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Introduction

Modern transmission and distribution systems are currently going through ma-
jor changes. In particular, a massive penetration of new systems of production
or consumption of energy (like distributed generation, electric vehicles or bi-
directional charging stations) is underway. These changes require operators to
rethink management, control and protection applications, with the main objec-
tive of following the evolution of power systems. It is indeed worth underlining
that a “smart” management can bring important benefits to the efficiency and
reliability of transmission and distribution grids.

Management and control of power systems are affected by an inevitable lack
of knowledge about the actual operating conditions of the grid.

A key aspect that has an impact on most of the grid applications is the
presence of uncertainty, in terms of modeling and behavior, in the knowledge
of the power network parameters. In particular, the actual values of line pa-
rameters (i.e., resistances or reactances) may differ from those stored in Energy
Management System (EMS) database. This difference can depend on a number
of causes, like degradation due to the age, modeling inaccuracies and working
conditions of the lines. Aware of this problem, researchers have dedicated, over
the years, increasing attention on the problem of the estimation of the grid pa-
rameters. In this context, an accurate estimation helps system operators achieve
effective monitoring and control applications.

In this regard, an important element in the availability of the system op-
erators is the measurement infrastructure. Specifically, a key aspect of the
monitoring architecture is the metrological behavior of the devices installed in
the grid. In the last decades, an increasing interest, above all for the transmis-
sion systems but also for the distribution systems, raised on the employment of
a new generation of instruments: the Phasor Measurement Units (PMUs). This
kind of devices is able to provide accurate measurements of voltage and current
phasors, frequency and rate of change of frequency at a high rate and synchro-
nized with respect to Coordinated Universal Time (UTC). PMUs, thanks to
the above mentioned characteristics, represent a powerful tool for overcoming
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Introduction

some of the limitations and difficulties associated with traditional monitoring
and control systems. Nevertheless, despite the high accuracy of PMUs and
all the benefits that their use can bring to power system monitoring, synchro-
nized phasor (synchrophasor) measurements too are affected by the uncertainty
sources of the measurement chain, which includes the Instrument Transformers
(ITs). Therefore, for an effective exploitation of measured synchrophasors, it
is necessary to design appropriate evaluation processes, taking into account the
uncertainties of the entire measurement chain, which includes ITs (e.g., Current
Transformer (CT) and Voltage Transformer (VT)). All the applications lever-
aging PMUs data must take into account the effects of uncertainty and, when
possible, minimize them.

The measurement challenges described above motivated the research activ-
ity presented in this thesis, mainly focused on the estimation of power grid
parameters. In particular, a methodology (applicable to both transmission and
distribution grids) for a simultaneous estimation of power grid parameters and
systematic measurement errors has been proposed. The methodology, depend-
ing on the applications, can be applied for both single-phase and three-phase
systems.

The thesis is organized as follows:

• In Chapter 1, a literature review on the line parameters estimation in
transmission and distribution systems is presented, also including the
problem of transformer parameters estimation.

• In Chapter 2, a simultaneous estimation of both power grid parameters
and systematic measurement errors exploiting PMU measurements is pre-
sented. In particular, detailed grid modeling and equations are reported
for both single-phase and three-phase systems. The assumptions associ-
ated with the measurement error models are described in detail.

• In Chapter 3, the assumptions made on the measurement chain and on the
modeling of the grid are analyzed. In particular, the presence of possible
mismatch between assumptions and actual conditions is also considered,
to evaluate the impact of this realistic condition on the estimates and to
discuss possible solutions.

• In Chapter 4, the experimental validation of the estimation method through
grid emulators (i.e., OPAL-RT) is discussed. This validation completes the
validation process, which was initially carried out mainly via simulations.

• In Chapter 5, the inclusion of the discussed estimation methods in one of
the most important power system management and control applications,
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Introduction

the fault location, has been analyzed. Also in this context, the impact of
applying the proposed estimation procedure has been studied by means
of a Real Time Digital Simulator (RTDS).

• Finally, motivation, analyses and main findings of the thesis are summa-
rized in the Conclusions.

v



Chapter 1

Parameters estimation for
transmission and distribution
systems

1.1 Problem statement and motivations

Accurate knowledge of actual operating conditions is crucial for monitoring,
management and control tasks. This knowledge is based on information about
power network parameters. The line parameters of transmission and distribution
systems are indeed critical inputs for several applications. Among others, it is
possible to mention power-flow computations [1], state estimation [2], and fault
location [3]. Since expensive measurement campaigns are necessarily infrequent,
such parameters are usually computed based on assumptions regarding data
such as length and conductors geometry, but factors like significant weather
variations or aging, see for example [4], are not adequately taken into account.
Thus, there is a inherent uncertainty on the parameter values available in the
databases of Transmission System Operator (TSO) and Distribution System
Operator (DSO) considered in the power network models, and these values can
present deviations from actual values even in the order of tens of percent [5,6].
This uncertainty can cause problems not only to the applications on which the
correct functioning of Energy Management System (EMS) is based, but also to
the economy and reliability of power dispatching control [7].
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CHAPTER 1. PARAMETERS ESTIMATION FOR TRANSMISSION AND
DISTRIBUTION SYSTEMS

1.2 Literature review

1.2.1 Line parameters estimation

Line parameters estimation has been addressed with any type of measurements,
mainly offline, but, an evaluation of line parameters based on a real-time mon-
itoring would be of great help in improving and keeping updated with a cer-
tain periodicity the network model. In this regard, Phasor Measurement Units
(PMUs) can be a powerful tool, with a reporting rate (RR) up to hundreds of
measurements per second, permitting defining an estimation problem through
time-aligned phasors. Nonetheless, it is worth underlining that phasor measure-
ments are affected by the uncertainty sources of the entire measurement chain,
which includes also the effects of Instrument Transformers (ITs). The network
parameters estimation tools need to take all of this into account.

Focusing on the estimation process, the most commonly used model for the
representation of the line is the π-model. In general, considering the π-model
of a line, the parameters of interest are the resistance, reactance and the shunt
admittance but, according to the specific case, it is possible to neglect some
parameters.

In literature, the simplest approach to estimate line parameters based on
PMUs is to obtain the values directly from PMU measurements. This is pos-
sible thanks to the relationships that can be derived from the π-model, which
permit expressing the line parameters as a function of the voltage and current
phasors that are directly monitored by PMUs. The direct calculation of line
parameters is used in [8], where the calculation of the uncertainty bounds of
transmission line parameters estimation is also presented. In [9], the same di-
rect formulation, considering real PMU measurements, is used to evaluate the
variability of line parameters (not considering previous calibration of ITs, and
thus, without compensating the systematic errors). Such analysis shows the
presence of a discrepancy with respect to the theoretical bounds found consid-
ering uncorrelated measurements. As a consequence, the presence of correlation
in real measurements is highlighted via statistical analysis. In [10], line pa-
rameters estimation is addressed considering the positive sequence model of
the transmission line and the presence of only PMU errors. This approach is
applied in [11] too, where the identification of susceptances and reactances is
addressed. Also in [12], the estimation of line parameters, considering series and
shunt compensators, is addressed assuming the presence of PMU errors only. In
[13–15], line parameters estimation methods are proposed for distribution grids,
considering an error contribution introduced by PMUs.

In [5, 16], line parameters estimation is addressed considering multiple time
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CHAPTER 1. PARAMETERS ESTIMATION FOR TRANSMISSION AND
DISTRIBUTION SYSTEMS

instants and modeling IT errors as zero-mean random noise, thus neglecting
the contribution of systematic errors. Also in [17], where a single-phase line
parameters estimation is proposed, PMU and IT errors are modeled as zero-
mean Gaussian noise in the magnitude and phase-angle of each measurement.
In the line parameters estimation problem discussed in [18] and [19] the entire
measurement chain is taken into account, but random errors are the only type
of error considered to influence the measurement process.

In literature, several papers address line parameters estimation problem us-
ing the Least Square (LS) method, using multiple time instants and under
normal operating conditions. Among these, [20] presents a single-phase line
parameters estimation based on field measurements, but, also in this case, the
presence of systematic measurement errors in the estimation problem is not
expected. Differently, in [21] three different LS methods have been compared
using on field measurements and highlighting the problems due to the presence
of systematic IT errors. Similar considerations are outlined in [22], where the
limit of neglecting, in a real distribution grid, the contribution of IT errors is
discussed. [23] presents a new method for line parameters estimation that con-
siders the addition of extra parameters in the estimation model. In particular,
these extra parameters account for the bias errors in the non-calibrated ITs.

In [24], a three-phase line parameters estimation for transmission systems is
addressed using on-site measurements and a three-phase π-model for the lines.
In this paper, as in [21] and [22], it is emphasized that IT accuracy must be
considered. In [25], a PMU-based method for the calibration of voltage trans-
formers is proposed, with the main purpose to find the optimal location of “good
quality” measurements that bring calibration errors below a specific threshold.
[26] proposes a method to estimate line parameters exploiting calibrated ITs at
the start node and, in particular, these ITs are used to propagate the accuracy
along the network under analysis.

In [27], the estimation problem of both systematic measurement errors and
line parameters is faced neglecting current phase-angle and voltage-amplitude
systematic errors. [28] presents, in a single-line approach, the estimation of
systematic errors and line parameters assuming that ITs at the sending node
are calibrated. In a preliminary step, a detection of uncalibrated ITs is also
proposed. Also in [29], line parameters estimation along with the correction
of uncalibrated instrument transformers is proposed, finding the presence of
uncalibrated ITs with a bias error detection test.

In [30], a technique intended to estimate, for distribution systems, line pa-
rameters together with the systematic errors in the measurement chain is pre-
sented. The method, relying on a PMU monitoring system, is based on a linear
approximation of the measurement functions and errors, and is validated on a
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small portion of a grid. In [31], a new iterative algorithm that allows dealing
with large line parameter deviations is proposed. It allows the simultaneous es-
timation of multiple impedances on multiple branches in distribution systems.
Moreover, the systematic errors in the measurement chain are considered in the
estimation problem, thus allowing the algorithm to estimate them as well. The
method in [31] is extended for three-phase systems in [32], where constraints de-
riving from injected currents and zero injection are introduced and used together
with voltage drops to improve the accuracy of the estimation.

1.2.2 Transformer parameters estimation

Accurate values of line parameters, as already underlined, are critical for several
EMS applications, but, for a proper grid management, accurate information on
the transformers parameters is also necessary. In this context, the presence of
tap changers and, in particular, the value of the actual tap ratio of a power
transformer is a key factor, sometimes difficult to obtain.

The tap changer plays a relevant role in monitoring and control of voltages
and is a critical component, for example, in voltage stability operations [33] since
it influences the margins of voltage stability. The tap changer is one of the most
susceptible parts in the power transformer due to the fact that its elements suffer
from both electrical and mechanical stresses [34], [35] (e.g., frequent operation
changes lead to accelerating wear and tear) and its uncertainty can impact
on applications of great importance like state estimation (see, as an example,
[36, 37]).

In the context of transmission grids, many papers take into account the
problem of estimating the tap changer behavior in equivalent single-phase power
grids. For instance, [38] addresses the tap position identification problem and
[39] presents an iterative state estimation method which includes, in the state
vector, the tap positions. In [36] an augmented state estimation is proposed
including additional state variables such as voltage turn ratios or phase shift
angles of the transformers. This state estimation is addressed by means of
a measurement model transformed to a conventional nodal frame formulation
that introduces one fictitious bus and one fictitious branch for each transformer.
Other papers consider the simultaneous estimation of line and transformer pa-
rameters due to the fact that an accurate knowledge of the value of tap changer
parameters affects the effectiveness of network parameters estimation tools. In
[40], a combined estimation of line and transformer parameters is proposed us-
ing a supervisory control and data acquisition (SCADA) system. For estimation
purposes, the relationships between the state vector and the parameters of in-
terest are considered in order to estimate linearly the single-phase values of tap
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ratio, impedance and transversal susceptance. [41] presents a phasor-only aug-
mented state estimator with current channel scaling factors. The estimation
of tap position and line parameters is possible if a current PMU measurement
is available and if sufficient measurement redundancy is ensured. A similar
method is tested on a real system in [42]. However, in this context, the specific
assessment of the impact of the measurement chain errors on the estimation
results is not possible.

In [43,44] the estimation of line and transformer parameters is addressed by
means of PMUs (assumed at both ends of each line), adding measurement errors
to the voltage and current synchrophasors obtained from load flow solutions.
In [45] a PMU-based method for the identification of positive-sequence series
transmission line and power transformer parameters is proposed. The developed
method is capable to estimate also negative and zero sequence parameters but,
in the measurement chain, only random errors are considered.

Besides the uncertainty of the tap changer ratio, also the model of the tap-
changing transformer has an impact on monitoring and control applications. In
this regard, two are the most used tap-changing transformer models in literature
and in software packages implementation (see, for details, [46–48]). In particu-
lar, these two tap-changing transformer models are described as a π-model where
the transformer short circuit impedance is provided by the nominal winding or
by the tapped winding. The transformer parameters can be usually obtained
from the data provided by manufacturers but, despite that, the nameplate data
[49] do not provide specific information on the windings. In fact, manufacturers
are not required to provide to customers this type of information.

In this context, some papers address the topic of a correct modeling of the
transformer equipped with tap changer. In [50], it is emphasized how the use
of a traditional tap-changing transformer model can lead to incongruities, while
[33] presents, in the context of voltage stability studies, an improved π-model
of the transformer that considers the possible impedance in each transformer
winding. In [51], a general model for tap-changing transformer is presented.
The model introduces an additional parameter, i.e. k, which represents the
ratio among nominal and tapped winding impedances. The focus of this paper
is to emphasize how the use of traditional models can lead to critical situations
in case of transformers operating at extreme tap positions.

Starting from the aforementioned issues concerning the inaccurate knowledge
of power grid parameters, this thesis aimed to develop and validate a method-
ology for estimating the power grid parameters and systematic measurement
errors.

5



Chapter 2

Proposed Methodology:
Modeling the grid and the
measurement chain

In the context of estimation procedures for power network parameters, this
thesis presents a PMU-based method for the estimation of line and transformer
parameters (i.e., tap changer ratios) with the simultaneous compensation of am-
plitude and phase-angle systematic errors of voltage and current synchrophasor
measurements. No assumption is made on the presence of pre-calibrated devices.
In particular, the problem has been addressed considering the uncertainty of the
measurement chain, which includes the errors introduced by PMUs and ITs. In
the thesis, the general assumption about these errors is that random errors are
mainly associated with PMUs, while systematic errors are mainly associated
with ITs.

The algorithm presented in this thesis is based on a method presented in lit-
erature for the line parameters estimation in distribution systems. This method
was conceived in both single-phase [30]-[31] and three-phase [52]-[32] versions.
The proposed methodology, differently from [30–32, 52], has been designed to
also work for transmission systems and to include the estimation of the transver-
sal susceptances in the model. Moreover, the proposal is able to take into ac-
count and estimate power transformer parameters.

The problem of network parameters estimation is addressed initially with a
single branch approach and then on multiple branches at the same time. This
provides the algorithm with greater flexibility because it allows applicability
to networks of different size. The algorithm can be applied indifferently to
transmission or distribution grids and to either equivalent single-phase or three-
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CHAPTER 2. PROPOSED METHODOLOGY: MODELING THE GRID
AND THE MEASUREMENT CHAIN

phase systems.

2.1 Single-phase method

In this section, the fundamental assumptions and analyses concerning the de-
veloped method are presented. For the sake of a simpler introduction to the
method, firstly, an equivalent single-phase model of a three-phase system is
considered for lines [53,54] and tap-changing transformers [55].

2.1.1 Single-phase line model

As general assumptions of the method, a π-model (as shown in Fig. 2.1) is taken
into account for a generic line (i, j) of a power system and a synchrophasor
measurement unit is assumed to be available at each node.

This last assumption allows measuring two voltage synchrophasor measure-
ments (indicated as vi and vj for the start and end nodes, respectively) and two
branch current synchrophasor measurements (ii,j and ij,i flowing from the start
and end nodes). PMU measurements, due to their nature, can be time-aligned
and thus, it is possible to define a coordinated set of measurements associated
with the same time instant t.

The line parameters of interest, for the π-model in Fig. 2.1, are the line
impedance zi,j = Ri,j + jXi,j and the shunt susceptance Bsh,i,j (which, in this
case, it is assumed equally divided into the two sides of the branch). It is then
possible to define a measurement model that links the set of measured values,
affected by uncertainties and line parameters, which are not exactly known.
Each synchrophasor measurement can be expressed as a function of the reference
values (indicated hereafter by the superscript R) and of the measurement errors.
The voltage and current measurements are indicated as follows:

Figure 2.1: Equivalent single-phase π-model of a generic line with parameters
and available measurements.
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vh = Vhe
jφh = V rh + jV xh

= (1 + ξsys
h + ξrnd

h )V Rh e
j(φRh+αsys

h +αrnd
h )

ii,j = Ii,je
jθi,j = Iri,j + jIxi,j

= (1 + ηsys
i,j + ηrnd

i,j )IRi,je
j(θRi,j+ψ

sys
i,j +ψ

rnd
i,j )

(2.1)

where the subscript h represents the generic node of the branch (i, j) and, thus,
Vh and φh are, respectively, the voltage magnitude and phase-angle measure-
ments corresponding to node h. Focusing on the branch current ii,j flowing from
node i toward the node j, Ii,j and θi,j are its measured magnitude and phase-
angle (similar considerations can be done for the branch current ij,i). In (2.1),
superscripts r and x are used for the real and imaginary parts of the correspond-
ing phasors. The measurement errors affecting each measurement can be either
systematic or random, indicated with superscripts sys and rnd, respectively. In
particular, the symbols ξh and ηi,j refer to ratio errors of voltage and current,
while αh and ψi,j are the phase displacement errors for vh and ii,j , respectively.
Systematic and random errors are two different types of errors, with systematic
errors that do not vary across repeated measurements, while random errors are
different for each observation.

Since relationships on power systems are valid only on actual values of volt-
ages and currents, it is useful to rewrite the reference values as a function of
measured ones. To do that, it is assumed that, due to the typical IT and PMU
accuracies, the absolute values of all the considered errors are much lower than
one (i.e. |ξ|, |α|, |η|, |ψ| ≪ 1) and thus, it is possible to define the reference
values vRh and iRi,j as:

vRh ≃
(
1− ξsys

h − ξrnd
h

)
(V rh + jV xh )

(
1− jαsys

h − jαrnd
h

)
(2.2a)

iRi,j ≃
(
1− ηsys

i,j − ηrnd
i,j

) (
Iri,j + jIxi,j

) (
1− jψsys

i,j − jψrnd
i,j

)
(2.2b)

In (2.2), the relationships between measured and actual values are obtained
using the approximation (1 + x)−1 ≃ 1 − x for x ≃ 0 and the linearization
of the exponential functions by means e−jx ≃ 1 − jx. Applying a first order
approximation to (2.2), it is then possible to express the final relationships:

vRh ≃ (V rh + jV xh )
(
1− ξsys

h − ξrnd
h − jαsys

h − jαrnd
h

)
(2.3a)

iRi,j ≃
(
Iri,j + jIxi,j

) (
1− ηsys

i,j− ηrnd
i,j − jψsys

i,j− jψrnd
i,j

)
(2.3b)

A fundamental assumption of the presented estimation approach is that sys-
tematic errors cannot be omitted in the evaluation process and thus they are
treated as unknown parameters to be estimated together with the line param-
eters. Focusing on Fig. 2.1, the line parameters can be expressed as a function
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CHAPTER 2. PROPOSED METHODOLOGY: MODELING THE GRID
AND THE MEASUREMENT CHAIN

of their values available in System Operator (SO) database (indicated with the
superscript 0) and their deviations from these values. The expressions are indi-
cated as:

zi,j = R0
i,j (1 + γi,j) + jX0

i,j (1 + βi,j)

Bsh,i,j = B0
sh,i,j (1 + δi,j)

(2.4)

where γi,j , βi,j and δi,j are the relative deviations of SO database values of
resistance, reactance and transversal susceptance, respectively.

The proposed algorithm, in all of its formulations, is based on the constraints
given by Kirchhoff’s laws. The latters allow writing the equations among the
line parameters, the measured values and measurement errors. The constraint
equations derived from the voltage drop and the current balance equations are
defined as: (

vRi − vRj
)
= zi,j

(
iRi,j − j

Bsh,i,j

2
vRi

)
(2.5)

(
iRi,j + iRj,i

)
= j

Bsh,i,j

2

(
vRi + vRj

)
(2.6)

2.1.2 Tap-changing transformer model

Besides the unavoidable uncertainty on parameters, the possibility of having an
accurate knowledge of the transformer behavior is complicated by the presence
of the tap changers. Specifically, accurate knowledge on the actual tap ratio of
the transformers in the power systems can be challenging to achieve. In fact,
tap changer ratios are inevitably affected by uncertainty and this results into a
high variability [56], which impacts on fundamental analysis tools in monitoring
and control applications. Among these tools, also line parameters estimation
methods can be affected by an inaccurate knowledge of tap changer ratios.

Thus, in this thesis, a method for the simultaneous estimation of line and
transformer parameters is also addressed. Also in this case, the first approach
to the problem is carried out using a single-phase model [46], shown in Fig. 2.2.

The transformer is associated with a branch (l, k) assumed to be equipped
with PMUs at both ends. Similarly to what defined in Section 2.1.1 (replacing
the pairs of indexes i, j with l, k), also for the π-model of the transformer, it
is possible to express voltage measurements vl and vk (the associated reference
values are vRl and vRk ) and current measurements il,k and ik,l (the associated
reference values are iRl,k and iRk,l) as in (2.3) relying on the same assumptions.
The transformer resistance is assumed negligible with respect to the transformer
reactance. For this reason, the transformer parameters can be defined as:
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Figure 2.2: Equivalent single-phase π-model of a tap-changing transformer
with parameters and available measurements.

zl,k =
1

yl,k
= jX0

l,k (1 + βl,k)

al,k = a0l,k (1 + τl,k)

(2.7)

whereX0
l,k is the value of the transformer reactance available in the SO database,

while a0l,k represents the nominal tap changer ratio. Finally, βl,k and τl,k are the
relative deviations of Xl,k and al,k with respect to X0

l,k and a0l,k, respectively.
In the presented procedure, tap changer ratio variations are considered un-

knowns to estimate. Considering the inertia of the mechanism, in what follows,
these variations will be considered occurring on a much longer timescale than
PMU reporting rate. Similarly to the complex equations (2.5)-(2.6) introduced
for the line, it is possible to apply the Kirchhoff’s laws also for the tap-changing
transformer and define the following equations:

vRl − al,kv
R
k = a2l,kzl,ki

R
l,k (2.8)

iRk,l = −al,k
(
iRl,k
)

(2.9)

2.1.3 Estimation framework

Following the assumptions of Sections 2.1.1 and 2.1.2 and thanks to the adopted
approximations, it is possible to define a system of linear equations that link the
measured values of voltage and current phasors with the unknown parameters
to be estimated, which are:

• line parameters deviations for a generic line (i, j);

• reactance and tap ratio deviations for the transformer equipped with the
tap changer (l, k);
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• all the systematic measurement errors (magnitude and phase-angle) asso-
ciated with the measured voltages and currents.

Firstly, it is possible to build the system of linear equations for a generic line
corresponding to branch (i, j). In particular, replacing (2.3) and (2.4) in (2.5)
and (2.6), and neglecting second order terms, four real valued equations can be
obtained.

For the voltage drop constraint (2.5), the following two equations, for the
real and imaginary parts, can be written:

V ri − V rj − Iri,jR
0
i,j + Ixi,jX

0
i,j −

B0
sh,i,j
2

(
V ri X

0
i,j + V xi R

0
i,j

)
≃
(
ξsys
i + ξrnd

i

) [
V ri − B0

sh,i,j
2

(
V ri X

0
i,j + V xi R

0
i,j

)]
+

+
(
αsys
i + αrnd

i

) [
−V xi − B0

sh,i,j
2

(
V ri R

0
i,j − V xi X

0
i,j

)]
+

−
(
ξsys
j + ξrnd

j

)
V rj +

(
αsys
j + αrnd

j

)
V xj +

+
(
ηsys
i,j + ηrnd

i,j

) (
−Iri,jR0

i,j + Ixi,jX
0
i,j

)
+

+
(
ψsys
i,j + ψrnd

i,j

) (
Iri,jX

0
i,j + Ixi,jR

0
i,j

)
+

+ γi,jR
0
i,j

(
Iri,j +

B0
sh,i,j
2 V xi

)
+

+ βi,jX
0
i,j

(
−Ixi,j +

B0
sh,i,j
2 V ri

)
+

+ δi,j
B0

sh,i,j

2

(
V ri X

0
i,j + V xi R

0
i,j

)

(2.10)

V xi − V xj − Iri,jX
0
i,j − Ixi,jR

0
i,j +

B0
sh,i,j
2

(
V ri R

0
i,j − V xi X

0
i,j

)
≃
(
ξsys
i + ξrnd

i

) [
V xi +

B0
sh,i,j
2

(
V ri R

0
i,j − V xi X

0
i,j

)]
+

+
(
αsys
i + αrnd

i

) [
V ri +

B0
sh,i,j
2

(
−V ri X0

i,j + V xi R
0
i,j

)]
+

−
(
ξsys
j + ξrnd

j

)
V xj −

(
αsys
j + αrnd

j

)
V rj +

+
(
ηsys
i,j + ηrnd

i,j

) (
−Iri,jX0

i,j − Ixi,jR
0
i,j

)
+

+
(
ψsys
i,j + ψrnd

i,j

) (
−Iri,jR0

i,j + Ixi,jX
0
i,j

)
+

+ γi,jR
0
i,j

(
Ixi,j −

B0
sh,i,j
2 V ri

)
+

+ βi,jX
0
i,j

(
Iri,j +

B0
sh,i,j
2 V xi

)
+

+ δi,j
B0

sh,i,j

2

(
V xi X

0
i,j − V ri R

0
i,j

)

(2.11)

The same assumptions, substitutions and approximations can be also applied
to the current-balance constraint (2.6), defining two real valued equations (for
the real and imaginary parts) as:
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Iri,j + Irj,i +
B0

sh,i,j

2

(
V xi + V xj

)
≃ Iri,j

(
ηsys
i,j + ηrnd

i,j

)
− Ixi,j

(
ψsys
i,j + ψrnd

i,j

)
+

+ Irj,i
(
ηsys
j,i + ηrnd

j,i

)
− Ixj,i

(
ψsys
j,i + ψrnd

j,i

)
+

+
B0

sh,i,j
2 [

(
ξsys
i + ξrnd

i

)
V xi +

(
ξsys
j + ξrnd

j

)
V xj +

+ V ri
(
αsys
i + αrnd

i

)
+ V rj

(
αsys
j + αrnd

j

)
−
(
V xi + V xj

)
δi,j
]

(2.12)

Ixi,j + Ixj,i −
B0

sh,i,j

2

(
V ri + V rj

)
≃ Ixi,j

(
ηsys
i,j + ηrnd

i,j

)
+ Iri,j

(
ψsys
i,j + ψrnd

i,j

)
+

+ Irj,i
(
ηsys
j,i + ηrnd

j,i

)
+ Ixj,i

(
ψsys
j,i + ψrnd

j,i

)
+

+
B0

sh,i,j
2 [ − V ri

(
ξsys
i + ξrnd

i

)
− V rj

(
ξsys
j + ξrnd

j

)
+

+ V xi
(
αsys
i + αrnd

i

)
+ V xj

(
αsys
j + αrnd

j

)
+
(
V ri + V rj

)
δi,j
]

(2.13)

Then, focusing on the generic branch (l, k) associated with a tap-changing trans-
former, it is possible to define two pairs of real valued equations for both voltage
drop and current-balance constraints. In particular, replacing the voltages vRl ,
vRk , the currents iRl,k, i

R
k,l and the transformer parameters (2.7) in (2.8), and

neglecting second order terms, it is possible to write, for the voltage drop con-
straint (2.8), the equations as:

V rl − a0l,k (V
r
k ) + (a0l,k)

2X0
l,kI

x
l,k

≃
(
ξsys
l + ξrnd

l

)
V rl −

(
αsys
l + αrnd

l

)
V xl +

−
(
ξsys
k + ξrnd

k

)
a0l,kV

r
k +

(
αsys
k + αrnd

k

)
a0l,kV

x
k +

+
(
ηsys
l,k + ηrnd

l,k

)
(a0l,k)

2X0
l,kI

x
l,k +

(
ψsys
l,k + ψrnd

l,k

)
(a0l,k)

2X0
l,kI

r
l,k+

− βl,k(a
0
l,k)

2X0
l,kI

x
l,k + τl,k

[
a0l,kV

r
k − 2(a0l,k)

2Ixl,kX
0
l,k

]
(2.14)

V xl − a0l,kV
x
k − (a0l,k)

2X0
l,kI

r
l,k

≃
(
ξsys
l + ξrnd

l

)
V xl +

(
αsys
l + αrnd

l

)
V rl +

−
(
ξsys
k + ξrnd

k

)
a0l,kV

x
k −

(
αsys
k + αrnd

k

)
a0l,kV

r
k +

−
(
ηsys
l,k + ηrnd

l,k

)
(a0l,k)

2X0
i,jI

r
l,k +

(
ψsys
l,k + ψrnd

l,k

)
(a0l,k)

2X0
l,kI

x
l,k+

+ βl,k(a
0
l,k)

2X0
l,kI

r
l,k + τl,k

[
a0l,kV

x
k + 2(a0l,k)

2Irl,kX
0
l,k

]
(2.15)

Finally, considering the same substitutions and approximations for the cur-
rent balance constraint equation (2.9), it is possible to define two real-valued

12
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equations:

Irk,l + a0l,kI
r
l,k ≃

(
ηsys
k,l + ηrnd

k,l

)
Irk,l −

(
ψsys
k,l + ψrnd

k,l

)
Ixk,l+

+
(
ηsys
l,k + ηrnd

l,k

)
a0l,kI

r
l,k −

(
ψsys
l,k + ψrnd

l,k

)
a0l,kI

x
l,k+

− τl,ka
0
l,kI

r
l,k

(2.16)

Ixk,l + a0l,kI
x
l,k ≃

(
ηsys
k,l + ηrnd

k,l

)
Ixk,l +

(
ψsys
k,l + ψrnd

k,l

)
Irk,l+

+
(
ηsys
l,k + ηrnd

l,k

)
a0l,kI

x
l,k +

(
ψsys
l,k + ψrnd

l,k

)
a0l,kI

r
l,k+

− τl,ka
0
l,kI

x
l,k

(2.17)

In (2.10)-(2.17) the left-hand side terms are the known terms, which are
composed of measured and nominal values (indicated with the superscript 0),
those on the right-hand side are function not only of the considered measurement
errors but also of line (or transformer) parameters deviations. In the right side,
besides the random errors, there are the systematic magnitude and phase-angle
errors, e.g. of ITs, that, in addition to line and power transformer parameters,
need to be estimated.

The four equations (2.10)-(2.13) for a generic line (i, j) and, similarly, the
equations (2.14)-(2.17) for the generic power transformer branch (l, k) represent
a set of new equivalent measurements related to the unknown parameters and
the random measurement errors. Considering a generic branch (i, j) and a
single measurement instant t associated with the time-tag of PMUs, it possible
to define a system of equations as follows:

bi,j,t = Hi,j,t



ξsys
i

αsys
i

ξsys
j

αsys
j

ηsys
i,j

ψsys
i,j

ηsys
j,i

ψsys
j,i

γi,j

βi,j

δi,j



+Ei,j,t



ξrnd
i

αrnd
i

ξrnd
j

αrnd
j

ηrnd
i,j

ψrnd
i,j

ηrnd
j,i

ψrnd
j,i



= Hi,j,txi,j +Ei,j,tei,j,t = Hi,j,txi,j + ϵi,j,t

(2.18)

In (2.18), bi,j,t is the 4 × 1 vector of known terms at time t, Hi,j,t is the
measurement matrix that links the equivalent measurements to the unknown
parameters to be estimated. Finally, Ei,j,t is the transformation matrix (Jaco-
bian matrix) relating equivalent measurements random error vector ϵi,j,t to the
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PMU random errors in ei,j,t, while the state vector xi,j groups the 11 unknowns
(γi,j , βi,j and δi,j plus the magnitude and phase-angle systematic errors for vi,
vj , ii,j and ij,i) of the branch (i, j).

Similar considerations and conclusions can be drawn also for the generic
tap-changing transformer branch (l, k). The only difference with respect to the
line (i, j) is that the state vector xl,k has 10 unknowns due to the model in Fig.
2.2, which has βl,k and τl,k as parameters of interest.

If only the timestamp t is considered, the estimation problem defined in
(2.18), is undetermined (as underlined in [57]) since there are 4 equations in
11 unknowns. In this context, the idea was to consider multiple time instants
t1, ..., tNt and their associated measurement sets to define a new system of equa-
tions:

bi,j =


bi,j,t1

...
bi,j,tNt

 =


Hi,j,t1

...
Hi,j,tNt

xi,j +


Ei,j,t1

...
Ei,j,tNt

 ei,j

= Hi,jxi,j + ϵi,j

(2.19)

This can be achieved thanks to PMUs, which, due to their high RR (which
can reach hundreds of measurements per second), can provide different snap-
shots of the same load condition, i.e. repeated observations of basically the same
network condition. Thus, for the estimation problem, it is possible to consider
two types of measurements:

• measurements that represent different load or generator conditions, associ-
ated with different “cases” (in what follows, the number of cases considered
will be indicated as C).

• repeated measurements of the same network condition (for each of the
C cases) that, due to the small time interval (corresponding to 1 s or
less), can been averaged to reduce the random error contribution on the
measurements.

By averaging the measurement data, the problem (2.19) that has a number of
time instants Nt = M · C (i.e., C cases and M repeated observations for each
case), can be considered composed only of C cases.

Then, in addition to the equations in (2.19), prior information about the IT
class (from the manufacturer’s specifications) and assumed maximum network
parameters variability can be used to define an augmented and overdetermined
estimation problem as:
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bi,j,tot =

[
bi,j

011×1

]
=

[
Hi,j

I11

]
xi,j +

[
ϵi,j

eprior

]
= Hi,j,totxi,j + ϵi,j,tot (2.20)

where 011×1 is a vector of zeros of length 11, which defines the pseudo-
measurements associated to the prior information (i.e., no deviations is as-
sumed), while I11 is the identity matrix of size 11. Finally, ϵi,j,tot includes not
only the equivalent random errors but also the random variables that represent
prior errors.

The problem in (2.20) can be solved, as will be discussed in detail in the
Section 2.1.3, by means of Weighted Least Square (WLS) estimation, where
the weight matrix Wi,j,tot is chosen as the inverse of the covariance matrix of
measurements and prior errors:

Σϵi,j,tot =

[
Σϵi,j 0

0 Σeprior

]
(2.21)

The resulting covariance matrix includes, on the first diagonal term, the co-
variance matrix of all the equivalent measurements (assumed, in absence of
specific information, decorrelated for all cases), obtained applying the uncer-
tainty propagation law [58] to the matrix representing the PMU uncertainty
Σei,j , as follows:

Σϵi,j = Ei,jΣei,jE
⊺
i,j (2.22)

where ⊺ indicates the transpose operator. It is worth highlighting that Ei,j is
a rectangular full row rank matrix, and thus, the matrix Σϵi,j is invertible.
The second diagonal term Σeprior in (2.21) includes all the prior variances of the
unknowns. Thus, the resulting WLS problem is:

(H⊺
i,j,totWi,j,totHi,j,tot)x̂i,j = H⊺

i,j,totWi,j,totbi,j,tot (2.23)

where x̂i,j is the estimated vector.

Estimation on a set of branches

Considering multiple branches altogether (defining a branch set Γ of cardinality
Nbr) at the same time, the problem can be defined considering all the voltage
constraints (2.5) and the current equations (2.6) for all the branches (i, j) ∈
Γ. In this case, the unknowns are all the systematic measurement errors and
line parameters deviations of the Nbr branches involved, all grouped in the
augmented state vector xΓ. Thus, the system in (2.19) grows to become a
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4×Nbr set of equations with n unknowns:

bΓ,t =


b(i1,j1),t

...
b(iNbr ,jNbr ),t

 = HΓ,txΓ +EΓ,teΓ,t = Hi,j,txΓ + ϵΓ,t (2.24)

where subscript Γ indicates that unknowns, equations and measurements corre-
spond to a given set of branches. An important aspect to consider and highlight
is that, when different branches are considered at the same time, the nodes adja-
cent to multiple branches share systematic measurement errors of the voltages.
This leads to a reduction of the measurement/constraints ratio and, as will be
shown in the next sections, an overall improvement of the estimation perfor-
mance.

The estimation problem defined by (2.24), as already mentioned, is typically
under-determined. However, multiple time instants t1, · · · , tNt , that is multiple
synchronized measurement sets, can be used and a new over-determined linear
system can be defined as follows:

bΓ=


bΓ,t1

...
bΓ,tNt

=

HΓ,t1

...
HΓ,tNt

xΓ+


EΓ,t1

. . .

EΓ,tNt



eΓ,t1

...
eΓ,tNt


= HΓxΓ +EΓeΓ = HΓxΓ + ϵΓ

(2.25)

where it is important to highlight that the unknown vector xΓ is common to
all the time instants, whereas measurement matrix and random errors change
with the timestamp. Also in this case, it is possible to exploit the high RR of
the PMU to use different cases and repeated measurements of the same case and
the prior information about the unknowns involving all the branches considered
(IT accuracy class and maximum parameters variability). Considering the Nbr
branches and NΓ ≤ 2Nbr nodes in Γ, combining C different operating cases
(while averaging repeated measurements) and adding prior information about
unknowns, an over-determined and augmented linear system is obtained:

btot =

[
bΓ

0n×1

]
=

[
HΓ

In

]
x+

[
ϵΓ

eprior

]
= HtotxΓ + ϵtot

(2.26)

with bΓ ∈ Rm, HΓ ∈ Rm×n, Htot ∈ R(m+n)×n, btot ∈ Rm+n, where m
is the number of involved Kirchhoff’s constraints. In and 0n×1 are the n-size
identity matrix and the n-zeros vector, respectively, with the same meanings of
(2.20). Then, m = 4 × Nbr × C and the number of unknowns includes both
2×NΓ + 4×Nbr systematic errors of the measurement chain and 3×Nbr line
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parameter deviations (if γ, β and δ line parameters are all present in the model
of each branch). In general, it is important to emphasize that this approach can
consider also branches where shunt susceptance can be neglected. The unknown
variables are then estimated by means of WLS, where the weight matrix is
chosen as the inverse of covariance matrix of measurements:

Σϵtot =

[
ΣϵΓ

0

0 ΣepriorΓ

]
(2.27)

which includes

• ΣϵΓ
∈ Rm×m, the covariance matrix of all the equivalent measurements,

defined by applying the law of propagation of uncertainty [58] to the
matrix representing the PMU measurement uncertainties ΣeΓ

(assumed
decorrelated for all cases):

ΣϵΓ = EΓΣeΓE
⊺
Γ (2.28)

• ΣepriorΓ
∈ Rn×n is the diagonal matrix including all the prior variances of

the unknowns.

The estimated state vector x̂Γ is thus the solution of the WLS problem, i.e.:

(H⊺
totWtotHtot)x̂Γ = H⊺

totWtotbtot (2.29)

where
Wtot = Σ−1

ϵtot
(2.30)

When multiple branches are considered at the same time1, it is also beneficial
to introduce additional constraints associated with the injected currents on the
nodes (if available). In particular, two cases can be observed: the first one is the
case of a node that is a zero injection (ZI) node [31], where the injected current
is zero, while, the second one is the case in which the injected current is not
zero. In general, for both cases, Kirchhoff’s current law can be used, applying
an additional complex equation, i.e. two linear real-valued equations for the
generic injection (or ZI) node j. For instance, when node j is a ZI node, the
equations become:

∑
h∈Ωj

Irj,h ≃
∑
h∈Ωj

Irj,h(η
sys
j,h + ηrnd

j,h )−
∑
h∈Ωj

Ixj,h(ψ
sys
j,h + ψrnd

j,h ) (2.31a)

∑
h∈Ωj

Ixj,h ≃
∑
h∈Ωj

Ixj,h(η
sys
j,h + ηrnd

j,h ) +
∑
h∈Ωj

Irj,h(ψ
sys
j,h + ψrnd

j,h ) (2.31b)

1Hereafter, the problem of line parameters and systematic measurement errors estimation
that considers multiple branches at the same time will be named "multi-branch" approach.
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In (2.31), Irj,h and Ixj,h are the real and imaginary parts of the generic measured
branch current phasor ij,h, and Ωj is the set of nodes adjacent to node j. It has
to be underlined that, if the node j is an injection node, the measured injected
current and its systematic and random errors must be also considered in the
equation.

Estimation problem framed as Tikhonov regularization

In the context of a grid parameters estimation, as already underlined in [57],
a proper management of data coming from different operating conditions is
needed. In fact, [31] shows that a larger number of operating conditions (i.e.,
constraint equations) has a positive effect on the estimation performance. In this
section, it is shown how the problem in (2.29) can be generalized as a particular
case of Tikhonov regularization [54]. This generalization permits improving the
estimation performance of line parameters and systematic measurement errors
by properly considering, in the estimation process, multiple load (or generator)
conditions.

The augmented problem (2.26) can be transformed in a LS problem by means
of the whitening process:

∀ WCh ∈ Rm×m : W⊺
ChWCh = Σ−1

ϵΓ

bw ≜ WChbΓ =⇒ Σbw = I
(2.32)

In (2.32), the whitening matrix is chosen as WCh = UCh
−⊺, where UCh is

the upper triangular matrix obtained by means of the Cholesky decomposition
of the matrix ΣϵΓ

. Furthermore, defining the diagonal matrix L = Σ
− 1

2
eprior , the

equivalent least square problem can be obtained as:

x̂WLS = argmin
x

∥∥∥∥∥
[

WChHΓ

L

]
x−

[
WChbΓ

0n×1

]∥∥∥∥∥
2

2

(2.33)

Then, it is possible to define:

y = Lx

A = WChHΓL
−1

(2.34)

and add a regularization parameter µ ∈ R+, which leads the LS problem:

ŷµ = argmin
y

∥∥∥∥∥
[

A
√
µIn

]
y −

[
bw

0n×1

]∥∥∥∥∥
2

2
(2.35)

Equation (2.35) is equivalent to the standard form of the Tikhonov regulariza-
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tion problem:
ŷµ = argmin

y
∥Ay − bw∥22 + µ ∥y∥22 (2.36)

and, then, once ŷµ is estimated, the state x̂ can be found inverting the first
equation in (2.34). Finally, it is possible to frame the augmented WLS problem
as a particular case of the Tikhonov regularization where µ = 1 and

x̂WLS = L−1ŷµ=1 (2.37)

thus retrieving the solution of the WLS from ŷµ=1.
A suitable management, in the estimation process, of multiple operative

conditions C can be exploited in order to leverage the high RR of PMUs. As
previously mentioned, the two equations (2.35) and (2.36) are different formu-
lations of the same problem: the first one is formulated as an augmented LS
problem, while the second one is addressed as a penalized problem that involve
two terms:

• The term ∥Ay − bw∥22 is the squared norm of the residual vector and
represents an index of how well the solution vector y fits the measurement
vector bw.

• The term ∥y∥22 is the square of the regularization term norm. It rep-
resents the “energy” of the solution vector y (i.e., x weighed with prior
information).

It is worth highlighting that in both formulations, it is possible to set µ
(regularization parameter) to take into account the a-priori information on the
problem to be solved. Then, applying the normal equations to (2.36), it is
possible to define the following equation:

(A⊺A+ µIn) ŷµ = A⊺bw (2.38)

and after that, it is possible to apply the Singular Value Decomposition (SVD)
to the matrix A (i.e., A = UΣV⊺) to express the analytical solution of the
problem as the regularization parameter µ changes:

ŷµ = V (Σ⊺Σ+ µIn)
−1

Σ⊺U⊺bw

=
∑
σj>0

fj
u⊺
jbw

σj
vj =

∑
σj>0

gjvj = ŷTikhonov
(2.39)

where

fj =
σ2
j

σ2
j + µ

(2.40)
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In (2.39), uj is the jth vector of matrix U, as well as vj for matrix V, while ŷµ is
obtained by means of a linear combination of vj through the Fourier coefficients
u⊺
jbw. fj is a “low-pass” filter that cuts down all the components corresponding

to σ2
j ≪ µ. With this framework, it is possible to analyze the trends of the

estimation performance if different network operating conditions and values of
µ are considered.

2.1.4 Analysis, tests and results: the single-phase method
settings and performance

Test assumptions

To assess the validity of the proposed approach, simulation tests have been
performed in MATLAB environment using the IEEE 14 bus test system in Fig.
2.3 (see, for details, Appendix I). Different number of cases C ∈ {10, 20, ..., 1000}
and M = 10 repeated measurements for each case have been considered, also
varying the number of involved branches.

To validate statistically the results, Monte Carlo (MC) simulations, with
NMC = 5000, have been performed. Each MC simulation is composed of M ×C
measurement instants sharing the same systematic error, then each MC trial
has a different systematic error. Random errors for each measurement instant
and each case have been extracted and added to the true values (considered as
reference values and indicated with superscripts R) of the voltage and current
synchrophasor measurements. These reference values of voltages and currents
have been obtained from a power-flow. Once the measurement errors are added
to these reference values, the M repeated measurements of the same operating
condition are averaged, obtaining a system of 4× C ×Nbr equations. The test
set-up follows these assumptions:

• Maximum deviations of line parameters Ri,j , Xi,j and Bsh,i,j have been
assumed equal to ±15%.

• ITs are assumed, both VTs [59] and CTs [60], to be of Class 0.5, thus using
a maximum error of 0.5% for voltage and current ratios, a maximum CT
phase-angle error of 0.9 crad (10−2 rad) and a maximum VT phase-angle
error of 0.6 crad. For every test, the errors have been extracted from
uniform distributions in order to define, for each MC trial, the actual
systematic errors.

• As for the PMUs, accurate values for real PMUs in steady-state conditions
have been considered. In particular, a maximum ratio error of 0.1% and
a maximum phase-angle error of 0.1 crad have been used for both voltage
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Figure 2.3: Unifilar diagram of the IEEE 14 bus test system.

and current measurements. This configuration will be hereafter referred
to as “PMU01”.

• Load/generator variability, among different cases, of ±10% with respect to
nominal values (for both active and reactive powers) has been considered.

The above base test configuration is adopted in the following tests, unless
different assumptions are explicitly made. First the performance assessment
focuses on line parameters and then a specific paragraph is dedicated to the
tests involving tap-changing transformers.

Analysis of regularization parameter impact and proposed configura-
tion

To investigate the role of the regularization parameter, several tests have been
performed. The first 6 branches and the corresponding buses of the IEEE 14
bus test system [61] shown in Fig. 2.3, and referred to as IEEE 14 in the figures,
have been considered to perform the analysis by varying µ and C.

To assess the performance of the estimation algorithm, the relative root
square error (RRSE) is used:

RRSE =
∥ŷµ − y∥2

∥y∥2
(2.41)
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Figure 2.4: IEEE 14 - 6 branches, average RRSE as a function of µ with a
varying number of operating conditions.

Figure 2.4 reports the evolution (in log-log scale) of RRSE (averaged on the
results of the NMC = 5000 simulations) as a function of µ (with µ ∈ [0, ..., 1000])
and three different scenarios C ∈ {10, 50, 500}.

As it can be seen from the figure, if no prior information is used (i.e., when
the value of µ = 0) the estimates are basically unreliable. Moreover, some
important remarks can be highlighted observing Fig. 2.4:

• RRSE values drop down when µ increases and, for the three scenarios
considered, the minimum is lower and shifted to the right with the in-
creasing of C. The flatness of the curve around this minimum means
that the method is robust with respect to an uncertainty on the a-priori
information about unknowns.

• For low values of µ, it is possible to observe that the estimation problem
starts as under-determined and, with an increasing number of the oper-
ating conditions, becomes over-determined. Anyway, without weighting
prior information with well-suited values of µ, higher values of C lead to
worse estimates.

• For C = 10, it is possible to observe that µ = 1 is very close to µmin (the
value corresponding to the minimum) but, if more cases are considered
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the estimation becomes unreliable (e.g., when 500 cases are considered,
the RRSE obtained by means of classic WLS goes beyond 100% and,
thus, prior error).

This behavior is not related to a conditioning problem since, as already
stated in [57], a higher number of C brings a lower condition number. Indeed,
when higher values of C are considered, the singular values profile shifts towards
higher values and, as a consequence, a greater µ is needed in order to comply
with the discrete Picard condition, which states ([62], [63]): Fourier coefficients
in (2.39) have to decrease faster than the corresponding singular values σj in
order to have a limited solution in (2.35).

Thus, in the context of the proposed methodology of network parameters
and systematic measurement errors estimation, the presented framework can be
leveraged to obtain a more accurate estimation and improve the knowledge on
the power system model.

Following from the above analysis, it is useful to tune the value of µ and
adapt it to the specifics of the current problem. To do that, different tests
in different configurations have been carried out and they have shown that the
increase in σj follows the number of equations, i.e. the number of rows of matrix
A (with A ∈ Rm×n). For this reason, the proposed regularization parameter
[54] has been empirically chosen as:

µsqrt =

√
m

n
(2.42)

To provide an idea of how the proposed regularization parameter is tuned
to this problem, Fig. 2.5 shows the trends of the Picard condition plots (con-
sidering C = 500). In the figure, the ideal solution that does not consider
measurement errors is indicated with red circles, while gj coefficients obtained
with µ = 0 (without prior), with WLS formulation (considering µ = 1) and
with µsqrt (proposed solution) are indicated with purple, blue and green aster-
isks, respectively. Thus, it is evident how the proposed regularization parameter
contains the coefficients surge better than other methods.

For sake of completeness, the proposed regularization method has been com-
pared with classic algorithms ([62], [64]) used for the choice of µ in the Tikhonov
problem, which are:

• L-curve criterion (LCC), a graphical tool consisting in a log-log plot that
represents the trend of the regularization term norm as a function of the
norm of the residual vector. This method chooses as regularization pa-
rameter the corner value (trade-off between the two terms in (2.36)) of
this curve.

• Generalized Cross Validation (GCV), a statistically based approach.
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Figure 2.5: IEEE 14 - 6 branches, filtering effect.

• Discrepancy Principle (DP), the only method based on the knowledge of
the error norm. This method chooses the regularization parameter so that
the residual norm is close to the error norm [65] as:

µDP : ∥bw −AŷµDP∥2 ≈ τ ∥ϵwmeas∥2 , τ ≥ 1 (2.43)

where ϵmeas is the measurement error vector, while ϵwmeas = WCϵmeas

represents the whitened measurement error vector (which have the identity
matrix as covariance matrix). The method in [66] has been applied to this
problem to have an estimation of the measurement error norm and the
problem in (2.43) has been solved by means of the method in [67].

Moreover, for sake of a complete comparison, also the benchmark method, which
takes the optimal regularization parameter µopt in all the MC trials, has been
considered. The optimal value is defined as:

µopt = argmin
µ

RRSEµ (2.44)

where RRSEµ is the RRSE corresponding to µ. As clear from the definition, the
optimal µ is used only as a reference and, in practice, it is not available since
its computation requires prior knowledge of the true values y.

Figure 2.6 reports the trends for the average RRSE varying the number of
cases from 10 to 500. The WLS method (µ = 1) shows an improvement of per-
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Figure 2.6: IEEE 14 - 6 branches, average RRSE (5000 MC trials performed)
whit different numbers of operating conditions.

formance at the beginning with a minimum for C = 50 but, for higher number
of cases C, the estimates become unreliable (see, as a further confirmation of
this behavior, Fig. 2.4). While the classic regularization methods LCC, GCV
and DP do not reach good estimation performance, the proposed regularization
method is the only one that, for different values of C, is close to the benchmark
solution. A flowchart schematically representing the proposed procedure in all
the above described aspects is shown in Fig. 2.7.

Performance test results

After refining the procedure, several tests have been carried out to assess the
estimation performance. In all the results reported in this thesis, the evaluation
metric used to assess the estimation performance of both the grid parameters
and the systematic errors is the root mean square error (RMSE):

RMSE =

√√√√NMC∑
m=1

(ν̂m − νm)2

NMC
(2.45)

In (2.45), ˆ indicates the estimated quantity and ν is a placeholder that can
be associated with each unknown of the state vector x (or xhd, with (h, d) =

(i, j) or (l, k) according to previously introduced notation and depending on the
considered branch type). On one hand, focusing on a generic line associated

25



CHAPTER 2. PROPOSED METHODOLOGY: MODELING THE GRID
AND THE MEASUREMENT CHAIN

ITs specifications 
and PMU accuracies

Line Parameters Estimation
+

Compensation of Systematic Measurement Errors

Tikhonov formulation 

Figure 2.7: Flow chart of the proposed procedure.

with the pair of nodes (i, j), ν can be equal to ξi, αi, ξj , αj , ηi,j , ψi,j , ηj,i, ψj,i,
γi,j , βi,j or δi,j . On the other hand, for a generic transformer associated with
the branch (l, k), ν can be equal to ξl, αl, ξk, αk, ηl,k, ψl,k, ηk,l, ψk,l, βl,k or τl,k.
In the following tests, unless otherwise specified (e.g. by using the above 2-node
indices notation), each branch will be indicated with a single ordinal number q,
as done in Fig. 2.3, and thus the associated line parameters will be γq, βq, δq.

The portion of the grid from node 1 to node 5 of Fig. 2.3 (the high voltage
nodes) has been used for the first series of tests, considering the multi-branch
approach. From the results shown in Fig. 2.6, it is possible to see that classic
regularization methods are basically unreliable and, thus, the methods WLS
(µ = 1), the proposed one (µsqrt-method) and the ideal solution µopt have been
compared. The results obtained with µopt are also considered as a performance
upper bound. However, it is important to recall that µopt is found based on
RRSE, thus depending on an average among all the unknowns. RRSE is indeed
a summary index that considers all the errors of the unknown parameters alto-
gether. For this reason, the RMSEs achieved with µopt for some quantities or
some branches may not be the lowest.

Both results, WLS and µsqrt-method, are presented choosing the best sce-
nario for each method, i.e. the value of C that allows best performance 2. In
addition, the basic scenario C = 10 is also used with the WLS (with µ = 1)

2The ideal results with µopt are presented using the same C as µsqrt.
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method to have a clear comparison of the estimation results. In this regard,
Table 2.1 shows the considered scenarios and the corresponding RRSE results
averaged among all MC trials.

Table 2.1: IEEE 14 - 6 branches, best average RRSE (5000 MC trials) for
different methods

Method Average RRSE [%]

WLS (µ = 1), C = 10 [53] 56.35
WLS (µ = 1), Cbest = 40 53.14

µ =
√
m/n, Cbest = 500 51.21

µopt, C = 500 50.20

In what follows, for the evaluations of the results, the RMSE obtained for
each unknown will be compared with the corresponding prior standard devia-
tion. Table 2.2 reports the summary of the prior values for all the parameters,
obtained as the maximum deviation of the associated parameter divided by

√
3.

It is worth underlining that, if different maximum deviations are considered (as
in the sections below), prior standard deviations in Table 2.2 change accordingly.

Table 2.2: Summary of prior

Parameter Prior standard deviation

γi,j , βi,j , δi,j 5.77%
ξh, ηi,j (or ηl,k) 0.29%

αh 0.35 crad
ψi,j (or ψl,k) 0.52 crad

βl,k 5.77%
τl,k 0.58%

Considering the same scenarios as in Table 2.1, Fig. 2.8 shows the estimation
RMSE for the branch resistance of the first 6 branches of the grid. It is possible
to underline that the results considering µ = 1 and C = 40, indicated with blue
plus signs, have an average improvement of about 32.2% with respect to the
scenario µ = 1 and C = 10 (green plus signs). The best WLS configuration
with µ = 1 is outperformed, with an additional improvement of 25.5%, by
the proposed regularization method (red asterisks). Furthermore, it is possible
to mention that, also in this case, the proposed regularization method is very
close to the benchmark results (empty blue circles). As mentioned above, µopt

depends on RRSE and is not the best value for each estimated quantity. This
explains why, as shown in Fig. 2.8, µsqrt-method is even slightly better of µopt-
method for γ 2, but for other unknowns this is not the case.

2In what follows, if notation is reported without indexes, it refers to the parameter type.
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Figure 2.8: IEEE 14 - 6 branches, estimation results for γ parameters.

A comprehensive picture of the proposed regularization method is reported
in Fig. 2.9, where the results for all parameter types are shown. In fact, the
proposed method (bars in foreground with solid line edge) improves all the
results obtained with µ = 1 and C = 40 (bars in background with dotted dashed
edge). As an example, the average percent error reductions of the proposed
method are 34.9% and 57.2% for βq and δq, respectively.

The RMSEs results for ξ are shown in Fig. 2.10 as a function of the number
of cases and for all the regularization methods presented in Section 2.1.3. It is
possible to say that the results for WLS, i.e. µ = 1, (green plus signs) and DP
with τ = 1.00 (blue triangles) go beyond the prior values (black dashed line).
The results confirm that the WLS method can lead to unreliable results when
the number of cases increases. Focusing again on the ξ estimates, Table 2.3
shows the comparison between the single-branch and multi-branch approaches
for ξ1, considering both µ = 1 and µ =

√
m/n and with C ∈ {10, 500}. Besides

the improvement that can be achieved when multi-branch method is considered,
it is possible to observe that the regularization with µ =

√
m/n brings clear

benefits when C is high and, it prevents the occurrence of critical conditions
also in the single-branch approach, as already observed in Fig. 2.10.

Further studies have been carried out considering the multi-branch approach

28



CHAPTER 2. PROPOSED METHODOLOGY: MODELING THE GRID
AND THE MEASUREMENT CHAIN

Figure 2.9: IEEE 14 - 6 branches, estimation results for all line parameters.

Table 2.3: IEEE 14 - node 1, RMSE (5000 MC trials) for ξ1 - comparison
between multi-branch and single-branch approaches

Method C RMSE [%]
Multi-branch Single-branch

µ =
√
m/n 10 0.16 0.22

µ =
√
m/n 500 0.16 0.21

WLS (µ = 1) 10 0.16 0.22
WLS (µ = 1) 500 1.01 0.46

on the entire IEEE 14 bus test system, considering a variable number of C
∈ {10, 20, ..., 1000} and comparing µsqrt and WLS methods. For the considered
methods, the best scenario is chosen and Cbest varies according to the configu-
ration (i.e., Cbest = 30 for WLS and Cbest = 200 for µsqrt). In particular, Fig.
2.11 reports βq estimates (q = {1, .., 6}) for both methods and two multi-branch
configurations. Nbr is the number of branches considered at the same time in
the estimation process, i.e., the cardinality of the branch set Γ. Nbr = 6 indi-
cates the first 6 branches, while the entire network corresponds to Nbr = 20).

Figure 2.11 shows the benefits of using a wider set of constraints, deriving
from the increased number of branches and cases. As a confirmation of this
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Figure 2.10: IEEE 14 - 6 branches, ξ estimation results as a function of the
number of cases for all the considered methods.

statement, the average improvement from the WLS (with µ = 1, C = 10 and
Nbr = 6) to µ =

√
m/n, Cbest = 200 and considering Nbr = 20 (indicated with

blue asterisks) is of about 66.6%.
To summarize the obtained estimation results, Fig. 2.12 shows the RMSE

values for all the line parameters, considering Nbr = 20 and using only the best
scenario Cbest for both WLS with µ = 1 (top of the figure) and µsqrt method
(bottom of the figure). It is important to highlight that a significant estimation
improvement can be obtained with the proposed method: γq, βq and δq have an
average RMSE improvement with respect to the WLS method of about 16%,
23.9% and 44.4%, respectively.

Finally, a comparison of the estimation results between the proposed method
and two different methods (from literature) using the above described measure-
ment set-up is shown in Table 2.4. The two considered methods compared with
the proposed one are:

• A direct estimation method (Method A) for the line parameters estimation
based on the classic equations reported in [8] (the same used in [9]). It
is important to underline that, for a fair comparison, the estimates have
been obtained by averaging repeated measurements like in the proposed
method.
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Figure 2.11: β estimation results with multi-branch approach applied to a
portion and to the entire network using different methods and configurations.

• The method presented in [28, Sec. IV] (Method B), intended to obtain the
simultaneous estimation, in a single-branch approach, of the line param-
eters and of the measurement errors introduced by the ITs at the arrival
node.

Table 2.4 shows the line parameters estimation results for branch 1 (consider-
ing C ∈ {10, 200}), but similar results can be obtained also for other branches.
RMSEs of resistance, reactance and systematic measurement errors at the end
node (since Method A does not include the estimation of systematic errors and
Method B does not allow the estimation of systematic errors of the start node)
have been reported. The symbol ‘−’ in Table 2.4 indicates that the correspond-
ing parameter is not available for the considered method. To prove the robust-
ness of the proposed method with respect to measurement accuracy, in addition
to PMU01, also a configuration that considers a maximum amplitude error of
0.2% and a maximum phase-angle error of 0.2 crad (indicated with “PMU02”)
has been taken into account. As a general comment, it is possible to observe
that the proposed method is more accurate than the others for every condition
and configuration. Focusing on γ1 estimates for Method A, these are always
beyond the prior value since the systematic errors affect the estimation and its
RMSE varies slightly with C and PMU accuracy. Method B, unlike Method
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Figure 2.12: IEEE 14 - entire network, estimation results for all the line
parameters.

A, takes advantage of an increase of C for the estimation of line parameters
but not for that of systematic errors (which is larger than prior values). As
a further confirmation of the quality of the proposal, the proposed method is
more robust than Method B when PMU accuracy degrades, i.e. moving from
PMU01 to PMU02. Thus, it is possible to conclude that properly considering
the uncertainty sources and using a multi-branch approach are key factors to
improve the estimation performance.

Tests and results for the tap-changing transformer

In this section, the validation of the proposed procedure carried out for the
tap-changing transformer is presented. To do that, a series of simulation tests
have been performed on the IEEE 14 bus test system (Fig. 2.3), considering
the single-branch and multi-branch approaches. All the tests have been exe-
cuted simulating C = 10 cases and M = 10 repeated measurements for each
case. NMC = 5000 trials have been performed. For each case, the reference
conditions are evaluated and voltages and currents are obtained by means of a
power-flow, where the actual tap changer conditions (i.e., tap changer ratios)
are also established. Systematic and random errors are then added, for each
measurement instant, to the reference values to obtain magnitude and phase-
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Table 2.4: IEEE 14 - branch 1, comparison of different methods

Method C PMU RMSE

accuracy γ1 β1 ξ2 α2 η2,1 ψ2,1

[%] [%] [%] [crad] [ %] [crad]

Proposed
Method

10 PMU01 2.53 0.88 0.10 0.10 0.20 0.37
PMU02 3.73 1.53 0.11 0.14 0.21 0.38

200 PMU01 1.38 0.38 0.10 0.09 0.20 0.36
PMU02 2.08 0.76 0.11 0.11 0.20 0.37

Method A

[8]

10 PMU01 13.15 5.16 - - - -
PMU02 13.16 5.16 - - - -

200 PMU01 13.08 5.10 - - - -
PMU02 13.08 5.10 - - - -

Method B

[28, Sec. IV]

10 PMU01 7.34 2.48 0.37 0.42 0.36 0.56
PMU02 14.99 5.71 0.55 0.65 0.53 0.68

200 PMU01 2.55 0.97 0.29 0.36 0.29 0.53
PMU02 4.84 3.05 0.31 0.46 0.30 0.53

angle of each synchrophasor measurement. The following assumptions have been
applied in order to obtain a realistic setup:

1. As for the line parameters, maximum deviations of Ri,j , Xi,j and Bsh,i,j

are assumed equal to ±10% (in this case, the corresponding prior standard
deviation is equal to 5.77%).

2. As for the ITs, they are assumed to be of Class 0.5, while for al,k a
maximum deviation of ±1% is assumed.

3. As for the PMUs, the configuration “PMU01” is used.

4. As for the operating conditions, a ±10% load/generator variability with
respect to nominal values (for both active and reactive powers) is consid-
ered among different cases.

For every test, the errors and the deviations have been extracted from uniform
distributions. To assess the performance of the estimation process, the RMSE
(2.45) is used.

The first series of tests have been carried out on single branches of the system.
In particular, the branches equipped with a tap changer have been considered
(i.e., branches 8, 9 and 10 in Fig. 2.3). To understand the impact of estimating
also the tap changer ratio along with the line parameters and the systematic
errors, a comparison has been made between the method including the tap
changer in the estimation process (named “Tap estimation”) and the method
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that consider the ratio like a known value, without uncertainty (named “No Tap
estimation”). Tap estimation method takes into account possible variations in
the actual tap ratio and performs a ratio estimation as shown in Section 2.1.3.
Table 2.5 shows the impact of the tap estimation on the evaluation of ξl, ξk, αl
and αk. It is possible to notice that the Tap estimation method can bring a
noticeable reduction of the errors, up to more than 30% with respect to No Tap
Estimation method. As for the parameter ξ, in case of Tap estimation a clear
reduction of the errors is obtained, whereas, the model mismatch jeopardizes
the No Tap estimation results.

Table 2.5: RMSE of systematic voltage errors estimation - single-branch esti-
mation

Branch
RMSE

ξl αl ξk αk

[%] [crad] [%] [crad]

(4, 7) Tap estimation 0.24 0.25 0.24 0.25

(4, 7) No Tap estimation 0.35 0.25 0.35 0.25

(4, 9) Tap estimation 0.24 0.25 0.25 0.25

(4, 9) No Tap estimation 0.35 0.25 0.35 0.25

(5, 6) Tap estimation 0.25 0.26 0.25 0.27

(5, 6) No Tap estimation 0.35 0.27 0.34 0.27

Then, a second series of tests has been performed on single branches, or
on an extended set of branches of this grid, or on the entire IEEE 14 bus test
system. As a first result, Table 2.6 shows the RMSE obtained for parameter τl,k
with or without the estimation of the tap changer ratio. The comparison of the
results obtained by applying both the single-branch (applied to the branches
with the tap changer) and multi-branch approach (applied to the entire IEEE
14 bus test system) is reported. It is possible to notice that the RMSEs of the
single-branch approach are more than halved when compared with the prior
errors. Moreover, the multi-branch method halves the RMSEs with respect to
the single-branch approach and, when compared with the prior errors, it brings
to reductions of more than 75%.

As a further example of the results obtainable when the multi-branch ap-
proach is applied, Fig. 2.13 shows the RMSEs of the evaluation of ξ. In the
figure are reported the results obtained on the entire network (“All branches”
results) and on a set of branches including all the branches of the grid except
those with tap changer (“reduced branch set” results).

It is possible to observe that estimating the tap ratios and using the entire
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Table 2.6: Tap ratio error τl,k estimation

Branch RMSE [%]
#, (l, k) Single-branch Multi-branch Prior

8, (4, 7) 0.26 0.13 0.57

9, (4, 9) 0.26 0.13 0.57

10, (5, 6) 0.26 0.13 0.57

Figure 2.13: Voltage amplitude systematic errors - results obtained with and
without tap estimation with respect to prior.

network (red circle markers) leads a remarkable reduction of the errors with
respect to the prior (black crosses). The No Tap estimation method (blue tri-
angles) suffers again from improper modeling and all the nodes are affected,
showing how its application cannot be generalized to all types of branch (rep-
resenting lines and transformers). It is important to underline that the No Tap
estimation method, which does not consider uncertainty in the tap ratio, be-
haves better if applied only on all the branches that do not include tap changers
(green stars). Nonetheless, on this reduced set of branches, the method is still
worse than Tap Estimation method, since it does not include all the available
constraints. This type of results highlights the importance of executing a pre-
liminary study on the network to monitor, in order to choose what type of
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Figure 2.14: Voltage phase-angle systematic errors - results obtained with and
without tap estimation with respect to prior.

estimation method could be applied most successfully.
Figure 2.14 shows the same kind of comparison in terms of the errors ob-

tained in the evaluation of the phase-angle voltage systematic errors. Also in
this case, the errors obtained with Tap Estimation (indicated with red asterisks)
are the lowest, resulting in average improvements of about 71% with respect to
prior errors and of about 26% with respect to the errors obtained applying the
No Tap estimation method on a reduced set of branches (green squares).

2.2 Three-phase method

In power system analysis, the methods are typically validated, in a first stage,
using equivalent single-phase models and balanced operative conditions. How-
ever, when unbalanced systems are considered or more details models are sought,
a three-phase approach needs to be introduced. In this regard, after the first
validation analysis reported in Section 2.1, this section presents the extension
of the presented methodology for the simultaneous estimation of network pa-
rameters and systematic measurement errors to three-phase systems [68]. This
approach permits having on one hand the estimation of real parameters of the
physical system (like, for example, the parameters of the cables of a branch).
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On the other hand, the estimation of the systematic errors associated with the
ITs, which is performed through the proposed estimation method, is inherently
related to the three-phase model because measurements are obtained on a per-
phase basis. Indeed, it is worth noticing that this permits the identification
of a specific degradation of the metrological performance of a single IT or of
the parameters in a given system phase, which is possible only if a three-phase
model is used.

2.2.1 Three-phase line model

As for a complete line model, a three-phase π-model (as shown in Fig. 2.15)
has been considered.

Figure 2.15: Equivalent three-phase π-model of a generic branch with
parameters and available measurements.

This model can be represented by means of two 3 × 3 matrices: Zi,j and
Ysh,i,j , which are the impedance and shunt admittance matrices, respectively.
These matrices can be expressed as:

Zi,j =

zi,j,aa zi,j,ab zi,j,ac

zi,j,ab zi,j,bb zi,j,bc

zi,j,ac zi,j,bc zi,j,cc

 (2.46)

Ysh,i,j =

ysh,i,j,aa ysh,i,j,ab ysh,i,j,ac

ysh,i,j,ab ysh,i,j,bb ysh,i,j,bc

ysh,i,j,ac ysh,i,j,bc ysh,i,j,cc

 (2.47)

In (2.46) and (2.47), in the entries of both matrices, the subscripts i and j

indicate the start and end nodes of the branch (i, j), while the subscripts p and

q (with p, q ∈ {a, b, c}) indicate the corresponding phases (in order to take into
account, in the three-phase matrices, the presence of diagonal elements and also
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the mutual parameters). The shunt admittance is assumed, as in (2.4), to be
equally divided into the two sides of the three-phase branch and it is assumed
to be a pure susceptance (ysh,i,j,pq = jBsh,i,j,pq). Consequently, the three-phase
matrix Ysh,i,j is equal to jBsh,i,j . The synchronized measurements, assuming
the availability of PMUs on both ends of each branch (i, j), are the three-phase
voltage vh,p synchrophasor measurements and the six synchrophasor current
measurements ii,j,p and ij,i,p (for both end nodes).

Considering the typical values of PMUs and ITs errors, it is possible to define
the reference synchrophasor vRh,p, i

R
i,j,p and iRj,i,p as a function of the measured

values vh,p, ii,j,p and ij,i,p, generalizing (2.3). In addition, the line parameters
of interest in the matrices (2.46), (2.47) can be expressed as a function of the
values available in the SO database and the deviations from these values. In
fact, from a generalization of (2.4) the generic element (p, q) in the matrices
Zi,j and Ysh,i,j can be expressed as:

zi,j,pq = Ri,j,pq + jXi,j,pq = R0
i,j,pq(1 + γi,j,pq) + jX0

i,j,pq(1 + βi,j,pq)

Bsh,i,j,pq = B0
sh,i,j,pq (1 + δi,j,pq)

(2.48)

where γi,j,pq, βi,j,pq and δi,j,pq are the relative deviations of Ri,j,pq, Xi,j,pq and
Bsh,i,j,pq values, respectively, from the values R0

i,j,pq, X0
i,j,pq and B0

sh,i,j,pq avail-
able in SO database.

Considering vRh =
[
vRh,a v

R
h,b v

R
h,c

]⊺
the three-phase voltage phasors vector

for node h and iRi,j =
[
iRi,ja i

R
i,jb

iRi,jc
]⊺ and iRj,i =

[
iRj,ia i

R
j,ib

iRj,ic
]⊺ the three-phase

vector for branch-current phasor vectors leaving node i and j, it is possible to
define the constraints for the three-phase formulation of the method by leverag-
ing the Kirkhhoff’s laws. In particular, the constraint equations corresponding
to the three-phase line voltage drop and current balance equations. These can
be defined as: (

vRi − vRj
)
= Zi,j

(
iRi,j − j

Bsh,i,j

2
vRi

)
(2.49)

(
iRi,j + iRj,i

)
= j

Bsh,i,j

2

(
vRi + vRj

)
(2.50)

Then, substituting the reference values vRh , iRi,j and iRj,i, rewritten as a function
of measured values and their errors, and the parameters (2.48) in the constraint
equations (2.49) and (2.50), it is possible to define (applying a first order ap-
proximation) a system of linear equations involving the measurement functions,
measurement errors and line parameters deviations. In particular, splitting the
obtained complex equations in real and imaginary parts and considering the
branch (i, j) and a time instant t, a system of 12 real valued equations can
be obtained. In the equations, like in Section 2.1, the model errors are given
by the effect of random errors (from PMUs) while the systematic measurement
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errors and the line parameter deviations are the unknown parameters included
in the three-phase state vector. For instance, the latter includes the 3× 1 vec-
tors of the systematic ratio and phase-angle errors for the voltage vector vh,
indicated as ξsys

h =
[
ξsys
h,a ξ

sys
h,b ξ

sys
h,c

]⊺
and αsys

h =
[
αsys
h,a α

sys
h,b α

sys
h,c

]⊺
, respectively.

Furthermore, similar considerations can be made to define the other vectors of
unknowns ηsys

i,j , ψsys
i,j , ηsys

j,i and ψsys
j,i . Focusing on line parameter deviations, it

is possible to define, for example, the 6 × 1 vector including the resistance de-
viations as γi,j,pq = [γi,j,aa γi,j,bb γi,j,cc γi,j,ab γi,j,ac γi,j,bc]

⊺ (similar definitions
can be used for βi,j,pq and δi,j,pq).

2.2.2 Three-phase tap-changing transformer models

The three-phase formulation of the estimator for tap-changing transformer op-
erating parameters is built on the single-phase version presented in Section 2.1
[55]. In particular, the proposed procedure is performed considering some of
the most used Step Voltage Regulators (SVRs) configurations in three-phase
systems and can be applied from the single branch to multiple branches or even
to the entire network. The SVR is a device usually installed at the substa-
tion or along the feeder in order to control the voltage levels and keep these
within acceptable limits. More specifically, the SVR is a connection of an auto-
transformer with a variable turn ratio related to the position of the tap [69].
The position of the tap is obtained through a control circuit that commands the
displacement of the device based on the approximated voltage drop.

The three-phase SVRs formulation of the wye and closed-delta connections
[70] is developed, allowing the application of the proposed method based on
both configurations [71].

In the thesis, following the notation of Section 2.1.2, the SVR is modeled
as installed in a branch (l, k) and, thus, the voltage measurements vl,p and vk,p
and the current measurements il,k,p and ik,l,p can be considered. If voltage
and current phasors are available at the primary and secondary of the SVR
(represented with an impedance matrix ZSVR,l,k), the constraint equations of
voltage drop and current balance can be applied. This can be obtained by
means of the matrices Av,l,k and Ai,l,k, which represent the voltage gain and the
current gain matrices, whose entries are determined by the specific connection.
For both wye and closed-delta connections, the relationship between the two
gain matrices is defined as:

A−1
v,l,k = A⊺

i,l,k (2.51)
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For a wye-connected SVR the following equation holds:

Av,l,k =

al,k,aa 0 0

0 al,k,bb 0

0 0 al,k,cc

 (2.52)

If a closed-delta connected SVR is considered, (2.52) becomes:

Av,l,k =

 al,k,ab 1− al,k,ab 0

0 al,k,bc 1− al,k,bc

1− al,k,ac 0 al,k,ac

 (2.53)

In (2.52) and (2.53) the nonzero entries of Av,l,k can be expressed as:

al,k,pq = a0l,k,pq (1 + τl,k,pq) (2.54)

where a0l,k,pq is the assumed value of the tap changer ratio and τl,k,pq is the
relative deviation of the actual value from the assumed one (the variation of the
tap changer ratios occur with a longer timescale than the RR of the PMUs).
τl,k,pq is considered, in the estimation process, as an unknown parameter to
be estimated. The impedance matrix for the wye connection of the SVRs is
diagonal (as in [70]) and it is defined from the following entries:

zl,k,pp = jX0
l,k,pp (1 + βl,k,pp) (2.55)

Similar considerations can be used for the closed-delta connected transformer.
In fact, the diagonal nonzero parameters zl,k,ab, zl,k,bc and zl,k,ac are associated
with the βl,k,ab, βl,k,bc and βl,k,ac deviations. For a generic SVR connection,
Yl,k is the 6× 6 nodal admittance matrix, defined as:

Yl,k =

Ai,l,kZ
−1
SVR,l,kA

⊺
i,l,k −Ai,l,kZ

−1
SVR,l,k

−Z−1
SVR,l,kA

⊺
i,l,k Z−1

SVR,l,k

 (2.56)

Considering (2.56), it is possible to define the constraint equations exploiting
the relationship between voltages and currents as:[

iRl,k
iRk,l

]
= Yl,k

[
vRl
vRk

]
(2.57)

It is then possible to use (2.56) and (2.57) to write the three-phase voltage
drop and current balance equations similarly to Section 2.1.2. In particular, it
is possible to exploit Av,l,k and (2.51) to define the following equations:

vRl −Av,l,kv
R
k = Av,l,kZSVR,l,kA

⊺
v,l,ki

R
l,k (2.58)

iRk,l = −A⊺
v,l,ki

R
l,k (2.59)

linking the actual values to the actual three-phase parameters.
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2.2.3 Three-phase estimation framework

As mentioned in Section 2.2.1, adopting the same assumptions and approxima-
tions used in Sections 2.1.1 and 2.1.3 for the single-phase case, it is possible to
obtain, for the generic three-phase branch (i, j), 12 real-valued equations (from 6

complex equations) linking through linearized measurement functions equivalent
measurements to all the unknown parameters. These linearized equations valid
for the generic three-phase branch (i, j) are the extension of the single-phase
version given by (2.10)-(2.13) and, thus, they won’t be reported. The voltage
drop and current balance constraint equations for the three-phase SVR model
defined by (2.58) and (2.59) (related to a generic three-phase power transformer
at branch (l, k)) are instead detailed in what follows.

Firstly, taking into account the wye-connected SVR, (2.60)-(2.63) represent
the real and imaginary parts of the voltage drop and current balance equations
written for the generic phases p ∈ {a, b, c}:

V rl,p − V rk,pal,k,pp + Ixl,k,pXl,k,ppa
2
l,k,pp ≃ V rl,p

(
ξsys
l,p + ξrnd

l,p

)
− V xl,p

(
αsys
l,p + αrnd

l,p

)
+

− V rk,pal,k,pp

(
ξsys
k,p + ξrnd

k,p

)
+ V xk,pal,k,pp

(
αsys
k,p + αrnd

k,p

)
+

+ Ixl,k,pXl,k,ppa
2
l,k,pp

(
ηsys
l,k,p + ηrnd

l,k,p

)
+ Irl,k,pXl,k,ppa

2
l,k,pp

(
ψsys
l,k,p + ψrnd

l,k,p

)
+

− Ixl,k,pXl,k,ppa
2
l,k,ppβl,k,pp +

(
V rk,pal,k,pp − 2Ixl,k,pXl,k,ppa

2
l,k,pp

)
τl,k,pp

(2.60)

V xl,p − V xk,pal,k,pp − Irl,k,pXl,k,ppa
2
l,k,pp ≃ V xl,p

(
ξsys
l,p + ξrnd

l,p

)
+ V rl,p

(
αsys
l,p + αrnd

l,p

)
+

− V xk,pal,k,pp

(
ξsys
k,p + ξrnd

k,p

)
− V rk,pal,k,pp

(
αsys
k,p + αrnd

k,p

)
+

− Irl,k,pXl,k,ppa
2
l,k,pp

(
ηsys
l,k,p + ηrnd

l,k,p

)
+ Ixl,k,pXl,k,ppa

2
l,k,pp

(
ψsys
l,k,p + ψrnd

l,k,p

)
+

+ Irl,k,pXl,k,ppa
2
l,k,ppβl,k,pp +

(
V xk,pal,k,pp + 2Irl,k,pXl,k,ppa

2
l,k,pp

)
τl,k,pp

(2.61)

Irl,k,pal,k,pp + Irl,k,p ≃ Irl,k,pal,k,pp

(
ηsys
l,k,p + ηrnd

l,k,p

)
+ Irl,k,p

(
ηsys
l,k,p + ηrnd

l,k,p

)
+

− Ixl,k,pal,k,pp

(
ψsys
l,k,p + ψrnd

l,k,p

)
− Ixl,k,p

(
ψsys
l,k,p + ψrnd

l,k,p

)
− Irl,k,pal,k,ppτl,k,pp

(2.62)

Ixl,k,pal,k,pp + Ixl,k,p ≃ Ixl,k,pal,k,pp

(
ηsys
l,k,p + ηrnd

l,k,p

)
+ Ixl,k,p

(
ηsys
l,k,p + ηrnd

l,k,p

)
+

+ Irl,k,pal,k,pp

(
ψsys
l,k,p + ψrnd

l,k,p

)
+ Irl,k,p

(
ψsys
l,k,p + ψrnd

l,k,p

)
− Ixl,k,pal,k,ppτl,k,pp

(2.63)

Then, similar considerations can be done also for the closed-delta connected
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transformers, obtaining again 12 real-valued equations (four for each system
phase).

A linear system of equations can be obtained considering a time instant t
(e.g. corresponding to a PMU timestamp) and the above constraint equations
related to a given SVR branch (l, k) (in what follows, only this case will be
reported). Then, it is possible to express in matrix notation the linear system,
separating systematic errors from random ones as follows:

bl,k,t = Hl,k,t



ξsys
l

αsys
l

ξsys
k

αsys
k

ηsys
l,k

ψsys
l,k

ηsys
k,l

ψsys
k,l

βl,k

τl,k



+ El,k,t



ξrnd
l,t

αrnd
l,t

ξrnd
k,t

αrnd
k,t

ηrnd
l,k,t

ψrnd
l,k,t

ηrnd
k,l,t

ψrnd
k,l,t



= Hl,k,txl,k + El,k,tel,k,t = Hl,k,txl,k + ϵl,k,t

(2.64)

In (2.64), bl,k,t is the vector of known terms and Hl,k,t is the measurement
matrix linking the measurement functions and the state vector xl,k. The state
vector xl,k includes all the 3 × 1 vectors of systematic measurement errors of
voltage and current synchrophasors (ξsys

l =
[
ξsys
l,a ξ

sys
l,b ξ

sys
l,c

]⊺
, ...,

ψsys
k,l =

[
ψsys
k,l,a ψ

sys
k,l,b ψ

sys
k,l,c

]⊺
) and, in addition, the line parameters deviations

associated with the SVR (for instance, in case of a wye-connected transformer,
βl,k = [βl,k,aa βl,k,bb βl,k,cc]

⊺ and τl,k = [τl,k,aa τl,k,bb τl,k,cc]
⊺).

Then, it is possible to extend, without loss of generality, the procedure used
in Section 2.1.3 to obtain the solution of the system in (2.64). Indeed, the
assumption is to have multiple PMU measurements available, corresponding to
C power network conditions along with prior knowledge on all the considered
unknowns, to define the following overall system of equations:

bl,k,tot =

[
bl,k

0r×1

]
=

[
Hl,k

Ir

]
xl,k +

[
ϵl,k

eprior

]
= Hl,k,totxl,k + ϵl,k,tot

(2.65)

where r is the number of unknowns included in the state vector (dependent on
the type of the connection of the SVR), 0r×1 is a r-size vector of zeros that
establishes the pseudo-measurements related to the prior information and thus
assuming no deviations, and Ir is the r-size identity matrix of prior values. Vec-
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tor ϵl,k,tot includes both ϵl,k and eprior, indicating the equivalent random errors
and the random variables associated with the prior values, respectively. Equa-
tion (2.65) represents the estimation problem for the generic SVR connection
associated with the three-phase branch (l, k). This problem can be solved in
WLS sense using a weight matrix Wl,k,tot = Σ−1

ϵl,k,tot
defined as:

Σϵl,k,tot =

[
Σϵl,k 0

0 Σeprior

]
(2.66)

where the covariance matrix of ϵl,k is obtained, similarly to (2.22), by means
the law of propagation [58], as:

Σϵl,k = El,kΣel,kE
⊺
l,k (2.67)

It is worth highlighting that, if additional information on specific correlations
of line parameters uncertainties or accuracy of the devices are available, this
can be included and appropriately treated in the estimation problem (as will be
discussed in Section 3.2).

Finally, the estimated vector x̂l,k is obtained as:

(H⊺
l,k,totWl,k,totHl,k,tot)x̂l,k = H⊺

l,k,totWl,k,totbl,k,tot (2.68)

2.2.4 Tests and results: the three-phase method perfor-
mance

The method in its three-phase formulation has been validated in MATLAB
environment by means of different simulation scenarios to emphasize the impact
of the grid model on the the estimation accuracy [68]. In particular, the tests
have been carried out on the three-phase version of the IEEE 14 bus test system
(in Fig. 2.3 it is shown the unifilar diagram with node and branch indexes).
The three-phase version of the grid has been obtained considering as positive
sequence parameters the data in [72] and, then, determining the remaining
sequence parameters (negative and positive sequence networks) following [24].

To validate statistically the estimation results, MC simulations have been
performed using NMC = 10000 trials. The tests have been carried out consid-
ering as reference values for voltages and currents the outputs of a three-phase
power-flow. Thus, the actual values of voltages, currents and tap ratios are
established. Once the reference values of the measurements have been defined,
random and systematic errors have been added to them. The variability in the
network and the uncertainties affecting the monitoring system have been then
established. Thus, the default scenario for the set-up of the tests of this section
is defined by the following assumptions:

1. As for the line parameters, maximum deviations γi,j,pq, βi,j,pq and δi,j,pq
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in (2.48) are equal to ±10%.

2. ITs belong to Class 0.5 and the maximum deviation of al,k,pq is set to
±1% [56] for both wye and closed-delta connected transformers.

3. PMU01, introduced in Section 2.1.4, has been chosen for the base uncer-
tainty configuration.

4. A variability of ±10% with respect to nominal values of active and reactive
powers has been considered to obtain different load conditions. Focusing
on the unbalance among the phases, a maximum variability of ±1% (for
each node) has been imposed keeping the limit of the voltage asymmetry
compatible with the limits identified by the Italian TSO (details on these
limits can be founded in [73] and [74]).

5. As for the extraction of the deviations of the involved parameters, the
errors have been associated with uniform distributions.

The results have been analyzed by means the RMSEs errors, generalizing
(2.45) for three-phase parameters.

Single-branch approach

The firsts series of tests have been carried out, in a single-branch perspective,
on the branches equipped with a SVR (i.e., the branches (4, 7), (4, 9) and (5, 6),
with indexes 8, 9 and 10, respectively, in Fig. 2.3), considering both SVR con-
figurations. The RMSEs of the results, obtained with (2.45), can be compared
with prior errors standard deviation. The estimation results of the proposal
(referred to as “Tap estimation”) are compared with those of “No Tap estima-
tion” method, which is the method considering the tap changer ratios as known
a-priori. In particular, in “No Tap estimation”, despite uncertainty affecting tap
changer ratios, these latter are not included in the estimation model and, thus,
possible voltage regulation uncertainty is neglected.

Table 2.7 shows the estimation results of amplitude and phase-angle dis-
placement errors for the voltages (only for phase a but similar results can be
obtained for other phases) of branches (4, 7), (4, 9) and (5, 6). It is worth observ-
ing that, if the tap changer is modeled as in Tap estimation, a reduction, with
respect to No Tap estimation, of the RMSE up to 50% and 30% for ratio and
phase-angle errors can be obtained. This behavior is explained by the fact that
No Tap estimation suffers from the lack of modeling of tap ratios variability,
which, if neglected, has a significant impact on systematic error estimates.

In Table 2.7, systematic errors of amplitude and phase-angle of currents are
not reported, but it is worth underlining that similar results can be obtained.
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Table 2.7: RMSE of systematic voltage errors estimation, single-branch ap-
proach and closed delta configuration

Branch
Method

RMSE
ξl,a αl,a ξk,a αk,a

Index (l, k) [%] [crad] [%] [crad]

8 (4, 7) Tap estimation 0.25 0.26 0.24 0.26

8 (4, 7) No Tap estimation 0.48 0.35 0.48 0.36

9 (4, 9) Tap estimation 0.24 0.26 0.24 0.26

9 (4, 9) No Tap estimation 0.47 0.33 0.47 0.35

10 (5, 6) Tap estimation 0.24 0.28 0.25 0.28

10 (5, 6) No Tap estimation 0.44 0.31 0.43 0.33

In addition to the fact that the results for ξh,p improve with the inclusion of tap
ratios in the estimation model, it is important to highlight that the estimation
results for No Tap estimation are beyond the prior values (i.e., 0.29% for a VT
of Class 0.5, as shown in Table 2.2).

Table 2.8 reports the results for the reactance estimation for the SVR branches
that are included in the grid. Despite the results for both methods are far be-
low the prior value for βl,k,pq (which is 5.77%), it is possible to observe that
an improvement of the estimation results is obtained when tap changer ratios
are modeled and estimated, reaching a maximum RMSE reduction of 37% for
branch 10.

Table 2.8: βl,k,pq estimation, single-branch estimation and closed delta configu-
ration

Branch Method RMSE [%]
index (l, k) βl,k,ab βl,k,bc βl,k,ac

8 (4, 7) Tap estimation 2.76 2.76 2.72

8 (4, 7) No Tap estimation 3.01 3.02 2.97

9 (4, 9) Tap estimation 2.03 2.10 2.08

9 (4, 9) No Tap estimation 2.75 2.81 2.81

10 (5, 6) Tap estimation 2.31 2.33 2.33

10 (5, 6) No Tap estimation 3.65 3.64 3.69

Multiple branches approach

Further tests have been carried out in a multiple branches (multi-branch) per-
spective, in particular considering the entire three-phase network in Fig. 2.3.
When a multi-branch approach is considered, the constraints of all the involved
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branches must be used. Table 2.9 shows the estimation results of the tap ra-
tios τl,k,pq (closed-delta connection) when multi-branch and single-branch ap-
proaches are considered. This test has been carried out to remark the impact of
a multi-branch approach on the estimation results. In Table 2.9, it is possible
to observe that the proposal leads to significant improvements with respect to
the prior values (i.e., 0.58% in Table 2.2), achieving RMSEs of less than 0.2%

and 0.1% for single-branch and multi-branch approaches, respectively.

Table 2.9: Tap ratio error τl,k,pq estimation, multi-branch vs single-branch and
closed delta configuration

Branch Approach RMSE [%]
index (l, k) τl,k,aa τl,k,bb τl,k,cc

8 (4, 7) Single-branch 0.18 0.18 0.18

8 (4, 7) Multi-branch 0.08 0.08 0.08

9 (4, 9) Single-branch 0.18 0.19 0.19

9 (4, 9) Multi-branch 0.08 0.08 0.08

10 (5, 6) Single-branch 0.19 0.19 0.19

10 (5, 6) Multi-branch 0.09 0.09 0.09

Despite the results for wye-connected transformers are not reported, it is
interesting to observe that in the same network conditions, the errors are higher
than those in Table 2.9. Nevertheless, the single-branch approach still more
than halves the RMSE with respect to the prior, and the multi-branch solution,
in turn, halves the estimation results obtained with the single-branch approach,
achieving reductions with respect to the prior errors of more than 77%.

As a further confirmation of the estimation results that can be obtained
when multi-branch approach is applied, Fig. 2.16 shows the RMSE of systematic
voltage amplitude errors ξh,a estimates when the whole network is considered. In
Fig. 2.16, No Tap Estimation method is indicated with blue squares, prior values
are indicated with black plus sign and Tap Estimation method with orange
asterisks. In addition, No Tap estimation method can be still applied also on
the portion of the grid excluding tap changers and this method is indicated with
purple dots. Indeed, it is possible to observe that when the estimation is applied
assuming tap changer ratios as perfectly known, this method suffers again from
the lack of modeling and the RMSE results are higher than prior values for all
the nodes of the grid (even far away from the branches equipped with SVRs).
On the other side, focusing on the proposed method, it can be highlighted
that estimating the tap ratios of the SVRs brings remarkable improvements
of the errors with respect to prior values. The above explained behaviors can
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Figure 2.16: Entire network, estimation of voltage amplitude systematic errors
- results obtained with and without tap estimation.

be observed also in Fig. 2.17, where the same methods, colors and markers
of Fig. 2.16 are considered, focusing on systematic voltage phase-angle errors
estimation.

It is important to stress the aspect that, when the method is applied to a
reduced set of branches, it is still clearly more accurate than prior but its RMSEs
are higher than those obtained when the Tap estimation method is applied to
all the branches of the grid. To sum up, lowest RMSEs are obtained when the
whole network is considered and a detailed model of the tap changers is included
in the estimation model. This allows reaching, for phase-angle errors estimation
of Fig. 2.17, an average reduction of about 68% with respect to the prior.
This type of conclusion implies that, for each possible network under study,
preliminary analyses should be done to help the choice on the most appropriate
configuration of the estimation method to apply.

As another example of the test outcomes, the estimation results for the
reactance parameters for branch (4, 5) (i.e., the branch close to branches 8, 9
and 10, equipped with SVRs), with or without the tap changer ratios estimation,
can be observed in Fig. 2.18. Different results can be observed if self or mutual
reactance parameters are considered: the estimation of self reactances improves
of almost two-thirds with respect to the prior, while for the mutual reactance
parameters the reduction is of about 30%. This confirms the advantages of

47



CHAPTER 2. PROPOSED METHODOLOGY: MODELING THE GRID
AND THE MEASUREMENT CHAIN

Figure 2.17: Entire network, estimation of voltage phase-angle systematic
errors - results obtained with and without tap estimation.

Table 2.10: Estimation performance under different uncertainty scenarios

IT PMU RMSE

class accuracy γ2,3,aa γ2,3,ab β2,3,aa β,23,ab ξ2,a α2,a ξ3,a α3,a

[%] [%] [%] [%] [%] [crad] [%] [crad]

0.2 PMU01 2.11 2.81 1.39 2.81 0.07 0.08 0.06 0.07
PMU02 2.63 3.37 1.67 3.47 0.08 0.11 0.07 0.09

0.5 PMU01 2.21 2.83 1.44 2.84 0.13 0.13 0.12 0.12
PMU02 2.74 3.39 1.77 3.51 0.15 0.17 0.14 0.14

the three-phase formulation in the estimation of all the parameters involved.
It is worth observing that, when the complete model of the grid is considered,
a reduction, with respect to the configuration considering the reduced set of
branches, of about 32% and 19% can be reached for self and mutual parameters,
respectively.

To investigate the impact of IT and PMU uncertainty on the estimation per-
formance, other tests have been carried out considering different values for the
IT class and the maximum PMU errors (considering both PMU01 and PMU02
accuracy levels). ITs of Class 0.2 have been also considered and this translates
into a maximum ratio error of 0.2% and a maximum phase displacement error
of 0.3 crad (leading to prior standard deviations of 0.12% and 0.17 crad for ratio
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Figure 2.18: RMSE results for the estimation of reactance parameters of
branch (4, 5).

and phase errors, respectively). Table 2.10 shows, for phase a and branch (2, 3),
RMSE results for both line parameters and VT systematic errors. As expected,
the estimation accuracy degrades with higher uncertainties. In particular, since
systematic errors are included in the model and estimated, the main impact is
related to PMU errors, leading to an increase of the errors of more than 20%

for all the estimated line parameters when maximum PMU errors double.
Some tests have been carried out also to investigate the impact on the es-

timation performance of an increase of the number of branches involved in a
multi-branch approach. The tests have been performed increasing progressively
from a single-branch approach to the entire network. Table 2.11 shows, for the
parameters of branch (2, 3), the estimation results considering different scenar-
ios: the single-branch approach; a “3 branches” configuration that corresponds
to the set of branches 3, 4 and 6; a “6 branches” configuration that involves the
branches from index 1 to 6; and the “All branches” configuration that corre-
sponds to the simultaneous estimation on the entire network.

Focusing on Table 2.11, it is possible to observe that, as expected, the es-
timation improves with the size of the set of branches involved. In particular,
the most significant improvement in the line parameters estimation results is
found moving from the single-branch approach to the “3 branches” scenario: an
error reduction up to about 26% is achieved when 3 branches are considered,
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Table 2.11: Estimation performance on increasing network portion - branch
(2, 3)

Network
portion

RMSE
γ2,3,aa γ2,3,ab β2,3,aa β2,3,ab ξ2,a α2,a ξ3,a α3,a

[%] [%] [%] [%] [%] [crad] [%] [crad]

Single-branch 3.24 4.06 2.20 4.29 0.22 0.26 0.22 0.26
3 branches 2.48 3.16 1.63 3.16 0.19 0.22 0.18 0.21
6 branches 2.43 3.09 1.56 3.12 0.14 0.17 0.15 0.18

All branches 2.21 2.83 1.44 2.84 0.13 0.13 0.12 0.12

while an error reduction of 34% is obtained using the entire network. For the
estimation of systematic errors, the improvement of the results becomes more
pronounced with an increasing number of branches. For example, the RMSE
of α2,a halves moving from the single-branch approach to the “All branches”
scenario. In addition, it is worth highlighting that also the topology of the set
of branches considered has an impact on the results. In fact, meshes in the
grid introduce additional constraints (each node is shared at least among two
branches) helping the overall estimation performance.

Finally, despite a comprehensive comparison of the estimation results with
other methods in literature is not possible because of their characteristics, some
tests have been carried out comparing, in the same measurement scenario, three
estimation methods. In Table 2.12, the proposed method (which is used also
with the single-branch approach) is compared with two methods that face the
three-phase line parameters estimation using PMU measurements. The first
method, named Method C [75], is built on a two-step estimation of shunt ad-
mittance and impedance matrices for a single branch and can deal, as the pro-
posed method, also with non-transposed lines. The second method (identified
with Method D [24]), starting from the current equations available at both ends
of the line, proposes a robust estimator for the shunt and line admittance pa-
rameters. It is important to underline that Method C and Method D rely on
a significant level of unbalance to improve the accuracy of the estimation. For
this reason and to perform a comparison as fair as possible, the maximum varia-
tions of the load among the system phases at a given node have been considered
with two different levels (column ‘Load Unb.’): a default value of ±1% and
also a variation up to ±5% are considered in the following tests. Table 2.12
reports the estimation results for branch (2, 3), using the accuracy scenarios of
the sensitivity study reported in Table 2.10. In this table, the symbol ‘>’ is
used to highlight the estimation results far beyond the prior values (at least
twice the corresponding prior values). As a general comment, it is possible to
observe that lowest RMSEs are obtained with the proposed method, whereas
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Table 2.12: Comparison of different methods in different uncertainty scenarios
- branch (2, 3)

Method ITs PMU Load RMSE

class accuracy Unb. γ2,3,aa γ2,3,ab β2,3,aa β2,3,ab
[%] [%] [%] [%] [%]

Proposed
Method

(All branches)

0.2 PMU01 1 2.11 2.81 1.39 2.81
5 0.93 1.02 0.59 1.25

0.5
PMU01 1 2.21 2.83 1.44 2.84

5 1.08 1.07 0.67 1.33

PMU02 1 2.74 3.39 1.77 3.51
5 1.63 1.72 1.04 1.94

Proposed
Method

(Single-branch)

0.2 PMU01 1 3.14 4.06 2.13 4.23
5 1.47 1.64 0.97 2.07

0.5
PMU01 1 3.22 4.07 2.19 4.29

5 1.71 1.72 1.08 2.22

PMU02 1 3.55 4.54 2.52 4.63
5 2.56 2.81 1.72 3.35

Method C

[75]

0.2 PMU01 1 > > > >
5 2.36 2.38 1.50 3.20

0.5
PMU01 1 > > > >

5 3.30 3.42 2.09 4.62

PMU02 1 > > > >
5 4.99 4.96 3.11 6.77

Method D

[24]

0.2 PMU01 1 10.48 10.08 6.50 >
5 2.14 2.22 1.40 2.92

0.5
PMU01 1 > > 8.40 >

5 2.99 3.16 1.96 4.15

PMU02 1 > > > >
5 4.45 4.55 2.86 6.05

Methods C and D suffer, above all, from the presence of low levels of unbalance.
For instance, the proposed method achieves the best results in the multi-branch
approach and, as expected, benefits from a higher level of unbalance.

The three-phase formulation, besides allowing the estimation of three-phase
line parameters and the systematic errors of each phase measurement (permit-
ting thus to find some ITs in critical metrological conditions), allows also a
better estimation of the positive sequence parameters of the branch when a re-
alistic level of unbalance is present in the grid. As a demonstration of the above
mentioned statement, Table 2.13 shows the average estimation RMSEs across
all the branches for the positive sequence values of resistance and reactance line
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parameters. In particular, a comparison of the results obtainable with both ver-
sions of the proposed algorithm has been carried out. The two versions are: the
three-phase version of the algorithm described in this section and, in this case,
the positive sequence values are obtained from the three-phase parameters, and
the single-phase one, from which positive sequence values are obtained directly
applying the algorithm in Section 2.1.3).

Table 2.13: Comparison of positive sequence parameters estimation with single-
phase and three-phase approaches

Method Average RMSE [%]
γ+ β+

Single-phase 2.47 1.23
Three-phase 1.59 0.76

To do that, the results in Table 2.13 are obtained with the wye configura-
tion because an equivalence is possible with [55]. In Table 2.13, γ+ and β+

represent the average positive sequence estimation RMSEs (averaged among all
the branches of the grid) for line resistance and reactance, respectively. The
results confirm that, when symmetry is no guaranteed, the three-phase for-
mulation overcomes the performance of the positive sequence approach. More
specifically, the improvement of the estimation performance of the three-phase
method with respect to the single-phase version is of about 36% and 38% for
γ+ and β+, respectively.

Validation with experimental data

Additional tests have been performed to assess the proposed method estimation
performance with a more realistic uncertainty scenario. To do that, real PMU
measurement errors, obtained trough a laboratory characterization of commer-
cial PMUs (like those in [76] and [77]), have been used for the tests. Table 2.14
shows the estimation results for line parameters and systematic voltage errors
of phase a for branches (2, 3), (4, 5) and (9, 14), using the above mentioned
PMU errors after the introduction of IT systematic errors according to the as-
sumed Class 0.5. The results are obtained with the proposed method when
the entire grid is considered. It is possible to note that the RMSE results are
similar to those obtained with simulated PMU errors and are even better, since
the used commercial PMUs have lower uncertainty than that assumed for the
simulations. The RMSEs are much lower than prior standard deviations, thus
confirming the validity of the presented approach in reducing the uncertainty of
both network parameters and IT errors.
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Table 2.14: Estimation performance with experimental PMU errors

Branch
index (i,j)

RMSE
γi,j,aa γi,j,ab βi,j,aa βi,j,ab ξi,a αi,a ξj,a αj,a
[%] [%] [%] [%] [%] [crad] [%] [crad]

3 (2, 3) 1.81 2.36 1.10 2.29 0.11 0.11 0.11 0.11
7 (4, 5) 2.19 2.62 1.53 3.41 0.11 0.10 0.11 0.11
17 (9, 14) 1.62 1.91 1.39 3.27 0.09 0.10 0.09 0.10
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Chapter 3

Assumptions on measurement
chain and grid: Impact and
solutions

Following the findings previously discussed, this Chapter presents the results of
the analyses carried out to understand how the assumptions on the measurement
chain and on the grid modeling could be improved in order to enhance the
estimation performance. The main purpose of the Chapter is to present how the
presented estimation method for line parameters and systematic measurement
errors has been generalized. First of all, the model of the measurement chain
errors (for both IT and PMU) has been refined to take into account different
possible metrological behaviors. Focusing on CT, a more realistic model has
been defined and its impact on the performance of the parameters estimation
has been evaluated. As for the PMUs, a more realistic error model has been
applied in the proposed method, considering possible correlation in phase-angle
measurements.

Then, from the grid modeling point of view, the following aspects have been
considered:

• A more general model of the tap-changing transformer has been analyzed
and a compromise solution to include this model in the proposed estima-
tion method has been introduced.

• The presence of a possible mismatch between the assumed maximum line
parameters variability and the actual one (i.e., incorrect prior information
on line parameter uncertainty) has been taken into account and its impact
has been studied deeply.
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3.1 Refined model of current transformer

In literature, various papers have dealt with line parameters estimation for both
transmission and distribution grids. Nevertheless, a detailed description of the
measurement errors occurring in the entire measurement chain has not been
deeply considered. In fact, in a measurement chain composed of ITs and PMUs,
the first ones are typically responsible for the main uncertainty contributions
[78], but they are often neglected or just considered through purely random
error sources.

In this context, in [54, 68] the estimation of line parameters and systematic
errors has been proposed assuming that both VTs and CTs introduce systematic
ratio and phase displacement errors. As for the possible distribution for these
errors, in absence of specific information, the only justifiable choice is to extract
error values from uniform distributions (i.e., starting from information provided
by the accuracy class) and assume no correlation among these errors.

In this regard, due to the fact that the node voltages in normal operating
conditions are close to the rated values [79], for VTs the above assumption is
reasonable. In fact, the accuracy class for measuring VTs (both conventional
[59] and low-power [80]) prescribes maximum ratio and phase errors that hold
for primary voltage magnitude varying between 80 % and 120 % of the rated
value.

When CTs are considered instead, the primary current can vary significantly
with respect to the rated values. For this reason and for the presence of intrinsic
nonlinear effects in the CT model, the assumption of fixed systematic errors (i.e.,
constant errors) associated with CTs is not, in general, a good choice [81], [82].
For a given class of accuracy for CTs indeed, the standards [60] and [83] allow
larger errors in the lowest part of the measurement range.

To deal with the complex behavior of CTs, a model of the CT more detailed
than that considered in the previous sections has been defined and included
in the line parameters estimation method [84]. In particular, a more detailed
representation of the uncertainty of CTs has been obtained trough numerical
simulations and experimental tests, then the impact of this more complex model
on the estimates has been studied. The final model assumed for the CT behavior
has been presented in [85], where the limitations found in [84] have been over-
come. The proposed solution is a refined model of CT behavior, which takes
into account the possible presence of a nonlinear behavior in the lowest part of
the measurement range. The obtained model has been also based on experi-
mental tests carried out on CTs from different manufacturers. The errors found
have been indeed exploited to define a parametric model of CT errors that can
be included in the estimation model. Considering this model, the estimation
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results show that the estimates of the series line parameters Ri,j and Xi,j are
not significantly affected by the CT, while CTs have a relevant impact on shunt
susceptance estimation.

3.1.1 Current transformer errors

The impact of CTs on PMUs measurements, if taken into account, is typically
considered superimposing systematic errors to the reference synchrophasors, but
this approach, as above discussed, is just an approximation. In what follows, a
refined CT error model, obtained based on both simulation and experimental
results, is presented.

CT errors model

To model the complex CT behavior, the classical Steinmetz equivalent circuit
(shown in Fig. 3.1) is used [86]. In Fig. 3.1, the secondary leakage inductance Ll,
the secondary resistance R2 and the parallel resistor (which takes into account
the eddy current loss) of a Class 0.5 CT are referred to the secondary side. In
addition, i1 and i2 are the primary and secondary currents, while Kn is the
nominal ratio. The Tellinen hysteresis model is considered to take into account
the relationship between mutual flux linkage λm and magnetizing current im.

Figure 3.1: Equivalent circuit of a current transformer.

It is worth noticing that, as also known in literature [82], [87] and [81],
the accuracy of a CT at the fundamental frequency is just weakly affected by
the other (considerably weaker) components that may be present in the primary
current. For this reason, in these analyses, ratio and phase errors are considered
as related to the amplitude of the fundamental component only. As a first step,
the errors variability can be found feeding, with different amplitude levels, the
CT with sinusoidal currents at rated frequency and extracting the difference (in
magnitude and phase) between the phasors Kni2 and i1 (which represent the
reconstructed current and the actual one, respectively), thus obtaining overall
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Figure 3.2: Ratio error as a function of the fundamental magnitude.
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Figure 3.3: Phase error as a function of the fundamental magnitude.

trends similar to those shown in Fig. 3.2 and Fig. 3.3 for η and ψ errors,
respectively. In Fig. 3.2 and Fig. 3.3, the errors have been computed considering
the hysteresis parameters that reflects those of a typical Class 0.5 CT operating
at rated burden, with primary current ranging between 20% and 120% of the
rated value. In the figures, the red lines represent the limits of a CT of Class
0.5 (ratio and phase errors).

Focusing on the level of the errors in the figures, as expected, the values of
ratio error η(I/I0) and phase error ψ(I/I0) (functions of the ratio of current
magnitude I on its nominal value I0) are within the accuracy limits reported in
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Figure 3.4: Measurement setup for the characterization of CTs.

the standards. In particular, η(I/I0) is basically constant (−0.4% with negative
bias, as often happens for a CT loaded with full burden). ψ(I/I0) shows, due
to the inductive nature of im, a significant increase at low values of I: moving
from 0.16 crad when I = I0 to 0.43 crad at 20% of the rated value. From a
physical point of view, this happens due to the typical behavior of ferromagnetic
materials at low flux density values, where im is less than proportional to λm
and thus to the current i1.

Experimental CT errors

In this section, the complex CT behavior is deeply investigated by means of
a series of experimental tests. Also in this study, similarly to what previously
shown in Section 3.1.1 for CT errors simulated from the Steinmetz model, the
influence of the presence of harmonics is neglected and η and ψ can be considered
as functions of the sole fundamental primary current magnitude I. Following
this simplification, η and ψ (functions of the actual current I at 50Hz) have been
measured for three different types of Class 0.5 CTs operating at rated burden
(i.e., 10VA with 5A nominal secondary current). All three CTs have been
connected in order to have at the primary side I0 = 50A. It is worth underlining
that the same behavior would have been observed in other configurations (what
matters is I/I0). For each CT type, two samples have been characterized in
order to have an idea of the spread of their performances.

Tests have been carried out with the experimental set-up shown in Fig.
3.4. The primary winding of the CT is supplied trough an industrial power
amplifier (i.e., AETechron 7548) that is connected to a transformer to increase
the maximum current output capability. The CT under test has primary and
secondary currents measured by means of calibrated coaxial shunts (100A and
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10A nominal currents for primary and secondary, respectively). The voltage
signals are too small for being properly acquired and, thus, their outputs have
been connected to calibrated high-linearity Analog Devices AD215BY isolation
amplifiers. A PC connected to a National Instruments NI USB-6356 board with
16 bit resolution (adjustable analog input range, synchronized acquisition and
generation capability) manages the aspects of signal generation, data acquisition
and processing.

Tests have been carried out applying sinusoidal currents to the primary
winding of the CT under test, ranging from 0.2 I0 to 1.2 I0 with steps of 0.05 I0.
Primary and secondary steady-state current waveforms i(t) and i′′(t) have been
acquired considering 100 periods and 200 kHz rate. In this case, due to the
synchronized acquisition and generation, phasors components can be extracted
without spectral leakage phenomena (the impact of noise is mitigated by means
of the averaging process over the acquired 100 periods [88]). The trends of ratio
and phase errors, functions of I/I0, have been obtained and they are shown
in Fig. 3.5 and in Fig. 3.6, respectively. The noise standard deviations of the
obtained error curves have been quantified and, due to the low values, neglected.
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Figure 3.5: Ratio error as a function of I/I0 for the tested CTs.

Ratio and phase errors are obtained by means of interpolation between ex-
perimental values using smoothing spline. In Fig. 3.5 and Fig. 3.6, solid and
dashed line of the same color denote the two samples of the same CT type and,
despite the fact that there are some differences, the trends are the same. The
results show that the obtained errors are in line with the limits of the standard
[60]. In particular, focusing on the ratio errors η(I/I0), it is possible to see that
they are all negatively biased (similarly to the trends of Fig. 3.2) and, in general,
they show limited variations over the investigated current range (about 0.1%).
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Figure 3.6: Phase error as a function of I/I0 for the tested CTs.

The trends for ψ(I/I0) reveal smallest errors near the rated current in the range
between 0.14 and 0.22 crad and, as expected, an almost monotonic increase in
the lowest region of the measurement range: between 0.38 and 0.56 crad at 20%
of the rated current value.

In principle, on one hand, if one knew the functions of the errors η(I/I0)
and ψ(I/I0), it would be possible to compensate the systematic contributions
of CTs. On the other hand, this demands for a time-consuming and expensive
individual characterization of all the CTs installed in the grid, which should be
also kept continuously updated.

3.1.2 Impact of current transformer errors on parameter
estimation

To investigate the impact of realistic CT errors on the proposed estimation
method, tests have been first carried out by means simulations, in MATLAB
environment, on a modified and reduced version of the 95 nodes UKGDS sys-
tem [89] shown in Fig. 3.7 (with a base impedance Zb = 1.21Ω). The grid
has been modified by considering the active and reactive powers on node 9 as
the equivalent of the entire network downstream of the node itself. In partic-
ular, the single-phase test network summarized in Table 3.1 has been modeled
(see for details Appendix II). In addition to the series line parameters also the
transversal shunt susceptance parameters have been considered, using typical
per length capacitance values for Distribution System (DS) lines.

The tests have been carried out considering different operating conditions
to test the performance of the method with different load levels (i.e., different
values of CT errors). In particular, for each of the CTs installed in the grid,
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Figure 3.7: Modified version of the 95 UKGDS system.

Table 3.1: Nominal linedata values

Branch R0
i,j X0

i,j B0
sh,i,j

[pu] [pu] [pu]

1 0.055 0.057 0.000073
2 0.039 0.10 0.000052
3 0.049 0.051 0.000065
4 0.098 0.33 0.00013
5 0.17 0.076 0.00023
6 0.21 0.20 0.00028
7 0.24 0.11 0.00032
8 0.26 0.18 0.00035

the rated current I0 has been chosen from the typical primary current ratings
of CTs for DSs, assuming a nominal load profile (henceforth named “Nominal”)
that has led the choice of the CTs. In the tests, to have a comprehensive view
of the reachable estimation performance under different operating conditions, a
distributed generation (DG) plant has been assumed installed in node 9, defining
two base cases “High Load” and “Low Load”. The first one is the scenario where
the DG is off and, in each branch, it is possible to see IR/I0 > 70%, while the
second one represents a scenario where the DG is on (up to 60% of the load in
node 9) and some branches belonging to the main feeder have currents ≤ 40%

of the rated current.
Each test involves NMC = 5000 and the estimation model is based on a

number of PMU measurements Nt = 10 ·C (with C ∈ {10, 200}). The following
assumptions have been applied:

• Ri,j , Xi,j , and Bsh,i,j vary in the range of ±15% across NMC trials.

• ITs belong to Class 0.5. CT errors are extracted according to simulated CT
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errors in Fig. 3.2 and Fig. 3.3 of Section 3.1.1, considering the class limits
at different levels of current magnitude. Two maximum scaling factors
νmag and νph for amplitude and phase-angle, respectively, are chosen in
order to amplify the error curves without violating class prescriptions.
Then, for each of the NMC trials, two uniform random variables µmag and
µph ∈ [−1, 1] are extracted. Thus, for a given timestamp and current iRi,j
having magnitude IRi,j the resulting systematic errors are:

ηsys
i,j = µmagνmag η

(
IRi,j
I0

)
(3.1)

ψsys
i,j = µphνph ψ

(
IRi,j
I0

)
(3.2)

• Three PMU accuracy levels are used: “PMU01” , “PMU02” and the last one
is “TVE1”, which has maximum errors of 0.707% and 0.707 crad, leading
to the maximum Total Vector Error (TVE) of 1%.

• Load and generator powers have been scattered within ±10% among the
C different cases of each MC trial.

Figures 3.8 and 3.9 show the test results for PMU01 and C = 200, for the
line parameters of all the branches of the grid in Fig. 3.7 under Low Load and
High Load scenarios, respectively.

It is possible to underline that, the RMSE values for series line parameters
γ and β in the Low Load scenario are higher than High Load case and, among
them, branches 4, 6, and 8 (which are the branches on the main feeder) have
the lowest errors. In particular, although the estimates for the branches 4, 6 and
8 are better than other branches in both scenarios, moving from High Load to
Low Load scenario, a degradation of the estimates occurs. This behavior can
be explained by the fact that lower power-flows lead to lower voltage drops and,
thus, the errors affecting the measurement chain have higher impact. Focusing
on δ estimation results, it is possible to observe a different behavior: the RMSEs
are, in some branches, larger than prior values (in this case 15/

√
3 = 8.66%) es-

pecially for branches 4, 6, and 8. This behavior is more pronounced in Low Load
scenario where higher and dispersed CT phase displacements errors are involved
(as can be seen in Fig. 3.2 and Fig. 3.3). As a further demonstration of the
above mentioned behaviors, other tests have been carried out in both Low Load
and High Load conditions, assuming CT errors as in [54], [68] (i.e., maximum
errors corresponding to the class limits at rated current for every load condi-
tion). Tests have demonstrated that γ and β estimation results do not depend
significantly on the used CT model, since very close results have been found.
Shunt susceptance, instead, is mainly estimated thanks to the current balance
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Figure 3.8: Estimation results for Low Load condition (PMU01 and C = 200).

Figure 3.9: Estimation results for High Load condition (PMU01 and C = 200).
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Table 3.2: Comparison of different network and measurement configurations

PMU Load
C

RMSE

accuracy
γ4 β4 δ4 γ8 β8 δ8 δ5 δ7

condition [%] [%] [%] [%] [%] [%] [%] [%]

PMU01

Low Load 10 8.30 6.42 10.04 7.89 8.33 10.57 1.12 1.56

200 7.64 3.70 13.54 6.06 7.23 12.47 1.03 1.45

High Load 10 6.57 2.90 8.77 4.28 5.58 9.46 1.42 1.94

200 4.27 1.19 9.34 1.53 2.47 12.01 1.32 1.78

PMU02

Low Load 10 8.50 7.66 8.68 8.44 8.61 8.58 1.30 1.80

200 8.29 5.89 8.93 7.71 8.24 8.80 1.08 1.49

High Load 10 7.63 4.30 8.63 6.09 7.20 8.63 1.65 2.26

200 6.28 2.21 8.64 3.45 4.93 8.80 1.36 1.82

TVE1

Low Load 10 8.58 8.30 8.59 8.63 8.69 8.40 1.72 2.23

200 8.57 8.00 8.58 8.54 8.66 8.32 1.39 1.79

High Load 10 8.20 5.86 8.63 7.52 8.15 8.62 2.07 2.73

200 8.02 5.02 8.63 6.85 7.76 8.63 1.66 2.13

constraint and its estimation accuracy is a fingerprint of CT mismatch with
respect to the assumptions of the method. In particular, CT errors are not
constant across multiple cases and this can jeopardize δ estimation. Indeed, δ
RMSEs for branches 4, 6, and 8 in Fig. 3.8 and Fig. 3.9 are far beyond the
prior values, while this phenomenon is not observed when the simpler CT error
model is applied.

Finally, Table 3.2 shows a summary of the estimation results (γq, βq and
δq are the deviations for resistance, reactance and susceptance for the generic
branch with index q, respectively) varying load conditions and test assumptions
(i.e., PMU accuracy level and C). The results confirm, basically, the previous
conclusions but, in addition, it is possible to observe that when the PMU accu-
racy gets worse, δ4 and δ8 RMSEs decrease. This can be explained by the fact
that the degradation of PMU performance and thus the presence of higher errors
masks the mismatch due to non-constant CT errors across the C cases. A fur-
ther confirmation of this behavior can be seen moving from C = 10 to C = 200,
where δ4 and δ8 estimation accuracy worsens whereas other parameters improve.
For instance, considering PMU01, the improvement in γ8 estimation between
Low Load and High Load condition varies from 48% for C = 10 to 75% for
C = 200.

The reported results show that a degradation of the estimation performance
with respect to the ideal case of constant CT systematic errors is unavoidable
in practice, particularly when load variability and lightly loaded branches are
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involved. For this reason, in the following section, a proposal to enhance the
estimation method presented in Chapter 2 is introduced.

3.1.3 Integration of a more complex CT model: Proposed
solution

The method described in Sections 2.1.3 and 2.2.3 does not consider possible
variations, across different timestamps, of current ratio and phase systematic
errors (i.e., it assumes constant systematic errors). If Nt timestamps (C cases
and M repeated measurements of each case) are considered, the estimation
problem deals with different load conditions and, thus, CT errors depend on
I/I0 leading to nonlinear functions for systematic errors ηsys = η(I/I0) and
ψsys = ψ(I/I0). In this regard, the proposal is to change the measurement
model in order to follow the possible variations of the systematic errors and
reflect the actual complex behavior of the CT. Equation (2.1) for ii,j (same
model can be applied for ij,i) changes as follows:

ii,j = Ii,je
jθi,j = (1 + ηsys

i,j (Ii,j/I
0
i,j) + ηrnd

i,j )IRi,je
j(θRi,j+ψ

sys
i,j (Ii,j/I

0
i,j)+ψ

rnd
i,j ) (3.3)

In (3.3), I0i,j is the rated current for the CT used to measure ii,j , while ηsys
i,j () and

ψsys
i,j () are the ratio and phase error functions and, with the same approximations

and linearizations of Section 2.1.3, it is possible to define:

iRi,j = IRi,je
jθRi,j ≃ Ii,je

jθi,j
[
1− ηsys

i,j (Ii,j/I
0
i,j)− ηrnd

i,j −jψsys
i,j (Ii,j/I

0
i,j)− jψrnd

i,j

]
(3.4)

To include the model of systematic CT errors in the estimation model, it is
necessary to generalize the representation of the errors. It is would be thus
useful to include a parametric representations for the generic functions ηsys

i,j ()

and ψsys
i,j ().

The inclusion of additional unknowns in the state vector would permit ac-
curately tracking the actual trends, but this choice significantly decreases the
constraints/unknowns ratio. Furthermore, more parameters in the estimation
problem can lead to an overfit of the problem and, at the end, undermine the
robustness of the estimates. For the above defined reasons and as a compromise
solution, it has been proposed to approximate ηsys

i,j () and ψsys
i,j () as piece-wise

linear functions, defined by just two parameters each.
In particular, for each of the Nt timestamps it is possible to define the

approximated error model (indicated with )̃:

η̃sys
i,j

(
Ii,j,t
I0i,j

)
=
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(
κ̄i,j
100 − Ii,j,t

I0i,j

)
if ¯
κi,j
100 I

0
i,j<Ii,j,t<

κ̄i,j
100 I

0
i,j

ηi,j,κ̄i,j% if Ii,j,t ≥ κ̄i,j
100 I

0
i,j

(3.5)

ψ̃sys
i,j

(
Ii,j,t
I0i,j

)
=ψi,j,λ̄i,j% +mψ,i,j

(
λ̄i,j
100 − Ii,j,t

I0i,j

)
if ¯
λi,j
100 I

0
i,j<Ii,j,t<

λ̄i,j
100 I

0
i,j

ψi,j,λ̄i,j% if Ii,j,t ≥ λ̄i,j
100 I

0
i,j

(3.6)

where the ratio error ηi,j,κ̄i,j% and phase-angle error ψi,j,λ̄i,j% are the errors of
the considered CT at κ̄i,j% and λ̄i,j% of the rated current, respectively. The
proposed CT model is thus composed of two regions:

• as for low currents,
¯
κi,j/100 is the lowest considered current ratio for mag-

nitude errors (
¯
λi,j/100 is that associated with phase displacement) and

there is a linear trend with slope mη,i,j (mψ,i,j for phase displacement).

• as for high currents, the errors are constant (defined by an horizontal line)
starting from the function knee at current ratio κ̄i,j/100 (or λ̄i,j/100).

Then, replacing (3.5) and (3.6) into (3.4) and following the same approach and
the same steps discussed in Section 2.1.3 for the single-phase version of the
algorithm, it is possible to define a new state vector x′

i,j as:

x′
i,j =



ξsys
i

αsys
i

ξsys
j

αsys
j

ηi,j,κ̄i,j%

mη,i,j

ψi,j,λ̄i,j%

mψ,i,j

ηj,i,κ̄j,i%

mη,j,i

ψj,i,λ̄j,i%

mψ,j,i

γi,j

βi,j

δi,j



(3.7)

In (3.7), two additional unknowns are included for each current measure-
ment, allowing to manage the non constant CT errors across multiple cases.
State vector x′

i,j can be estimated in WLS sense, similarly to (2.23).
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If the inclusion of additional unknowns in the state vector is easily obtained,
more complex is instead the definition and treatment of prior information for
these additional unknowns. All the unknowns can be assumed to be zero with a
given level of uncertainty and, if the new variablesmη,i,j andmψ,i,j are supposed
to be zero, it means that prior errors are considered constant. Prior standard
deviation of ηi,j,κ̄i,j% can be obtained from CT class specifications (in the tests
κ̄i,j = 100 is considered for all considered branches). Thus, this means that,
assuming uniform prior distribution, prior standard deviation of ηi,j,κ̄i,j% is
equal to the CT class divided by

√
3. Focusing instead on the slope parameter

mη,i,j , its range can be extracted for a given κ̄i,j taking into account all the error
curves that can be defined for every ηi,j,κ̄i,j%. In fact, each of these curves is
characterized by a slope value and, as a consequence, the prior is defined by the
range spanned by this value. Also in this case, uniform distribution is assumed
in the absence of additional information. A similar procedure is adopted for
phase displacement, defining ψi,j,λ̄i,j% and mψ,i,j prior standard deviations. It
is important to recall that the prior uncertainty definition takes part in the
weighing matrix, which helps only in narrowing the ranges of the unknowns
possible values according to available prior information. Once prior information
is defined, WLS estimation can be, for instance, used to find the estimated state
vector x̂′

i,j , allowing then the definition of the systematic error associated with
each CT considering all the timestamps t1, . . . , tNt as follows:

η̂sys
i,j = η̂i,j,κ̄i,j% + m̂η,i,j

(
κ̄i,j
100

− Ii,j,tl
I0i,j

)
(3.8)

ψ̂sys
i,j = ψ̂i,j,λ̄i,j% + m̂ψ,i,j

(
λ̄i,j
100

− Ii,j,tl
I0i,j

)
(3.9)

The above defined model will be named DynCTlin in the following tests.
Another possibility could be the use, instead of a piece-wise linearization, of a
nonlinear approximation of the error functions that is based on the same number
of unknowns as:

η̃sys
i,j

(
Ii,j,t
I0i,j

)
=ηi,j,κ̄i,j% +mη,i,j

(
κ̄i,j
100 − Ii,j,t

I0i,j

)χ
if ¯
κi,j
100 I

0
i,j<Ii,j,t<

κ̄i,j
100 I

0
i,j

ηi,j,κ̄i,j% if Ii,j,t ≥ κ̄i,j
100 I

0
i,j

(3.10)

ψ̃sys
i,j

(
Ii,j,t
I0i,j

)
=ψi,j,λ̄i,j% +mψ,i,j

(
λ̄i,j
100 − Ii,j,t

I0i,j

)χ
if ¯
λi,j
100 I

0
i,j<Ii,j,t<

λ̄i,j
100 I

0
i,j

ψi,j,λ̄i,j% if Ii,j,t ≥ λ̄i,j
100 I

0
i,j

(3.11)
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Figure 3.10: Topology of the 15 kV test network.

In (3.10) and (3.11), a possible choice of the additional parameter χ is 2 and
the corresponding model will be named DynCTsquare. All the steps described
for DynCTlin can be done also for DynCTsquare with the definition of a new
measurement model and a new weighing matrix.

3.1.4 Improved method estimation performance

To assess the validity and the performance of the enhanced method presented
in the previous section, tests have been carried out using the 15 kV test network
shown in Fig. 3.10 (node and branch indices are reported), which is a portion
of a larger distribution network (see, for details, Appendix III).

The same assumptions about the DG generation plant and the test set-
up of Section 3.1.2 have been considered, with the only difference that the
CT errors are obtained by means of the experimental tests shown in Section
3.1.1. The first series of tests have been carried out comparing the estimation
results for magnitude and phase CT errors obtained with the method in [84]
(named as “Static”) and the methods DynCTlin and DynCTsquare proposed in
[85]. To do that, Fig. 3.11 and Fig. 3.12 show the ηsys and ψsys estimation
results, considering CT1 of Fig. 3.5 and Fig. 3.6, for Static, DynCTlin and
DynCTsquare methods, indicated with red, blue and black colors, respectively.
The estimation results have been compared with or without the inclusion in the
estimation problem of the ZI constraints equations (2.31). From the figures, it
is possible to emphasize two aspects:

• DynCTlin and DynCTsquare improve the results of Static for both magni-
tude and phase-angle errors and this permits concluding that the refined
modeling of CT systematic errors (which takes into account the CT com-
plex behavior) leads to estimate these errors more accurately.

• The inclusion of ZI constraints halved, for all the three considered meth-
ods, the estimation RMSEs with respect to those without these additional
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constraints.

Figure 3.11: Comparison of ηsys estimation results (PMU01 and C = 200).

Figure 3.12: Comparison of ψsys estimation results (PMU01 and C = 200).
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Figure 3.13: Comparison of δ estimation results (PMU01 and C = 200).

Further tests have been carried out to evaluate the improvements that can
be achieved on the main target of the proposed estimation method, i.e. the
estimation of line parameters. In particular, from the results of Section 3.1.2,
it was already clear that the most relevant impact should be on the transversal
susceptance estimation. In this regard, Fig. 3.13 shows δ estimates (with CT1
errors) obtained introducing ZI constraints. These errors must be compared
with the prior standard deviations of these parameters (i.e., also in this case,
equal to 15/

√
3 = 8.66%).

An important consideration that can be drawn from the results in Fig. 3.13
is that, the Static method (indicated with red squares) has RMSEs for branches
1, 2, 3, and 8 higher than prior errors, while DynCTlin and DynCTsquare
(indicated with blue stars and black cross, respectively) allow reaching RMSEs
lower than the corresponding prior standard deviation. In particular, among
all the branches of the grid, branch 8 has an improvement of about 29% with
respect to the prior standard deviation and the maximum improvement is of
about 72% for branch 4. As a general comment, it is possible to see that all
δ estimations have better results than those of Section 3.1.2. Other tests have
been carried out to show the impact of the PMU accuracy level on the estimation
performance. To illustrate that, Table 3.3 shows γ and β estimation results with
CT1 and both PMU01 and PMU02. These results confirm the conclusions of
Section 3.1.2 and, in particular, that the longitudinal parameters do not suffer
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Table 3.3: Comparison of γ and β estimations

Method PMU
Accuracy

RMSE [%]
γ4,5 β4,5 γ5,7 β5,7 γ7,9 β7,9
[%] [%] [%] [%] [%] [%]

Static PMU01 7.70 3.85 5.60 6.16 6.23 7.35
PMU02 8.31 6.04 7.33 7.6 7.79 8.29

DynCTlin PMU01 7.59 3.62 5.34 5.91 5.96 7.16
DynCTsquare PMU02 8.27 5.79 7.17 7.52 7.67 8.22

from the presence of CT errors not constant across multiple cases. Proposed
methods DynCTlin and DynCTsquare have identical RMSE performance, while
Static method has slightly worse results. Finally, as expected, moving from
PMU01 to PMU02, RMSEs degrade but remain below prior standard deviations
of γ and β in all the tests.

Final tests have been carried out to summarize the results of the proposed
estimation approach by means of a comprehensive analysis. Table 3.4 shows the
results for CT errors (indicated with the pair of indices i,j) and δ estimation,
varying the PMU accuracies and using all the three CT types presented in Sec-
tion 3.1.1 (i.e., dashed line CT1, dashed line CT2 and solid line CT3 in Figs. 3.5
and 3.6). As a further confirmation, the complex behavior of CTs has a nega-
tive impact on the Static approach. The proposed dynamic methods DynCTlin
and DynCTsquare overcome the problem reaching good estimation results with
slight differences between them. This can be explained by the fact that they
give different approximations of the CT model in the estimation framework.
In particular, for CT1 and CT3, DynCTlin is better than DynCTsquare, while
the latter is marginally better when CT2 is considered. This behavior can be
analyzed observing Fig. 3.6 in the lowest part of the measurement range (the
region where I/I0 is lower) where the error function of CT2 appears steeper
than CT1 and CT3 and thus it is better matched with a nonlinear represen-
tation. Focusing on CT estimation results, as expected, the impact of CTs is
larger on ψsys than ηsys due to the wider variation of the phase error function
with respect to the ratio error function. As for the results, it is possible to
highlight that for both PMU01 and PMU02, the RMSE values are more than
halved with respect to the prior standard deviations associated with the actual
operating conditions (i.e., the actual current ratio) corresponding to a specific
region of the measurement range. Also in this case, the results of the adaptive
methods DynCTlin and DynCTsquare are always equal or better than Static.
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Table 3.4: Performance comparison in the presence of different PMU and CT
configurations

CT PMU Method
RMSE

δ4,5 ηsys
4,5 ψsys

4,5 δ7,9 ηsys
7,9 ψsys

7,9

[%] [%] [crad] [%] [%] [crad]
C

T
1 P
M

U
01 Static 3.87 0.16 0.31 13.19 0.15 0.24

DynCTlin 2.36 0.14 0.24 6.16 0.14 0.19
DynCTsquare 2.45 0.13 0.24 6.34 0.14 0.20

P
M

U
02 Static 3.67 0.15 0.27 9.69 0.15 0.24

DynCTlin 2.65 0.15 0.25 6.86 0.15 0.21
DynCTsquare 2.79 0.14 0.25 6.96 0.15 0.22

C
T

2 P
M

U
01 Static 4.49 0.18 0.34 15.28 0.16 0.26

DynCTlin 2.89 0.16 0.25 6.95 0.15 0.19
DynCTsquare 2.83 0.14 0.24 6.67 0.14 0.20

P
M

U
02 Static 4.17 0.16 0.28 10.74 0.16 0.24

DynCTlin 3.15 0.16 0.26 7.33 0.16 0.21
DynCTsquare 3.14 0.15 0.25 7.18 0.15 0.22

C
T

3 P
M

U
01 Static 3.27 0.15 0.29 11.17 0.15 0.24

DynCTlin 1.84 0.14 0.23 5.52 0.14 0.19
DynCTsquare 2.15 0.13 0.24 6.13 0.14 0.21

P
M

U
02 Static 3.23 0.15 0.27 8.79 0.15 0.25

DynCTlin 2.20 0.14 0.24 6.50 0.16 0.22
DynCTsquare 2.53 0.14 0.25 6.82 0.15 0.23

3.2 Realistic model of PMU errors

From all the previous discussions, it is evident that the sources of uncertainty of
the measurement chain must be properly taken into account to understand their
impact on line parameters estimation methods and exploit their characteristics
in the estimation process. In this context, the methods presented in Chapter
2 aim at reducing the impact of systematic measurement errors ([53], [68]) and
at dealing with an estimation process over multiple branches at the same time
that uses measurements corresponding to different operating conditions of the
network [54]. It is worth recalling that the methods shown in Section 2.1.3
and Section 2.2.3 rely on the definition of a measurement model that considers
random errors related to PMUs and systematic errors to ITs. Both errors are
assumed to be independent.

Then, while Section 3.1 has presented a refined model for CTs, in this section
the main purpose is to discuss how the PMU error model can be framed in a
more general and realistic way. In this regard, systematic errors associated with
PMUs have been considered and investigated in [90] and their impact on the
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simultaneous estimation of systematic measurement errors and line parameters
has been evaluated. Then, another aspect that can affect the PMU behavior has
been investigated: different channels of the same PMU can share a common error
in phase-angle measurements since they share the time-base [91]. An enhanced
version of the algorithm of Section 2.1.3, where correlation of phase-angle errors
is included in real-time in the estimation model, is thus introduced in the next
section.

PMU errors

Considering a branch (i, j), the error covariance matrix Σϵi,j,tot used in the
estimation algorithm (see (2.21) and (2.66)) is built assuming prior information
about the unknown parameters and random error of PMU measurements, which,
in absence of specific information, are supposed uncorrelated. In particular,
considering the matrix of prior variances Σeprior , two considerations can be made:

• As for line parameters, prior variances σ2
γiq,jq

, σ2
βiq,jq

and σ2
δiq,jq

(with
q = 1, . . . , Nbr that represents the index of the branch) are chosen based
on considerations on the uncertainty of line parameters and are assumed
uncorrelated. It is worth underlining that, if further information is avail-
able, it can be seamlessly integrated in the estimation model. A mismatch
between actual uncertainty and assumed values can occur and in Section
3.4 such issue is investigated [92]).

• Systematic errors are considered uncorrelated and, similarly to line pa-
rameters, if any prior knowledge is available it can be easily added in the
estimation model.

Considering instead the first matrix Σϵi,j in the diagonal of the covari-
ance matrix Σϵi,j,tot (see (2.21)), it represents the covariance matrix of random
measurement errors, which in Sections 2.1.4 and 2.2.4 have been considered as
uncorrelated and related to PMU uncertainty. Despite the fact that, in absence
of specific information, the assumption of considering uncorrelated PMU ran-
dom errors is the only possible choice, PMU errors in a realistic scenario can
be actually composed of both systematic and random errors. The presence of
systematic errors of PMUs would result in a transfer of uncertainty from the
random error covariance matrix Σϵi,j to the matrix of prior variances Σeprior .

In general, if the assumption of having both systematic and random error
contributions [90] is reasonably valid for magnitude PMU errors, phase-angle
PMU errors should be treated more carefully. In this context, a more detailed
PMU error model of phase-angle error is considered and, called λPMU a generic
phase-angle error of a PMU installed at node i, the expression of the error is
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defined as:
λPMU = λs + λc + λr (3.12)

In (3.12), λs is the systematic error contribution brought by the PMU (i.e., the
average of the phase-angle error), λc is the common phase-angle error related to
the specific PMU and, thus, shared among all the channels of the same PMU,
and λr is the random error contribution independent from other errors and spe-
cific of the considered PMU channel. Equation (3.12) is a realistic representation
of the phase-angle error of a PMU. In fact, phase-angle error, particularly for
high-quality instruments, is strongly related to the time-base error [77], which
is often reported in PMU datasheet. Such error is common to all the channels
of the same PMU and cannot be neglected. The variance σ2

λPMU of the PMU
phase-angle error λPMU can be obtained by the sum of the two random error
contributions (λc and λr, which can be assumed uncorrelated). In particular,
considering two phase-angle measurements of two generic channels (1 and 2)
of the same PMU, the corresponding phase-angle errors λPMU

1 and λPMU
2 can

be defined and their covariance can be written by means of the expectation
operator E [·] as:

E
[(
λPMU
1 − E

[
λPMU
1

])(
λPMU
2 − E

[
λPMU
2

])]
=

= E [(λc + λr1) (λc + λr2)] = E
[
λ2c
]
= σ2

c (3.13)

where the two independent random contribution λr1 and λr2 are related to the
first and second channel, respectively. The final expression is obtained exploiting
the null correlation between the common error and the random contributions.
From (3.13), the covariance between the two channels depends on the variance
σ2
c of λc. It is worth highlighting that, differently from the assumptions made

in Section 2.1.3 and Section 2.2.3, if a more realistic representation of PMU
phase-angle errors is used, correlation arises in the measurement model.

3.2.1 Method proposed to deal with correlation in phase-
angle measurements

Following from above considerations, the assumption presented in this section is
to associate each PMU i installed at node i with a correlation coefficient between
its channels (for phase-angle errors). The correlation is thus described through
Pearson correlation coefficient, which is added in the covariance matrix of PMU
random errors. Considering σλPMU

1
and σλPMU

2
, the standard deviations of the

errors in the two channels, the Pearson correlation coefficient ρ12 (an index that
is not known in advance and, thus, it needs to be estimated) depends on the
ratio of σ2

c to σλPMU
1

σλPMU
2

.
The estimation, as already mentioned, is built based on Nt timestamps (with
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Nt = M · C) that correspond to different load conditions or repeated measure-
ments of the same operating condition. The generic timestamp tn can be also in-
dicated with tχ,m = [(χ−1)M+m−1]TRR with m = 1, . . . ,M and χ = 1, . . . , C

(the procedure can be applied when M > 1). Then, for each case χ and each
channel, the reference phase-angle is different and, to compute the correlation
between the channels of the same PMU, a pre-processing of the measured values
is needed.

Defining the average of the phase-angle measurements for the generic case
χ of channel 1 as:

ν1,tχ,• ≜

M∑
m=1

ν1,tχ,m

M
(3.14)

where ν1,tχ,m is the mth measure, it is possible to make the measurements
unbiased using (3.14) as follows:

λ̃c+r1,tχ,m = ν1,tχ,m − ν1,tχ,• (3.15)

In (3.15), λ̃c+r1,tχ,m is an estimate of the overall random contribution at tχ,m
for channel 1 and, with similar definitions and computations, it is possible to
find also λ̃c+r2,tχ,m for channel 2. Pearson correlation coefficient ρ12 can thus
be estimated at run time as:

ρ̂12=

C∑
χ=1

M∑
m=1

λ̃χ+r1,tχ,m ·λ̃χ+r2,tχ,m√
C∑
χ=1

M∑
m=1

λ̃2χ+r1,tχ,m·
C∑
χ=1

M∑
m=1

λ̃2χ+r2,tχ,m

(3.16)

If all the channels of PMU i have the same accuracy, it is possible to define and
consider a unique correlation coefficient ρ̂PMUi as:

ρ̂PMUi = 2

Nch,i∑
ch1=1

Nch,i∑
ch2=ch1+1

ρ̂ch1ch2

Nch,i(Nch,i − 1)
(3.17)

where the estimated correlation coefficient between two generic channels ch1 and
ch2 is ρ̂ch1ch2 (for a generic PMU i with a number of channels Nch,i). Thus, using
(3.17) for all the PMUs considered, the covariance matrix of random errors can
be modified by inserting the tailored coefficients and following the same steps
as in Section 2.1.3 and Section 2.2.3.

It is worth underlining that, despite, in this context, the main source of
correlation for the different channels of the same PMU is the synchronization
process, other types of correlation can be similarly included in the estimation
model.
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3.2.2 Analysis of the performance of the proposed method

In this section, the results found using the realistic model of PMU errors above
described are discussed. In this regard, the performance achieved with the
proposed modification of the estimation model and an ad hoc treatment of the
correlation is assessed through simulation, in MATLAB environment, on the
single-phase version of the IEEE 14 bus test system (see Fig. 2.3). In particular,
two set of branches have been considered:

• The high voltage portion of the network (“6 branches” configuration) .

• The whole network (“All branches” configuration).

To assess the performance of the proposed method, Nt ∈ {100, 1000} measure-
ment timestamps have been considered (i.e., M = 10 and C ∈ {10, 100}), in
a MC simulation with NMC = 5000 trials. For each MC trial, maximum de-
viations of line parameters are assumed to be of ±15%, while CTs and VTs
belong to Class 0.5. The errors have been extracted from uniform distributions
as well as loads and generators, which vary within ±10% among the C cases
considered. In addition, the following assumptions have been considered for
PMUs:

• PMUs follow the synchrophasor standard IEC/IEEE 60255-118-1:2018 [93]
and maximum magnitude and phase-angle errors vary from “PMU01” to
“TVE1”1.

• The maximum errors of the considered PMUs are assumed as limits of
confidence intervals with a probability > 0.97. In fact, differently from
[90], here PMU phase-angle errors are described as in (3.12), whereas
magnitude errors are split only into systematic and random contributions.
In both cases, however, instead of splitting the maximum values, for sake of
a fairer comparison of the different error model combinations, an approach
based on variance splitting is used here. For the phase-angle errors, the
total error variance derived from the information of the datasheets and
thus including also the variability of systematic errors is divided as:

σ2
λPMU = σ2

s + σ2
c + σ2

r =
psσ

2
λPMU + pcσ

2
λPMU + prσ

2
λPMU

100
(3.18)

where ps, pc and pr represent the percentages of variance for the different
contributions and, they can vary, in the tests, from 0% to 100%. σ2

s is the
variance of the systematic error contributions across the NMC trials and
σ2
r is the variance of λr. The different errors are all extracted from uniform

1In these tests, also the accuracy levels “PMU02” and “PMU05” (±0.5% for the magnitude
errors and ±0.5 crad for the phase-angle errors) have been considered.
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distributions, but it is worth underlining that λPMU presents a different
distribution depending on the configured error mix of ps, pc and pr. For
this reason, as mentioned above, a coverage factor is used to guarantee the
given confidence level to the error. Finally, magnitude errors are treated
similarly to (3.12) but without common errors.

According to the more general model, it is possible to state that systematic
errors in the measurements are the sum of the PMU and IT contributions. The
tests have been carried out comparing the performance of the method that does
not include in the estimation model any PMU correlation ([54], indicated below
as “Method 0”) with the method presented in Section 3.2.1, named “Proposed”
in the following sections. Furthermore, for sake of a comprehensive view of the
performance, the method proposed in [28, Sec. IV] is also applied (i.e., “Method
B” of Section 2.1.4) since it considers the systematic errors at least on one end
of the branch. For completeness, the results have been compared also with
“Method E”: a simplified version of the proposal that considers an a priori fixed
Pearson correlation coefficient of ρPMU = 0.75.

Test results: presence of systematic errors

The first tests have been carried out on the “6 branches” network configuration
taking into account the possible presence of a systematic contribution in PMU
errors varying the value of ps (with pc = 0%).

In Fig. 3.14, the average RMSE of the estimated systematic magnitude errors
ξsys
h (with h = 1, . . . , 5) are shown as a function of ps. It is worth recalling that

the RMSEs represent the residual errors after estimation and, thus, give an idea
of the capability of the method to compensate for the systematic measurement
errors. Figure 3.14 shows the comparison, for C = 100 and PMU01, of the
estimation results for Proposed and Method B (indicated with orange asterisks
and green squares, respectively). Prior errors are also reported and they are
indicated with blue crosses. The results show that prior values only slightly
increase with ps due to the fact that the additional PMU systematic contribution
is on average significantly lower than the VT systematic contribution (i.e., equal
to 0.5/

√
3% as shown in Table 2.2) when PMU01 is considered. Thus, it is

possible to emphasize the improvement of Proposed with respect to prior errors
also when a mismatch in the prior definition is present in the estimation model,
and, in particular, these improvements are of about 48% and 52% moving from
ps = 0% to ps = 75%. Similar conclusions can be drawn if αsys

h , ηsys
i,j and ψsys

i,j

are considered. Estimation results of Method B are slightly different but do not
improve the prior values.

The same tests have been performed considering TVE1 and the results are
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Figure 3.14: Average RMSE of voltage synchrophasor magnitude estimation as
a function of PMU systematic error percentage (PMU01 and C = 100).

reported in Fig. 3.15. In this figure, the results of Method B are not reported
because they are far beyond the prior values. In Fig. 3.15, differently from Fig.
3.14, the prior values increase with ps due to the larger contribution of PMU
systematic errors. Despite that, it is possible to observe that the reduction with
respect to the prior values is still significant thanks to the parallel reduction of
the random error contribution. In fact, the RMSE reduction is of about 40%

and 45% for ps = 0% and ps = 75%, respectively.
Then, it is important to understand the effect of the mismatch on prior

definition also on the main target of the method, i.e., line parameters. Figures
3.16 and 3.17 report γq estimation RMSE averaged among all the branches (i.e.
q = 1, . . . , 6), varying the PMU accuracy and ps for Proposed and Method B,
respectively. The results, as expected, are better in the presence of higher
PMU accuracy (left part of the figures) but different behaviors can be observed
for the two methods. In particular:

• Figure 3.16 shows, for Proposed method, that, although the estimation
accuracy decreases with larger PMU errors, the results still remain below
the prior values (i.e., in this case equal to 15√

3
≃ 8.66%). As a further com-

ment, it is possible to observe that with the best PMU accuracy, increasing
systematic errors lead to better estimation results. This is explained (as
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Figure 3.15: Average RMSE of voltage synchrophasor magnitude estimation as
a function of PMU systematic error percentage (TVE1 and C = 100).

already observed in Fig. 3.14) by the reduced random error contribution
and by the compensation capabilities of the method. On the contrary,
when TVE1 is considered, increasing systematic error means introducing
an additional systematic contribution due to PMUs that becomes compa-
rable with that introduced by the IT. Notwithstanding such degradation,
the increase in the maximum RMSE is less than 5% with ps = 75% and
worst PMU accuracy. This confirms the robustness of the method even in
the presence of a large mismatch on the uncertainty model (high mismatch
between prior assumptions on systematic errors and actual errors).

• Figure 3.17 shows, for Method B, that the overall trend is very different
and it is mainly related to the strong sensitivity of Method B to random
errors. Indeed, it is possible to observe that, even with PMU02, the es-
timates are basically unreliable. Thus, in general, it is possible to affirm
that the estimation error increases when PMU accuracy gets worse and
PMU random errors are higher.

Test results: presence of common phase-angle errors

In this section, the tests carried out to evaluate the impact of a common phase-
angle error in the channels of a PMU are described. To investigate this aspect,
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Figure 3.16: Proposed method. Average RMSE of line resistance deviation
estimation as a function of PMU systematic error percentage and of PMU
accuracy, C = 100.

pc is considered individually (it goes from 0% up to 95%) with the exclusion of
ps (ps = 0%), using the whole network and a variation of the accuracy of the
PMU from PMU01 to TVE1. Figures 3.18 (for PMU01) and 3.19 (for TVE1)
report the average RMSE of γ estimation (similar results can be found for β
and δ), comparing the results for Proposed, Method 0 and Method E indicated
with orange asterisks, green diamonds and blue squares, respectively.

Figures 3.18 and 3.19 show that, for both levels of PMU accuracy, the impact
of pc and the overall trends are the same:

• RMSEs for Method 0 decrease when pc increases with a minimum for
pc = 50%, then get worse for higher values of pc but still remain below
those for pc = 0%. This can be explained by the fact that, despite the
presence of pc is far from the assumptions of Method 0, the presence of
shared error basically limits the error variability and this behavior makes
the constraints of the estimation method more effective.

• RMSEs for Method E have, for pc = 0%, results 14% worse in the PMU01
scenario and about 16% worse for TVE1 with respect to Method 0 and
Proposed. This behavior reveals the limits of assuming a fixed Pearson cor-
relation coefficient. Nevertheless, observing the trend when pc increases,
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Figure 3.17: Method B. Average RMSE of line resistance deviation estimation
as a function of PMU systematic error percentage and of PMU accuracy,
C = 100.

the results improve getting closer to pc = 75% (the assumption of Method
E) and continue to improve (remaining worse than Proposed) also beyond
pc = 75%.

• RMSEs for Proposed have, compared with other methods, the same results
of Method 0 for pc = 0 % and those of Method E for pc = 75 %. They
are better than those of the other methods in all the other conditions.
For instance, as an example, Proposed improves Method 0 of about 25%

when pc = 95% and TVE1 are considered.

It is also interesting to check the estimation results for all line parameters
(without averaging) of the whole network. Figure 3.20 reports the RMSE of
γq, βq and δq (with q = 1, . . . , 20), comparing Proposed and Method 0 (at the
top and bottom of the figure, respectively) when pc = 90% and PMU01 are
considered. Figure 3.20 shows that Proposed have RMSEs lower than Method 0
for all the considered parameters and, in particular, the average improvements
of Proposed with respect to Method 0 are of about 21%, 18% and 43% for
γq, βq and δq, respectively. An interesting conclusion that can be drawn from
Fig. 3.20 is that Proposed and Method 0 have, for β14, almost the same results.
This can be explained observing the topology of the grid in Fig. 2.3, where it
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Figure 3.18: Average RMSE of line resistance deviation as a function of the
PMU common phase error percentage, entire network (PMU01 and C = 10).

is possible to see that this branch between nodes 7 and 8 is a terminal branch:
i.e., PMU in node 8 monitors only this branch and, thus, it is isolated with few
channels involved.

For completeness, other tests have been performed considering PMU01 and
PMU02, C = 10 and C = 100, and three different pc values (0, 50, and 90%).
Table 3.5 shows RMSE values for γ4, β4, γ5 and β5, for the systematic phase-
angle errors for voltages of node 4 and 5 and for the systematic phase-angle errors
for currents i4,2 and i5,2 of branches (2, 4) and (2, 5), respectively. The results
are reported for Proposed, Method 0 and Method B. As further confirmation of
the previous results, it is possible to highlight that in all the considered scenarios
when pc = 0%, Proposed behaves like Method 0.
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Figure 3.19: Average RMSE of line resistance deviation as a function of the
PMU common phase error percentage, entire network (TVE1 and C = 10).

Table 3.5: Estimation results in the presence of different accuracies, errors, and
cases

Method PMUaccuracy C
RMSE

pc
γ4 β4 γ5 β5 α4 ψ4,2 α5 ψ5,2

[%] [%] [%] [%] [%] [crad] [crad] [crad] [crad]

P
ro

po
se

d

PMU01
10 0 1.81 0.61 2.09 0.73 0.09 0.38 0.09 0.38

50 1.68 0.57 1.87 0.68 0.09 0.37 0.09 0.37
90 1.49 0.54 1.59 0.63 0.09 0.36 0.09 0.36

100 0 1.34 0.37 1.41 0.40 0.09 0.37 0.09 0.36
50 1.29 0.35 1.32 0.37 0.09 0.36 0.09 0.35
90 1.21 0.34 1.20 0.37 0.08 0.36 0.08 0.35

TVE1 100 0 3.13 2.00 3.74 2.47 0.12 0.41 0.13 0.42
50 2.88 1.75 3.41 2.17 0.11 0.40 0.12 0.41
90 2.51 1.47 2.81 1.82 0.10 0.39 0.11 0.38

M
et

ho
d

0

PMU01
10 0 1.81 0.61 2.09 0.73 0.09 0.38 0.09 0.38

50 1.74 0.58 1.96 0.69 0.09 0.37 0.09 0.37
90 1.75 0.60 1.94 0.71 0.09 0.37 0.09 0.38

100 0 1.34 0.37 1.41 0.40 0.09 0.37 0.09 0.36
50 1.32 0.35 1.37 0.37 0.09 0.36 0.09 0.35
90 1.32 0.35 1.37 0.37 0.09 0.36 0.09 0.35

TVE1 100 0 3.13 2.00 3.74 2.47 0.12 0.41 0.13 0.42
50 3.00 1.72 3.67 2.13 0.12 0.41 0.12 0.41
90 2.98 1.67 3.66 2.04 0.12 0.41 0.13 0.41

M
et

ho
d

B

PMU01
10 0 7.83 2.69 11.66 4.31 0.46 0.58 0.49 0.60

50 7.60 2.32 11.18 3.78 0.43 0.56 0.46 0.58
90 7.68 2.50 11.49 4.12 0.45 0.57 0.48 0.60

100 0 3.02 1.16 4.30 2.16 0.36 0.52 0.38 0.53
50 2.93 1.01 4.06 1.84 0.36 0.52 0.37 0.52
90 2.98 1.09 4.21 2.01 0.36 0.52 0.38 0.53
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Figure 3.20: RMSE of line parameters deviation considering 90% of
phase-angle common error for each channel of the same PMU, entire network
(PMU01 and C = 10).

Focusing on the impact of pc, an increase of this parameter leads, in general,
better estimation results for all the methods with different trends. For instance,
considering γ5 estimation with PMU01, C = 10 and pc = 90%, the improve-
ments of Proposed, Method 0 and Method B with respect to pc = 0% are of
about 24%, 7% and 2%, respectively. Another important conclusion is that,
when the cases increase (C = 100), the results improve but the impact of a larger
pc is reduced. Focusing on systematic errors α4 and α5, RMSEs for Method 0
are lower than prior uncertainty (reduction up to 72%), whereas for Method B
are close or beyond the prior values. It is worth underlining that, for each con-
sidered scenario, the estimates of Proposed and Method 0 degrade with lower
PMU accuracies but they still remain below the prior values, whereas Method
B results go far beyond prior values and, for this reason, are not reported in
Table 3.5.

Test results: presence of both systematic and common errors

To conclude this analysis, some tests have been carried out considering, for PMU
phase-angle errors, the simultaneous presence of both systematic and common
contributions. In particular, Table 3.6 reports the results for ps = 25% and
pc = 70%, PMU01 and TVE1, and both C = 10 and C = 100, comparing
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the estimation performance of the same parameters of Table 3.5 for Proposed,
Method 0 and Method B.

Table 3.6: Estimation results considering ps = 25% and pc = 70%, in the
presence of different accuracies and cases

Method PMUaccuracy C
RMSE

γ4 β4 γ5 β5 α4 ψ4,2 α5 ψ5,2

[%] [%] [%] [%] [crad] [crad] [crad] [crad]

Proposed PMU01 10 1.35 0.44 1.41 0.51 0.09 0.36 0.09 0.36

100 1.17 0.31 1.17 0.34 0.09 0.36 0.09 0.35

TVE1 100 2.42 1.21 2.69 1.49 0.11 0.41 0.11 0.40

Method 0 PMU01 10 1.61 0.49 1.74 0.58 0.09 0.37 0.09 0.37

100 1.29 0.32 1.34 0.33 0.09 0.37 0.09 0.36

TVE1 100 3.06 1.52 3.77 1.88 0.13 0.43 0.13 0.43

Method B PMU01 10 5.76 1.87 8.53 2.89 0.41 0.56 0.43 0.56

100 2.56 0.80 3.21 1.30 0.35 0.52 0.36 0.52

It is possible to observe that, as already found in Section 2.1.4, Method B
benefits from the increase of C, but its RMSEs are always the worst with respect
to the other methods. As a final comment, it is possible to affirm that Proposed,
due to the inclusion in the estimation model of a realistic representation of PMU
errors, has the best estimation results. For instance, with C = 100 and TVE1,
the improvements for γ5, β5, α5 and ψ5,2 with respect to Method 0 are of 28%,
21%, 15% and 8%, respectively.

3.3 Generalized model of tap-changing transformer

Besides the impact of a mismatch on the assumptions concerning the errors
in the measurement chain (already discussed in Section 3.1 and Section 3.2),
an inaccurate model of the tap-changing transformer can also have a signifi-
cant influence on the line parameters estimation performance of the presented
methodology. In this context, this section shows the impact on the estimation
results of a mismatch occurring in the model of the tap-changing transformer.
In particular, first it is emphasized how the estimates can be affected by such a
model deficiency, then a trade-off solution to improve the estimator is proposed
and validated as in [94].
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3.3.1 Tap-changing transformer model extension and in-
tegration in the estimation method

In literature, tap-changing transformers are commonly represented by means of
an impedance in series with off-nominal turns ratio [51] as shown in Fig. 3.21
(for the sake of an effective and simpler introduction, the single-phase model is
considered from here on). In this figure, according to the considered model, it
is possible to define, for the generic branch (s, r) associated with a tap-changing
transformer2, the off-nominal short circuit admittance yoff

scs,r . In particular it
possible to introduce, aiming at a generalization of the model of a tap-changing
transformer, a parameter k that represents the ratio between the impedances of
the nominal and tapped windings [94].

Figure 3.21: Tap-changing transformer model with short circuit impedance at
the off-nominal turns side.

The off-nominal short circuit admittance yoff
scs,r can be written as:

yoff
scs,r =

1

ztap + a2s,rznom
=

(1 + k)

(1 + a2s,rk)
yscs,r (3.19)

where yscs,r is the short circuit admittance of the power transformer, which is a
parameter provided by the manufacturer, as,r is the tap ratio and k is defined
as k = znom

ztap
. Using this approach, it is possible to build the equivalent π-model

of a tap-changing transformer as a function of the value of k as shown in Fig.
3.22.

It is worth highlighting that shunt admittances yshs and yshr in Fig. 3.22 are
not negligible in case of off-nominal turns ratio. This model can be represented
by means of its nodal admittance matrix Ytap, defined as:

Ytap =

Ytaps,s Ytaps,r

Ytapr,s Ytapr,r

 =

ytaps,s ytaps,r

ytapr,s ytapr,r

 (3.20)

where the nodal admittance matrix Ytap can be splitted into its submatrices
associated with the start node s and the end node r. The last equality is based
on the single-phase model and thus each submatrix is a complex value. In
particular, the components of this tap-changing transformer π-model can be

2In this chapter, the pair of nodes (s, r) replaces (l, k) (see Chapter 2) for the notation of
the generic tap-changing transformer branch to avoid confusion with the parameter k, which
comes from the literature [51].
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Figure 3.22: Equivalent single-phase general π-model of a transformer
equipped with tap changer.

defined as:

ys,r = −ytaps,r =
as,r(1 + k)

(1 + a2s,rk)
yscs,r

yshs = ytaps,s + ytaps,r =
(1− as,r)(1 + k)

(1 + a2s,rk)
yscs,r

yshr = ytapr,r + ytaps,r =
as,r(as,r − 1)(1 + k)

(1 + a2s,rk)
yscs,r

(3.21)

Thus, besides the parameter k, the general model of the tap-changing trans-
former here considered is function of as,r and yscs,r (see [51], [50]).

In this context, the unknowns to be estimated are the same of the transformer
of Section 2.1.2, in particular: ξsys

s , ξsys
r , αsys

s , αsys
r , ηsys

s,r , ηsys
r,s , ψsys

s,r , ψsys
r,s , βs,r

and τs,r. Nevertheless, it is important to define new constraints equations, which
are the counterpart of (2.8) and (2.9), to estimate these parameters. To do that,
considering (3.20), which links the branch current and voltage measurements, it
is possible to write the following two complex equations for the generic branch
(s, r):

(1 + k)(vRs − as,rv
R
r ) = (1 + ka2s,r)zs,ri

R
s,r (3.22)

iRr,s = −as,riRs,r (3.23)

using the same notation as before.
Then, it is possible to define the linearized measurement functions for the

voltage drop and current balance constraints using the first order approximation
for the reference values of voltage and current phasors reported in (2.3) and
also the transformer parameters definitions (see (2.7)). Substituting (2.3) and
(2.7) in (3.22) and (3.23), it is possible to obtain, considering the rectangular
coordinates, four real-valued equations. For (3.22), the following two real-valued
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equations are found:

(1 + k)V rs − a0s,r (1 + k)V rr +
(
1 + ka0s,r

2
)
X0
s,rI

x
s,r

≃
(
ξsys
s + ξrnd

s

)
(1 + k)V rs −

(
αsys
s + αrnd

s

)
(1 + k)V xs +

−
(
ξsys
r + ξrnd

r

)
a0s,r (1 + k)V rr +

(
αsys
r + αrnd

r

)
a0s,r (1 + k)V xr +

+
(
ηsys
s,r + ηrnd

s,r

) (
1 + ka0s,r

2
)
X0
s,rI

x
s,r+

+
(
ψsys
s,r + ψrnd

s,r

) (
1 + ka0s,r

2
)
X0
s,rI

r
s,r+

− βs,r

(
1 + ka0s,r

2
)
X0
s,rI

x
s,r + τs,r

[
a0s,r (1 + k)V rr − 2ka0s,r

2
Ixs,rX

0
s,r

]
(3.24)

(1 + k)V xs − a0s,r (1 + k)V xr −
(
1 + ka0s,r

2
)
X0
s,rI

r
s,r

≃
(
ξsys
s + ξrnd

s

)
(1 + k)V xs +

(
αsys
s + αrnd

s

)
(1 + k)V rs +

−
(
ξsys
r + ξrnd

r

)
a0s,r (1 + k)V xr −

(
αsys
r + αrnd

r

)
a0s,r (1 + k)V rr +

−
(
ηsys
s,r + ηrnd

s,r

) (
1 + ka0s,r

2
)
X0
ijI

r
s,r+

+
(
ψsys
s,r + ψrnd

s,r

) (
1 + ka0s,r

2
)
X0
s,rI

x
s,r+

+
(
1 + ka0s,r

2
)
βs,rX

0
s,rI

r
s,r + τs,r

[
a0s,r (1 + k)V xr + 2ka0s,r

2
Irs,rX

0
s,r

]
(3.25)

Focusing on the current balance equation (3.23) and replacing the pair of
nodes (l, k) with (s, r) in (2.16)-(2.17), the following two real-valued equations
can be obtained:

Irr,s + a0s,rI
r
s,r ≃

(
ηsys
r,s + ηrnd

r,s

)
Irr,s −

(
ψsys
r,s + ψrnd

r,s

)
Ixr,s+

+
(
ηsys
s,r + ηrnd

s,r

)
a0s,rI

r
s,r −

(
ψsys
s,r + ψrnd

s,r

)
a0s,rI

x
s,r+

− τs,ra
0
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(3.27)

These equations can be used in the estimation framework as an enhanced
version of (2.10)-(2.13). In the next section, the performance of this proposed
extension is investigated.

3.3.2 Analysis of the performance of the proposed exten-
sion

In this section, the assessment of the estimation results is obtained through tests
carried out, in MATLAB environment, on the single-phase version of the IEEE
14 bus test system in Fig. 2.3. In particular, for the grid under analysis, tap
ratio values (i.e., a0s,r) for the tap-changing transformers are shown in Table 3.7.
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Table 3.7: Tap ratios of the IEEE 14 bus test system

Branch a0s,r

8 0.978
9 0.969
10 0.932

For the three tap-changing transformers in Fig. 2.3, the general model de-
pending on the parameter k is used. In the tests, C ∈ {10, 200} cases (with
a maximum variability of ±10% for loads or generators), M = 10 repeated
measurements for each case and NMC = 5000 MC trials have been considered.
Line parameters deviations, systematic errors for ITs (0.5 accuracy class), and
PMU errors (considering PMU01 and purely random contribution) have been
extracted according to uniform distributions. The following assumptions are
applied:

• As for transmission line parameters, maximum deviations of ±10% with
respect to the nominal values have been considered.

• As for transformer parameters, ±10% and ±1% are the maximum devia-
tions from X0

s,r and a0s,r, respectively. Thus, the prior standard deviations
for Xs,r and as,r are of about 5.77% and 0.57%, respectively.

• In the following tests, the values for the ratio between the impedance of
the nominal winding and that of the tapped winding are chosen varying
k ∈ {0, 0.1, 0.25, 0.50, 0.75, 1, 1.25, 2, 5, 100, 10000}.

In the tests, the performance evaluation metric is again the RMSE in (2.45) and
km indicates the value of k assumed in the measurement process (i.e., in the es-
timation model). In particular, the estimation performance has been compared
using two different approaches. The first one is “km = k”, which is the best pos-
sible option when k is known, for instance from the manufacturer or from ded-
icated analyses. This method can be considered as a benchmark method since
it assumes the “correct” value in the estimation process. The second method is
the proposed solution “km = 1”, which is a compromise adopted when the value
of k is unknown, as suggested by [51] and [95]. In addition, the comparison
has been conducted considering also the method that assumes “km = ∞” [55]
(which corresponds to the method described in Section 2.1.2). The results, as
usual, have been also compared with the prior standard deviations (named as
“Prior”) of the considered parameters.

The first tests have been carried out considering the single-branch approach
for the branches associated with tap-changing transformers, i.e., branches with
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indices 8, 9 and 10 in Fig. 2.3 (in this section, the branches will be indicated
with the index q ∈ {1, . . . , 20}). Figure 3.23 shows the estimation results for
β10 obtained with different values of k, comparing “km = 1”, “km = ∞” and
also the estimates of the benchmark method “km = k”. As expected, “km = k"
has the best results among all the values of k. It is important to highlight that
“km = 1” shows greater robustness with respect to “km = ∞” when a strong
mismatch between the assumed value of k and the actual one occurs. In fact,
“km = ∞” has errors far beyond prior values in the presence of low values of k.
It has to be noticed that, among the three tap-changing transformers, branch

Figure 3.23: Single-branch approach, RMSE of estimated transformer
reactance deviations of branch 10 for different values of k.

10 is the one that operates at a ratio farthest from as,r = 1. Indeed, the impact
of the mismatch (the difference between km and k) due to the tap-changing
transformer modeling is greater when tap ratio values deviate from as,r = 1,
as discussed in [51]. Thus, despite branches 8 and 9 have similar trends (not
reported here for the sake of brevity), branch 10 has the worst estimation results.

Table 3.8 shows the RMSEs for βq and τq (with q ∈ {8, 9, 10}) varying
k ∈ {0.5, 1, 2}. As a further confirmation of the trends observed in Fig. 3.23
for β10 results, it is possible to notice that prior values are exceeded for k = 0.5

and k = 1 when km = ∞ is applied. Instead, looking at β8, for instance, the
estimation results with km = 1 are close to those with km = k when k = 0.5 and
k = 2, and obviously they are the same for k = 1. Focusing on τq estimation
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results instead, it is possible to underline that the results for the three estimation
methods are similar and, thus, it can be concluded that these estimates are
robust with respect to a possible mismatch between k and km.

Table 3.8: Single-branch approach, estimation results for different values of k

Method k
RMSE [%]

β8 τ8 β9 τ9 β10 τ10
[%] [%] [%] [%] [%] [%]

“km = ∞”
0.5 3.52 0.26 4.44 0.26 9.74 0.27
1 3.07 0.26 3.53 0.26 7.44 0.27
2 2.73 0.26 2.70 0.26 5.20 0.26

“km = 1”
0.5 2.45 0.26 1.98 0.26 2.98 0.26
1 2.37 0.26 1.74 0.26 1.95 0.26
2 2.49 0.26 2.04 0.26 3.00 0.26

“km = k"
0.5 2.38 0.26 1.72 0.26 1.91 0.26
1 2.37 0.26 1.74 0.26 1.95 0.26
2 2.40 0.26 1.77 0.26 2.00 0.26

Other tests have been carried out considering the multi-branch approach
when the whole network is considered, considering only methods “km = 1” and
“km = ∞”. Figures 3.24 and 3.25 report the βq RMSE results for k = 1 and
k = 2, respectively. It is interesting to notice that, for both k = 1 and k = 2,
“km = 1” has the best estimation results, especially for β8, β9 and β10. Moving
from the match condition in Fig. 3.24 to Fig. 3.25, the RMSEs obtained with
the proposed method worsen by at least 72% for β8 up to a maximum of 335%
for β10, but still remaining far below the prior values. The estimation of the
reactances of the transformers obtained with “km = ∞” in Fig. 3.25 has an
improvement of about 34% with respect to Fig. 3.24 but, some errors are still
significantly higher than those achieved with the proposed method.

As a further test, a comparison of the estimation results for αh has been
carried out, considering PMU01 and TVE1. In fact, Fig. 3.26 shows the RMSE
values for the voltage phase-angle systematic errors when k = 1. It has to be
noticed that, when the measurement scenario PMU01 is considered, the two
methods have basically the same estimation results. On the contrary, focusing
on TVE1, the proposed method proves to be better: in particular, a maximum
RMSE reduction of about 17% for α5 with respect to “km = ∞” and an average
improvement, among all the nodes of network, of about 7% are achieved.

Figure 3.27 shows instead the estimation results for βq using TVE1 and
k = 0.5. Once again, βq estimates with km = 1 are better than those obtained
with the “km = ∞” approach and, in particular, the RMSE for branch 10 goes
beyond the prior value.
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Figure 3.24: Multi-branch approach, RMSE of reactance deviations of the
entire network and k = 1.

Figure 3.25: Multi-branch approach, RMSE of reactance deviations of the
entire network and k = 2.
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Figure 3.26: Multi-branch approach, RMSE of voltage phase-angle error of the
entire network, k = 1 and PMU01 (above) and TVE1 (below).

Figure 3.27: Multi-branch approach, RMSE of reactance deviations of the
entire network, k = 0.5 and TVE1.
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For sake of a comprehensive investigation of the performance, the results
for both single-branch and multi-branch approaches have been compared for
k = 1 and for different number of cases (C ∈ {10, 200}). Table 3.9 shows the
RMSE for the following parameters: γ7, β7, β8, β9, β10 and the systematic
errors for the voltage at node 4 (ξ+4 and α+

4 ). Superscript + indicates that, in
the single-branch approach, RMSEs are obtained averaging the results of all the
branches converging on node 4. It is possible to observe that the performance
for “km = ∞” and “km = 1” has an average improvement, moving from the
single-branch approach and C = 10 to the multi-branch approach and C = 200,
of about 41% and 81%, respectively. Focusing on the voltage systematic errors
estimation, it is possible to notice that moving from the single-branch approach
to the multi-branch approach, the α+

4 RMSEs are more than halved for all the
methods and the ξ+4 RMSEs are close to be halved.

Table 3.9: Comparison of estimation performance for k = 1, different approaches
and test configurations

Method Approch C
RMSE

γ7 β7 β8 β9 β10 ξ+4 α+
4

[%] [%] [%] [%] [%] [%] [crad]

“km = ∞”

Single
branch

10 5.56 4.28 3.07 3.53 7.44 0.22 0.25

200 4.93 2.27 2.33 3.30 7.70 0.22 0.24

Multi
branch

10 2.10 0.80 2.14 3.08 7.64 0.12 0.10

200 1.30 0.48 2.07 3.06 7.74 0.13 0.09

“km = 1”

Single
branch

10 5.56 4.28 2.37 1.74 1.95 0.22 0.25

200 4.93 2.27 0.80 0.57 0.73 0.22 0.24

Multi
branch

10 2.08 0.76 0.68 0.64 0.64 0.12 0.10

200 1.29 0.44 0.42 0.41 0.43 0.13 0.09

The results for tap ratios estimation are not reported but it is important to
underline that the multi-branch approach, also in this case, halves the RMSEs
of the single-branch approach. It is possible to emphasize that Table 3.9 shows
how the appropriate model of the tap-changing transformer, in the presence of
different values of k, improves the estimation results for both approaches.

Finally, further tests (the results are summarized in Table 3.10) have been
carried out to assess the proposal performance with respect to other methods
in literature, with the same measurement set-up used above. In particular, the
Proposed Method (“km = 1”) has been compared, for both PMU01 and TVE1,
and using C ∈ {10, 200}, with the two following methods:

• Method A, already described in Section 2.1.4. For this comparison, an
extension of such direct method has been designed and applied (see [55]) to
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Table 3.10: Comparison of estimation performance between the Proposed
method and other methods, k = 1

Method PMU
accuracy

C
RMSE

γ1 β1 ξ2 α2 β9 τ9 β10 τ10
[%] [%] [%] [crad] [%] [%] [%] [%]

Proposed
Method

PMU01
10 2.37 0.88 0.12 0.11 0.64 0.13 0.64 0.13

200 1.38 0.41 0.13 0.09 0.41 0.13 0.43 0.12

TVE1 10 4.33 2.75 0.14 0.23 1.60 0.14 1.54 0.15

200 3.77 1.98 0.16 0.28 1.75 0.13 1.69 0.15

Method A
PMU01

10 13.69 5.35 − − 6.32 0.41 9.43 0.41

200 13.81 5.39 − − 6.32 0.41 9.33 0.40

TVE1 10 13.83 5.37 − − 6.35 0.42 9.43 0.42

200 13.82 5.39 − − 6.32 0.41 9.33 0.40

Method B PMU01
10 7.79 2.55 0.37 0.41 − − − −
200 2.63 1.04 0.30 0.36 − − − −

deal with tap-changing transformer branches (using the traditional model,
i.e., “km = ∞”) and to obtain τ and β estimates.

• Method B, already presented in Section 2.1.4, can be applied only with
the single-branch approach. This method is chosen since line parameters
and systematic measurement errors of the end node in a branch can be
estimated (considering voltage and current measurements at the start node
as the reference ones).

In Table 3.10, the symbol ‘−’ refers to the fact that ξ2 and α2 (the systematic
errors of the end node voltage v2 of the branch with branch index 1 in Fig. 2.3)
are not available for Method A, as well as β9, τ9, β10 and τ10 for Method B.
Method B estimation results for the TVE1 scenario are not reported since they
are far beyond the prior values. For all test configurations, RMSEs for Method
A are higher than those of the Proposed Method for both line parameters and
tap ratios and, in particular, those of γ1, β9 and β10 exceed the prior values.
A further behavior that can be highlighted is that the results of Method A are
stable varying the number of cases and the PMU accuracy considered. This
can be explained by the fact that the method is not able to exploit the benefits
of the additional constraints brought by the number of cases or to leverage a
higher PMU accuracy. The performance of Method B, unlike Method A, takes
advantage of a higher C, specifically for γ1 and β1 estimation results, while it
is strongly and negatively sensitive to the increase in PMU measurement errors
(its estimates are critically affected by the accuracy of “TVE1”). Method B
allows estimating also systematic errors ξ2 and α2 (systematic errors in v2) but
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it is possible to notice that the corresponding RMSE values are beyond prior
standard deviations for both C = 10 and C = 200 cases. Similar results (not
reported here for the sake of brevity) can be observed for η2,1 and ψ2,1. It is
possible to conclude that the Proposed Method leverages multiple cases and
multiple branches and achieves the best performance for all considered line and
transformer parameters. Furthermore, as proven above, it shows, compared to
others, also a significant robustness with respect to an increase of measurement
uncertainty.

3.4 Mismatch on line parameters uncertainty

In the context of the analysis of the behavior of the presented method under
different types of mismatch, this section shows a characterization of its per-
formance under incorrect prior information on line parameter uncertainty. In
particular, the impact of a mismatch between the assumed parameter variability
and the actual one (as proposed in [92]) has been evaluated by means of sim-
ulations carried out in MATLAB environment and again on the IEEE 14 bus
test system of Fig. 2.3. The high voltage portion of the network “6 branches”,
is here considered.

The tests have been carried out considering C = 10, NMC = 5000 MC
trials, ITs of Class 0.5, PMU accuracy ranging from PMU01 to TVE1 and loads
and generators variability of ±10% with respect to active and reactive power
nominal values. In addition, deviations of line parameters Ri,j , Xi,j and Bsh,i,j

vary from ±5% to ±30% in different tests.
Figure 3.28 shows the results of some tests performed to investigate the

robustness of the proposed method (γ estimation RMSE is reported in the
figure) with respect to prior knowledge on line parameters. Maximum variability
of the line parameters is increased from 5% to 30%. The comparison of three
different prior information settings of the proposed method is considered: correct
prior assumption (indicated with blue squares), a value fixed to 5% for prior
maximum deviation (red circles) and value fixed to 15% (indicated with green
stars). Actual prior is also reported in the figure (black crosses).

The best estimation performance is obtained, as expected, when the correct
prior information is used (i.e., when the prior standard deviation in the weight-
ing matrix matches actual variability). In addition, if a mismatch in prior
information occurs, RMSEs have an almost linear increase with the variability,
whereas the trend becomes sub-linear when prior information is correct.

As a comprehensive evaluation of the robustness of the proposed method,
Figs. 3.29 and 3.30 report the average results for β and δ assuming a mismatch
between the prior knowledge on line parameters and the actual line parameters

96



CHAPTER 3. ASSUMPTIONS ON MEASUREMENT CHAIN AND GRID:
IMPACT AND SOLUTIONS

5 10 15 20 25 30

0

2

4

6

8

10

12

14

16

18

Figure 3.28: RMSE of γ estimation in the presence of prior information
mismatch on line parameters.

variability. The same comparison between the three different prior information
settings in Fig. 3.28 is carried out with same colors, markers and line parameters
uncertainty. As expected, also for β and δ, the best estimation performance is in
case of correct prior assumption. It is important to emphasize that, except for
the method that assumes correct prior information, in general the best results
are obtained for the method that assumes a maximum prior deviation of 15%. In
fact, this choice allows better estimates when a strong mismatch occurs in both
methods (e.g., in the case of a parameter uncertainty of 30%). Nevertheless, it
is important to emphasize that the results are below the prior values in all the
prior information settings of the proposed method reported in the figures.

Finally, as a further confirm of the conclusions drawn from previous results,
Table 3.11 shows the comparison for the average estimation of ξ among all the
nodes of the network configuration “6 branches” for the three different prior in-
formation settings of the proposed method. It is possible to notice that assuming
a fixed prior value equal to 15% permits limiting the impact of a mismatch on
the actual line parameters variability on the ξ estimates with respect to the
assumption of a prior value fixed to 5%. In fact, is it possible to notice that
this assumption allows having results close to the best choice about the prior
knowledge (correct prior assumption) for almost all the parameters uncertain-
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Figure 3.29: RMSE of β estimation in the presence of prior information
mismatch on line parameters.

ties considered. For example, if a parameters uncertainty of 25% is considered,
the assumption of a prior value equal to 15% improves the results of about 23%
with respect to the assumption of a prior value fixed to 5%.

Table 3.11: Estimation performance of ξ with different line parameters uncer-
tainties and prior values

Parameters
uncertainty

Average RMSE of ξ [%]
prior 15% prior 5% correct prior

5% 0.16 0.14 0.14
10% 0.16 0.16 0.16
15% 0.17 0.19 0.17
20% 0.18 0.22 0.18
25% 0.20 0.26 0.19
30% 0.21 0.30 0.19

As a final comment, despite different behaviors can be observed according
to the type of the mismatch, the method proves to be robust in the presence of
an increasing uncertainty on the line parameters and even in the presence of a
mismatch with respect to prior knowledge on line parameters.
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Figure 3.30: RMSE of δ estimation in the presence of prior information
mismatch on line parameters.
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Chapter 4

Validation of the methodology
on grid emulators

For a wider understanding of the potentiality of the estimation method intro-
duced and discussed in the previous chapters, this section presents the next step
of the validation analysis. So far, the assessment of the performance has been
carried out in MATLAB environment, mainly on benchmark networks (e.g., the
IEEE test systems) defined by simplified models, while, in general, it would
benefit from more realistic validation possibilities. In this context, software-in-
the-loop and hardware-in-the-loop (HIL) would provide the possibility to expand
the types and methods of testing, and the simulation of the power system in
real-time can also be considered.

In this regard, this section provides an overall view of the performance of
the proposed estimation methodology considering in particular:

• Tests carried out by means of grid simulators, as presented in [96].

• Estimation results obtained in the presence of photovoltaic (PV) plants
and vehicle-to-grid technology (V2G), as discussed in [97].

The method presented in Section 2.1.3 and applied to a Distribution Network
(DN) is discussed and validated. The tests have been performed on the digital
twin of the Forschungszentrum Jülich (FZJ) campus. The real grid is connected
to the 110 kV DN of North-Rine Westphalia (NRW) and the distribution is
performed by means of 10 kV underground cables. The campus is organized in
rings (each of them with 3 to 4 buildings). In particular, the low-voltage supply
is carried out through 130 MV/LV transformers, in which each side is monitored
with class 1 devices (following the specifics of the standard IEC 61036 [98]).
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4.1 Validation of the methodology on grid simu-

lators

In the considered tests, the digital twin of the campus runs on the real-time
simulator Opal-RT [99] with a time-step of 100 µs. Opal-RT is a simulator ca-
pable of design, test and optimize the control and protection of systems used,
for example, in power grids before implementing them on the real system. The
grid model has been developed relying on nominal data and real measurements
collected from the field (these measurements are stored in a database with a time
resolution of 5 minutes). Then, the validation of the digital twin is obtained by
comparing the voltages and currents measured from all the MV/LV transform-
ers and their corresponding values from the simulated model, using active and
reactive power consumption in order to replicate the dynamic behavior of the
loads.

Different parts of the network of the campus have been considered. Initially,
the analysis has been performed on three buildings connected with a ring scheme
to a 10 kV busbar as shown in Fig. 4.1.

Figure 4.1: Considered section of the FZJ power network.

Then, the three-phase lines have been modeled as π-lines (as in Fig. 2.15)
neglecting the mutual capacitance between the lines.

For the validation of the procedure in the real time simulation environment,
the three-phase measurements collected from the outputs of the digital twin
(running in Opal-RT) have been taken into account as reference values for volt-
ages and currents (indicated in Fig. 4.1 for each node and branch). Starting
from the three-phase model, the positive sequence equivalent network has been
considered for both grid modeling and voltage and current measurements. IT
and PMU uncertainties have been considered, before the application of the de-
scribed methodology, adding to the reference values of voltages and currents
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of the Opal-RT simulation the errors as in (2.1). The estimation performance
has been evaluated considering different realistic test cases in a typical working
day of July 2017, which is taken as reference load scenario. Active and reactive
power consumption for the three considered buildings are shown in Fig. 4.2
considering the MV/LV transformers of each building.
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Figure 4.2: Active and reactive power demand of Buildings 1-3.

In the tests, obtained by means of NMC = 5000 MC trials and considering
all the branches of the grid under analysis, the following set-up has been used:

• Maximum deviations of line parameters equal to ±15%.

• PMUs of accuracies “PMU01”, “PMU05” and “TVE1”.

• ITs of Class 0.2 and 0.5.

• 24-hour simulation, as divided into intervals of 1 hour each. Thus, due
to the time resolution of the measurements stored in the database, 12

different variations of load occur for each hour (i.e., C = 12).

All the PMUs, ITs and line parameter errors have been extracted from uniform
distributions.

For each hour an estimation according to (2.29) has been performed.

4.1.1 Validation results

The results for the time of the day between 9:00 and 10:00 am are shown in Table
4.1. In particular, RMSEs of series line parameters have been evaluated for all
the branches of the grid with ITs of accuracy Class 0.2 and for both PMU01
and PMU051. It has to be underlined that, when PMU accuracy degrades,

1In this section, the results of γ, β and δ will be referred to the pair of nodes associated
with the estimated branch: i.e., γi,j , βi,j and δi,j
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Table 4.1: Estimation performance under different measurement uncertainty
scenarios - line parameters

IT PMU RMSE [%]
class accuracy γ0,1 β0,1 γ1,2 β1,2 γ2,3 β2,3 γ3,0 β3,0

0.2 PMU01 4.71 5.11 4.92 5.19 5.22 5.30 4.79 5.15
PMU05 5.52 5.80 6.76 6.48 7.72 7.07 5.81 6.18

the degradation of RMSEs ranges between 12% and 32%. Another important
aspect is that the impact of ITs is limited thanks to the estimation of their
contributions to the measurement error. Without a proper treatment of these
errors the RMSEs can exceed the prior values. Similar considerations can be
drawn focusing on the percentiles of the absolute values of these estimation
errors. In particular, if ITs of Class 0.2 and PMU01 are considered, the 90th
percentile is always less than 9%.

Other tests, whose results can be found in Table 4.2, have been carried out
considering, for different IT classes and with PMU05, the estimates for mag-
nitude and phase-angle systematic errors of voltages (ξh and αh) and currents
flowing from the start node (ηi,j and ψi,j). In particular, the application of
the methodology halves the ξh and αh estimation errors with respect to the
accuracy class limits. For ηi,j and ψi,j estimation results, the most significant
improvement is on branch (2, 3) where a RMSE improvement of about 31% can
be observed.

Table 4.2: Estimation performance under different IT uncertainty scenarios -
systematic errors

Voltage measurements - RMSE
IT PMU ξ0 α0 ξ1 α1 ξ2 α2 ξ3 α3

class accuracy [%] [crad] [%] [crad] [%] [crad] [%] [crad]

0.2 PMU05 0.06 0.09 0.06 0.09 0.06 0.09 0.06 0.09
0.5 PMU05 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.17

Current measurements - RMSE
IT PMU η0,1 ψ0,1 η1,2 ψ1,2 η2,3 ψ2,3 η3,0 ψ3,0

class accuracy [%] [crad] [%] [crad] [%] [crad] [%] [crad]

0.2 PMU05 0.09 0.15 0.11 0.13 0.08 0.16 0.09 0.13
0.5 PMU05 0.21 0.39 0.25 0.38 0.20 0.39 0.21 0.37

For sake of a comprehensive view of the achievable estimation results, other
tests have been carried out on another portion of the digital twin of the FZJ
campus (considering other four buildings) shown in Fig. 4.3 [97]. In particu-
lar, to further demonstrate the potentialities of the methodology presented in
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Chapter 2, in this tests, smart meters (SMs) with synchronized measurement
capability have been considered [100]. Indeed, devices that provide synchro-
nized phasor measurements with respect to a common time reference [101,102]
can bring, in some cases, similar benefits to PMU measurements [103] and are
often well-suited for DSs. Also in this case, a summer working day of July 2017
has been considered as a base load scenario. In what follows, data and results
associated with this scenario will be referred to as “Base”. Assumptions as those
described for the previous tests have been made on how reference values of volt-
ages and currents, errors and line parameters variability have been taken into
account.
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Figure 4.3: Section of the FZJ power network monitored with SMs.

For SMs, two accuracy levels have been considered. The first one is char-
acterized by an accuracy equal to ±0.1% and ±0.1 crad for magnitude and
phase-angle measurement (of both voltage and current), respectively, and it is
referred to as “SM01”. The second one, indicated as “SM02” in the following
tests, has double error limits than “SM01”.

Table 4.3 reports the estimation results for ηi,j , ψi,j , γi,j and βi,j of the
branches (1, 2), (2, 3), (3, 4) and (4, 5) of the grid in Fig. 4.3, considering the
“Base” load scenario and measurement uncertainty “SM01” for the time of the
day between 08:00 and 09:00 am. In particular, the RMSE results are reported
considering the inclusion, or exclusion, of the injection constraints (see, for de-
tails, (2.31)) associated with Building 1. It has to be noticed that, considering or
not the injection constraint, the RMSEs of the systematic measurement errors of
the currents are below the prior values and, in addition, the considered injection
constraint brings, as expected, a significant improvement (in the range between
20 − 35%) for the branches (1, 2) and (2, 3) that are adjacent to Building 1.
Focusing on line parameters estimation, it is possible to see that the results are
not significantly affected by the introduction of the injection constraint equation
(2.31) since this constraint is mainly related to CT errors.
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Table 4.3: Comparison of the estimation performances with and without injec-
tion constraint

RMSE
Injection η1,2 ψ1,2 η2,3 ψ2,3 η3,4 ψ3,4 η4,5 ψ4,5

Constraint [%] [crad] [%] [crad] [%] [crad] [%] [crad]

NO 0.20 0.37 0.20 0.37 0.21 0.38 0.20 0.37
YES 0.14 0.24 0.16 0.27 0.20 0.38 0.20 0.37

Injection γ1,2 β1,2 γ2,3 β2,3 γ3,4 β3,4 γ4,5 β4,5
Constraint [%] [%] [%] [%] [%] [%] [%] [%]

NO 5.01 5.43 8.49 8.40 4.81 5.19 6.66 5.99
YES 4.97 5.36 8.51 8.27 4.80 5.13 6.41 5.87

4.2 Photovoltaic and Vehicle-to-Grid technologies:

impact on the estimates

In this section, further analyses are presented to discuss estimation performance
in the presence of modern technologies like PV plants and V2G charging sta-
tions, which are getting everyday more common in DSs.

It is worth mentioning that the considered PV system was still not installed
in the field at the considered time, but it was simulated according to the nom-
inal data of the installation planned for the considered ring. Thus, active and
reactive powers generated by the PV plant have been obtained by considering
a nominal power of 100 kVA, with a constant power factor of 0.95, and weather
data, i.e. ambient temperature and solar radiance, of the above-mentioned day.
In the following tests, the results of this scenario will be always referred to as
“PV ”. In the tests performed for the scenarios including V2G, 4 electric vehicles
(EVs) have been represented by means of the demand/supply of their batter-
ies, working in charging/discharging mode [104]. The EVs are assumed to be
connected to bi-directional charging stations and, thus, able to operate in V2G
mode. More specifically, the Tesla Model S [105] has been considered with a
maximum battery capacity of 85 kWh. In particular, EVs are assumed to be
charged (or discharged) in around 7 hours (in line with the typical duration
of a working day). In the following tests, “V2G-Ch” and “V2G-Disch” indi-
cate the charging and discharging modes, respectively. “PV ”, “V2G-Ch” and
“V2G-Disch” scenarios have been realized considering the technology installed
in Building 1. In addition, the injection constraint for Building 1 has been
considered in the estimation problem. For all these scenarios, the same proce-
dure and implementation details presented in Section 4.1 are used to obtain the
estimation of line parameters.
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Figure 4.4: Line parameters estimation results of branch (1, 2) in different
scenarios.

Figure 4.4 shows the RMSEs for the estimation of line parameters of branch
(1, 2), considering all the above-define scenarios and for all the time intervals
of the working day considered. The “Time of the day” on the x-axis represents
the hour of day at which the methodology is applied and thus the associated
interval (e.g., 19 is the interval between 18:00 and 19:00 AM).

In Fig. 4.4, values corresponding to Base, PV, V2G-Ch, and V2G-Disch are
indicated with red asterisks, blue diamonds, red crosses and black stars, respec-
tively. Focusing on the results, it can be highlighted that the main differences
in the estimations can be observed, as expected, when PV plant or V2G are
assumed to participate in the power-flows. More specifically, the differences are
in the interval between 06:00 and 20:00 AM for PV, and between 09:00 and
16:00 AM for V2G-Ch (or V2G-Disch). Thus, on one hand, the presence of
PV generation is characterized by RMSEs for γ, β, and δ estimation generally
lower than those calculated in the Base case. The reason is the introduction,
especially in the hours with high production of the PV plant, of a higher vari-
ability of the power-flows, helping the improvement of the estimation with a
better “independence” in the constraints given by the C cases. On the other
hand, the presence of V2G leads to the absolute lowest RMSEs in specific inter-
vals. In particular, focusing on the estimation of the longitudinal parameters,
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Table 4.4: Comparison of estimation performance for different scenarios and
hour of the day

Time
of

the day
Scenario Accuracy

RMSE
γ1,2 β1,2 δ1,2 γ3,4 β3,4 δ3,4
[%] [%] [%] [%] [%] [%]

from “Base"

SM01

5.05 5.43 7.71 4.78 5.14 5.18
“PV " 4.85 5.12 7.53 4.72 4.99 5.07

09 : 00
“V 2G− Ch" 4.73 4.94 7.64 4.65 4.85 5.46

“V 2G−Disch" 4.54 4.73 7.43 4.56 4.75 4.51

to “Base"

SM02

5.31 5.83 8.32 5.04 5.50 6.71
“PV " 5.15 5.57 8.26 5.04 5.44 6.66

10 : 00
“V 2G− Ch" 5.12 5.54 8.29 5.01 5.36 6.84

“V 2G−Disch" 4.89 5.16 8.23 4.99 5.25 6.30

from “Base"

SM01

5.09 5.45 7.91 4.78 5.14 5.27
“PV " 5.06 5.41 7.72 4.77 5.13 5.56

10 : 00
“V 2G− Ch" 4.58 4.80 7.45 4.64 4.85 4.82

“V 2G−Disch" 4.38 4.60 7.67 4.48 4.69 4.56

to “Base"

SM02

5.31 5.84 8.38 5.04 5.52 6.81
“PV " 5.29 5.80 8.31 5.03 5.52 6.99

11 : 00
“V 2G− Ch" 4.93 5.31 8.24 5.05 5.41 6.53

“V 2G−Disch" 4.72 4.98 8.29 4.95 5.19 6.39

V2G-Ch presents the best results in correspondence of the 16-th interval while
V2G-Disch in the 10-th and 11-th. This can be explained by the fact that, V2G
scenarios have charging and discharging modes of EVs characterized by strong
variations of load or generated powers and this helps the estimation process
for the above mentioned reason. More specifically, these variations influence
the power-flows (voltage and current profiles) bringing lower (or higher) voltage
drops according to the considered scenario.

To sum up and conclude, Table 4.4 shows the line parameters estimation
results for branches (1, 2) and (3, 4) and different SM accuracies and time in-
tervals. In Table 4.4 the results basically confirm the conclusions drawn by the
previous analyses: PV and V2G permit having lower errors with respect to the
Base case in all of the considered conditions. For β1,2 estimation, considering
the 10-th time interval and SM01, V2G-Disch scenario leads to an improvement
of about 13% with respect to Base case, while for PV and V2G-Ch the im-
provement is 6% and 9%, respectively. Focusing on SM accuracy, it is possible
to observe that, despite the fact that, as expected, when SM02 accuracy is con-
sidered, the performance decreases with respect to SM01, the trends for both
SM accuracies are the same.

As a general comment, it is possible to highlight that the presence of PV
and V2G positively affects the estimation performance, due to the presence of
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both higher variability and strong variations of the power-flows.
According to the above results, the conclusion is that the presented method

can benefit from the dynamics introduced by PV and V2G. In this regard, the
operator, on the basis of its own experience and of expected network load pro-
files, can define guidelines for the application of the methodology, customizing
it for the specific load or generator conditions and the technologies installed in
the grid.
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Chapter 5

Benefits of the application of
the proposed method: fault
location

5.1 PMU-based fault location

In the context of modern power systems, the fault detection and location is one
of the most important challenges since it regards critical operating conditions
and high currents flowing in the grid. In order to reduce issues associated with
these critical conditions, the fault should be extinguished quickly. Accurate and
fast fault location is essential to reduce the maintenance time and the restoration
costs and obtaining the desired efficiency in power systems.

In literature, one of the most used fault location criterion is based on impedance
matrix [106]. The corresponding methods rely on Kirchhoff’s laws and, for the
resolution of the problem, the measurements before and after the occurrence of
a fault are taken into account. Most of the latest methodologies address the
fault location based on synchronized measurements provided by PMUs and/or
SMs [107–110], as it is now recognized that synchronized measurements can
significantly help these applications.

In this context, a critical point common to basically all methods in the litera-
ture is that of an underestimation of the uncertainty related to the measurement
chain, which is instead a fundamental aspect in the fault detection and loca-
tion process. In this regard, few proposals for fault location designed for DNs
face the problem, considering also a given level of uncertainty (see, as an exam-
ple, [111–115]). In particular, [111] proposes a fault location method based on
power system status estimation evaluated by means of PMUs. In this paper, the
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method is tested by means of a sensitivity analysis considering different network
loading states and varying PMU number and accuracy. In [112], a single-phase
approach is presented to identify event locations (occurrence of power quality
events or changes in the state of the switches). Different values of uncertain-
ties in current phasor measurements, line parameters and pseudo-measurements
have been considered. In particular, possible deviations in line parameters have
been assumed in the range between ±10% to ±50%. The extension of [112] for
three-phase power systems has been presented in [113], with a more in-depth
analysis on several aspects regarding the uncertainty of input data to the algo-
rithm. In this paper, the authors, based on field experience and manufacturers’
data-sheets, assume that in distribution power systems PMUs have high accu-
racy (i.e., ±0.01% in magnitude and ±0.003◦ in phase-angle). For this reason,
they emphasize that, in practice, errors in the measurement chain are basically
associated with ITs. As a result of that, in [113], CTs and VTs errors are roughly
constant for consecutive measurements made over a short period of time. This
makes the authors conclude that measurement differences at the same location
are not significantly influenced by measurement errors. In [114], an algorithm
for the detection and location of faults based on pre- and during-fault measure-
ments is presented. In this paper, current measurements are not used in the
process of fault location to rule out the CT saturation and related inaccurate
measurements. As for voltage measurements, zero-mean Gaussian noises with
standard deviations equal to 2% and 0.1◦ for magnitude and phase-angle errors,
respectively, have been considered as worst case. The same noise type with a
10% standard deviation is instead assumed for line impedance uncertainty.

In [115], a graph-based fault location method for DSs has been presented.
The algorithm works with distribution system state estimations (DSSEs) inte-
grating limited PMU measurements. Only during-fault PMU data are consid-
ered. However, the method is tested considering PMU measurements with an
error of 2% in magnitude and 0.02 rad for phase-angles as worst case, while
assuming the maximum errors of pseudo-measurements as 50%. Maximum
variations in line parameters variation ranges from 2% to 10%.

DSSE is also the base process to detect fault in [116] and [117]. In [117],
the same approach presented in [116] is applied using the minimum necessary
number of PMUs. Both papers consider the knowledge on line parameters to
be exact and, in addition, a measurement chain based on experimental data
provided by a particularly accurate measurement infrastructure.

110



CHAPTER 5. BENEFITS OF THE APPLICATION OF THE PROPOSED
METHOD: FAULT LOCATION

5.2 Integration of the proposed estimation method

in fault location

It is clear that an accurate knowledge of line parameters is one of the most
important factors for the success of monitoring and control applications and,
among them, of the fault location methods. This is the reason why the method-
ology discussed in the previous sections appears promising to improve accuracy
and efficacy of fault location algorithms [3]. To address this problem, this chap-
ter presents the application of the previously discussed line parameters estima-
tion algorithm to design an enhanced three-phase fault detection and location
method.

In particular, the integration of the methodology presented in previous sec-
tions in a fault location algorithm introduced in literature (presented in [116]
and modified in [117]) is analyzed [118]. This algorithm is interesting to study
because it merges monitoring and protection applications, basing fault detection
on distribution system state estimation results. Therefore, the idea is to obtain
information on the possible presence of faults from an established network mon-
itoring procedure running in a grid monitoring center, potentially before there
is an actual fault notification from a protection system. In this scenario, in-
depth analyses have been carried out to understand how the accuracy of grid
information and available data can influence this type of network monitoring.

One of the main contributions to the improvement of the procedures [116]
and [117] has been obtained using the outputs of the three-phase line parame-
ters and systematic measurement errors estimation of Section 2.2.3, thus getting
better knowledge on the line parameters and better fault location results. More-
over, another critical aspect that has been considered concerns the monitoring
system capable of providing data in the presence of a fault and its uncertainty.
For these studies, the idea has been therefore to feed the state estimation al-
gorithm with data provided by a protection system. Finally, the impact of
the corresponding large measurement uncertainties on the fault location perfor-
mance has been analyzed.

It is important to emphasize that the proposed procedure is not intended
to replace existing protection systems, but it aim at integrating information
provided to the system operator, which are needed particularly when challenging
faults occur in the system, such as those non-destructive or, in general, difficult
to detect.

The validation of the presented enhanced fault location method has been
carried out considering the three-phase version of the CIGRE European Medium
Voltage distribution network, simulated in a Real Time Digital Simulator (RTDS)
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in combination with the associate software RSCAD.

5.2.1 Problem definition and proposed solution

The fault location method is intended for a three-phase DSSE equipped with
PMUs, which monitor node voltages and nodal currents in all the grid buses of
the network. This assumption can be considered realistic in smart grids, the
next generation of distribution grids, and permits the analysis to be focused
on the impact of the measurement chain. For the distribution network lines, a
three-phase π-model (see Fig. 2.15) is considered. The problem, differently from
[116] and [117], is investigated by assuming a measurement chain composed of
protection transformers and class P PMUs, i.e., the key elements of an advanced
protection system, which makes the assumption of such pervasive monitoring
on the network even more realistic. Line parameters are supposed known with a
given level of uncertainty and, as a consequence, uncertainty has been associated
also with the nodal admittance matrix Y.

A three-phase power grid with n buses and Nbr branches can be described
with the state vector xv:

xv = [Vabc
1,r

⊺
,Vabc

1,x

⊺
, ...,Vabc

n,r

⊺
,Vabc

n,x

⊺
]⊺ (5.1)

where Vabc
i,r and Vabc

i,x represent, for the bus i, the real and imaginary parts
of the three-phase voltage vectors, respectively. For the state estimation, the
measurement vector z used as input is defined as:

z =
[
zv⊺, zi

⊺
]⊺

(5.2)

where zv and zi represent the nodal voltage and current measurements (real and
imaginary parts). The state xv can be related to the measurements according
to the following equation:

z = Hxv + exv
(5.3)

where H is the measurement matrix linking xv to the voltage and current mea-
surements, while exv is the measurement error associated with the uncertainties
of the entire measurement chain.

The estimated state vector x̂v is obtained by applying the WLS method,
which formally corresponds to finding:

x̂v = (H⊺WxvH)
−1

H⊺Wxvz (5.4)

where the weight matrix Wxv is chosen as the inverse of the covariance matrix
of measurements.

The evaluation metric associated with the state estimation process is the
Weighted Measurement Residual (WMR), which, for an estimation at time in-
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stant t, can be calculated as:

wt =
√
(z−Hx̂v)

⊺
Wxv(z−Hx̂v) (5.5)

and represents the objective function of the state estimation process.
The algorithm in [116, 117] consider that, for fault location purposes, the

presence of a fault causes a change in the grid topology. In particular, consid-
ering a branch (i, j), the fault point at distance p from node i is represented
by means of a virtual bus as shown in Fig. 5.1, which means that, in the grid,
an additional bus must be taken into account. This virtual bus n + 1 absorbs,
through the fault resistance Rf , the fault current.

Figure 5.1: Equivalent model of the fault in a generic branch.

For fault location, the idea is to run Nbr parallel state estimators like (5.4),
each of them assuming the presence of the fault in the center of a specific
branch. It has to be noticed that, in absence of specific information, different
assumptions about the position of the fault can be done but here the simplest
choice is to suppose the fault in the middle of the line [116], [117]. Thus,
each of the Nbr state estimations is then associated with an augmented nodal
admittance matrix Ysi,j (where si,j ∈ {1, ..., Nbr} is the index of the branch
split in the middle of its end nodes (i, j)), thus dealing with an augmented
topology with n+1 buses. According to the findings of [116], in normal operating
conditions, the WMRs are all very close to each other. On the contrary, if a fault
occurs, the WMR considering the virtual bus in the faulted branch results in
the lowest value. This applies in the absence or with a low level of uncertainty,
but, when uncertainty sources occur in the system (related to line parameters,
modeling or measurements uncertainty etc.), the problem requires a different
approach, as also underlined in [117].

In realistic conditions, it can be useful to consider WMRs in case of both
original and augmented topology, indicated as w0

t and w
si,j
t , respectively. The

fault location procedure is composed of two phases:

• The detection of the fault is performed to notify the system operator that
a fault in the system is present.
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• The location of the fault is performed to find out the faulted branch among
all the branches of the considered grid.

The first step of the procedure is carried out when a strong variation (w0
t−w0

t−1),
between two consecutive time instants, is detected. In particular, a fault event
is raised at the time instant tF when:∣∣w0

tF
− w0

tF−1

∣∣ > th0w · µ0
wPF

(5.6)

In (5.6), th0w is a positive threshold, the subscript PF indicates the pre-fault
operating conditions and µ0

wPF
is the mean of WMRs obtained considering NPF

pre-fault evaluation instants and the original topology.
After the detection of the fault, the location is obtained analyzing the Nbr

parallel state estimations obtained considering the nodal admittance matrix
Ysi,j and the corresponding updated measurement matrix H+ for each branch.
The generic augmented state vector can be estimated according:

x̂v+ =
(
H⊺

+WxvH+

)−1
H⊺

+Wxvz (5.7)

Once the augmented estimated state vectors are obtained, it is possible to
evaluate each of the Nbr parallel state estimations wsi,jt like in (5.5) and to
obtain the location of the faulted branch sijF evaluating:

si,jF = argmin
si,j

∣∣wsi,jtF − µsi,jwPF

∣∣ (5.8)

In (5.8), wsi,jtF is the WMR obtained for the time instant tF and the nodal
admittance matrix Ysi,j , while µsi,jwPF defines the mean of NPF pre-fault WMRs.

5.2.2 Procedure for fault location on grid simulators

The presented method has been validated by means of different tests carried out
on the three-phase version of the CIGRE European MV distribution network,
rated frequency of 50 Hz [119], shown in Fig. 5.2 and simulated in RTDS envi-
ronment. RTDS [120] is a power system simulator capable of reproducing power
system dynamics, from DC up to 3 kHz and thus of providing realistic operating
conditions before and after the occurrence of a fault. RTDS can also provide
synchronized phasors of voltages and currents on the nodes of the network.
These synchrophasors, obtained from the RTDS component “GTNET-PMU24”
and based on the P-class algorithm suggested in [121], have been considered as
the basis for all the measurements in this study.

In particular, RTDS generates the reference values of voltage and current
measurements starting from the active and reactive power profiles. These mea-
surements are provided for the operating conditions before and after the oc-
currence of the fault and, once the reference values are obtained, measurement
errors are added to these values according to the the uncertainty configuration
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considered (see, for details, the next Section). For the application of the line
parameters estimation method, a procedure like that of Section 4.1 is carried
out.

Figure 5.2: CIGRE European MV distribution network.

5.3 Performance assessment of the improved fault

detection and location

The faults have been simulated considering fixed load operating conditions for
both pre- and post-fault scenarios and assuming resistive faults. For the fault
analysis, in order to exploit significant data from PMUs, the measurements
have been acquired at the end of the activation transient of the fault (post-fault
condition).

To test the advantages of including the line parameters and systematic mea-
surement errors estimation method presented in Chapter 2, single-phase to
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ground fault (which is the most frequent fault in power distribution systems
[106]) has been considered, assuming it can occur at different branches and po-
sitions within the branch, and with different fault resistances. In what follows,
this fault type is indicated as LGpF with pF ∈ {a, b, c} the system phase.

The two level of uncertainties assumed in [116] for the fault detection and
location are indicated as M1 and M2 and described in Table 5.1.

Table 5.1: Comparison of uncertainty configurations from literature

Accuracy σVξ σVα σIη σIψ σIηP σIψP
[%] [crad] [%] [crad] [%] [crad]

M1 0.0016 0.0051 0.4 0.58 4 5.8
M2 0.016 0.051 4 5.8 12 17

In this thesis, the operating conditions and measurement uncertainties con-
sidered for the test set-up are instead:

• Line parameters maximum deviations are equal to ±15%.

• Normal operating conditions used for the application of the line parame-
ters estimation method have a variability of ±10% with respect to nominal
values for both active and reactive powers.

• NPF = 10 and th0w = 1.

• ITs of the measurement chain are for protection purposes. In particular,
VTs are of Class 3P [122], and have maximum errors of 3% and 3.5 crad
for ratio error and phase-angle displacement error (for both pre-fault and
post-fault scenarios), respectively. CTs are considered to be of Class 5P
[123]: in steady-state conditions (pre-fault), they are assumed to have
maximum ratio and phase-angle errors of 1% and 1.8 crad, respectively.
The post-fault condition is followed with maximum errors of 3.54% for
magnitude and 3.54 crad for phase-angle (i.e., they reach a composite
error of 5%).

• PMUs in steady-state conditions have maximum magnitude error of 0.1%
and maximum phase-angle error of 0.1 crad, whereas, in post-fault condi-
tion, they have a maximum TVE of 3%.

Fourth and final items of the tests assumptions are supposed to represent real-
istic uncertainty behavior of the measurement chain that is required to follow
signal dynamics in the transition between pre-fault (basically steady-state) and
post-fault (unknown dynamics) conditions. This uncertainty configuration will
be indicated as M3 and, when no other information except the data-sheets is
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available, it is applied to all the measurements on all the nodes of the considered
grid.

In Table 5.1 [116], the measurement errors are indicated in terms of stan-
dard deviations summarizing the combination of measurement transducers and
PMUs. In particular, σVξ , σVα and σIη , σIψ are the standard deviations for
amplitude and phase-angle errors of voltages and currents, respectively. In
addition, this table provides also the standard deviations adopted for the com-
bination of current protection transducers and PMUs assumed to be installed
in the buses at the low voltage side of the 110/20 kV transformers in Fig. 5.2:
σIηP and σIψP are the corresponding ratio and phase-angle errors of current
measurements.

To validate statistically the results, tests have been performed considering
NMC = 5000 trials and, in absence of specific information, possible deviations in
the values of all the parameters involved and measurement errors are extracted
from uniform distributions. The methodology of Section 2.2.3 has been applied
during normal operating conditions and assuming measurement errors related to
steady-state conditions. The performance of the enhanced fault identification
algorithm is evaluated considering the number of the correct locations of the
faulted line NLoc with respect to all the MC trials. The associated index L is
obtained as:

L = 100× NLoc
NMC

(5.9)

In the tests, different estimation approaches have been evaluated and compared
and the following indices represent their performance:

• LLPE (the proposed method), indicating the fault location that uses the
outputs of the method in Section 2.2.3 (i.e., the estimated line parameters)
to update the nodal admittance matrix Y (and Ysi,j ), and assuming as
maximum uncertainty level the actual one.

• LDSO, indicating the fault location that uses the nodal admittance matrix
obtained from the values available from the network operator database (in
this case DSO) and assuming as maximum uncertainty level the actual one.

• LDSOM2
, indicating the fault location that uses the same nodal admit-

tance matrix of LDSO and, in addition, it assumes always as maximum
uncertainty level M2.

• LAct, indicating the fault location that uses the best possible knowledge
of Y (and Ysi,j ), i.e., the actual value of the nodal admittance matrix and
it considers as maximum uncertainty level the actual one. It will be used
as benchmark method.
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Figure 5.3: LDSO, WMRs of the state estimations considering M2, fault on
branch (3, 8), Rf = 100Ω.

The first series of tests have been performed in order to evaluate the impact
of possible deviations of the line parameters. Since the fault detection and
location algorithm relies on the WMRs evaluation, understanding the impact of
a possible uncertainty on line parameters on the WMR is a key point. Figures 5.3
and 5.4 show for the branch (3, 8), considering Rf = 100Ω, M2 and p = 0.5,
the trends of wsi,jt for LDSO and LLPE , respectively. In the figures, “evaluation
index” is the index of the retained evaluation instants related to the considered
pre- and post-fault instants. It is worth underlining that the time interval
between consecutive instants represents the PMU reporting rate, but a time
gap exists between steady-state pre- and post-fault useful measurements. From
Fig. 5.3, it is possible to see that LDSO has variable trends for wsi,jt . On the
contrary, in Fig. 5.4, LLPE has almost identical pre-fault wsi,jt . Moreover, in
post-fault conditions, the faulted branch keeps a wsi,jt substantially unchanged
compared to those obtained in pre-fault conditions.

This behavior can be explained by the fact that LLPE allows, in general,
a better reproduction of the actual nodal admittance matrix, which affects the
WMRs and, as a consequence, a better reproduction of the actual network.
Thus, the resulting estimates are more accurate leading to an improvement of the
fault location performance. Table 5.2 shows the fault location results considering
a fault resistance Rf ∈ {10Ω, 100Ω} (0.625 and 6.25 pu, respectively), fault
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Figure 5.4: LLPE , WMRs of the state estimations considering M2, fault on
branch (3, 8), Rf = 100Ω.

position that occurs halfway or at a quarter of the branch (p = 0.5 and p = 0.25

are the distances relative to the line length), and uncertainty configuration M2.
It has to be noticed that same tests have been carried out also with M1, but
similar results are obtained and, thus, they are not reported in the table, as
well as the results of LDSOM2

, since it obviously produces, in this configuration,
the same results of LDSO. In this context, it is worth underlining that a fault
position of p = 0.25 represents a mismatch on the assumption at the base of the
Nbr augmented topologies used for DSSEs.

In Table 5.2, it is possible to notice that LLPE and LAct have similar results
in the considered branches. This behavior can be explained by the fact that, if
line parameters are estimated with the presented method, this is enough to have
a valid fault location process as if they were accurately known a priori. Thus, in
the presence of low uncertainty levels line parameters estimation method has a
significant effect. In Table 5.2, LDSO has the worst performance: in particular,
when a fault occurs with Rf = 100Ω at position p = 0.25, LLPE improves
with respect to LDSO of about 17% and 24% for branches (9, 10) and (3, 8),
respectively.

Other tests have been performed to emphasize another important aspect
of the fault location problem: the impact on the identification process of a
measurement chain typical for protection purposes asM3. Since the combination
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Table 5.2: Location performance for a single-phase to ground fault LGa, con-
sidering M2 accuracy

Fault
position Branch Rf

Location
LLPE LDSO LAct
[%] [%] [%]

p = 0.5

(3, 4)
10Ω

100 100 100
(9, 10) 100 100 100
(3, 8) 100 100 100
(3, 4)

100Ω
100 98.2 100

(9, 10) 100 99.0 100
(3, 8) 100 96.2 100

p = 0.25

(3, 4)
10Ω

100 100 100
(9, 10) 100 98.6 100
(3, 8) 100 96.9 100
(3, 4)

100Ω
100 96.8 100

(9, 10) 94.7 77.7 96.6
(3, 8) 95.8 70.7 95.9

of high fault resistances and M3 makes the fault detection and location more
challenging and requires specific analyses, the results obtained for a lower fault
resistance are discussed. In Table 5.3, the results for M3 and fault resistance
Rf = 1Ω (0.0625 pu) are shown.

Table 5.3: Location performance for a single-phase to ground fault LGa, con-
sidering M3 accuracy

Fault
position Branch Rf

Location
LLPE LDSO LAct
[%] [%] [%]

p = 0.5
(3, 4)

1Ω
100 100 100

(5, 6) 100 100 100
(3, 8) 100 100 100

p = 0.25
(3, 4)

1Ω
100 100 100

(5, 6) 99.6 97.9 99.6
(3, 8) 93.8 92.5 94.8

It has to be noticed that also in these challenging conditions the uncertainty
in the line parameters values shows an impact: LLPE and LAct have basically
the same results, while LDSO still suffers from the lack of knowledge on the
nodal admittance matrix.

The tests in Table 5.3, which are performed considering a measurement chain
appropriate for these dynamic conditions, highlight the importance of making
the right assumptions on the errors to avoid misinterpreting the actual operating
conditions. It can therefore be reiterated that the obtained results confirm the
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utility of the application of line parameters estimation in a fault identification
process and, the estimation algorithm proves to be valid considering the presence
of both measurement and parameters realistic uncertainties.
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Conclusions

Power transmission and distribution systems have transitioned and are undergo-
ing significant changes. This evolution requires an enhancement in monitoring
and control applications at the basis of an efficient operation of power systems.
In this context, management and control of power systems are based on tools
that can be affected by many sources of uncertainty. Among these it is possible
to mention the uncertainty on the network parameters, on the used network
models down to all the sources of uncertainty in the measurement chain.

To reduce the impact of these factors, the research activity carried out for
this thesis led to the development of a simultaneous estimation of network (lines
and power transformers) parameters and systematic measurement errors, which
can be applied to both transmission and distribution systems and in the presence
of single-phase or three-phase models of the power grid.

Differently from the literature, the proposed approaches include in the vec-
tor of parameters to estimate not only the network parameters but also the
systematic errors of all the measurements involved. Another fundamental point
is that the framework has been conceived to deal, potentially simultaneously,
with all the branches of the grid under test and to leverage the high reporting
rate of the PMUs.

The presented algorithms are built considering a monitoring infrastructure
composed of Instrument Transformers feeding PMUs, which are assumed to
be installed at both ends of each branch, but some tests have been carried out
exploiting also other types of devices with synchronized measurement capability.
As for the errors of the measurement chain, the general assumption is that
random errors are mainly associated with PMUs, while systematic errors are
mainly associated with Instrument Transformers, but also more complex errors
combination are taken into account and analyzed.

The performance of the proposed algorithms has been evaluated and vali-
dated by means of both simulations carried out in MATLAB environment and
grid emulators. Moreover, the performance assessment has been carried out also
with respect to relevant methods published in literature.
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The base version of the algorithms proved to be capable to reduce the un-
certainty on network parameters and systematic measurement errors and to be
robust under realistic measurement uncertainties and different network condi-
tions.

Then, further analyses have been carried out to understand how the as-
sumptions about the models of the measurement chain and the grid could be
improved. Specifically, the methodology has been tested by assuming different
types of mismatches on the base assumptions. Based on the results obtained,
the methods have been improved with the integration of more detailed and gen-
eralized models of the error of both the PMUs and the Current Transformers
and with a generalization of the tap-changing transformer model. After these
updates, the methods showed a significant improvement in estimation accuracy.

In general, all the results obtained for both single-phase and three-phase for-
mulations have shown the capability of the approach to reduce the uncertainty
on both targets of the method: network parameters and systematic measure-
ment errors.

The proposed approach proved to be effective also in its integration in one
of the most important power system management and control applications, the
fault location. In this context, an in-depth analysis was carried out starting
from a fault detection and location procedure present in the literature.

In conclusion, it can be highlighted that the proposed approach and the
presented estimation framework can be considered as a valid and robust tool,
which can be used by System Operators to update their data and model with
a certain periodicity and to compensate for systematic errors in their measure-
ments. This can improve the efficacy and flexibility of their monitoring and
control applications.
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Appendix

I IEEE 14 Bus test system

The main characteristics of the IEEE 14 bus test system are reported in Fig. 1,
Table 1 and Table 2.

Figure 1: Topology of the IEEE 14 bus test system.
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Table 1: Nominal linedata of the IEEE 14 bus test system

Branch R0
i,j X0

i,j B0
sh,i,j

[pu]
1 0.01938 0.05917 0.0264
2 0.05403 0.22304 0.0246
3 0.04699 0.19797 0.0219
4 0.05811 0.17632 0.0170
5 0.05695 0.17388 0.0173
6 0.06701 0.17103 0.0064
7 0.01335 0.04211 0.0
8 0.0 0.20912 0.0
9 0.0 0.55618 0.0
10 0.0 0.25202 0.0
11 0.09498 0.19890 0.0
12 0.12291 0.25581 0.0
13 0.06615 0.13027 0.0
14 0.0 0.17615 0.0
15 0.0 0.11001 0.0
16 0.03181 0.08450 0.0
17 0.12711 0.27038 0.0
18 0.08205 0.19207 0.0
19 0.22092 0.19988 0.0
20 0.17093 0.34802 0.0

Table 2: Active and reactive power of the loads

Node
index Ph [MW] Qh [Mvar]

2 −18.3 −30.86
3 94.2 −6.08
4 47.8 −3.9
5 7.6 1.6
6 11.2 −5.23
7 0 0
8 0 −17.62
9 29.5 16.6
10 9 5.8
11 3.5 1.8
12 6.1 1.6
13 13.5 5.8
14 14.9 5

II Modified version of the 95 nodes UKGDS sys-

tem

The main characteristics of the modified version of 95 UKGDS system are re-
ported in Fig. 2, Table 3 and Table 4.
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Figure 2: Topology of the modified version of 95 UKGDS system.

Table 3: Nominal linedata values of the modified version of 95 UKGDS system

Branch R0
i,j X0

i,j B0
sh,i,j

[pu]

1 0.055 0.057 0.000073
2 0.039 0.10 0.000052
3 0.049 0.051 0.000065
4 0.098 0.33 0.00013
5 0.17 0.076 0.00023
6 0.21 0.20 0.00028
7 0.24 0.11 0.00032
8 0.26 0.18 0.00035

Table 4: Active and reactive power of the loads

Node
index Ph [MW] Qh [Mvar]

2 0 0
3 3.28 0.57
4 0 0
5 0 0
6 0.058 0.0083
7 0 0
8 0.12 0.017
9 4 4
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III 15 kV test network

The main characteristics of the 15 kV test network are reported in Fig. 3, Table 5
and Table 6.

Figure 3: Topology of the 15 kV test network.

Table 5: Nominal line parameters of the 15 kV test network

Branch R0
i,j X0

i,j B0
sh,i,j

[pu]

1 0.055 0.057 0.00017
2 0.039 0.12 0.00065
3 0.049 0.051 0.00015
4 0.098 0.33 0.0016
5 0.17 0.066 0.00012
6 0.21 0.20 0.00066
7 0.24 0.09 0.00017
8 0.26 0.18 0.00048

Table 6: Active and reactive power of the loads

Node
index Ph [MW] Qh [Mvar]

2 0 0
3 3.28 0.57
4 0 0
5 0 0
6 0.12 0.017
7 0 0
8 0.24 0.035
9 4 4

127



Bibliography

[1] H. Wang, H. Jiao, J. Chen, and W. Liu, “Parameter identification for a
power distribution network based on MCMC algorithm,” IEEE Access,
vol. 9, pp. 104 154–104 161, Jun. 2021.

[2] D. H. Tungadio, J. A. Jordaan, and M. W. Siti, “Power system state es-
timation solution using modified models of PSO algorithm: Comparative
study,” Measurement, vol. 92, pp. 508–523, Oct. 2016.

[3] J. Fu, G. Song, and B. De Schutter, “Influence of measurement uncertainty
on parameter estimation and fault location for transmission lines,” IEEE
Trans. Autom. Sci. Eng., vol. 18, no. 1, pp. 337–345, Jan. 2021.

[4] Z. Wu, H. Long, and C. Chen, “Line aging assessment in distribution net-
work based on topology verification and parameter estimation,” J. Mod.
Power Syst. Clean Energy, vol. 10, no. 6, pp. 1658–1668, Nov. 2022.

[5] M. Asprou and E. Kyriakides, “Identification and estimation of erroneous
transmission line parameters using PMU measurements,” IEEE Trans.
Power Del., vol. 32, no. 6, pp. 2510–2519, Dec. 2017.

[6] G. Kusic and D. Garrison, “Measurement of transmission line parameters
from SCADA data,” in IEEE PES Power Syst. Conf. and Expo., New
York City, NY, USA, Oct. 2004, pp. 344–349.

[7] H. Zhang, Z. Diao, and Y. Cui, “Identification of Power Network Branch
Parameters Based on State Space Transformation,” IEEE Access, vol. 7,
pp. 91 720–91 730, Jul. 2019.

[8] M. Asprou, E. Kyriakides, and M. M. Albu, “Uncertainty bounds of
transmission line parameters estimated from synchronized measurements,”
IEEE Trans. Instrum. Meas., vol. 68, no. 8, pp. 2808–2818, Aug. 2019.

[9] S. Vlahinić, D. Franković, M. Ž. Durovič, and N. Stojković, “Measurement
uncertainty evaluation of transmission line parameters,” IEEE Trans. In-
strum. Meas., vol. 70, pp. 1–7, Apr. 2021.

128



BIBLIOGRAPHY

[10] A. Xue, F. Xu, K. E. Martin, H. You, J. Xu, L. Wang, and G. Wei,
“Robust identification method for transmission line parameters that con-
siders PMU phase angle error,” IEEE Access, vol. 8, pp. 86 962–86 971,
May 2020.

[11] H. Haiyan, K. He, G. Lei, M. Jing, X. Feiyang, and X. Ancheng, “Steady-
state PMU data selection for parameter identification of transmission line
considering the influence of measurement error,” IET Gener. Transm. Dis-
trib., vol. 16, pp. 4549–4562, Sep. 2022.

[12] J. Lin, J. Song, and C. Lu, “Synchrophasor data analytics: Transmission
line parameters online estimation for energy management,” IEEE Trans.
Eng. Manag., vol. 69, no. 3, pp. 671–681, Jun. 2022.

[13] J. Sun, M. Xia, and Q. Chen, “A classification identification method
based on phasor measurement for distribution line parameter identifica-
tion under insufficient measurements conditions,” IEEE Access, vol. 7, pp.
158 732–158 743, Oct. 2019.

[14] Y. Hou, T. Fang, F. Shi, and H. Zhang, “Parameter estimation method of
distribution network based on PMU measurement data,” in 2020 5th Asia
Conference on Power and Electrical Engineering (ACPEE), Chengdu,
China, Jun. 2020, pp. 1620–1625.

[15] Y. Wang, M. Xia, Q. Yang, Y. Song, Q. Chen, and Y. Chen, “Augmented
state estimation of line parameters in active power distribution systems
with phasor measurement units,” IEEE Trans. Power Del., vol. 37, no. 5,
pp. 3835–3845, Oct. 2022.

[16] A. Wehenkel, A. Mukhopadhyay, J.-Y. L. Boudec, and M. Paolone, “Pa-
rameter estimation of three-phase untransposed short transmission lines
from synchrophasor measurements,” IEEE Trans. Instrum. Meas., vol. 69,
no. 9, pp. 6143–6154, Sep. 2020.

[17] F. P. De Albuquerque, E. C. M. Da Costa, R. F. R. Pereira, L. H. B.
Liboni, and M. C. De Oliveira, “Nonlinear analysis on transmission line
parameters estimation from noisy phasorial measurements,” IEEE Access,
vol. 10, pp. 1720–1730, Dec. 2021.

[18] M. Xiao, W. Xie, C. Fang, S. Wang, Z. Ullah, X. Zheng, R. Arghandeh,
Y. Li, and S. Liu, “Distribution line parameter estimation driven by prob-
abilistic data fusion of d-PMU and AMI,” IET Generation, Transmission
& Distribution, vol. 15, no. 20, pp. 2883–2892, Jun. 2021.

129



BIBLIOGRAPHY

[19] R. K. Gupta, F. Sossan, J.-Y. Le Boudec, and M. Paolone, “Compound
admittance matrix estimation of three-phase untransposed power distri-
bution grids using synchrophasor measurements,” IEEE Trans. Instrum.
Meas., vol. 70, pp. 1–13, Jun. 2021.

[20] E. Satsuk, A. Zhukov, D. Dubinin, I. Ivanov, and A. Murzin, “Analytical
approach to phasor-based line parameter estimation verified through real
PMU data,” in 2022 International Conference on Smart Grid Synchro-
nized Measurements and Analytics (SGSMA), Split, Croatia, May 2022,
pp. 1–6.

[21] D. Franković, S. Vlahinić, and M. Ž. Durovič, “Application of different
least square methods for transmission line parameter estimation,” in 2022
IEEE 12th International Workshop on Applied Measurements for Power
Systems (AMPS), Cagliari, Italy, Sep. 2022, pp. 1–5.

[22] C. Roberts, C. M. Shand, K. Brady, E. M. Stewart, A. W. McMorran,
and G. A. Taylor, “Improving distribution network model accuracy us-
ing impedance estimation from micro-synchrophasor data,” in 2016 IEEE
Power and Energy Society General Meeting (PESGM), Boston, Mas-
sachusetts, USA, Nov. 2016, pp. 1–5.

[23] R. S. Singh, S. Babaev, V. Cuk, S. Cobben, and H. van den Brom,
“Line parameters estimation in presence of uncalibrated instrument trans-
formers,” in 2019 2nd International Colloquium on Smart Grid Metrology
(SMAGRIMET), Split, Croatia, Apr. 2019, pp. 1–8.

[24] V. Milojevic, M. V. Aćanski, and D. Colangelo, “Utilization of PMU Mea-
surements for Three-Phase Line Parameter Estimation in Power Systems,”
IEEE Trans. Instrum. Meas., vol. 67, no. 10, p. 10, Oct. 2018.

[25] A. Pal, P. Chatterjee, J. S. Thorp, and V. A. Centeno, “Online calibration
of voltage transformers using synchrophasor measurements,” IEEE Trans.
Power Del., vol. 31, no. 1, pp. 370–380, Feb. 2016.

[26] C. Wang, V. A. Centeno, K. D. Jones, and D. Yang, “Transmission lines
positive sequence parameters estimation and instrument transformers cal-
ibration based on PMU measurement error model,” IEEE Access, vol. 7,
pp. 145 104–145 117, Oct. 2019.

[27] Y. G. Kononov, O. S. Rybasova, and K. A. Sidirov, “Identification of
overhead-line parameters from PMU data with compensation of system-
atic measurement errors,” in Int. Conf. on Ind. Eng., Appl. and Manuf.
(ICIEAM), Moscow, Russia, May 2018, pp. 1–5.

130



BIBLIOGRAPHY

[28] H. Goklani, G. Gajjar, and S. A. Soman, “Instrument transformer cali-
bration and robust estimation of transmission line parameters using PMU
measurements,” IEEE Trans. Power Syst., vol. 36, no. 3, pp. 1761–1770,
May 2021.

[29] K. V. Khandeparkar, S. A. Soman, and G. Gajjar, “Detection and correc-
tion of systematic errors in instrument transformers along with line pa-
rameter estimation using PMU data,” IEEE Trans. Power Syst., vol. 32,
no. 4, pp. 3089–3098, Jul. 2017.

[30] P. A. Pegoraro, P. Castello, C. Muscas, K. Brady, and A. von Meier, “Han-
dling instrument transformers and PMU errors for the estimation of line
parameters in distribution grids,” in 2017 IEEE International Workshop
on Applied Measurements for Power Systems (AMPS), Liverpool, UK,
Sep. 2017, pp. 1–6.

[31] P. A. Pegoraro, K. Brady, P. Castello, C. Muscas, and A. von Meier,
“Line impedance estimation based on synchrophasor measurements for
power distribution systems,” IEEE Trans. Instrum. Meas., vol. 68, no. 4,
pp. 1002–1013, Apr. 2019.

[32] P. A. Pegoraro, K. Brady, P. Castello, C. Muscas, and A. von Meier,
“Compensation of systematic measurement errors in a PMU-based moni-
toring system for electric distribution grids,” IEEE Trans. Instrum. Meas.,
vol. 68, no. 10, pp. 3871–3882, Oct. 2019.

[33] C. A. Ferreira and R. B. Prada, “Improved model for tap-changing trans-
former,” IET Generation, Transmission & Distribution, vol. 7, no. 11, pp.
1289–1295, Nov. 2013.

[34] R. Yang, D. Zhang, Z. Li, K. Yang, S. Mo, and L. Li, “Mechanical fault
diagnostics of power transformer on-load tap changers using dynamic time
warping,” IEEE Trans. Instrum. Meas., vol. 68, no. 9, pp. 3119–3127, Sep.
2019.

[35] X. Liang, Y. Wang, and H. Gu, “A mechanical fault diagnosis model of on-
load tap changer based on same-source heterogeneous data fusion,” IEEE
Trans. Instrum. Meas., vol. 71, pp. 1–9, Mar. 2021.

[36] G. Korres, P. Katsikas, and G. Contaxis, “Transformer tap setting observ-
ability in state estimation,” IEEE Trans. Power Syst., vol. 19, no. 2, pp.
699–706, May 2004.

131



BIBLIOGRAPHY

[37] A. Singhal, H. K. Rathour, P. Agarwal, K. V. S. Baba, and S. K. Soonee,
“State estimation at all india level,” in 2016 National Power Systems Con-
ference (NPSC), Bhubaneswar, India, Dec. 2016, pp. 1–6.

[38] M. Rezaei, S. S. Mortazavi, M. Razaz, and M. S. Ghazizadeh, “The statis-
tical interval estimation of the mean and the hypothesis testing of popula-
tion proportions for transformer tap position estimation,” Electric Power
Systems Research, vol. 164, pp. 212–219, Nov. 2018.

[39] R. C. Pires, L. Mili, and F. A. B. Lemos, “Constrained robust estima-
tion of power system state variables and transformer tap positions under
erroneous zero-injections,” IEEE Trans. Power Syst., vol. 29, no. 3, pp.
1144–1152, May 2014.

[40] A. S. Dobakhshari, M. Abdolmaleki, V. Terzija, and S. Azizi, “Online
non-iterative estimation of transmission line and transformer parameters
by SCADA data,” IEEE Trans. Power Syst., vol. 36, no. 3, pp. 2632–2641,
May 2021.

[41] S. G. Ghiocel, J. H. Chow, G. Stefopoulos, B. Fardanesh, D. Mara-
gal, B. Blanchard, M. Razanousky, and D. B. Bertagnolli, “Phasor-
measurement-based state estimation for synchrophasor data quality im-
provement and power transfer interface monitoring,” IEEE Trans. Power
Syst., vol. 29, no. 2, pp. 881–888, Mar. 2014.

[42] E. R. Fernandes, S. G. Ghiocel, J. H. Chow, D. E. Ilse, D. D. Tran,
Q. Zhang, D. B. Bertagnolli, X. Luo, G. Stefopoulos, B. Fardanesh, and
R. Robertson, “Application of a phasor-only state estimator to a large
power system using real PMU data,” IEEE Trans. Power Syst., vol. 32,
no. 1, pp. 411–420, Jan. 2017.

[43] C. Borda, A. Olarte, and H. Diaz, “PMU-based line and transformer pa-
rameter estimation,” in 2009 IEEE/PES Power Systems Conference and
Exposition, Seattle, Washington, USA, Mar. 2009, pp. 1–8.

[44] B. Vicol, “On-line overhead transmission line and transformer parameters
identification based on PMU measurements,” in 2014 International Con-
ference and Exposition on Electrical and Power Engineering (EPE), Iasi,
Romania, Oct. 2014, pp. 1045–1050.

[45] M. R. Rezaei, S. R. Hadian-amrei, and M. R. Miveh, “Online identification
of power transformer and transmission line parameters using synchronized
voltage and current phasors,” Electric Power Systems Research, vol. 203,
p. 107638, Feb. 2022.

132



BIBLIOGRAPHY

[46] R. S. Luciano V. Barboza, Hans H. Ziirn, “Load tap change transformers:
A modeling reminder,” IEEE Power Eng. Rev., vol. 21, no. 2, pp. 51–52,
Feb. 2001.

[47] A. Abur and A. G. Expòsito, Power System State Estimation. Theory and
Implementation. Marcel Dekker, New York, 2004.

[48] J. D. Glover, M. S. Sarma, and T. J. Overbye, Power system analysis and
design. Cengage Learning, 2012.

[49] Jiangshan Scotech Electrical Co.,Ltd, “220kV power transformer with
on load tap changer,” https://www.scotech-electrical.com/showroom/
220kv-Power-Transformer-with-on-Load-Tap-Changer.html, Accessed:
2022-06-15.

[50] J. M. Cano, M. R. R. Mojumdar, and G. A. Orcajo, “On the consistency
of tap-changing transformer models in power system studies,” in 2020
IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC,
Canada, Aug. 2020, pp. 1–5.

[51] ——, “Reconciling tap-changing transformer models,” IEEE Trans. Power
Del., vol. 34, no. 6, pp. 2266–2268, Dec. 2019.

[52] R. Puddu, K. Brady, C. Muscas, P. A. Pegoraro, and A. V. Meier, “PMU-
based technique for the estimation of line parameters in three-phase elec-
tric distribution grids,” in 2018 IEEE 9th Int. Workshop on Applied Mea-
surements for Power Systems (AMPS), Sept 2018, pp. 1–5.

[53] C. Muscas, P. A. Pegoraro, C. Sitzia, A. V. Solinas, and S. Sulis, “Com-
pensation of systematic measurement errors in PMU-based monitoring
systems for transmission grids,” in IEEE Int. Instrum. and Meas. Tech-
nol. Conf. (I2MTC), Virtual Event, May 2021, pp. 1–6.

[54] C. Sitzia, C. Muscas, P. A. Pegoraro, A. V. Solinas, and S. Sulis, “En-
hanced PMU-based line parameters estimation and compensation of sys-
tematic measurement errors in power grids considering multiple operating
conditions,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–12, Jan. 2022.

[55] P. A. Pegoraro, C. Sitzia, A. V. Solinas, and S. Sulis, “A PMU-based tech-
nique for the simultaneous estimation of systematic measurement errors,
line parameters and tap changer ratio,” in 2021 IEEE 11th International
Workshop on Applied Measurements for Power Systems (AMPS), Virtual
Event, Sep. 2021, pp. 1–6.

133

https://www.scotech-electrical.com/showroom/220kv-Power-Transformer-with-on-Load-Tap-Changer.html
https://www.scotech-electrical.com/showroom/220kv-Power-Transformer-with-on-Load-Tap-Changer.html


BIBLIOGRAPHY

[56] IEC/IEEE, International Standard- Power transformers - Part 21: Stan-
dard requirements, terminology, and test code for step-voltage regulators,
IEC/IEEE IEC 60076-21:2018(E) IEEE Std C57.15-2017, 2018.

[57] P. Ren, H. Lev-Ari, and A. Abur, “Tracking three-phase untransposed
transmission line parameters using synchronized measurements,” IEEE
Trans. Power Syst., vol. 33, no. 4, pp. 4155–4163, July 2018.

[58] JCGM, “Evaluation of data - guide to the expression of uncertainty in
measurement,” JCGM 100:2008, Sep. 2008.

[59] IEC, Instrument transformers - Part 2: Inductive voltage transformers,
CEI IEC Int. Std. IEC 60044-2, 1997.

[60] ——, Instrument transformers - Part 1: Current transformers, CEI IEC
Int. Std. IEC 60044-1, 2003.

[61] R. Abu-Hashim, R. Burch, G. Chang, M. Grady, E. Gunther, M. Halpin,
C. Harziadonin, Y. Liu, M. Marz, T. Ortmeyer, V. Rajagopalan,
S. Ranade, P. Ribeiro, T. Sim, and W. Xu, “Test systems for harmon-
ics modeling and simulation,” IEEE Trans. Power Del., vol. 14, no. 2, pp.
579–587, Apr 1999.

[62] P. C. Hansen, “REGULARIZATION TOOLS: A Matlab package for anal-
ysis and solution of discrete ill-posed problems,” Numerical Algorithms,
vol. 6, no. 1, pp. 1–35, Mar. 1994.

[63] ——, “The discrete picard condition for discrete ill-posed problems,” BIT
Numerical Mathematics, vol. 30, pp. 658–672, 1990.

[64] P. C. Hansen, “The L-curve and its use in the numerical treatment of
inverse problems,” P. Johnston (Ed.), Computational Inverse Problems
in Electrocar-diography, WIT Press, Southampton, pp. 119–142, 2001.

[65] V. A. Morozov, Methods for Solving Incorrectly Posed Problems. New
York, NY: Springer New York, 1984.

[66] D. Carta, C. Muscas, P. A. Pegoraro, A. V. Solinas, and S. Sulis, “Com-
pressive sensing-based harmonic sources identification in smart grids,”
IEEE Trans. Instrum. Meas., vol. 70, pp. 1–10, Nov. 2020.

[67] L. Reichel and A. Shyshkov, “A new zero-finder for Tikhonov regular-
ization,” BIT Numerical Mathematics, vol. 48, no. 3, pp. 627–643, Sep.
2008.

134



BIBLIOGRAPHY

[68] P. A. Pegoraro, C. Sitzia, A. V. Solinas, and S. Sulis, “PMU-based es-
timation of systematic measurement errors, line parameters, and tap
changer ratios in three-phase power systems,” IEEE Trans. Instrum.
Meas., vol. 71, pp. 1–12, Apr. 2022.

[69] W. H. K. Kersting, Distribution System Modeling and Analysis, 3rd ed.
Boca Raton, FL, USA: William H. Kersting, 2002.

[70] M. Bazrafshan, N. Gatsis, and H. Zhu, “Optimal power flow with step-
voltage regulators in multi-phase distribution networks,” IEEE Trans.
Power Syst., vol. 34, no. 6, pp. 4228–4239, May 2019.

[71] M. Bazrafshan and N. Gatsis, “Comprehensive modeling of three-phase
distribution systems via the bus admittance matrix,” IEEE Trans. Power
Syst., vol. 33, no. 2, pp. 2015–2029, Mar. 2018.

[72] R. Abu-Hashim, R. Burch, G. Chang, M. Grady, E. Gunther, M. Halpin,
C. Harziadonin, Y. Liu, M. Marz, T. Ortmeyer, V. Rajagopalan,
S. Ranade, P. Ribeiro, T. Sim, and W. Xu, “Test systems for harmon-
ics modeling and simulation,” IEEE Trans. Power Del., vol. 14, no. 2, pp.
579–587, Apr. 1999.

[73] Terna SpA, “Qualità del servizio di trasmissione - rapporto annuale per
l’anno 2020 [Quality of service - Annual report for year 2020],” pp. 1–109,
2021, (in Italian). [Online]. Available: https://download.terna.it/terna/
Rapporto%20Annuale%20Qualit%C3%A0%202020_8d942c0ff3f9277.pdf

[74] P. Castello, C. Muscas, P. A. Pegoraro, G. Guida, G. M. Giannuzzi,
and P. Pau, “Interoperability of phasor measurement units under voltage
unbalance conditions,” in 2017 AEIT International Annual Conference,
Cagliari, Italy, Sep. 2017, pp. 1–6.

[75] H. Goklani, G. Gajjar, and S. A. Soman, “Quantification of minimum un-
balance required for accurate estimation of sequence parameters of trans-
mission line using PMU data,” in 2019 IEEE Power & Energy Society
General Meeting (PESGM), Atlanta, GA, USA, Aug. 2019, pp. 1–5.

[76] P. Castello, G. Gallus, C. Muscas, P. A. Pegoraro, D. Sitzia, and S. Sulis,
“A statistical investigation of PMU errors in current measurements,” in
2023 IEEE International Instrumentation and Measurement Technology
Conference (I2MTC), Kuala Lumpur, Malaysia, May 2023, pp. 1–6.

[77] P. Castello, C. Muscas, and P. A. Pegoraro, “Statistical behavior of PMU
measurement errors: An experimental characterization,” IEEE Open
Journal of Instrumentation and Measurement, vol. 1, pp. 1–9, Sep. 2022.

135

https://download.terna.it/terna/Rapporto%20Annuale%20Qualit%C3%A0%202020_8d942c0ff3f9277.pdf
https://download.terna.it/terna/Rapporto%20Annuale%20Qualit%C3%A0%202020_8d942c0ff3f9277.pdf


BIBLIOGRAPHY

[78] A. Mingotti, L. Peretto, R. Tinarelli, A. Angioni, A. Monti, and F. Ponci,
“Calibration of synchronized measurement system: from the instrument
transformer to the PMU,” in 2018 IEEE 9th International Workshop on
Applied Measurements for Power Systems (AMPS), Bologna, Italy, Sep.
2018, pp. 1–5.

[79] CENELEC, Voltage characteristics of electricity supplied by public elec-
tricity networks, European Standard EN50160:2010+A3 Std., 2019.

[80] Instrument transformers - Part 11: Additional requirements for low-power
passive voltage transformers, IEC Int. Std. IEC 61869-11:2017, 2017.

[81] C. Laurano, S. Toscani, and M. Zanoni, “A simple method for compen-
sating harmonic distortion in current transformers: Experimental valida-
tion,” Sensors, vol. 21, no. 9, Apr. 2021.

[82] M. Faifer, C. Laurano, R. Ottoboni, and S. Toscani, “Compensating
the harmonic distortion introduced by instrument transformers: An im-
proved method based on frequency-domain polynomials,” in IEEE 11th
Int. Workshop on Applied Measurements for Power Systems (AMPS), Vir-
tual Event, Sep. 2021, pp. 1–6.

[83] Instrument transformers - Part 10: Additional requirements for low-power
passive current transformers, IEC Int. Std. IEC 61869-10:2017, 2017.

[84] P. A. Pegoraro, C. Sitzia, A. V. Solinas, S. Sulis, C. Laurano, and
S. Toscani, “Impact of current transformers on line parameters estima-
tion based on synchronized measurements,” in 2022 IEEE 12th Interna-
tional Workshop on Applied Measurements for Power Systems (AMPS),
Cagliari, Italy, Sep. 2022, pp. 1–6.

[85] C. Laurano, P. A. Pegoraro, C. Sitzia, A. V. Solinas, S. Sulis, and
S. Toscani, “Refined modeling and compensation of current transformers
behavior for line parameters estimation based on synchronized measure-
ments,” IEEE Open Journal of Instrumentation and Measurement, vol. 2,
pp. 1–11, Feb. 2023.

[86] D. Tziouvaras, P. McLaren, G. Alexander, D. Dawson, J. Esztergalyos,
C. Fromen, M. Glinkowski, I. Hasenwinkle, M. Kezunovic, L. Kojovic,
B. Kotheimer, R. Kuffel, J. Nordstrom, and S. Zocholl, “Mathematical
models for current, voltage, and coupling capacitor voltage transformers,”
IEEE Trans. Power Del., vol. 15, no. 1, pp. 62–72, 2000.

136



BIBLIOGRAPHY

[87] A. Mingotti, L. Peretto, L. Bartolomei, D. Cavaliere, and R. Tinarelli,
“Are inductive current transformers performance really affected by ac-
tual distorted network conditions? An experimental case study,” Sensors,
vol. 20, no. 3, Feb. 2020.

[88] R. Pintelon and J. Schoukens, System Identification: A Frequency Domain
Approach. Wiley-IEEE Press, 2012.

[89] R. Singh, “State estimation in power distribution network operation,”
Ph.D. dissertation, Imperial College London, 2009.

[90] P. A. Pegoraro, C. Sitzia, A. V. Solinas, and S. Sulis, “Characterization
of a method for transmission line parameters estimation with respect to
PMU measurement error modeling,” in 25th IMEKO TC4 International
Symposium, Brescia, Italy, Sep. 2022, pp. 1–6.

[91] ——, “Transmission line parameters estimation in the presence of realistic
PMU measurement error models,” Measurement, vol. 218, p. 113175, Aug.
2023.

[92] C. Muscas, P. A. Pegoraro, C. Sitzia, A. V. Solinas, S. Sulis, E. M. Car-
lini, G. M. Giannuzzi, and C. Pisani, “Characterization of a PMU-based
method for transmission line parameters estimation with systematic mea-
surement error modeling,” in AEIT Int. Annual Conf., Virtual Event, Oct.
2021, pp. 1–6.

[93] “IEEE/IEC international standard - Measuring relays and protection
equipment - part 118-1: Synchrophasor for power systems - Measure-
ments,” pp. 1–78, Dec 2018.

[94] P. A. Pegoraro, C. Sitzia, A. V. Solinas, and S. Sulis, “Estimation of
line parameters, tap changer ratios, and systematic measurement errors
based on synchronized measurements and a general model of tap-changing
transformers,” IEEE Open Journal of Instrumentation and Measurement,
vol. 1, pp. 1–11, Sep. 2022.

[95] M. R. R. Mojumdar, J. M. Cano, and G. A. Orcajo, “Estimation of
impedance ratio parameters for consistent modeling of tap-changing trans-
formers,” IEEE Trans. Power Syst., vol. 36, no. 4, pp. 3282–3292, Jul.
2021.

[96] D. Carta, A. Benigni, C. Sitzia, P. A. Pegoraro, and S. Sulis, “Performance
assessment of synchronized phasor measurement-based parameter estima-
tion for distribution networks,” in 2022 International Conference on Smart

137



BIBLIOGRAPHY

Energy Systems and Technologies (SEST), Eindhoven, Netherlands, Sep.
2022, pp. 1–6.

[97] C. Sitzia, D. Carta, A. Benigni, P. A. Pegoraro, and S. Sulis, “Distribu-
tion systems line parameter estimation with nodal injection constraints in
presence of vehicle-to-grid,” in 2023 IEEE Belgrade PowerTech, Belgrade,
Serbia, Jun. 2023, pp. 01–06.

[98] IEC, “Alternating current static watt-hour meters for active energy
(classes 1 and 2),” Standard IEC 61036, 2000.

[99] Opal-RT Technologies, “Simulator Opal-RT,” https://www.opal-rt.it.

[100] a-eberle, “Datasheet pqi-da smart.” [Online]. Available: Available:https:
//www.a-eberle.de/produkte/the-power-quality-allrounder-pqi-da-smart

[101] J.-S. Brouillon, E. Fabbiani, P. Nahata, K. Moffat, F. Dörfler, and
G. Ferrari-Trecate, “Bayesian error-in-variables models for the identifica-
tion of distribution grids,” IEEE Trans. Smart Grid, pp. 1–1, Oct. 2022.

[102] P. V. H. Seger, F. L. Grando, A. E. Lazzaretti, M. Moreto, G. W.
Denardin, and C. R. Pastro, “Power system monitoring through low-
voltage distribution network using freePMU,” IEEE Trans. Ind. Appl.,
vol. 58, no. 3, pp. 3153–3163, Jun. 2022.

[103] A. von Meier, E. Stewart, A. McEachern, M. Andersen, and
L. Mehrmanesh, “Precision micro-synchrophasors for distribution systems:
A summary of applications,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp.
2926–2936, Nov. 2017.

[104] C. Li, D. Carta, and A. Benigni, “A real-time simulation framework to
evaluate the scheduling of V2G in distribution networks,” in IECON 2022
– 48th Annual Conference of the IEEE Industrial Electronics Society, Oct.
2022, pp. 1–6.

[105] S. Bhowmick, “Tesla model s battery system: An engineer’s
perspective,” Dec 2021. [Online]. Available: https://circuitdigest.com/
article/tesla-model-s-battery-system-an-engineers-perspective.

[106] P. Stefanidou-Voziki, N. Sapountzoglou, B. Raison, and J. Dominguez-
Garcia, “A review of fault location and classification methods in distribu-
tion grids,” Electric Power Systems Research, vol. 209, p. 108031, Aug.
2022.

138

https://www.opal-rt.it
Available:https://www.a-eberle.de/produkte/the-power-quality-allrounder-pqi-da-smart
Available:https://www.a-eberle.de/produkte/the-power-quality-allrounder-pqi-da-smart
https://circuitdigest.com/ article/tesla-model-s-battery-system-an-engineers-perspective.
https://circuitdigest.com/ article/tesla-model-s-battery-system-an-engineers-perspective.


BIBLIOGRAPHY

[107] M. Gholami, A. Abbaspour, M. Moeini-Aghtaie, M. Fotuhi-Firuzabad,
and M. Lehtonen, “Detecting the location of short-circuit faults in active
distribution network using PMU-based state estimation,” IEEE Trans.
Smart Grid, vol. 11, no. 2, pp. 1396–1406, Mar. 2020.

[108] P. K. Ganivada and P. Jena, “A fault location identification technique for
active distribution system,” IEEE Trans. Ind. Informat., vol. 18, no. 5,
pp. 3000–3010, May 2022.

[109] Q. Cui and Y. Weng, “Enhance high impedance fault detection and loca-
tion accuracy via µ-PMUs,” IEEE Trans. Smart Grid, vol. 11, no. 1, pp.
797–809, Jan. 2020.

[110] M. U. Usman and M. O. Faruque, “Validation of a PMU-based fault lo-
cation identification method for smart distribution network with photo-
voltaics using real-time data,” IET Generation, Transmission & Distribu-
tion, vol. 12, no. 21, pp. 5824–5833, Oct. 2018.

[111] M. Dashtdar, A. Hussain, H. Z. Al Garni, A. A. Masud, W. Haider, K. M.
AboRas, and H. Kotb, “Fault location in distribution network by solving
the optimization problem based on power system status estimation using
the PMU,” Machines, vol. 11, no. 1, p. 109, Jan. 2023.

[112] M. Farajollahi, A. Shahsavari, and H. Mohsenian-Rad, “Location identifi-
cation of distribution network events using synchrophasor data,” in 2017
North American Power Symposium (NAPS), Morgantown, WV, USA,
Sep. 2017, pp. 1–6.

[113] M. Farajollahi, A. Shahsavari, E. M. Stewart, and H. Mohsenian-Rad,
“Locating the source of events in power distribution systems using micro-
PMU data,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6343–6354, Nov.
2018.

[114] M. Majidi and M. Etezadi-Amoli, “A new fault location technique in
smart distribution networks using synchronized/nonsynchronized mea-
surements,” IEEE Trans. Power Del., vol. 33, no. 3, pp. 1358–1368, Jun.
2018.

[115] Y. Zhang, J. Wang, and M. E. Khodayar, “Graph-based faulted line iden-
tification using micro-PMU data in distribution systems,” IEEE Trans.
Smart Grid, vol. 11, no. 5, pp. 3982–3992, Sep. 2020.

[116] M. Pignati, L. Zanni, P. Romano, R. Cherkaoui, and M. Paolone, “Fault
detection and faulted line identification in active distribution networks us-

139



BIBLIOGRAPHY

ing synchrophasors-based real-time state estimation,” IEEE Trans. Power
Del., vol. 32, no. 1, pp. 381–392, Feb. 2017.

[117] F. Conte, F. D' Agostino, B. Gabriele, G. P. Schiapparelli, and F. Sil-
vestro, “Fault detection and localization in active distribution networks
using optimally placed phasor measurements units,” IEEE Trans. Power
Syst., vol. 38, no. 1, pp. 714–727, Jan. 2023.

[118] P. A. Pegoraro, C. Sitzia, A. V. Solinas, S. Sulis, A. Benigni, and D. Carta,
“Fault identification in three phase distribution networks improved by line
parameter estimation,” in 2023 IEEE 13th International Workshop on
Applied Measurements for Power Systems (AMPS), Bern, Switzerland,
Sep. 2023, pp. 1–6.

[119] K. Strunz, E. Abbasi, R. Fletcher, N. Hatziargyriou, R. Iravani, and
G. Joos, TF C6.04.02 : TB 575 – Benchmark Systems for Network Inte-
gration of Renewable and Distributed Energy Resources. CIGRE, 2014.

[120] RTDS Technologies Inc., “Real Time Digital Simulator (RTDS),” https:
//www.rtds.com.

[121] IEEE Standard for Synchrophasor Measurements for Power Systems,
IEEE IEEE Std C37.118.1-2011 (Revision of IEEE Std C37.118-2005),
Dec. 2011.

[122] IEC, Instrument transformers - Part 3: Additional requirements for in-
ductive voltage transformers, IEC Int. Std. 61869-3, 2011.

[123] ——, Instrument Transformers - Part 2: Additional Requirements For
Current Transformers, IEC Int. Std. 61869-2, 2012.

140

https://www.rtds.com
https://www.rtds.com


List of Figures

2.1 Equivalent single-phase π-model of a generic line with parameters
and available measurements. . . . . . . . . . . . . . . . . . . . . . 7

2.2 Equivalent single-phase π-model of a tap-changing transformer
with parameters and available measurements. . . . . . . . . . . . 10

2.3 Unifilar diagram of the IEEE 14 bus test system. . . . . . . . . . 21
2.4 IEEE 14 - 6 branches, average RRSE as a function of µ with a

varying number of operating conditions. . . . . . . . . . . . . . . 22
2.5 IEEE 14 - 6 branches, filtering effect. . . . . . . . . . . . . . . . . 24
2.6 IEEE 14 - 6 branches, average RRSE (5000 MC trials performed)

whit different numbers of operating conditions. . . . . . . . . . . 25
2.7 Flow chart of the proposed procedure. . . . . . . . . . . . . . . . 26
2.8 IEEE 14 - 6 branches, estimation results for γ parameters. . . . . 28
2.9 IEEE 14 - 6 branches, estimation results for all line parameters. . 29
2.10 IEEE 14 - 6 branches, ξ estimation results as a function of the

number of cases for all the considered methods. . . . . . . . . . . 30
2.11 β estimation results with multi-branch approach applied to a por-

tion and to the entire network using different methods and con-
figurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.12 IEEE 14 - entire network, estimation results for all the line pa-
rameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.13 Voltage amplitude systematic errors - results obtained with and
without tap estimation with respect to prior. . . . . . . . . . . . 35

2.14 Voltage phase-angle systematic errors - results obtained with and
without tap estimation with respect to prior. . . . . . . . . . . . 36

2.15 Equivalent three-phase π-model of a generic branch with param-
eters and available measurements. . . . . . . . . . . . . . . . . . 37

2.16 Entire network, estimation of voltage amplitude systematic errors
- results obtained with and without tap estimation. . . . . . . . . 47

2.17 Entire network, estimation of voltage phase-angle systematic er-
rors - results obtained with and without tap estimation. . . . . . 48

141



LIST OF FIGURES

2.18 RMSE results for the estimation of reactance parameters of branch
(4, 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Equivalent circuit of a current transformer. . . . . . . . . . . . . 56
3.2 Ratio error as a function of the fundamental magnitude. . . . . . 57
3.3 Phase error as a function of the fundamental magnitude. . . . . . 57
3.4 Measurement setup for the characterization of CTs. . . . . . . . . 58
3.5 Ratio error as a function of I/I0 for the tested CTs. . . . . . . . 59
3.6 Phase error as a function of I/I0 for the tested CTs. . . . . . . . 60
3.7 Modified version of the 95 UKGDS system. . . . . . . . . . . . . 61
3.8 Estimation results for Low Load condition (PMU01 and C = 200). 63
3.9 Estimation results for High Load condition (PMU01 and C = 200). 63
3.10 Topology of the 15 kV test network. . . . . . . . . . . . . . . . . 68
3.11 Comparison of ηsys estimation results (PMU01 and C = 200). . . 69
3.12 Comparison of ψsys estimation results (PMU01 and C = 200). . . 69
3.13 Comparison of δ estimation results (PMU01 and C = 200). . . . 70
3.14 Average RMSE of voltage synchrophasor magnitude estimation

as a function of PMU systematic error percentage (PMU01 and
C = 100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.15 Average RMSE of voltage synchrophasor magnitude estimation
as a function of PMU systematic error percentage (TVE1 and
C = 100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.16 Proposed method. Average RMSE of line resistance deviation
estimation as a function of PMU systematic error percentage and
of PMU accuracy, C = 100. . . . . . . . . . . . . . . . . . . . . . 80

3.17 Method B. Average RMSE of line resistance deviation estimation
as a function of PMU systematic error percentage and of PMU
accuracy, C = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.18 Average RMSE of line resistance deviation as a function of the
PMU common phase error percentage, entire network (PMU01
and C = 10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.19 Average RMSE of line resistance deviation as a function of the
PMU common phase error percentage, entire network (TVE1 and
C = 10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.20 RMSE of line parameters deviation considering 90% of phase-
angle common error for each channel of the same PMU, entire
network (PMU01 and C = 10). . . . . . . . . . . . . . . . . . . . 84

3.21 Tap-changing transformer model with short circuit impedance at
the off-nominal turns side. . . . . . . . . . . . . . . . . . . . . . . 86

142



LIST OF FIGURES

3.22 Equivalent single-phase general π-model of a transformer equipped
with tap changer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.23 Single-branch approach, RMSE of estimated transformer reac-
tance deviations of branch 10 for different values of k. . . . . . . 90

3.24 Multi-branch approach, RMSE of reactance deviations of the en-
tire network and k = 1. . . . . . . . . . . . . . . . . . . . . . . . 92

3.25 Multi-branch approach, RMSE of reactance deviations of the en-
tire network and k = 2. . . . . . . . . . . . . . . . . . . . . . . . 92

3.26 Multi-branch approach, RMSE of voltage phase-angle error of the
entire network, k = 1 and PMU01 (above) and TVE1 (below). . 93

3.27 Multi-branch approach, RMSE of reactance deviations of the en-
tire network, k = 0.5 and TVE1. . . . . . . . . . . . . . . . . . . 93

3.28 RMSE of γ estimation in the presence of prior information mis-
match on line parameters. . . . . . . . . . . . . . . . . . . . . . . 97

3.29 RMSE of β estimation in the presence of prior information mis-
match on line parameters. . . . . . . . . . . . . . . . . . . . . . . 98

3.30 RMSE of δ estimation in the presence of prior information mis-
match on line parameters. . . . . . . . . . . . . . . . . . . . . . . 99

4.1 Considered section of the FZJ power network. . . . . . . . . . . . 101
4.2 Active and reactive power demand of Buildings 1-3. . . . . . . . 102
4.3 Section of the FZJ power network monitored with SMs. . . . . . 104
4.4 Line parameters estimation results of branch (1, 2) in different

scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1 Equivalent model of the fault in a generic branch. . . . . . . . . . 113
5.2 CIGRE European MV distribution network. . . . . . . . . . . . . 115
5.3 LDSO, WMRs of the state estimations considering M2, fault on

branch (3, 8), Rf = 100Ω. . . . . . . . . . . . . . . . . . . . . . . 118
5.4 LLPE , WMRs of the state estimations considering M2, fault on

branch (3, 8), Rf = 100Ω. . . . . . . . . . . . . . . . . . . . . . . 119
1 Topology of the IEEE 14 bus test system. . . . . . . . . . . . . . 124
2 Topology of the modified version of 95 UKGDS system. . . . . . 126
3 Topology of the 15 kV test network. . . . . . . . . . . . . . . . . 127

143



List of Tables

2.1 IEEE 14 - 6 branches, best average RRSE (5000 MC trials) for
different methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Summary of prior . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 IEEE 14 - node 1, RMSE (5000 MC trials) for ξ1 - comparison

between multi-branch and single-branch approaches . . . . . . . 29
2.4 IEEE 14 - branch 1, comparison of different methods . . . . . . . 33
2.5 RMSE of systematic voltage errors estimation - single-branch es-

timation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Tap ratio error τl,k estimation . . . . . . . . . . . . . . . . . . . . 35
2.7 RMSE of systematic voltage errors estimation, single-branch ap-

proach and closed delta configuration . . . . . . . . . . . . . . . . 45
2.8 βl,k,pq estimation, single-branch estimation and closed delta con-

figuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9 Tap ratio error τl,k,pq estimation, multi-branch vs single-branch

and closed delta configuration . . . . . . . . . . . . . . . . . . . . 46
2.10 Estimation performance under different uncertainty scenarios . . 48
2.11 Estimation performance on increasing network portion - branch

(2, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.12 Comparison of different methods in different uncertainty scenar-

ios - branch (2, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.13 Comparison of positive sequence parameters estimation with single-

phase and three-phase approaches . . . . . . . . . . . . . . . . . 52
2.14 Estimation performance with experimental PMU errors . . . . . 53

3.1 Nominal linedata values . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Comparison of different network and measurement configurations 64
3.3 Comparison of γ and β estimations . . . . . . . . . . . . . . . . . 71
3.4 Performance comparison in the presence of different PMU and

CT configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 72

144



LIST OF TABLES

3.5 Estimation results in the presence of different accuracies, errors,
and cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6 Estimation results considering ps = 25% and pc = 70%, in the
presence of different accuracies and cases . . . . . . . . . . . . . . 85

3.7 Tap ratios of the IEEE 14 bus test system . . . . . . . . . . . . . 89
3.8 Single-branch approach, estimation results for different values of k 91
3.9 Comparison of estimation performance for k = 1, different ap-

proaches and test configurations . . . . . . . . . . . . . . . . . . 94
3.10 Comparison of estimation performance between the Proposed

method and other methods, k = 1 . . . . . . . . . . . . . . . . . 95
3.11 Estimation performance of ξ with different line parameters un-

certainties and prior values . . . . . . . . . . . . . . . . . . . . . 98

4.1 Estimation performance under different measurement uncertainty
scenarios - line parameters . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Estimation performance under different IT uncertainty scenarios
- systematic errors . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 Comparison of the estimation performances with and without
injection constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 Comparison of estimation performance for different scenarios and
hour of the day . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1 Comparison of uncertainty configurations from literature . . . . . 116
5.2 Location performance for a single-phase to ground fault LGa,

considering M2 accuracy . . . . . . . . . . . . . . . . . . . . . . . 120
5.3 Location performance for a single-phase to ground fault LGa,

considering M3 accuracy . . . . . . . . . . . . . . . . . . . . . . . 120
1 Nominal linedata of the IEEE 14 bus test system . . . . . . . . . 125
2 Active and reactive power of the loads . . . . . . . . . . . . . . . 125
3 Nominal linedata values of the modified version of 95 UKGDS

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4 Active and reactive power of the loads . . . . . . . . . . . . . . . 126
5 Nominal line parameters of the 15 kV test network . . . . . . . . 127
6 Active and reactive power of the loads . . . . . . . . . . . . . . . 127

145



Acronyms

CT Current Transformer

DG distributed generation

DN Distribution Network

DP Discrepancy Principle

DS Distribution System

DSO Distribution System Operator

DSSE Distribution System State Estimation

EMS Energy Management System

EV Electric Vehicle

FZJ Forschungszentrum Jülich

GCV Generalized Cross Validation

HIL hardware-in-the-loop

IT Instrument Transformers

LCC L-curve criterion

LS Least Square

LV Low Voltage

MC Monte Carlo

MV Medium Voltage

146



Acronyms

NRW North-Rine Westphalia

PMU Phasor Measurement Unit

PV photovoltaic

RMSE root mean square error

RR reporting rate

RRSE relative root square error

RTDS Real Time Digital Simulator

SCADA supervisory control and data acquisition

SM smart meters

SO System Operator

SVD Singular Value Decomposition

SVR step voltage regulator

TSO Transmission System Operator

TVE Total Vector Error

UTC Coordinated Universal Time

V2G Vehicle-to-Grid

VT Voltage Transformer

WLS Weighted Least Square

WMR Weighted Measurement Residual

ZI zero injection

147



Acknowledgements

I would like to thank my supervisors Prof. Sara Sulis and Prof. Paolo
Attilio Pegoraro, who supervised and guided me during the three years of
my PhD, with practical suggestions and advice thanks to which I was able to
improve academically and personally.

I would also like to thank Prof. Carlo Muscas and Dr. Paolo Castello
who encouraged me and provided valuable advice during these three years.

Special thanks go to Dr. Antonio Vincenzo Solinas for his constant
support during our research activities. I also thank my colleagues Davide and
Giacomo, who made my time in the office lighter with their company.

I thank Prof. Andrea Benigni and Dr. Daniele Carta for support-
ing me during my visiting PhD period in Jülich and thanks to the GMEE
association for making this experience possible.

Finally, I sincerely thank my family and Patrizia. Thank you for the
invaluable and continuous support during these three years.

148


	Introduction
	Parameters estimation for transmission and distribution systems
	Problem statement and motivations
	Literature review
	Line parameters estimation
	Transformer parameters estimation


	Proposed Methodology: Modeling the grid and the measurement chain
	Single-phase method
	Single-phase line model
	Tap-changing transformer model
	Estimation framework
	Analysis, tests and results: the single-phase method settings and performance

	Three-phase method
	Three-phase line model
	Three-phase tap-changing transformer models
	Three-phase estimation framework
	Tests and results: the three-phase method performance


	Assumptions on measurement chain and grid: Impact and solutions
	Refined model of current transformer
	Current transformer errors
	Impact of current transformer errors on parameter estimation
	Integration of a more complex CT model: Proposed solution
	Improved method estimation performance

	Realistic model of PMU errors
	Method proposed to deal with correlation in phase-angle measurements
	Analysis of the performance of the proposed method

	Generalized model of tap-changing transformer
	Tap-changing transformer model extension and integration in the estimation method
	Analysis of the performance of the proposed extension

	Mismatch on line parameters uncertainty

	Validation of the methodology on grid emulators
	Validation of the methodology on grid simulators
	Validation results

	Photovoltaic and Vehicle-to-Grid technologies: impact on the estimates

	Benefits of the application of the proposed method: fault location
	PMU-based fault location
	Integration of the proposed estimation method in fault location
	Problem definition and proposed solution
	Procedure for fault location on grid simulators

	Performance assessment of the improved fault detection and location

	Conclusions
	Appendix
	IEEE 14 Bus test system
	Modified version of the 95 nodes UKGDS system
	15 kV test network

	Bibliography
	List of Figures
	List of Tables
	Acronyms
	Acknowledgements

