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Cancer is a disease that can affect any organ and spread to other nearby or distant
organs. Cancer is the second most frequent cause of morbidity and mortality in industri-
alized countries. The American Cancer Society estimates that 1,958,310 new cancer cases
and 609,820 cancer deaths will occur in the United States in 2023 [1]. For the same year,
1,261,990 cancer deaths were predicted in EU-27 countries [2]. The availability of anticancer
drugs based on the study of oncogenes and tumor suppressors which are involved in the
emergence of human cancers has reduced the death rate and increased both the quality
of life and life expectancy of tumor patients [3–6]. However, the failure of cancer ther-
apies is still an urgent challenge due to reactions to existing treatments and multidrug
chemoresistance [7–9].

In this Special Issue, different studies were reported relating to kinase inhibitors.
Among antitumoral drugs, small molecule inhibitors of epidermal growth factor receptors
(EGFR), including Erlotinib and its analogs [10], as well as monoclonal antibodies (e.g.,
cetuximab, necitumumab), are used in the therapy of non-small-cell lung cancer (NSCLC),
breast, colon, pancreatic and thyroid cancer. Recently, studies have identified gene muta-
tions targeting the kinase domain of the EGFR that are related to the response to inhibitors.
Most EGFR mutations predict a higher benefit from treatment compared with wild-type
receptors and are correlated with clinical features related to better outcomes; some EGFR
mutations, however, confer drug resistance [11]. In this Special Issue, Youssif and co-
workers described thiazole [12], purine/pteridine [13] and quinolone derivatives [14], dual
EGFR/BRAFV600E inhibitors, as potential drugs in resistant NSCLC, in which BRAF
mutation can cause resistance, even through EGFR stimulation. The same authors also
described indole derivatives [15] as inducing apoptosis by EGFR and CDK2 dual inhibi-
tion. In NSCLC, both EGFR and its mutations, L858R/T790M, are overexpressed. New
idantoine derivatives have been reported by Beshr and collaborators as potent inhibitors of
these kinases [16].

In this Special Issue, two studies were dedicated to altering the tumor microenvi-
ronment [17,18] as a target for antiproliferative drugs. Death-associated protein kinase 1
(DAPK-1) is a positive mediator of gamma interferon-induced programmed cell death, and
the loss- and gain-of-function of DAPK1 is associated with various cancer and neurodegen-
erative diseases, respectively [19]. Roh and collaborators reported on the anti-proliferative
activity of aryl carboxamide derivatives acting as DAPK-1 inhibitors [20]. The c-Myc onco-
gene is a master regulator that has a very important role in regulating the transformed
phenotype. The effects induced by c-Myc can occur either as a primary oncogene, which is
activated by amplification or translocation, or as a downstream effect of other activated
oncogenes. c-Myc is expressed in multiple types of cancer, comprising head and neck squa-
mous cell carcinoma where it plays a fundamental role in tumor prognosis [21]. Diomede
and collaborators underlined the functional relevance of c-Myc and HIF-Myc on oral
squamous cell carcinoma (OSCC). In particular, their results indicated that c-Myc, c-Jun,
Bcl-2, hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor, matrix
metalloproteinase-9, ERK 1/2 and pERK1/2 were overexpressed in OSCC [22]. In tumor
cells, HIF-1α is activated by a deficient oxygen supply. HIF-1α activates the Carbonic An-
hydrase (CA) IX and XII genes, leading to an improved resistance from tumoral cells to the
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acidic extracellular environment [23]. Shchekotikhin and collaborators described indoline-
5-sulfonamide derivatives as CAIX and CAXII inhibitors exhibiting hypoxic selectivity,
suppressing the growth of MCF7 cells and causing partial inhibition of hypoxia-induced
CA IX expression in A431 skin cancer cells [24].

Another approach to contrast tumoral cell proliferation is acting in the mitotic stage
of the cell cycle with microtubule binding agents [25] and telomerase inhibitors [26]. In
this Special Issue, Viola and collaborators described 2-anilino-triazolopyrimidines as tubu-
luin polymerization inhibitors [27], Pérez-Pérez and collaborators reported salicylamides
as affecting tubulin polymerization and/or STAT3 phosphorylation [28], Shakeel and
collaborators studied pyrazole hybrid chalcones that arrested the cell cycle, induced apop-
tosis in a dose-dependent manner and inhibited the polymerization of tubulin [29], and
El-Hamamsy and collaborators reported on selective non-nucleoside potent telomerase
inhibitor BIBR1532 derivatives that were demonstrated to inhibit telomerase inside living
cancer cells [30].

The methyltransferase-like proteins 3 (METTL3) and 14 (METTL14) in cancers have
been shown to be closely associated with the proliferation, apoptosis, metastasis and
differentiation processes in the progression of various human cancers [31,32]. In this
Special Issue, Kim and collaborators reported on Eltrombopag. This compound exhibited
selective inhibitory activity in the most active catalytic form of the METTL3–14 complex,
interacting at a putative allosteric binding site in METTL3 [33].

The Wnt/β-catenin pathway has been identified as one of the most important onco-
genic signaling pathways related to immune evasion [34,35]. In this Special Issue, Kadletz-
Wanke and collaborators reported that the inhibitor of the CBP/Beta-Catenin interaction
ICG-001 produces cytotoxic and anti-migratory effects on human papillomavirus-positive
head and neck squamous cell carcinoma [36].

In this Special Issue, the antiproliferative or cytotoxic activity of various small syn-
thetic, natural-derived molecules and their hybrids was discussed. Kim and collaborators
reported on phenylisoquinoline derivatives endowed with antiproliferative activity against
MDA-MB-231, HeLa and HepG2 cancer cell lines [37]. Ammazzalorso and collaborators
described the antiproliferative activity of benzothiazole derivatives on AsPC-1, Capan-2
and BxPC-3 pancreatic cancer cell lines [38]. Tuyun and collaborators reported that plasto-
quinone derivatives exerted notable cytotoxicity toward colon cancer HCT-116 and breast
MCF-7 cells compared to cisplatin [39]. Abdala-Díaz and collaborators reported that ulvan
polysaccharides obtained from Ulva rigida demonstrated antiproliferative activity on the
HCT-116 tumor cell line [40]. Lokeshwar and collaborators demonstrated that the conjuga-
tion of the poor bioavailable antiproliferative compounds Curcumin and dichloroacetate
by aminoacidic linkers improves bioavailability and reduced the growth of several breast
cancer cell lines and tumor growth and metastasis on transgenic mouse breast cancer (BC)
and metastatic BC tumor-bearing mice without showing signs of toxicity [41].

Curcumine and other naturally occurring agents have been proposed as cancer chemo-
preventive agents and were proposed for treating human malignancy [42,43]. Natural
products have played an important role in chemotherapy and chemoprevention by pro-
viding antitumor drugs such as camptothecin, doxorubicin, paclitaxel, vinblastine and
vincristine, as well as understanding the cellular and molecular mechanisms underlying
antitumor activity. Natural products are a rich source of bioactive molecules endowed
by a great variety of chemical scaffolds. Natural compounds are often used in traditional
medicine and used to build semisynthetic molecules with improved biological proper-
ties [44–46]. In this context, Shuvalov and collaborators reviewed the information about
plants and mushrooms, as well as their active compounds with antitumor properties. Plants
and mushrooms were divided based on the regions where they are used in ethnomedicine
to treat malignancies [47].

In conclusion, this Special Issue presented recent findings on antiproliferative com-
pounds and highlighted possible routes to discover new drugs against cancer. I hope
that this Special Issue can be of inspiration to readers working in cancer research and
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stimulate the distinct fields involved in the continuous search for novel strategies for an-
ticancer therapy. Finally, I would like to thank all of the authors and reviewers for their
valuable contributions.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J Clin. 2022, 73, 17–48. [CrossRef] [PubMed]
2. Malvezzi, M.; Santucci, C.; Boffetta, P.; Collatuzzo, G.; Levi, F.; La Vecchia, C.; Negri, E. European cancer mortality predictions for

the year 2023 with focus on lung cancer. Ann. Oncol. 2023, 34, 410–419. [CrossRef] [PubMed]
3. Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; et al. Small Molecules in Targeted

Cancer Therapy: Advances, Challenges, and Future Perspectives. Signal. Transduct. Target. Ther. 2021, 6, 201. [CrossRef]
4. Botta, L.; Dal Maso, L.; Guzzinati, S.; Panato, C.; Gatta, G.; Trama, A.; Massimo Rugge, M.; Tagliabue, G.; Casella, C.; Caruso, B.;

et al. Changes in life expectancy for cancer patients over time since diagnosis. J. Adv. Res. 2019, 20, 153–159. [CrossRef]
5. Capocaccia, R.; Gatta, G.; Dal Maso, L. Life expectancy of colon, breast, and testicular cancer patients: An analysis of US-SEER

population-based data. Ann. Oncol. 2015, 26, 1263–1268. [CrossRef]
6. Yeh, J.M.; Ward, Z.J.; Chaudhry, A.; Liu, Q.; Yasui, Y.; Armstrong, G.T.; Gibson, T.M.; Howell, R.; Hudson, M.M.; Krull, K.R.; et al.

Life Expectancy of Adult Survivors of Childhood Cancer Over 3 Decades. JAMA Oncol. 2020, 6, 350–357. [CrossRef] [PubMed]
7. Emran, T.B.; Shahriar, A.; Mahmud, A.R.; Rahman, T.; Abir, M.H.; Siddiquee, M.F.; Ahmed, H.; Rahman, N.; Nainu, F.;

Wahyudin, E.; et al. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic
Approaches. Front. Oncol. 2022, 12, 891652. [CrossRef]

8. Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233.
[CrossRef]

9. Assaraf, Y.G.; Brozovic, A.; Gonçalves, A.C.; Jurkovicova, D.; Linē, A.; Machuqueiro, M.; Saponara, S.; Sarmento-Ribeiro, A.B.;
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