, e.g., Figure 5.1.

Computing the intersections of these lines (line 9 of Algorithm 1) identifies inter-
vals characterized by a specific ordering of the components of f(γ). The position of
the lines before the first intersection point (line 20) gives the reordering of the Fiedler
vector x = f(λ) which corresponds to the first admissible permutation of the nodes.
New permutations are obtained by reordering the values of f(γ) at each intersection
point. Indeed, an intersection point introduces one or more swaps in the components
in the Fiedler vector, as γ increases, and so new admissible permutations.

The performance of the two procedures is analyzed and compared in the numerical
examples illustrated in the following section.

Algorithm 1 Graphic method for determining the admissible reorderings of the nodes
in a graph with a double Fiedler value

1: Requires: Fiedler vectors v,w ∈ Rn and tolerance τ

2: Ensure: matrix P containing admissible node reorderings

3: f(γ) = v + γw

4: Φ (2 columns matrix, initially empty, for intersections and their multiplicity)

5: m = 0 (number of intersections found)

6: for i = 1, . . . , n− 1

7: for j = i+ 1, . . . , n

8: if |wi − wj | > τ

9: γint = (vi − vj)/(wj − wi) (new intersection abscissa)

10: let r ∈ {1, . . . ,m} such that |γint − Φr,1| < τ , otherwise r = 0

11: if r = 0 (γint is not in Φ)

12: m = m+ 1, Φm,1 = γint, Φm,2 = 1 (add new intersection)

13: else Φr,2 = Φr,2 + 1 (increment multiplicity)

14: end if

15: end if

16: end for

17: end for

18: sort rows of Φ so that intersections are in increasing order

19: store in P the permutations corresponding to the possible orderings of w

20: y1 = f(Φ1,1 − 1) (values of the lines in the first interval)

21: add to P the permutations corresponding to the possible orderings of y1

22: for i = 1, . . . ,m− 1

23: y1 = f(Φi,1) (left endpoint of ith interval)

24: y2 = f((Φi,1 + Φi+1,1)/2) (center point of ith interval)

25: add to P the permutations corresponding to the orderings of y1 and y2

26: end for

27: y1 = f(Φm,1) (last intersection)

28: y2 = f(Φm,1 + 1) (last interval)

29: add to P the permutations corresponding to the orderings of y1 and y2

30: remove from P repeated or reversed permutations
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Fig. 5.1: Lines corresponding to the nodes in the cycle graph Cn with n = 5 nodes.

To illustrate the functioning of the graphical method, we consider the cycle graph
with n = 5 nodes, depicted in Figure 4.3. As pointed out in Section 4.2, the number of
admissible permutations is 15. They can be obtained through the graphical method
by considering the swap of the indices corresponding to the lines which intersect.
More precisely, in Figure 5.1 we display the graph of the functions fi(x) = vi + xwi,
for i = 1, . . . , 5, each one representing the behaviour of the i−th entry of the Fiedler
vector (5.2). Intersection points are highlighted in the figure by vertical dashed lines.
As explained above, the first admissible permutation is obtained by considering the
position of the lines before the first intersection points and therefore it is given by
(5 4 1 3 2). The first vertical dashed line points out that there are two pairs of lines
that intersect. Consequently, new permutations are obtained from the first one by
swapping the indices corresponding to nodes (1,4) and (2,3). Hence, the additional
permutations are

(5 1 4 3 2), (5 1 4 2 3), (5 4 1 2 3).

After the first intersection, the position of the lines produces the permutation of the
nodes (5 1 4 2 3), which has already been considered. The second vertical dashed
line, corresponding to the second intersection point, reveals that two pairs of lines in-
tersect, i.e., we need to swap the indices of nodes (1,5) and (2,4). The new admissible
permutations are then

(5 1 2 4 3), (1 5 2 4 3), (1 5 4 2 3).

After the second intersection, the lines follow the order (1 5 2 4 3), that is contained
in the previous set. In correspondence to the third intersection two further pairs of
lines intersect, i.e., the indices of nodes (2,5) and (3,4) must be swapped. In this
case, the new permutations are

(1 5 2 3 4), (1 2 5 4 3), (1 2 5 3 4).
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After this intersection the permutation is (1 2 5 3 4), which has been already taken
into account. Considering the fourth vertical dashed line, which highlights that lines
1-2 and 3-5 intersect, one obtains the admissible permutations

(1 2 3 5 4), (2 1 5 3 4), (2 1 3 5 4).

After the fourth intersection point, the position of the lines gives the permutation
(2 1 3 5 4), already present in our set of permutations. The last intersection yields
that lines 1-3 and 4-5 intersect, leading to the permutations

(2 3 1 5 4), (2 1 3 4 5), (2 3 1 4 5).

The last permutation (2 3 1 4 5), coincides with the reverse of the first one. Re-
moving it leaves 15 admissible permutations of the indices, reported in the following
matrix 

5 5 5 5 5 1 1 1 1 1 1 2 2 2 2
4 1 1 4 1 5 5 5 2 2 2 1 1 3 1
1 4 4 1 2 2 4 2 5 5 3 5 3 1 3
3 3 2 2 4 4 2 3 4 3 5 3 5 5 4
2 2 3 3 3 3 3 4 3 4 4 4 4 4 5

 .
6. Numerical experiments. In this section we report the results produced by

the two methods introduced in Section 5 for determining the admissible permutations
of a set of units, in the case the Fiedler value of the associated graph has multiplicity
2. To verify the performance of the methods, the graphical (see Algorithm 1) and the
Monte Carlo methods have been implemented in Matlab R2021a and applied to the
three case studies described in Section 4. The numerical experiments were performed
on an Intel Xeon Gold 6136 computer (16 cores, 32 threads) equipped with 128 GB
RAM, running the Linux operating system.

The first computed example consists of finding the admissible permutations of the
nodes of a modified star graph Ŝn with data matrix (4.5). As stated in Corollary 4.4,
the Laplacian of the similarity matrix associated to the graph has a double Fiedler
value equal to 1. Since an orthogonal basis for the eigenspace F corresponding to the
Fiedler value is known, every x ∈ F can be expressed by x = Q2y, with y = [α, β]T ,
as in (4.9). As explained in detail in Section 4.1, the permutations of the nodes that
yield a solution to the seriation problem are given by all the possible reorderings of
the entries of x.

The results of the experiments concerning the application of the graphical and
the Monte Carlo methods to a graph Ŝn with a number of nodes n ranging from 5 to
10 are displayed in Table 6.1. In particular, the second column contains the number
3(n − 2)! of admissible permutations for a modified star graph stated in (4.17). It
coincides with the number of admissible permutations found by the graphical method,
reported in the third column of the table. We note that such number is one half of
the estimate furnished by Equation (3.1), for k = 2. For the following examples, the
reduction with respect to this estimate is even larger.

As the fifth column shows, the Monte Carlo method fails to identify all the permu-
tations, after considering N = 1000 random linear combinations of the orthonormal
basis for the eigenspace F . We verified that increasing the value of N up to 5000 the
performance of the method does not improve. In this test, the graphical algorithm is,
for every n, much faster than the Monte Carlo method, as one can observe comparing
the computing time in seconds reported in the fourth and sixth columns of Table 6.1.



22 A. Concas, C. Fenu, G. Rodriguez, and R. Vandebril

Graphical method Monte Carlo method
n 3(n− 2)! found perms time found perms time
5 18 18 1.17e-01 14 1.27e-01
6 72 72 1.57e-02 48 8.19e-02
7 360 360 1.63e-02 216 2.58e-01
8 2160 2160 9.02e-02 1200 5.22e+00
9 15120 15120 1.11e+00 7920 8.80e+01
10 120960 120960 2.21e+01 60480 1.76e+03

Table 6.1: Results obtained by applying the graphical and the Monte Carlo methods
to the modified star graph with data matrix B (4.5).

Graphical method Monte Carlo method
n found perms time found perms time
4 8 1.53e-01 4 1.61e-01
5 15 1.57e-01 7 4.87e-02
6 30 1.48e-02 14 6.77e-02
7 49 4.03e-03 13 6.13e-02
8 88 4.90e-03 20 7.52e-02
9 135 1.33e-02 23 7.68e-02
10 230 5.25e-03 54 8.10e-02

Table 6.2: Results obtained by applying the graphical and the Monte Carlo methods
to the cycle graph with data matrix B (4.18).

We remark that the failure of the Monte Carlo approach is due to the fact that
many admissible permutations result from specific values of the coefficients α and β
in the linear combination (4.9); see, e.g., (4.16). Assuming such values is an event
with zero probability in a random draw of real numbers, so it is very unlikely to occur
in the algorithm. On the contrary, the graphical method explicitly considers equal
components in the Fiedler vectors when it processes intersections between the lines;
see lines 23 and 27 of Algorithm 1.

A similar comparison between the two methods has also been considered for the
cycle graph Cn analyzed in Section 4.2. The results are displayed in Table 6.2. In
this case, every vector x in the eigenspace associated with the double Fiedler value of
Cn can be represented as in Equation (4.24). In Section 4.2, we have not been able
to foresee the number of admissible permutations for this graph, but the result we
found for n = 4, 5, 6, 7 are confirmed by the outcome of the graphical method; see the
second column in Table 6.2. Again, the graphical method proves to be the fastest one
and the Monte Carlo method fails in recovering all the admissible permutations. The
reason for this failure is the same as discussed above.

The results displayed in Table 6.3 are obtained by applying the two methods to
the generalized Petersen graph GPG(n, 1). As discussed in Section 4.3, both the outer
and the inner subgraphs in GPG(n, 1) are cycle graphs and the total number of nodes
is 2n. By following the discussion regarding the cycle graph and the results contained
in Theorem 4.7 and Corollary 4.8 it follows that each vector x in the eigenspace
corresponding to the Fiedler value has n pairs of coinciding entries. Then, keeping
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Graphical method Monte Carlo method
n 2nn found perms time found perms time
5 160 5600 2.57e-01 160 1.61e+00
6 384 48000 7.44e-01 384 1.38e+01
7 896 192640 1.83e+01 896 3.99e+01
8 2048 1546240 4.17e+02 2048 9.77e+01
9 4608 5967360 3.10e+04 4608 2.38e+02

Table 6.3: Results obtained by applying the graphical and the Monte Carlo methods
to the Generalized Petersen graph with data matrix B (4.25).

into account the number of permutations for a cycle, the admissible permutations of
the nodes in GPG(n, 1) are at least 2nn.

The second column of Table 6.3 reports this minimum value for the admissible
permutations. It is remarkable to observe that this is exactly the number of permuta-
tions recovered by the Monte Carlo method. Anyway, the real number of admissible
permutations is much larger than that, as testified by the results of the graphical
method in the third column of the table. This huge number of permutations requires
a large computing time, making the graphical method extremely slower than in the
other examples. Nevertheless, it is effective when computing the complete solution
of the problem, while the randomized approach it is not, even though in this case
N = 5000 random Fiedler vectors have been used.

We analyzed the performance of both methods by means of the “profiler” available
in Matlab. It turns out that the bottleneck for the execution time of the algorithms
are the tests for verifying that a new permutation does not appear in the list of those
already computed either in direct or reverse ordering. When the number of admissible
permutations is not too large, this does not significantly affect the complexity of the
graphical method, while it does in the case of the generalized Petersen graph.

As a last numerical experiment, we illustrate the effect of the admissible permu-
tations corresponding to a double Fiedler value on the similarity matrix S given in
(4.6), associated to the modified star graph, for n = 5. In the left pane of Figure 6.1
we report a spy plot of the matrix S: it reproduces the pattern of nonzero entries
of the matrix. On the right, in the same figure, we display the PQ-tree produced
by the package PQser [10], which implements the spectral algorithm from [2], when
the matrix S is given as input. In this case, the package inserts a conventional “M-
node”, which outlines the presence of a multiple Fiedler value and the impossibility
to determine a complete set of solutions.

As already observed, in this case there are 18 admissible permutations. They
have been explicitly constructed in Section 4.1, and they are correctly reproduced by
our graphical algorithm; see Table 6.1. By applying these permutations to the rows
and columns of the similarity matrix S, we obtain 6 different matrices. We display
the spy plots of 3 of them in Figure 6.2. It can be observed that all of them have a
smaller bandwidth than the original matrix, and that none of them is an R-matrix,
as the data set is non-perfect.

7. Conclusions. In this paper, we study the possible orderings of the Fiedler
vector of a graph, under the assumption that the Fiedler value has multiplicity larger
than one. Determining such orderings is related to the solution of the seriation prob-
lem and to many other graph and matrix problems; see [10, 13] for a review.
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Fig. 6.1: Modified star graph with n = 5 nodes: on the left, spy plot of the similarity
matrix S; on the left, PQ-tree given as output by the package PQser [10], which
implements the spectral algorithm from [2].
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Fig. 6.2: Modified star graph with n = 5 nodes: spy plot of the reorderings of the
similarity matrix S produced by 3 of the 18 admissible permutations.

When the Fiedler value is a simple eigenvalue of the Laplacian matrix associated
to the graph, the spectral algorithm introduced in [2] is particularly effective in enu-
merating all the solutions to the seriation problem, that is, the index permutations
that realize the best ordering of a set of units according to the given similarity rule.
When the multiplicity of the Fiedler value is larger than one, such algorithm is not
applicable.

We examine in detail three case studies characterized by a double Fiedler value,
for which it is possible to draw conclusions about the solution of the problem, and
we show that the number of admissible permutations is smaller than the maximum
allowed number of permutations. In fact, it varies in the three cases considered, and
it appears to depend on the structure of the underlying bipartite graph.

We propose a graphical method to list the admissible permutations and we com-
pare it to a randomized algorithm. Numerical experiments show that the graphical
method is able to identify all the admissible permutations for the considered case
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studies, and that its performance is superior to the randomized approach. The reason
for this is that some admissible permutations are produced by particular fixed values
of the coefficients in the linear combination of Fiedler vectors, and such coefficients
are not likely to be reproduced by a random sampling.

We believe that further work is needed to study the case of a Fiedler value with
multiplicity larger than two and to optimize the complexity and data storage of the
algorithms. Such development will be essential for the application to large scale
problems such as, for example, seriation problems derived from genome sequencing
and sparse matrix reordering problems.
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