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A B S T R A C T   

The enzymatic hydrolysis of dried brewers’ spent grain without being pretreated was investigated in this work. 
The enzymatic hydrolysis experiments were carried out using Cellic ® CTec2 as enzymatic complex and the 
glucose yield was optimized with respect to temperature, solid loading and enzyme loading. The optimization of 
enzymatic hydrolysis obtained through the response surface methodology was validated experimentally resulting 
in a glucose yield of 11.71 ± 0.09 gglucoseg− 1

DM at 48.6 ◦C, 6.7 % w/w biomass loading, and 0.22 mL gDM
− 1 as enzyme 

concentration. The glucose yield obtained corresponds to 44 % of the theoretical one. The temporal profile of 
glucose concentration was modeled by using the Chrastil’s model, and by a modified version of its classical 
formulation. The models were compared with respect to the fit goodness and precision of parameter estimation. 
Even if both models were able to properly describe the transient behavior, the proposed modified Chrastil’s 
model provided a more precise parameter estimation compared to the classical one.   

1. Introduction 

Lignocellulosic biomasses represent a promising, renewable, widely 
available, and cheap material from which high-adding-value com-
pounds and platform chemicals can be obtained. Particularly, brewers’ 
spent grain (BSG) is the most abundant by-product of the brewing in-
dustry with a generation rate of 20 kg per 100 L of beer produced [1]. 
The estimated worldwide beer production of 1.86 billion hectoliters [2] 
makes BSG a widely available by-product whose valorization appears 
essential to move towards sustainable breweries. 

BSG is the solid residue, mainly constituted by the barley grain 
husks, obtained from the lautering stage where the wort is recovered. In 
terms of composition, BSG is composed of 15–25 % cellulose, a homo-
polymer consisting of glucose monomers joined by β-1,4-glycosidic 
bonds, along with 20–40 % hemicellulose, a polymer made of pentose 
sugars, predominantly xylose and arabinose, and 10–20 % lignin, a 
polyphenolic macromolecule. The rest is composed of proteins and ex-
tractives [3]. Currently, BSG is mainly used as animal feed with an 
associate value of 13.95 €/ton [4,5]. Due to its composition, there is a 
growing interest in using BSG as a raw material for the recovery of 
high-value fractions and components. As simple sugars are precursors 

for several industrial-relevant products, the depolymerization of the 
polysaccharide fraction is a possible route for its valorization [6]. 
However, due to its fibrous nature, several complex steps are typically 
required to extract a significant quantity of sugars from BSG. It is ex-
pected that producing fermentable sugars by means of hydrolysis fol-
lowed by alcoholic fermentation through ethanologenic microorganisms 
will increase the BSG valorization potential [7]. In most cases, enzy-
matic hydrolysis is employed to convert cellulose into glucose. As cel-
lulose in lignocellulosic biomasses like BSG is physically linked with 
hemicellulose and physically-chemically linked with lignin, the enzymes 
access to the raw cellulose matrix is difficult [8]. Thus, acid and alkali 
pretreatments are typically performed to separate the hemicellulose and 
lignin polymers from the cellulosic material resulting in a 
cellulose-enriched solid and in a preliminary release of sugars [7]. 

However, from an industrial-scale perspective, the use of pre-
treatments causes several economic and environmental disadvantages. 
Particularly, the use of an acid pretreatment step results in high costs 
associated with acid recovery, the purchase of corrosive-resistant 
equipment, the removal of inhibitory compounds for both enzymatic 
hydrolysis and fermentation, and the management of wastewater [9]. 
Indeed, in the context of bioethanol production, Procentese et al. [10] 
estimated that the cost of pretreatment accounts for approximately 
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0.13–0.17 € per liter of ethanol, which represents at least 25 % of the 
competitive selling price of the final product of about 0.6 € per liter of 
ethanol. Hence, though the effect of pretreatment methods of lignocel-
lulosic biomass is to increase the enzymatic digestibility of the raw 
materials, it may not be economically attractive. Enzymatic saccharifi-
cation of dried BSG that has not been subjected to further treatments 
such as acid or alkali treatments, referred to as untreated BSG, could 
therefore be an interesting strategy to reduce costs. 

Optimization and kinetic characterization of BSG enzymatic hydro-
lysis are two crucial issues. Mussatto et al. [11] and Rojas-Chamorro 
et al. [12] investigated the influence of process variables on enzymatic 
hydrolysis of pretreated BSG and optimized the process. 

Moreover, the feasibility to produce bioethanol from the enzymatic 
hydrolysate of untreated BSG has recently been published [13] using a 
one-pot system, consisting of an initial enzymatic saccharification phase 
followed by ethanolic fermentation in the same reactor proving that is 
possible to obtain an ethanol yield comparable to other studies where 
the BSG was pretreated. However, the optimization and the kinetic 
characterization of untreated BSG saccharification has not yet been 
reported. 

The present work investigates the effect of enzyme loading, tem-
perature and substrate loading on enzymatic hydrolysis of untreated 
BSG with regard to glucose yield. Response Surface Methodology (RSM), 
is used to find the optimal process conditions. 

The kinetic study of the reaction is known to be challenging due to 
the complexity of the heterogeneous BSG matrix that deviates from the 
classical Michaelis-Menteńs model [14,15]. A deep understanding of the 
hydrolysis kinetics is crucial for bioreactors design, as it provides 
knowledge of the functionality between operational variables and the 
conversion rates of polysaccharides into fermentable sugars and allows 
predicting the dynamics of such a system. To this purpose, Chrastil [16] 
introduced the model (CM) reported in Eq. 1, which was adopted to 
assess the mass transfer characteristics of BSG enzymatic hydrolysis: 

[G] = [G]∞
[
1 − exp(− k[E]0t)

]n (1) 

Based on the experimental data, the kinetic parameter k, which is a 

rate constant proportional to the diffusion coefficient of the enzyme in 
the substrate matrix [10], n which refers to the structural diffusion 
resistance dependent on the steric structure of the system [15], and the 
equilibrium glucose concentration [G]∞were estimated. However, the 
estimation of CM’s parameters can be misleading as there may be cor-
relations between them resulting in a less accurate estimation and wide 
parameter confidence intervals. This leads to an unreliable character-
ization of the process kinetics. Therefore, a modified Chrastil model 
(MCM) is proposed in this work to describe the temporal profile of 
glucose during BSG enzymatic saccharification. The knowledge of the 
model parameters provides a deeper understanding of the dynamic 
behavior of untreated BSG enzymatic saccharification, which to the best 
of the authors’ knowledge, has not yet been reported. 

2. Materials and methods 

2.1. Raw material 

The BSG was provided by Vestfyen Brewery, Assens, Denmark. It was 
initially stored at − 4 ◦C and then oven-dried at 90 ◦C in five cycles of 2 h 
until a constant weight was reached. The BSG solid content was 25 % wt. 
The dried solid was stored at room temperature for further experiments. 

2.2. Enzymatic hydrolysis 

Cellic ® CTec2 ( >1000 Biomass Hydrolysis Units, density of 
1.209 g/L; Novozymes, Denmark) was used to perform the enzymatic 
hydrolysis. This enzyme complex comprises a blend of α-cellulase, 
β-glucosidases and hemicellulases. The reaction environment was a so-
dium citrate buffer 0.05 M containing 0.04 % w/v sodium azide to 
remove microbial contaminants, the reaction volume was 500 mL, and 
the pH was 4.8. A straight-blade impeller was used, and the agitation 
speed was set at the impeller motors’ minimum value, 280 rpm. Three 
experimental runs were carried out to observe the transient behavior of 
the system. After the system reached the target temperature, the enzyme 
was added. Samples were taken at the beginning of the run, after 30 min, 

Nomenclature 

BSG Brewers’ Spent Grain. 
CM Chrastil’s model. 
df1,2 degrees of freedom. 
DM Dry matter. 
EL enzyme loading, mLenz g− 1

dry BSG . 
[E]0 initial enzyme concentration, g L− 1. 
[G] glucose concentration, g L− 1. 
[G]0 initial glucose concentration, g L− 1. 
[G]∞ equilibrium glucose concentration, g L− 1. 
k Chrastil’s model rate constant, L g− 1 h− 1. 
kMCM modified Chrastil’s model rate constant, L g− 1 h− 1. 
LS liquid to solid ratio, gliq g− 1

solid . 
MCM modified Chrastil’s model. 
MS Mean sum of Squares. 
mDry BSG mass of dry BSG introduced in the reactor, g. 
mliq mass of buffer solution, g. 
n Chrastil’s model structural diffusion resistance constant, 

dimensionless. 
nMCM modified Chrastil’s model structural diffusion resistance 

constant, dimensionless. 
p number of factors. 
SS Sum of Squares. 
SGP Soluble Glucose Polysaccharides. 

[S]0 initial substrate concentration, g L− 1. 
Sθ normalised sensitivity index, dimensionless. 
t time, h. 
T temperature, ◦C. 
Venz enzyme volume injected in the reactor, mL. 
VR reaction volume, L. 
Xi i-th independent variable. 
Xj j-th independent variable. 
xG potential glucose mass fraction in dried BSG determined by 

its characterization, without considering soluble glucose 
polysaccharides, - 

xG,enz glucose mass fraction in enzyme blend, - 
YG estimated glucose yield, % gGlucose g− 1

Dry BSG. 

ŶG estimated glucose yield, % gGlucose g− 1
Dry BSG. 

Yexp
G experimental glucose yield, % gGlucose g− 1

Dry BSG. 

β̂0 regression model intercept. 
β̂i linear coefficient of i-th variable. 
β̂ii quadratic coefficient of i-th variable. 
β̂ij coefficient of interaction between i-th and j-th variables. 
θ generic Chrastil’s model parameter. 
θest– estimated generic Chrastil’s model parameter. 
ρenz enzyme density, g mL− 1.  
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then at intervals of 1 h after the first 60 min, 2 h after the first 5 h up to 
9 h of reaction, and then the last samples were taken after 21, 24, and 
30 h. 

For the optimization, 14 experiments were performed. However, 
samples were taken only at the beginning and at the end of the run, 
specified as a reaction time of 24 h. For both the transient behavior and 
optimization experiments, the glucose content in the commercial 
enzyme mixtures was quantified by HPLC and subtracted from the 
glucose concentrations obtained from each sample [17]. The measured 
glucose mass fraction in the enzyme blend was 0.261 ± 0.006 [13], 
equivalent to 0.32 ± 0.008 g mL− 1. 

2.3. Analytical methods 

National Renewable Energy Laboratory (NREL) standard laboratory 
analytical procedures for biomass analysis were used to characterize the 
composition of untreated BSG [18,19]. These procedures were per-
formed in triplicate. Regarding the enzymatic hydrolysis, aliquots of 
3 mL of the slurry (liquid+solid) were sampled from the reactor, 
pre-filtered through 0.4 µm and then through 0.20 µm filters (Sartorius, 
Germany), before being analyzed by HPLC to quantify the glucose 
concentration. The HPLC setup (Ultimate 3000, Thermo Fisher) was 
equipped with a Phenomenex Rezex RHM-Monosaccharide H+ (8 %) 
analyzing column with a refractive index detector (Dionex Softron 
GmbH, Germany). The operative temperature was 79 ◦C and the mobile 
phase was ultrapure water (0.6 mL/min). The glucose retention time 
was identified using standard solutions and its concentration was 
quantified through calibration curves. The limits of the concentration 
interval were [0.1–50 g/L] with a coefficient of determination equal to 
0.9993. A significant amount of solubilized glucose polysaccharide (i.e., 
SGP) derived from unconverted starch and free glucose monomers was 
identified in the slurry before the enzyme was added. The SGP mass 
fraction was determined by HPLC quantification of a liquid sample 
withdrawn 30 min after the system reached the reaction temperature 
and before adding the enzyme. 

2.4. Statistical tools 

2.4.1. Experimental design and process optimization 
The effect of enzyme loading (EL), liquid-to-solid ratio (LS), and 

temperature (T) on the glucose yield was investigated. The experimental 
glucose yield was calculated according to Eq. 2: 

Yexp
G =

[G](t=24h) × VR − VenzρenzxG,enz

mDM
× 100 (2) 

Box–Behnken design with two replications at the central point was 
used to develop the Design of Experiments (DoE). This design provides 
three levels for each factor coded as [− 1,0,1]. The coded and uncoded 
values of all the regressor variables are shown in Table 1. 

The temperature range was chosen according to the optimal condi-
tions recommended in the enzyme information sheet [20] and analogous 
studies where the same enzyme was used on lignocellulosic substrates 
[21,22]. The solid-to-liquid ratio was defined according to the studies of 
Pinheiro et al. [23] and Wilkinson et al. [24] on BSG processing while 
the enzyme loading was defined according to the experimental plan 
proposed by Mussatto et al. [11]. 

Response Surface Methodology (RSM), coupled with Analysis of 
Variance (ANOVA) was used to develop a reliable functionality between 
the response variable and the factors under analysis. Minitab™ was used 
to fit the data to the polynomial function reported in Eq. 3 and optimize 
the process [25]: 

ŶG = β̂0 +
∑p

i=1
β̂iXi +

∑p

i=1
β̂iiX2

i +
∑p

i=1

∑p

j=i+1
β̂ijXiXj (3) 

The regression model of Eq. 3 was then validated by experimentally 

assessing the glucose yield of the corresponding estimated optimum 
point. Stepwise backward elimination was used to find the significant 
parameters to fit the experimental data [26]. The significance level was 
set as 5 % for all the hypothesis tests carried out. The variance explained 
by the model was assessed with the coefficient of determination R2. 

2.4.2. Kinetic modeling 
Enzyme-substrate kinetics are usually described using the Michaelis- 

Menten equation [27]. Nevertheless, often the kinetic parameters ob-
tained from the regression yield unrealistic values. Furthermore, the 
Michaelis-Menten equation assumes the system to be homogeneous. 
Indeed, the heterogeneous nature of the process is firstly due to the 
presence of both liquid and solid phases. In addition, the substrate (i.e., 
cellulose) is strongly held inside the lignin matrix. In such a case, the 
reaction may show mass transfer limitation due to the enzyme diffusing 
through the complex structure of the lignocellulosic material to reach 
the cleavage point on the substrate. Further, according to Chrastil [16], 
the problem when doing regression on time-dependent data based on 
product concentration arises from the assumption of 
pseudo-steady-state equilibrium between the enzyme and substrate and 
not including the thermodynamic equilibrium of the complete set of 
reactions occurring in the system. Taking these factors into account for 
batch processes where the enzyme transport into the matrix is rate 
limiting, Chrastil [16] arrived at the diffusion-limiting kinetic model 
shown in Eq. 1. According to this model, when the term n tends to the 
unity, diffusion resistances are negligible, while if it is comprised be-
tween 0 and 1, the system is limited by diffusion resistance [10]. 
Nevertheless, some modifications have been introduced to consider its 
original formulation limitations. Firstly, Eq. 1 assumes that the initial 
glucose concentration is zero. This assumption does not represent the 
experimental conditions in this paper, meaning that it was necessary to 
add the contribution of the glucose concentration at the beginning of the 
experimental run, [G]0. 

The original formulation of the CM can be corrected as shown in Eq. 
4: 

[G] = [G]0 +([G]∞− [G]0)
[
1 − exp(− kCM [E]0t)

]n (4) 

Eq. 4 is now a three-parameter ([G]∞, k, n) non-linear model, whose 
parameters estimation may be challenging due to their strong correla-
tion. This leads to wide confidence intervals and thus large uncertainty 
in the parameter values determined. It was reasonably assumed that [G]0 
was numerically equal to the sum of glucose concentration associated 
with the soluble glucose polysaccharide (SGP), solubilized during tem-
perature system conditioning prior to the introduction of the enzyme, 

Table 1 
Experimental design for the enzymatic hydrolysis.  

Run T [◦C] LS* [g liquid/gDM] EL [mL/gDM]  

real coded real coded real coded 

1 45 –1 25 0  0.214 1 
2 45 –1 25 0  0.043 –1 
3 55 1 35 –1  0.128 0 
4 45 –1 35 –1  0.128 0 
5 50 0 35 –1  0.043 –1 
6 50 0 15 1  0.043 –1 
7 45 –1 15 1  0.128 0 
8 55 1 15 1  0.128 0 
9 55 1 25 0  0.214 1 
10 50 0 15 1  0.214 1 
11 55 1 25 0  0.043 –1 
12 50 0 35 –1  0.214 1 
13 50 0 25 0  0.128 0 
14 50 0 25 0  0.128 0  

* Liquid to Solid ratio value equal to 15 [g of liquid per gram of dry BSG] has 
been coded as 1 because is the condition corresponding to the highest substrate 
loading. Analogously − 1 was the coded value attributed to 35 [g of liquid per 
gram of dry BSG] corresponding to the lowest substrate loading condition. 
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and the glucose concentration associated with the inoculation of the 
enzyme blend. Therefore, under the mentioned assumptions the term 
([G]∞ − [G]0) corresponds to the amount of glucose generated during the 
reaction. 

In order to propose a modified version of the CM, it was introduced 
the maximum mass of glucose per unit of reaction volume that theo-
retically can be generated from the process [S]0 (i.e the mass of cellulosic 
glucose in dry BSG per unit of reaction volume). This term is expected to 
be higher than [G]∞ − [G]0 and its value was experimentally determined 
according to Eq. 5. 

[S]0 =
xGmliq

LS VR
(5)  

[S]0 is related to the amount of glucose potentially releasable since xG 

was obtained by multiplying the glucan fraction in dry BSG times 1.11, 
that is the stoichiometric factor for its hydration upon hydrolysis [23]. 

In order to take into account that only a fraction of such cellulosic 
glucose can effectively be obtained at the end of the reaction, [S]0 was 
raised to the power of n, and substituted to ([G]∞ − [G]0) as shown in Eq. 
6. 
(
[G]∞ − [G]0

)
= [S]0

nMCM (6) 

In general, high recalcitrant lignocellulosic systems satisfy the 
inequality n < 1. Procentese et al. [10] for apple pomace, evaluated n 
between 0.41 and 0.63 depending on the pretreatment used. For corn 
hub, Ayeni et al. [14] evaluated the same parameter in the range of 
0.37–0.65, depending on the enzyme concentration used. Consequently, 
it can be inferred that the relation [S]0

n
< [S]0 holds as well (if n > 1, this 

model loses its physical meaning). Therefore, a MCM is proposed to fit 
the glucose concentration as a function of time. In this way, the resulting 
equation contains two parameters, namely nMCM and kMCM. By 
substituting Eq. 6 into Eq. 4 it is possible to obtain the MCM shown in Eq. 
7. 

[G] = [G]0 + [S]0
nMCM

[
1 − exp(− kMCM [E]0t)

]nMCM (7) 

It is important to emphasize that the n parameter in the MCM retains 
the same meaning as in the classical CM (Eqs. 1,4). The parameters of 
both CM and MCM were determined by fitting the experimental data 
with Eq. 4 and Eq. 7, respectively using the Statistical and Machine 
Learning toolbox of MATLAB R2022b®. The confidence interval was 
evaluated for each parameter to assess the reliability of the estimation 
for both models. The level of confidence was set equal to 95 %. More-
over, ANOVA tests were carried out to evaluate the adequacy of the 
regression models. All experiments relevant to the dynamic analysis 
were performed at 55 ◦C under three different BSG and enzyme loadings 
according to the experimental conditions reported in Table 2. The 
operational conditions adopted for the kinetic analysis of enzymatic 
hydrolysis lie within the range of values studied during optimization. 
Specifically, the enzyme loading for the first and second experimental 
tests reported in Table 2 are the corresponding highest and lowest value 
of the DoE respectively calculated for the highest biomass loading. The 
third run corresponds to the highest enzyme load referred to the lowest 
biomass loading. Experiments were performed in duplicate, such that it 
was possible to fit the average product concentration for each reaction 
time and assess the model’s Lack of Fit (LoF) by performing the LoF test 
[28]. 

3. Results and discussion 

3.1. Raw BSG composition 

BSǴs chemical composition varies according to barley variety, har-
vest time, malting and mashing conditions, and the quality and type of 
adjuncts added in the brewing process [1]. Therefore, BSG character-
ization is not trivial, and many factors may significantly affect the BSG 
composition. Table 3 shows the composition amounts as weight per-
centage of dry BSG used in the experiments (% wt. DM). It is shown that 
the uncertainty is slightly less than 10 % for each sugar, which highlights 
how BSG characterization is influenced by a high degree of uncertainty. 
In addition, many other factors like time of conservation and drying 
conditions may affect the BSG composition. 

According to Table 3, almost 63 % of the total dry weight of BSG is 
structural sugars. Particularly, glucose content is relatively high 
compared to the values reported by Mussatto et al. [7], while the total 
lignin content shown in this work (15.4 %wt) is noticeably lower. 
Interestingly the mass fraction of acid-soluble and insoluble lignin is also 
lower compared to that of other lignocellulosic materials like barley 
straw, corn stover or sweet sorghum [17]. A low lignin content is ex-
pected to enhance the enzymatic access to cellulose chains, as lignin acts 
as a barrier that hinders the enzymatic transport to the cleave bonds of 
the substrate. On the other hand, the ash content obtained is similar to 
the one reported in other studies [17,29]. 

3.2. Enzymatic saccharification of untreated BSG 

The influence of temperature, solid loading, and enzyme loading on 
the glucose yield for the enzymatic hydrolyzation of dried BSG are re-
ported in Table 4. 

Glucose yield in the enzymatic hydrolysates varied in a narrow 
range, from 8.0 (run 11) to 11.4 gglucose/100gDM (run 10). As expected, 
the enzyme loading strongly affects the performance of the process 
since, in most cases, the higher the amount of enzyme, the higher the 
amount of glucose released at a given time. Nevertheless, the ninth run 
showed a relatively low performance even though the enzyme loading 
was at the highest value tested. In this case, the temperature was also the 
highest within the DoE, which may have caused degradation of the 
enzyme and/or glucose itself, leading to a lower glucose yield. Hence, 
the negative effect of high temperature can easily be seen as only run 8 
shows a ŶG greater than 10 gglucose/100gDM among those run at 55 ◦C. 

It is worth mentioning that a small amount of pentose sugars (xylose 
and arabinose) was detected in the enzymatic hydrolysates due to the 
hemicellulase content in the enzymatic blend. However, since this work 
focuses on glucose generation, their quantity was not considered in 
terms of process performances but they are reported as sugar yield in the 
Supplementary Material. 

Run 10 was the experiment with the highest glucose yield, 

Table 2 
Experimental conditions for the analysis of the enzymatic saccharification dy-
namic behavior analysis. Temperature was set at 55 ◦C for all three runs.  

Run Enzyme concentration [g/L] LS [gliq/gDM] [S]0 [g/L]  

1  12.75  15  16.37  
2  2.56  15  16.37  
3  5.46  35  7.02  

Table 3 
Composition of BSG, expressed as average value ± standard deviation, and 
correspondent analytical method.  

Component Content (%wt DM) Method used 

Ash 3.6 ± 0.1 [18] 
Glucose 26.8 ± 2.2 [19] 
of which SGP 2.24 ± 0.01  
Hemicellulosic sugars 35.8 ± 1.6 [19] 
Xylose 24.0 ± 2.0 [19] 
Arabinose 11.8 ± 1.0 [19] 
Acid soluble lignin 9.9 ± 1.6 [19] 
Acid insoluble lignin 5.5 ± 1.6 [19] 
Othersa 18.4 [–] 
Total mass 100   

a Other components, obtained by difference, may include protein and 
extractives. 

L. Sibono et al.                                                                                                                                                                                                                                  



Biochemical Engineering Journal 198 (2023) 109044

5

corresponding to 43 % of the potentially releasable glucose. This value is 
slightly higher than reported by Michelin and Teixeira [30], where the 
enzymatic hydrolysis of untreated BSG under similar conditions to those 
applied in this work showed a cellulose conversion equal to 37 %. This is 
probably this is due to the lower content of lignin in the raw BSG used in 
this study. 

3.3. Estimation of model parameters and process optimization 

Glucose yield (ŶG) expressed as g of glucose per 100 g of dry mass 
was chosen to optimize the saccharification process. Temperature (T), 
enzyme loading (EL) and liquid-to-solid ratio (LS) were the factors 
chosen to model the process and predict the optimal hydrolysis condi-
tion at which ŶG reaches its maximum value. RSM was used to identify 
the optimal conditions. Backward stepwise elimination was imple-
mented to evaluate the statistical significance of the individual regres-
sion coefficients in Eq. 3. For each step, Extra Sum of Squares statistical 
test was employed with a significance level of 0.05 [28]. During each 
step the regression sum of squares related to the partial model (without 
the parameter under investigation), SSRp, and the regression sum of 
squares related to the full model (comprising the parameter under 
evaluation), SSRf, were calculated. In this way, for each generical step, it 

was possible to compute SSRex= SSRf − SSRp (i.e. extra sum of squares), 
the increase in regression sum of squares due to the inclusion of the extra 
parameter to a model that comprises all the parameters that have not 
been eliminated in the previous steps. Table 5 shows the results of the 
ANOVA. 

The test shows that the first- and second-degree terms for all three 
independent variables were significantly different from zero leading to 
Eq. 8: 

ŶG = − 42.4+ 2.257T − 0.3193LS+ 24.95EL − 0.02319T2 + 0.00534LS2

− 56.5EL2

(8) 

Hence, a second-order polynomial can be used to model the glucose 
yield. The coefficient of determination is 94.98 %. According to the 
R2 value the model was highly predictive for the glucose yield, and all 
the factorial variables had a strong influence on the final sugar con-
centration. Fig. 1 shows the resulting contour plot of the regression 
model with the experimental results. According to the regression 
equation, the optimal condition is found for a temperature of 48.6 ◦C, a 
liquid-solid ratio of 15 gliq/gDM, and an enzyme loading of 0.220 
mLenz/gDM. 

As expected, enzyme loading was the variable with the highest 
impact, as seen in (Fig. 1-b; 1-c). A negative quadratic term for the 
enzyme loading implies the possible existence of a maximum optimum 
concentration that may correspond to substrate saturation of the 
enzyme. This means that using an amount of enzyme higher than the 
optimal one (i.e., 0.220 mLenz/gDM) does not improve the process per-
formance though it could affect the dynamic behavior. The optimal 
temperature is found to be close to 50 ◦C, in agreement with the optimal 
conditions stated in the information sheet for the enzyme [20]. More-
over, the optimal LS ratio lies in the minimum extreme of the experi-
mental domain (15 gliq/gDM or 6.7 % w/w), which means that a higher 
substrate loading led to higher glucose yields. This may be due to a 
higher soluble glucose concentration favoured by a greater biomass 
loading [10]. This consideration holds for low to medium solid loadings, 
indeed considering 15 % w/w as high biomass loading, it was proved 
that the resulting high viscosity of the slurry limits the effectiveness of 
the enzymatic hydrolysis due to an uneven enzyme distribution and 
ineffective slurry mixing, among other phenomena [31]. 

3.4. Model validation 

Once the optimal condition was found through the RSM technique, 
the reaction was carried out at the predicted optimal condition in order 
both to maximize the glucose yield and to validate the regression 
equation. Fig. 2 shows the results of the validation by plotting the 
optimal value and its standard deviation in the surface response previ-
ously developed. 

As can be seen, the model well predicts the behavior of the Cellic 
CTec2 enzymatic complex. Indeed, the experimental glucose recovery 

Table 4 
Glucose yields obtained from the BSG enzymatic hydrolysis.  

Run T[◦C] LS[gliq/gDM] EL [mLenz/gDM] ŶG [gglucose/100gDM]

1 45 25  
0.214  

10.61 

2 45 25  
0.043  

8.23 

3 55 35  
0.128  

9.31 

4 45 35  
0.128  

9.47 

5 50 35  
0.043  

9.07 

6 50 15  
0.043  

9.79 

7 45 15  
0.128  

11.30 

8 55 15  
0.128  

10.16 

9 55 25  
0.214  

9.60 

10 50 15  
0.214  

11.43 

11 55 25  
0.043  

8.04 

12 50 35  
0.214  

10.63 

13 50 25  
0.128  

10.19 

14 50 25  
0.128  

10.02  

Table 5 
Analysis of variance for enzymatic hydrolysis results.  

Source df1 df2 SS MS F-Value F0.05 (df1,df2) P-Value 

Regression  6  7 12.3776 2.06293  22.07  3.8660 <10− 4 

T  1  7 1.0175 1.01752  10.89  5.5914 0.013 
LS  1  7 1.2847 1.28470  13.74  5.5914 0.008 
EL  1  7 1.5408 1.54083  16.48  5.5914 0.005 
T2  1  7 1.0757 1.07568  11.51  5.5914 0.012 
LS2  1  7 0.9122 0.91218  9.76  5.5914 0.017 
EL2  1  7 0.5451 0.54514  5.83  5.5914 0.046 
T× LS  1  6 nr nr  3.4411  5.9874 0.113 
T× EL  1  5 nr nr  3.28  6.6079 0.130 
LS × EL  1  4 nr nr  0.02  7.7086 0.885 
Residuals  7   0.6543 0.09348      

nr: not reported 
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under the optimal condition was 11.71 ± 0.09 gglucose/100gDM while the 
predicted value was 11.68 gglucose/100gDM. Such value corresponds to a 
glucose conversion of 44 % respect to the theoretical value, which 
doubles the value of about 22 % reported by Mussatto et al. [7] when the 
enzymatic hydrolysis of untreated BSG was not optimized. 

It is important to remember that four variables are involved in the 
analysis, namely temperature, enzyme loading, and liquid-solid ratio as 
regressor variables, and glucose yield as the dependent one. Therefore, 
the variables were individually fixed at the optimal condition to 
construct the three plots presented in Fig. 2. 

3.5. Reaction kinetics assessment 

The second phase of the study aims at characterizing the kinetic 
behavior of Cellic CTec2 converting glucan chains in the BSG solid 
matrix to glucose. The application of the CM and the MCM may be an 
efficient approach to fit the glucose trend to the reaction time. Table 6 
shows the kinetic parameters and the relative confidence interval 
determined by fitting the experimental values. For this analysis, enzyme 
and solid loading were expressed in g/L and wt% respectively. 

Both models, the CM and MCM were evaluated to describe the dy-
namic behavior of the system under investigation. The CM model in-
cludes an additional parameter, [G]∞, compared to the MCM model 
meaning that one would expect that the MCM would have a lower R2 

than the CM. On the other hand, the addition of an extra parameter does 
not necessarily lead to a significant improvement in the model’s 

performance. In fact, results shown in Table 6 indicate that both models 
were able to adequately describe the dynamic behavior of the system. 
Still, the CM model has wider confidence intervals for the estimated 
parameters. In particular, the use of the MCM model resulted in a 
reduced error margin given by the confidence interval width of 
approximately 40 % points for the estimated k and 7 % points for the 
estimated n, thus resulting in a more reliable estimation of the kinetic 
parameters. It is worth noting that, compared to the CM, 

the MCM parameters resulted in a narrower confidence interval. 
Moreover, the MCM parameters lie within the corresponding interval of 
confidence obtained by fitting the data with the CM. Overall, the kinetic 
constant varied in the range of almost one order of magnitude 
(0.006–0.040), while the parameter n varied between 0.33 and 0.5. 
Variations of enzyme and solid loading had similar effects on the 
parameter estimation for both models, meaning that the following 
considerations apply to both the MCM and the CM. Concerning the 
parameter n, its value was below 0.6 meaning that the steric effect of the 
system is important [15]. It is seen that n is lower when the solid loading 
decrease and enzyme loading is relatively higher (run 3). This phe-
nomenon can be explained by the saturation of the cleavage sites of the 
substrate by the enzyme. Indeed, Carrillo et al. [32] suggested that the 
enzyme is initially adsorbed on the fibre surface forming one single 
layer, such that the surplus enzyme forms additional layers, hindering 
the diffusion enzymes through the substrate fibres. Regarding the 
parameter k, the results show that k is larger at lower enzyme loadings 
(run 2) when substrate concentration is kept constant. Carrillo et al. [32] 
also highlighted that hydrolysis inhibition phenomena related to 

Fig. 1. Response contour plot for the glucose yield as a function of temperature and liquid-to-solid ratio where EL was at the optimal value of 0.220 [mLenzg− 1
DM], (a), 

enzyme loading and temperature where the liquid-solid ratio was set equal to the optimal value of 15 [gliqg− 1
DM] (b), liquid-solid ratio and enzyme loading at the 

optimal temperature of 48.6 ◦C (c). 

L. Sibono et al.                                                                                                                                                                                                                                  



Biochemical Engineering Journal 198 (2023) 109044

7

product formation occur at high enzyme concentrations, reducing the 
catalytic activity of the enzyme system. The end-product inhibition 
caused by high glucose concentration is widely reported [11] and it 
probably explains the results obtained in this work according also to the 
glucose concentration profiles reported in Fig. 3. Finally, a further 
analysis is given to the equilibrium glucose concentration assessed in the 
classic CM. It is worth underlining that all three tests were performed 
with three different enzyme concentrations, resulting in three different 
initial glucose concentrations. Therefore, for the sake of comparison the 
amount of glucose produced during the reaction is assessed by sub-
tracting the initial glucose concentration associated to the introduction 
of the commercial enzyme. According to the model estimations, 
5.69 g/L of glucose were produced once the final yield was reached in 
the first experiment, while 5.37 g/L and 2.91 g/L of produced glucose 
were the estimated as final asymptotic values of [G] for the second and 
the third runs respectively. Results obtained in the first two runs, which 
have the same solid loading, suggest that after 30 h, the system has 
nearly reached the final yield and show that changes in enzyme con-
centration have a low influence on the final glucose concentration, 
meaning that the amount of enzyme introduced in the system only af-
fects the process dynamic behavior. A lower final glucose concentration 

estimated in the third trial is related to a lower substrate loading. 
ANOVA tests were performed to evaluate models’ performances. 

Tests for the significance of regression and lack of fit test were carried 
out in order to assess the goodness of fit of the investigated kinetic 
models. For the test for significance of regression, the null hypothesis 
under investigation is H0: [G]∞= 0, k = 0, n = 0 while the alternative 
hypothesis is H1: at least one parameter is different from zero. Regarding 
the lack of fit test, the null hypothesis is H0: the relationship assumed to 
fit the experimental data is reasonable (i.e. there is no lack of fit), while 
the alternative one is H1: The relationship assumed to describe data 
behavior is not adequate (i.e. there is a lack of fit). 

The results of the ANOVA test reported in Table 7 clearly show that 
the models are adequate for describing experimental data. Regarding 
the test for the significance of regression the observed F-value is greater 
than the critical value, with a significance level equal to 5 % meaning 
that the null hypothesis is rejected and the significance of the regression 
is statistically confirmed for both the CM and the MCM. On the other 
hand, the lack of fit test resulted in an observed F-value that is smaller 
than the critical value with a significance level equal to 5 % meaning 
that the null hypothesis is statistically confirmed for both the CM and the 
MCM. Fig. 3 shows experimental data fitted by CM and MCM, both of 

Fig. 2. Results of model validation for BSG enzymatic hydrolysis by Cellic CTec2. Response surface plot for the glucose yield as a function of T and LS where EL was 
set equal to 0.220 [mLenzg− 1

DM], (a); EL and T where LS was set equal to 15 [gliqg− 1
DM] (b); LS and EL where T was set equal to 48.6 ◦C (c). 

Table 6 
Kinetic parameters relevant to enzymatic hydrolysis of untreated BSG with Cellic CTec2. Operative temperature was 55 ◦C.     

CM MCM 

Run Enzyme concentration [g/L] Solid loading [% wt] [G]∞ [g/L] k [L/ (g h)] n [-] R2 kMCM [L/ (g h)] nMCM [-] R2  

1  12.75  6.7  10.2±0.2  0.008±0.003  0.50±0.09  0.995 0.006±8•10− 4  0.44±0.02  0.994  
2  2.56  6.7  6.3±0.3  0.040±0.03  0.50±0.1  0.988 0.034±7 •10− 3  0.46±0.02  0.987  
3  5.46  2.8  4.9±0.2  0.015±0.009  0.34±0.07  0.992 0.017±2 •10− 3  0.33±0.02  0.992  
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which evidently describe the transient behavior of enzymatic sacchari-
fication of untreated BSG by means of Cellic CTec2 well. 

It is interesting to analyze the final glucose concentration reached 

after long reaction times. The values obtained in each run are signifi-
cantly lower than the theoretical glucose concentration that would be 
expected at equilibrium. Indeed, after subtracting the initial glucose 

Fig. 3. Evolution of glucose concentration during BSG enzymatic hydrolysis simulated by CM and MCM compared with the experimental data in correspondence of 
three different experimental conditions: dry solid loading equal to 6.7 % wt and enzyme concentration equal to 12.75 g/L (a), dry solid loading equal to 6.7 % wt 
with an enzyme concentration equal to 2.56 g/L (b), and a dry solid loading equal to 2.8 % and enzyme concentration equal to 5.46 g/L (c). 

Table 7 
Analysis of variance for Chrastil’s model and modified Chrastil’s model.   

CM MCM 

Source DF SS MS F-Value P-Value DF SS MS F-Value P-Value 

Regression                     
Run 1  2  9.103  4.552  882  ∼0  1  8.844  8.844  1474  ∼0 
Run 2  2  10.74  5.368  354  ∼0  1  10.541  10.541  753  ∼0 
Run 3  2  2.293  1.147  597  ∼0  1  2.319  2.319  1160  ∼0 
Residuals                     
Run 1  9  0.047  0.005      10  0.058  0.006     
Run 2  9  0.137  0.015      10  0.143  0.014     
Run 3  9  0.017  0.002      10  0.018  0.002     
Lack of fit                     
Run 1  9  0.451  0.050  0.231  0.980  10  0.085  0.009  0.305  0.960 
Run 2  9  0.175  0.019  0.644  0.738  10  0.176  0.018  0.582  0.794 
Run 3  9  0.152  0.017  0.0624  0.999  10  0.025  0.003  0.057  ∼ 1 
Pure error                     
Run 1  9  0.250  0.028      9  0.250  0.028     
Run 2  9  0.273  0.030      9  0.273  0.030     
Run 3  9  0.398  0.044      9  0.398  0.044      
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amount in the commercial enzyme blend from the final glucose con-
centration, it was found that only 32 %, 29 % and 36 % of the potentially 
obtainable glucose was produced in run 1, run 2 and run 3 respectively. 
Michelin and Teixeira [30] suggested that the availability of cellulose to 
enzymatic attack is strongly affected by the inner fibrillar and rigid 
structure combined with a high crystallinity of cellulose. Hall et al. [33] 
reported that the initial hydrolysis rate of cellulose linearly decreases 
with the crystallinity of this polysaccharide. Hence, crystallinity and 
structure rigidity may have acted as a barrier that completely hindered 
enzyme access to the largest fraction of cellulose present in the reactive 
system, preventing achieving complete substrate conversion. The com-
parison of the kinetic parameters obtained have also been extended to 
other studies in which CM was used for hydrolyses of biomasses other 
than BSG. Similar results were observed when, for the same enzyme 
complex, the biomass lignin content was comparable. Further details are 
available in the Supplementary Material. 

3.6. Sensitivity analysis 

To evaluate the impact of the parameters on CM and MCM perfor-
mances a sensitivity analysis was performed. In this analysis, each 
parameter ranged between two limits (from 0 up to twice the estimated 
values reported in Table 6) and it was assessed the variation of the final 
glucose concentration estimated by the model. Fig. 4 shows the trend of 
the estimated glucose concentration corresponding to 30 h of sacchari-
fication by varying each individual parameter, and the estimated 
parameter value is highlighted (diamond marker). Only plots related to 
the first run are reported for brevity, while the analysis of runs 2 and 3 is 
reported in the Supplementary Material. Regarding the CM, Fig. 4-a 
reports the influence of the reaction rate constant on the estimated 
glucose concentration. It is evident that an increase in the rate constant 
corresponds to an increase of the final glucose concentration up to a 
critical value equal to the value obtained by regression and reported in 
Table 6. The CM appears to be not sensitive to an increase of the k value 
beyond this value. Regarding the n parameter (Fig. 4-b), it can be clearly 
seen that it does not significantly affect the final glucose concentration. 

This result complies with the CM: when the glucose concentration is 
approaching the final value, the exponential term is close to zero, 
meaning that the whole term raised to the power of n is approximately 
one. Furthermore, the final glucose concentration approaches [G]∞ as 
expected, justifying the linear dependence between the response vari-
able and this parameter. For the MCM, the same conclusion is reached 
when analyzing the effect of kMCM on the estimated final glucose con-
centration. In the MCM, an increase of the parameter nMCM reflects a 
slower glucose generation through the exponential term along with a 
higher steady state product concentration, related to an increase of the 
contribution of the maximum allowable glucose concentration term. 
Therefore, since steady-state glucose concentration is considered in this 
analysis, the exponential term can be reasonably neglected, and the only 
significant effect of an individual variation of nMCM to 
[G](t=30h) concentration is related to [S]nMCM

0 (Fig. 4-e). 
In order to further explore the model parameters influence on the 

glucose concentration it is useful to assess the trend of the sensitivity 
index for each individual parameter at different reaction times. The 
normalized sensitivity index Sθ(t) of the θ parameter was evaluated ac-
cording to Eq. 9 [34], discretized by central finite difference, as pro-
posed by Peri et al. [35]: 

Sθ(t) =
θest

[G](t)
d[G](t)

dθ

⃒
⃒
⃒
⃒

θest

(9) 

Here, θest is the parameter estimated by the model. This makes it 
possible to study the effect of the variation of a single parameter in the 
neighborhood of the estimated value on the glucose concentration for 
each hydrolysis time. The sensitivity index behavior with reaction time 
is depicted in Fig. 5. Again, only results relevant to the first run are re-
ported for both models. Plots related to CM highlight that the sensitivity 
of [G]∞ exponentially increases over time until the normalized sensitivity 
index reached 1. This result agrees with the previously mentioned 
conclusion regarding the final glucose concentration [G]∞ (Fig. 4-c). 
Interestingly, the sensitivity index relative to k shows a different 
behavior: during the first reaction hour, the model output becomes more 
sensitive to changes in k until a peak is reached. Thereafter, the model 

Fig. 4. Effect of model parameters on final glucose concentration (t = 30 h) for the Chrastil’s model (a,b,c), and modified Chrastil’s model (d,e). Diamond points 
refer to the nominal parameter value obtained from the non-linear regression. 
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begins to show little or no sensitivity to this parameter. Similar behavior 
is observed with the n parameter, but the sign of the sensitivity index is 
the opposite. This means that an individual increase in the kinetic 
constant will result in an increase in the extent of cellulose saccharifi-
cation, whereas an individual increase in the structural diffusion resis-
tance constant will reduce the estimated glucose concentration until 
zero sensitivity is reached. In particular, a higher n value gives rise to 
more sluggish glucose concentration-time curves. Although the latter 
statement may seem contradictory with the definition of the structural 
diffusion resistance constant given above, it is important to specify that 
this analysis evaluates how individual parameters affect the dynamic 
performance of the system without considering the influence of a com-
bined variation of two or more parameters to the time-dependent 
glucose concentration profile. Indeed, results obtained by Carrillo 
et al. [32] with regard to CM parameters for enzymatic saccharification 
of wheat straw can explain this complex behavior. In their work, the 
enzymatic hydrolysis of untreated wheat straw resulted in small values 
of the structural diffusion resistance constant and low final values for the 
glucose concentration, corresponding to a faster achievement of the 
final constant glucose yield. On the other hand, hydrolysis of 
alkali-pretreated wheat straw allowed the system to reach a higher value 
for the final glucose concentration but showed a slower response as a 
consequence of the increase in n related to a reduced steric hindrance of 
the biomass [32]. In addition to this, it is widely reported that such 
structural modification increases the structural diffusion resistance 
constant n [10,15]. 

Fig. 5-a shows that the glucose concentration dependency of reaction 
time estimated by CM is strongly sensitive to the final glucose concen-
tration except in the first few minutes of the enzymatic process. This 
result interestingly links with the results reported in Fig. 3, where it was 
observed that, in the best case only 36 % of the potentially available 
glucose was hydrolyzed at the end of the run. Thus, it is reasonable to 
state that steric effects that prevent the enzyme to access into a great 
fraction of cellulose are correlated to final glucose concentration and a 
modification of the biomass matrix may guarantee higher final glucose 

concentrations. Concerning the parameter sensitivity index for MCM 
(Fig. 5-b) as a function of reaction time, the trend of Sk,MCM(t) is the same 
as that of Sk (t) while, on the contrary, an interestingly different 
behavior was obtained for Sn,MCM(t). Particularly, as reaction time in-
creases, the sensitivity index of nMCM changes sign: starting from zero, 
Sn,MCM(t) decreases until a negative minimum is reached. Thereafter, the 
sensitivity index for the n parameter monotonically increases. This 
means that during the first stages of enzymatic hydrolysis, an increase in 
nMCM results in a decrease in the extent of glucose production. After 
approximately one hour of reaction, Sn,MCM(t) changed in sign, indi-
cating that in a later stage of reaction, similar increase in nMCM results in 
a greater glucose concentration. This highlights the efficiency of MCM at 
describing the transient behavior of enzymatic hydrolysis of untreated 
lignocellulosic biomass: the nMCM parameter combines the negative ef-
fect of n, which results in a slower response with increasing values (if the 
other parameters are kept constant) with the positive effect given by an 
increment of [G]∞, when mass transfer limitations within the reacting 
system are reduced. Thus, it is possible to regress time data by means of a 
model that is both simpler in terms of the number of parameters and 
adequate at describing the process dynamics. In fact, from a visual in-
spection of the time profile for the glucose concentration reported in 
other works it is evident that, when comparing two runs from which two 
remarkably different n values were obtained, the experiment with the 
smaller n showed a higher glucose concentration at the early reaction 
times along with a lower glucose concentration in the later ones and vice 
versa [15,32]. In conclusion, it is important to emphasize that when 
analyzing the product concentration time profile in lignocellulosic sys-
tems, the final product concentration and the parameters that take into 
account the steric properties of the system cannot be assessed separately 
but have to be evaluated jointly. 

4. Conclusions 

The conversion process of the untreated BSG cellulosic fraction to 
fermentable sugars is a promising approach that can reduce the amount 

Fig. 5. Variation of the sensitivity index with respect to time for the CM (a) and MCM (b).  
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of this by-product landfilled. Since fermentation represents one of the 
most explored valorization routes, it is crucial to maximise the hydro-
lysis yield of fermentable sugars. At the same time the characterization 
of the saccharification process through a simple reaction kinetic model is 
of paramount importance for a possible large-scale application. The 
response surface method was used to optimize the BSG saccharification 
process by developing a polynomial model which describes the func-
tionality that links the glucose yield to the enzyme loading, substrate 
loading, and temperature. At the optimal conditions, a glucose yield of 
44 % with respect to the theoretical one was obtained. A novel model-
ling approach based on the classic Chrastil’s model is proposed to fit the 
experimental glucose concentration obtained at different reaction times. 
The model resulted simple and able to fit the experimental data satis-
factorily, ensuring a more precise parameter estimation in comparison 
to the classical Chrastiĺs model. When BSG underwent different oper-
ating conditions, the kinetic behavior of the system and the kinetic 
model parameters changed. A sensitivity analysis, such as the one per-
formed in this study, opens a comprehensive understanding of the 
impact of these variations on the parameter estimation and their effect 
on the glucose concentration for each reaction time. 
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