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Abstract

Einstein’s theory of gravity, general relativity, stands as one of the most successful and enduring
pillars of modern physics. Its predictions have consistently aligned with a vast array of observed
phenomena within our Universe. However, the enigmatic nature of gravity persists, particularly
when examined at both extremely short and exceedingly vast distances. In this thesis, we explore
several aspects of black hole physics, which could encode signatures of quantum gravity effects
at different, even macroscopic, scales. We will investigate modifications and deformations of
classical black-hole geometries in a model-independent manner. We start by deriving a general
class of regular black holes sourced by an anisotropic fluid violating the strong energy condition
and allowing for the circumvention of Penrose’s theorems. The anisotropies are then assumed
to parameterize some quantum effects, whose typical scale is encoded in an additional quantum
parameter (hair) ℓ. We then turn our attention to the thermodynamics of these models, revealing a
preference for the states with ℓ of the order of the horizon scale. This aspect is further investigated
through theanalysis of semiclassical dynamics, i.e., the Hawking evaporation process, by using
a simple two dimensional balck-hole model. We also test these models against orbits of stars
around our galactic center, placing constraints on the strength of the quantum effects. In a
separate developement, we study a general class of deformed, rotating, singular black holes,
focusing on their phenomenology and, in particular, the superradiant amplification of test fields.
We then consider the problem of describing the gravitational field generated by a quantum particle
in a delocalized state. The resultant geometry resembles the first models we analyzed, allowing
to reinterpret the smearing of the singularity in terms of the uncertainty principle. Finally, we
analyze a model in which black holes are medelled as sets of oscillators whose typical frequencies
are given by the quasinormal modes of the systems. Under some assumptions, we are able to obtain
the Bekenstein-Hawking formula for the entropy and its first, logarithmic correction. Finally, we
reinterpret this model in terms of the dual conformal field theory at the boundary, finding that
the perturbations of two-dimensional regular black holes are related to a conformally-invariant
generalization of the quantum harmonic oscillator, described by the de Alfaro-Fubini-Furlan
theory.

Keywords: general relativity; quantum gravity; black holes; regular black holes; anisotropic fluids; singularity; Hawking
radiation; evaporation; Kerr-like black holes; superradiance; phenomenology; tests of general relativity; S2-star.
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In this thesis, we adopt natural units, where c = ℏ = kB = 1, except for Chapter I.5, where we use
geometric units where c = G = 1. For simplicity, we will remind the convention in each chapter.
The signature of the metric is (−,+,+,+), and greek indices indicate spacetime components of
vectors and tensors, ranging from 1 to 4 and from 1 to 2 respectively for 4D and 2D metrics.
We tried to keep each chapter as much self-contained as possible, sometimes at cost of some
repetitions. For this reason, the acronyms will be redifined at the beginning of each chapter.
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Introduction

General relativity is one of the most successful theories the scientific community has been able
to conceive. Its predictions have been accurately tested in a large range of scales, from milli-
metric to cosmological distances. Einstein’s field equations, which describe the dynamics of the
gravitational field generated by some matter source, stem from the Einstein-Hilbert action and
were first solved in their full nonlinear complexity by Karl Schwarzschild in 1916, only one year
after the publication of the theory of general relativity. The Schwarzschild solution describes the
simplest static gravitational system, composed by a point-like, spherically-symmetric, uncharged
particle of mass M [9]. This metric describes the exterior geometry of any nonrotating body and
corresponds, as was later identified, to a static and spherically-symmetric black hole of mass M .
The generalization to a rotating system appeared in literature only in 1964 when Kerr found its
solution to Einstein’s equations [10]. The Schwarzschild and the Kerr solutions provided, in the
last century, a large number of accurate predictions. The former has been widely used to validate
general relativity predictions in the Solar system (see Ref. [11], and references therein, for a com-
prehensive review), the most famous results being those related to the precession of Mercury’s
perihelion, the bending angle of light, and the gravitational redshift. The latter, instead, has
been broadly tested [11], from X-ray observations [12] to the latest black-hole images [13–15] and
gravitational-wave detections [16–18].

Despite being such a powerful tool, we know that general relativity and black holes cannot be
the end of the story. For instance, the infrared phenomenology can be understood only assuming
the presence of some exotic forms of matter and energy, interacting only via gravity and therefore
called dark, whose origin is not clear. Dark matter have been first introduced while trying to
explain the rotational curves of galaxies and some gravitational lensing observations. In these
systems, general relativity predicts a large amount of extra matter that cannot be observed via
electromagnetic observations. On the other hand, cosmological data clearly show that our universe
is expanding at an accelerated rate. This can be explained, in the classical, general-relativistic
framework, only by introducing some extra energy content, encoded in the cosmological constant
Λ, whose origin is, again, poorly understood [19–21].

Over the years, several classical theories have been put forth to address the challenges associ-
ated with the long-distance behavior of Einstein’s gravity. Alternative gravitational theories have
also emerged in attempts to resolve certain issues within general relativity, such as its discrepan-
cies with galactic and cosmological observations (see, e.g., Refs. [22, 23], and [24, 25] for reviews
on the topic) and even its compatibility with quantum mechanics.

The infrared behavior of gravity is not the only problem of general relativity since Einstein’s
theory also shows some inconsistencies at short scales. Black holes, for example, are plagued
by a severe problem: while being the simplest solutions of Einstein’s theory, described by three
parameters only [26], they hide a curvature singularity in their core, shielded behind an event
horizon. Although the presence of a horizon saves the theory from being completely unpredictive
in a neighbour of the singularity, its presence still shows our ignorance of the short scale, ultraviolet
behavior of the theory. Indeed, a clear understanding of this regime would need a complete and
consistent theory of quantum gravity, but its formulation remains elusive. While in literature
there have been many attempts in capturing the essence of the quantum behavior of gravitational
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systems beyond the semiclassical approximation, including string theory [27–29], the AdS/CFT
correspondence [30–32], loop quantum gravity [33, 34], and, more recently, corpuscular quantum
gravity [35–40] (for a more exhaustive discussion, see Chapter II.1), none of these attempts have
been successful in providing a complete and satisfactory description of quantum gravity. What we
know on a firm ground mostly relies on the semiclassical approximation, based on the pioneriing
works of Hawking [41] in which he tackled, for the first time, the problem of studying the behavior
of quantum fields in a curved spacetime. His main results indicate that a black-hole spacetime
is not actually black but emits thermal radiation at some nonzero temperature. However, while
this result represented a first step in understanding the small-scale behavior of gravity, at least
on a semiclassical level, it also rised several problems regarding the incompatibility of general
relativity with quantum mechanics [42, 43]. Moreover, black holes exhibit a large amount of
entropy, indicating that these systems should have an intricate microscopic structure which we
are currently uncapable of describing.

One of the reasons why research in quantum gravity is still incomplete, yet so florish, has
been the lack of any experimental sign of quantumness in gravitational interactions. Indeed,
theoretical arguments strongly indicate the breakdown of general relativity at short scales but
the experimental guidance is still missing. This is due to the fact that quantum mechanics is
expected to play a role only at scales comparable with the Planck length ℓP =

√
ℏG/c3 ≃ 10−35 m

(in physical units). Therefore, if the typical length in a given system is L, quantum effects at the
Planck scale should be suppressed as some power of the ratio ℓP/L [44], making these effect really
hard to detect at macroscopic scales. In recent times, however, the possibility of measuring Planck-
scale effects has become more plausible. For instance, quantum gravity could induce some small
modification in the dispersion relations of electromagnetic waves which, after a very long distance,
could become measurable [45, 46]. Moreover, theoretical evidences indicate that, if the spacetime
is not continuous and there exist some minimum length like, e.g., ℓP, then the uncertainty principle
must be modified to accomodate a minimum indetermination in the position of a particle [47–50].
Quantum gravity effects could also be tested with particle accelerators since the cross sections of
particles could be influenced by the modification of the uncertainty principle [45, 46]. Morover,
even gravitational waves could be used to probe the quantum nature of gravity since the ringdown
signal produced by the coalescence of two compact objects strongly depends on the nature of the
systems and on their microscopic structure [51, 52].

Nonetheless, in recent times, there have been many indications supporting the possibility of
having relevant quantum gravity effects even at scales much larger than ℓP, i.e., at horizon or
cosmological scales. At the black-hole level, this new perspective gains motivation from different
approaches: the firewall paradox [53], which triggered several recent advances in tackling the
black-hole information puzzle (islands and replica wormholes [54–57], non-local modifications of
effective field theory [58–60], fuzzball proposal [61–63]); the emergent gravity and corpuscular
gravity scenarios [35–39, 64, 65], in which a black hole is considered as a coherent state of a large
number of gravitons of typical wavelength∼ RS [66–68]; finally, the quasi-normal modes (QNMs)
spectrum of the Schwarzschild black hole, whose description is consistent with that of an ensemble
of oscillators with typical frequency ω ∼ 1/RS [6, 69]. Further evidence came from the galactic
and cosmological framework, where deviations from Newtonian dynamics and the evolution of
dark energy can be interpreted in terms of long-range quantum gravity effects, described by an
exotic source of Einstein’s equation in the form of an anisotropic fluid [64, 70–75].

In order to understand the possible deviations from general relativity, many alternatives to the
standard black hole solutions have been proposed [76]. These compact objects, often referred to as
mimickers, are usually indistinguishable from the standard Schwarzschild or Kerr solutions in the
weak-field region, but they usually present strong deviations in their core or in the near-horizon
region. Examples of mimickers include anisotropic and boson stars [77–80], gravastars [81],
fuzzballs and firewalls [53, 61], wormholes [5, 82], and regular black holes [1, 83–85].

The latter, in particular, are among the most promising mimickers, being them singularity
free. Now, singularity-free black-hole geometries can already be found in the context of pure
general relativity coupled to some form of exotic matter. The latter is needed to circumvent the
assumptions of Hawking and Penrose theorems [86, 87] which predict the inevitability of the
formation of a singularity under a set of physically reasonable assumptions. However, one can
think of some new-physics effects to be responsible for the smearing of the classical singularity.
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This scenario is even more exiting when quantum effects are considered as solutions to the
problem. In this sense, regular black holes could even represent a theoretical laboratory in
which quantum effects are parameterized via, e.g., some additional quantum hair. The predictions
extracted in this way could be, then, compared to experimental observations in order to test
general relativity.

The main problem in testing possible deviations from Einstein’s theory is that every theory
gives a different set of predictions and, similarly, each black-hole mimicker parameterizes different
deviations from general relativity. Therefore, in order to understand which theory, or mimicker,
can better fit the observed phenomena one should, in principle, try all the possibilities, one at
a time. This approach has the advantage of keeping all the physics completely under control,
but requires an intense effort. Another possible way of tackling the problem is, instead, to
modify some of the physical properties of the standard phenomenology with some additional
parameters and constraint the latter with some experiment. This approach, often called bottom-up,
has been pursued, for instance, in studying deviations in the quasinormal-mode spectrum [88,
89], in the parameterized-post-Newtonian formalism [11], and in the search for some classes of
black-hole mimickers (see, e.g., Ref. [1] for static regular black holes and Refs. [90–92] for some
parameterizations of deviations from the Kerr solution).

Another efficient way to study classical and quantum gravity is represented by lower-dimen-
sional theories. Despite their simplicity, these models are expected, at least, to capture some of
the dynamics of the full problem and their predictions could be then used as a hint to understand
what the solution would look like in the full 4D scene. An example is the Jackiw-Teitelboim
theory [93, 94], which is the simplest nontrivial model in a two-dimensional space. Not only
is this model particularly interesting for its simplicity, but it also is capable of capturing a huge
portion of classical and (putative) quantum effects expected in the full 4D scenario. For instance, it
has been shown that the dynamics of near-extremal black holes, and their near-horizon physics, is
well described by such two-dimensional theory (see, e.g., Ref. [95]). Moreover, it has been recently
proved that Jackiw-Teitelboim gravity is dual to the SYK model [96, 97].

In this dissertation we focus on the main aspects introduced in this introduction. This work,
divided into two parts, is devoted to the construction of models, interpretation and investigation
of the possible phenomenology for regular and deformed singular black holes. We will focus both
on the problem of constructing general classes of non singular and singular deformed black holes,
the investigation of their physical properties and their implication for fundamental issues like,
e.g., the information loss problem and the miscroscopic interpretation of Bekenstein-Hawking
entropy. We will also look in detail to several phenomenological implications of our theoretical
description, arguing that some of them can be presently tested or could be tested in the near
future using black-hole imaging techniques and by third-generation GW detectors. The thesis is
structured as follows.

In Part I we discuss the formulation, the classification, the theoretical implications and the
phenomenology of some regular and singular models, whose deviations from Einstein’s theory
depend on a single parameter which can be identified as either a quantum hair or a simple de-
formation of the standard general-relativistic spacetimes. In particular, we study two classes of
geometries. The first one is a two-parameter family of regular, static, asymptotically-flat black
holes with a de Sitter core. These spacetimes are studied in detail in Chapter I.2, where we discuss
the typical structure of the geometries pertaining to the general family, their thermodynamics and
some of their most important phenomenological aspects. We show that their typical phenomenol-
ogy correspond to the Schwarzschild one only when the quantum effects, parameterized by an
effective length scale ℓ, are negligible at the horizon scale, i.e., when ℓ ≪ RS. However, when
ℓ ≃ RS, the situation changes drastically, and the phenomenology gets richer. In particular, the
thermodynamic behavior of these objects suggests that configurations with ℓ ≃ RS are thermody-
namically favored with respect to those where there are almost no quantum effects at the horizon
scale. In Chapter I.3, we study in greater detail the thermodynamics and semiclassical dynamics
of these objects, focusing in particular on the Hawking radiation emission and on the evaporation
process. To do so, we work in a simplified two-dimensional framework, where we are able to
show that the Hawking process leads to the stable configurations with ℓ ≃ RS. In Chapter I.4,
we discuss some phenomenological implications of our models and we test our metric with the
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available S2-star orbital data. This star moves around the black hole placed at the center of the
Milky way, Sagittarius A*, at relatively great distances. Under the hypothesis that this black hole
is regular and its geometry is described by a specific model of the class derived in Chapter I.2,
we derive a constraint for the quantum hair ℓ. Finally, in Chapter I.5, we discuss a family of
axially-symmetric black holes, which represents a family of possible deformations of the Kerr
black hole in general relativity, focusing on the superradiant scattering of massless and massive
particles around these geometries. We find that the introduction of some deviations can, again,
produce measurable deviations from general relativity. Moreover, we study the effect of these
deviations on the superradiant instability, finding that these spacetimes are more unstable than
the Kerr one.

In Part II, we describe two models in which we try to carefully insert some quantumness in
general relativity. Indeed, without knowing the form of the (eventual) theory of gravitation at
microscopic scales, we attempt to take into account the quantum nature of the sources of the
gravitational field and to model the internal structure of 2D and 4D black holes in terms of an
ensamble of harmonic oscillators. In Chapter II.2, we describe the effect of treating the source of
the gravitational field as a quantum particle. We then derive, using a geometrical uplifting, the
resulting space-time geometries. We find that the gravitational field generated by this quantum
source is a black hole when the uncertainty on the position of the particle is much greater than the
classical curvature radiusRS. We also show that theL2 integrability of the wavefunction describing
the system guarantees asymptotic flatness, while smoothness conditions on its derivative implicate
regularity at the core. As a simple realizaion of this model, we extensively study the case in which
the probability distribution is Gaussian, finding an interesting and rich phenomenology which
could be, in principle, tested in present or future experiments. In Chapter II.3, we investigate
the internal structure of black holes focusing on possible microscopic models. In particular, we
express this structure in terms of harmonic oscillators whose typical frequencies are given by the
quasinormal modes of the black hole. This description, inspired by Maggiore’s idea [69], allows
us to recover the usual Bekenstein-Hawking entropy, and the subleading logarithmic term, in
the limit in which the black-hole mass is large. Adopting the same approach, in Chapter II.4
we model a 2D black hole, solution of the Jackiw-Teitelboim theory, again as a set of oscillators
with frequency equal to the modes of the system. Also in this case we reproduce the Bekenstein-
Hawking entropy of the object. Additionally, we are able to connect this microscopic description
to the De Alfaro-Fubini-Furlan conformal quantum mechanics at the boundary, in which we find
a natural description of the modes as the response function of the conformally-invariant version
of the quantum harmnonic oscillator.

Finally, in Conclusions, we draw our conclusions and we outline the future prospects.



Part I

Models of nonsingular and deformed black
holes

Testing putative alternatives to Einstein’s theory and to its black-hole solutions is
particularly appealing to try to better understand the nature of the gravitational in-
teractions. In this first part of the thesis, we discuss our effort in both modeling and
testing singular and regular black-hole candidates which can be used to probe para-
metrical deviations from the usual general relativity phenomenology. In particular,
we first study a general class of effective models of static and spherically symmetric
regular black holes sourced by anisotropic fluids with equation of state p∥ = −ρ
presenting an additional hair ℓ. The central singularity of the Schwarzschild solution
is replaced, in these models, by a de Sitter core. We also show that these models are
thermodynamically stable when the deformation parameter is of O (RS), the classi-
cal gravitational radius of the Schwarzschild black hole. We also explicitly study the
evaporation of such objects using a 2D gravity model, namely the Jackiw-Teitelboim
model, and we find strong evidence that the final state of this process describes a
perfectly regular, zero entropy, extremal configuration. We then consider a specific
example of the general class of 4D black holes, the Fan-Wang model, with the prop-
erty of having the strongest possible corrections with respect to Schwarzschild at
great distances. We then test this metric with S2-star data by studying the orbits of
test particles around such black hole. Finally, we test deviations from the Kerr metric
using the Konoplya-Zhidenko black hole as an example of a more general class of
rotating objects, and we study the superradiant amplification of scalar and spin-1
particles off a black hole.

This part is mainly based on:
M. Cadoni et al. “Effective models of nonsingular quantum black holes”. Phys. Rev.
D 106.2 (2022), 024030. arXiv: 2204.09444 [gr-qc] for Chapter I.2,
M. Cadoni et al. “Evaporation and information puzzle for 2D nonsingular asymp-
totically flat black holes”. JHEP 06 (2023), 211. arXiv: 2303.05557 [hep-th] for
Chapter I.3,
M. Cadoni et al. “Are nonsingular black holes with super-Planckian hair ruled out
by S2 star data?” Phys. Rev. D 107.4 (2023), 044038. arXiv: 2211.11585 [gr-qc] for
Chapter I.4,
E. Franzin et al. “Superradiance in Kerr-like black holes”. Phys. Rev. D 103.10 (2021),
104034. arXiv: 2102.03152 [gr-qc] for Chapter I.5.
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Chapter I.1
Regular and modified black holes as

mimickers

Einstein’s general relativity has been extensively tested in both weak and strong regimes [98–104].
While, nowadays, black holes are widely accepted as astrophysical systems (see, e.g., Refs. [105,
106] for a comprehensive review on black-hole related measurements) we still do not have the
ultimate evidence of the existence of these objects. Indeed, although the measurements are in
agreement with the presence of Kerr black holes in the universe, their uncertainties still leave
room for some possible alternatives to the Kerr spacetime. Moreover, the final proof would be the
observation of the defining property of these objects, i.e., the event horizon, which is, however,
intrinsically not directly observable [51, 76, 107, 108].

For this reason (and many others more), there has been an intense effort in the literature to
study alternative theories of gravity and black-hole mimickers. The latter, as we discussed in the
Introduction, were proposed as possible alternatives to black holes since they usually show the
same asymptotics of the Schwarzschild or Kerr spacetimes, but they differ in the near horizon
or the interior region [84, 109–111]. These spacetimes often show an interesting set of physical
features that makes them appealing candidates for tests of general relativity: they often need some
kind of exotic matter to avoid the collapse to a singularity [112]; they show a different geodesic
structure (even at great distances [3]); they can be thermodynamically stable [1, 2]; gravitational
waves emitted by these objects can have a very distinct signature [51, 113]. Again, we stress that
the scientific community has proposed numerous theories and models, resulting in the discovery
of several mimicker solutions. These theories and models often yield different predictions, and
likewise, diverse black hole mimickers lead to distinct observables. The great challenge, therefore,
is to test all the theories and understand which candidates are the most promising. A different
possibility is to follow a bottom-up approach, in which, we recall, at the cost of losing control
over the dynamics of the theory, one encodes the deviations from general relativity in a set of
additional parameters. Because of its generality, this approach is often more efficient to perform
tests of general relativity and does not rely on any specific microscopic description.

In this part of the thesis, we focus on a particular class of mimickers represented by singularity-
free, i.e., regular black holes. As we discussed in the Introduction, the need of a resolution of the
singularity, inevitable in a classical framework [87, 114], can be traced back to the discovery of the
Schwarzschild solution itself, since the divergence of the curvature invariants clearly implicates
the breakdown of the theory in some neighborhood of the core. In order to save general relativity
from completely losing its predictive power near the singularity, it has been conjectured that the
latter are always hidden behind event horizons, shielding the singularities from being seen by
any external observer [86]. However, the singularity may still play a role in processes in which
quantum effects are nonnegligible anymore, like the final phases of the evaporation process.
Hawking’s and Penrose’s theorems can be circumvented already in a pure general relativity
framework simply by relaxing some of their main assumptions. For example, by violating the
assumption on the validity of the strong energy condition, one can build some regular-black-hole
solutions (see, e.g., Refs. [115–121]; for models with non-linearly coupled electromagnetic fields,
see [122–127]). Alternatively, one can invoke quantum-gravity effects to prevent the formation of a
singularity. In the past, the most widely adopted approach has been to assume that these quantum
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corrections play a role at the Planck scale [128–142]. Since quantum gravity effects are expected
to become important only when the Compton length of a pointlike massM is comparable with its
Schwarzschild radius, RS = 2GM , they should be irrelevant as long as gravitational interactions
at Planck-scale distances are not considered, like the behavior of spacetime near their central
singularity or the initial phases of the evolution of the universe.

Nonetheless, as discussed in the Introduction, in recent times there have been several indica-
tions that quantum corrections can be relevant even at the horizon scale, which is, for astrophysical
systems, much larger than ℓP. We recall that, at the black-hole level, this new perspective gains
motivation from different approaches: the firewall paradox [53]; the fuzzball proposal [143, 144];
the emergent- and corpuscular-gravity scenarios [35–39, 64–68]; finally, the quasi-normal modes
(QNMs) spectrum of the Schwarzschild black hole, whose description is consistent with that of
an ensemble of oscillators with typical frequency ω ∼ 1/RS [6, 69].

A peculiar feature of these regular-black-hole spacetimes is that, when interpreted as solutions
of Einstein’s equations, they typically need an anisotropic fluid to source the gravitational field
(see, e.g., Refs. [1, 84, 121, 132, 145, 146] for an incomplete list). This fluid has a long history
and has been used in several different contexts. For instance, this description has been used in
cosmological models [71, 73, 74, 147–149], to explain the rotational curves of galaxies [75], to
build black-hole-mimicker solutions [77, 118, 150–155], and to study the primordial-black-hole
formation [156]. Moreover, in Chapter I.2 we propose that the anisotropies can be thought as a
parameterization of the quantum effects responsible for the smearing of the classical singularity
in the black-hole cores with a short-distance de Sitter behavior (see also Ref. [1]).

Moreover, black holes behave as thermodynamical systems [1, 157, 158]. In particular, one
can identify the surface gravity at the event horizon as the temperature of the black hole, and the
entropy of the system with a suitable multiple of the horizon area. They emit thermal Hawking
radiation similarly to black bodies [41]. This emission is also related to a very well known problem
arising from semiclassical gravity, namely the information paradox [42, 43] (see also Ref. [159]
for a comprehensive introduction to the topic). Indeed, semiclassical gravity suggests that the
information about the state of matter that falls inside of a black hole is irretrievably lost, which is,
therefore, in clear contrast with the principles of quantum mechanics since the former suggests a
nonunitary evolution for any system. Several solutions have been proposed to solve this problem
during the years: islands and replica wormholes [54–57], non-local modifications of effective
field theory [58–60], and fuzzball proposal [61–63] are just some of the most famous proposals.
Moreover, there are some theoretical arguments relating the information puzzle and the presence
of a singularity in classical black holes [160–164]. In this sense, regular black holes could be useful
also to address this long-time, unsolved puzzle in general relativity (see Chapter I.3 for a more
extensive discussion on this topic).

Another class of mimickers can be obtained by studying deviations from general relativity
that are small in the asymptotic region. A first attempt in this direction came in Refs. [90, 165,
166], where deviations the general-relativistic black-hole geometry are are expanded in powers
of M/r, being M the black-hole mass and r some radial coordinate. The main problem of
this formulation consist in the fact that a very large number of equally important coefficients
remains undetermined, with the additional drawback of a lack of a hierarchy among them.
Moreover, while it works sufficiently well for small deviations from general relativity, it fails for,
e.g., Einstein-dilaton-Gauss-Bonnet with large coupling constants [167]. A successive and more
reliable approach has been proposed in Refs. [91, 92]. In this parameterization, the deviations
from Einstein’s theory are again expressed in term of some expansion whose coefficients, this
time, have a much more definite hierarchy and are able to reproduce well known solutions up to
the desired accuracy with a relatively small number of parameters. Moreover, these parameters
can be fixed by observations in the near-horizon and in the far, post-Newtonian regions. Such
method, moreover, have been used to test the Kerr hypothesis via the iron-line method [168–170]
and to produce black-hole shadows simulations [171, 172].

In this part of the thesis, we investigate two classes of black holes presenting an extra parameter.
We first focus on a set of de Sitter core, asymptotically-flat, static and sperically symmetric black
holes, sourced by an anisotropic fluid. This source is characterized by a new length scale ℓ
which parameterize some unknown microscopic dynamics that will be interpreted in terms of
some putative quantum effects. We study the thermodynamic behavior of this spacetimes and the
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evaporation process, and we also test the phenomenology of these geometries against astrophysical
data. Then, we move to a class of rotating singular spacetimes, namely the Konoplya-Rezzolla-
Zhidenko class, characterized by a few additional functions encoding deviations from the Kerr
spacetime. After specializing this metric to the simples case, the Konoplya-Zhidenko spacetime,
we study the imprint of these modifications on the superradiant scattering of test particles on
these objects.





Chapter I.2
Effective models of nonsingular black holes

sourced by anisotropic fluids

Since the discovery of the Schwarzschild solution, the presence of a singularity inside black holes,
together with the initial cosmological one, has represented a serious challenge to our current
understanding of the fundamental laws of physics. This problem became even more serious
after the groundbreaking Penrose and Hawking singularity theorems [87, 114]. They proved
incontrovertibly that, under a set of a few, very general and physically motivated assumptions
(the validity of the weak energy condition and either global hyperbolicity or the validity of the
strong energy condition), these space-time singularities are unavoidable, at least in the classical
general relativity (GR) framework. Despite this, it is conjectured that these singularities are always
hidden behind a causal barrier, the event horizon, which prevents outside observers from seeing
them and the theory from completely loosing its predictive power [86]. Semiclassical effects, like
black hole evaporation [41], seem however to bring the singularity problem back on the table, as
the final steps of the evaporation process, where the singularity role should be most prominent,
are still poorly understood.

Although it is in principle solvable already in the classical GR framework by relaxing some as-
sumptions of Penrose’s theorem and constructing non-singular effective models (see, e.g., Refs. [115–
121]; for models with non-linearly coupled electromagnetic fields, see [122–127]) the singularity
problem calls for the need of a quantum description of gravitational interactions. As discussed
in the Introduction and in Chapter I.1, the most widely adopted approach in the past has been to
assume that these quantum corrections should only be relevant at Planck scale ℓP [128–142]. Thus,
they can be safely neglected as long as gravitational interactions at Planck-scale distances are not
considered, like the final stages of the evaporation of black holes, the behavior of space-time near
their central singularity or the initial phases of the evolution of the universe. However, several
recent results [6, 35–39, 53, 64, 65, 69] indicate that these effects could be important even at scales
much larger than the Planck one, namely at the horizon or at the cosmological level. This latter
possibility is also interesting from a more phenomenological point of view. For instance, these
effects are expected to be encoded in the QNMs spectrum and to be detected by the next generation
of gravitational wave (GW) detectors, like the Einstein Telescope (ET), in the ringdown phase of
two compact objects merging to form a single black hole. In some particular cases, a manifest
signature could be the presence of echoes in the GW signal [173–175].

The starting idea of this chapter is that the resolution of the singularity problem could be related
to the presence of quantum gravity effects at horizon scales. This is somehow natural because we
expect quantum effects to be at work both in the smearing of the classical black-hole singularity
and in generating an effective quantum hair at horizon scales. We parametrize the smearing of
the classical singularity with a length-scale L̂, whereas the quantum hair is represented by an
extra length-scale ℓ. We assume that this smearing is sourced by an exotic form of matter having
the form of an anisotropic fluid, which should give an effective description of quantum gravity
effects. The analogy with galactic dynamics, where an infrared (IR) scaleR0 =

√
RSL is generated

out of RS and the size of the cosmological horizon L [64], now suggests that, similarly, ℓ can be
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interpreted as an IR scale generated from RS and L̂, for instance by the simple relation

ℓ = Ra
S L̂

b (I.2.1)

with a+b = 1. Thus, the origin of the quantum hair ℓ should find an explanation in the multi-scale
behavior of gravitational interactions.

Following the cosmological analogy, we can think of a non-singular black hole as a "reversed"
Schwarzschild-de Sitter (SdS) space-time, in which the external cosmological horizon and the
inner Schwarzschild one are interchanged, and for which the length-scale L̂ becomes the de Sitter
(dS) length. In this way, we are motivated to construct a general class of non-singular, static,
asymptotically-flat black-hole solutions with a dS core, sourced by an anisotropic fluid, which
endows the classical Schwarzschild solution with a quantum hair ℓ. Extending this similarity
with the SdS case and with the dynamically generated scale R0, we will explicitly show that ℓ is
dynamically generated by RS and L̂ by ℓ ∼ R

1/3
S L̂2/3, a relation which should hold in general for

regular models with dS cores.
We find that imposing a regular dS core a) always violates the strong energy condition in the

interior of these objects, and therefore allows us to circumvent the singularity theorem, and b)
depending on the value of the parameter ℓ, our non-singular models can have two, one (extremal
configuration) or no horizons. We then proceed by investigating the implications of the presence
an extra parameter ℓ, assumed to be of the same order of magnitude asRS, on the thermodynamic
properties of the black hole and on the phenomenology of the models, i.e., on photon orbits and
on the QNMs spectrum.

By using the first law of thermodynamics, we show that the presence of ℓ causes deviations from
the standard area law. We propose therefore an entropy formula to generalize the latter. Using
this general entropy formula, we also find that the extremal configuration is a zero-temperature,
zero-entropy state, a behavior drastically different from extremal Reissner-Nordström (RN) and
Kerr black holes. This, together with the fact that the extremal, near-horizon, geometry factorizes
as the tensor product of two-dimensional Anti-de Sitter (AdS2) with a two-sphere, i.e., AdS2×
S2, indicates that these regular models could actually be relevant for tackling the information
paradox [42, 43, 55, 96, 159, 176]. By investigating the behavior of the specific heat and the free
energy of the hole, we find a second-order phase transition near extremality, i.e., for ℓ ∼ RS. In
particular, black holes with ℓ ∼ RS are energetically preferred with respect to those with RS ≫ ℓ,
lending further support to the possible relevance of quantum corrections at the horizon scale.

On the phenomenological side, we find that for black holes with ℓ ≪ RS, deviations from
standard results concerning photon orbits and the QNMs spectrum are negligibly small and not
detectable, at least in the near future. Conversely, black holes with ℓ ∼ RS are characterized
by macroscopic deviations from the Schwarzschild behavior, whose signatures are potentially
detectable by the next generation of GW detectors. In particular, by analytically computing
the QNMs spectrum in the eikonal approximation, we find that, in the near-extremal limit,
the imaginary part of the quasi-normal frequencies scale with the black-hole temperature as
c1/ℓ+ c2ℓT

2
H (with c1,2 constants), while in the near-extremal and near-horizon regimes, it goes to

zero, in agreement with several results in the literature [7, 177–187]. This appears to be a general
feature of non-singular black holes, common also to charged and/or rotating extension of regular
models [188–190].

In the final part of the chapter, we check our results by revisiting two already-known models,
namely the Hayward and Gaussian-core black-hole metrics, which represent particular cases of
our general class of regular black holes.

The outline of the present chapter is the following. In Chapter I.2 we build up the grounds
for our multi-scale description of gravity by drawing an analogy between the SdS solution and
galactic dynamics from one side, and regular black-hole models for the other side.

In Section I.2.2, we find the exact, most-general, spherically-symmetric static solution of Ein-
stein’s field equations, sourced by an anisotropic fluid, and we outline the basic requirements
needed to avoid the central singularity. We then focus on a subclass of such models by choosing
a particular equation of state and analyze the null and strong energy conditions.

In Section I.2.3, we select the general class of regular black-hole solutions by imposing a set
of minimal constraints, namely dS behavior in the interior, asymptotically flatness at infinity,
and the presence of horizons. We also study the general thermodynamic behavior of these
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models, discussing the first law of thermodynamics and the appearance of the second-order
phase transition. Finally, we investigate photon orbits and the QNMs spectrum in the eikonal
approximation.

In Section I.2.4 and Section I.2.5 the general discussion is applied and the results are confirmed
by revisiting two previously-proposed regular black-hole models, the Hayward and the gaussian-
core ones, which appear as particular cases of our general class of models.

In this chapter, we use units in which c = ℏ = kB = 1.

I.2.1 Unified description of spacetime and matter inside a black hole

In the present chapter, we adopt a description of gravitational interactions in terms of an effective
multiscale field theory, characterized by the generations of hierarchically different length scales.
This description is natural in the cosmological and galactic context, as gravity and baryonic matter
are characterized by: the Planck length ℓP, the size of the cosmological horizon L, related to the
cosmological constant by L = Λ−1/2, and the gravitational radius of a clump of baryonic matter
with mass M , RS = ℓ2PM . Indeed, in this context, an intermediate (mesoscopic) IR length scale in
the galactic regime

R0 =
√
RSL (I.2.2)

is dynamically generated from RS and L. At this scale, gravity deviates from its Newtonian
behavior as is evident from the rotational curves of galaxies. Moreover,R0 can be seen as a scale at
which long-range quantum gravity effects become relevant [64, 70–72]. This scenario allows for an
effective description in the GR framework in terms of an anisotropic fluid, which can be seen as a
two-fluid model of dark energy and matter [70–75]. The resulting spacetime is the SdS solution, in
which dark energy dominates at very large scales. In this regime, we have a description in terms of
the pure de Sitter (dS) spacetime and a related scale isometry [191]. When instead clustered matter
with mass M is present and becomes nonnegligible, the scale invariance of the dS background is
broken, the quantum scale R0 is generated and we have an effective description in terms of the
SdS spacetime. The latter is characterized by an internal Schwarzschild-like horizon, determined
by the baryonic mass M , and by an external dS horizon, which, for small M , is located at the
radial position r = L, being r the radial position in a spherical coordinate system. The short-scale
regime, instead, is described by the Schwarzschild solution with a related scale RS, at which the
matter contribution dominates over dark energy. The geometry is asymptotically dS.1

In the emergent gravity scenario of Ref. [64], these two regimes are assumed to be endowed
with a microscopic description in terms of quantum gravity degrees of freedom (DOFs) entangled
at short-scales (at r ∼ RS) and at cosmological scales (r ∼ L). Following Refs. [64, 70], the
short-range entanglement is responsible for the holographic horizon-area scaling of the entropy.
The long-range regime is, instead, characterized by the slow thermalization of IR, long-range
interacting, quantum-gravity DOFs. These IR dynamics is responsible for an extensive, i.e.,
volume-dependent, contribution to the entropy. As argued in Ref. [64], the competition between
the area- and volume-laws in the entropy generates a mesoscopic scale R0 and an additional
gravitational dark force explaining the deviations from the Newtonian dynamics at galactic scales.
This multiscale description of gravity, with a “fast scale”, RS and a “slow scale” L, is reminiscent
of thermodynamic systems characterized by a glass transition [64].2

Following this line of reasoning, one is led by analogy to use a similar multiscale description
of matter and gravity for the BH interior, in particular, to solve the singularity problem. We will
consider only macroscopic BHs, i.e., BHs whose horizon radius is hierarchically larger than ℓP.
The short-distance behavior in the BH interior (near the singularity) is now dominated by the
short-scale dynamics of the emergent spacetime DOFs. It is natural to assume that, similarly
to the cosmological case at large scales, here the contribution of matter is negligible at short
scales, where we have an effective GR description in terms of a pure dS spacetime. This regime
is therefore characterized by an ultraviolet (UV) dS length L̂, a related cosmological constant

1Notice that, in order to make contact with the BH spacetime, we need a static parameterization of the dS geometry.
2At short time scales, glassy systems have properties which cannot be distinguished from those of crystals: their

effective descriptions are identical. However, the former are characterized by a long timescale behavior, which makes
them completely different from crystals.
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Λ̂ = L̂−2, and scale invariance. This description is fully consistent with the existence of a UV fixed
point, predicted by the quantum-gravity asymptotic safety scenario (see, e.g., Refs. [192–194]; for
a resolution of the classical singularity in the asymptotic safety scenario, see Ref. [195]; for recent
results on scale invariance in the core of BHs, see Ref. [196]). Moreover, the dS behavior of the
spacetime at short scales is consistent with the volume-law contribution to the entropy.

Introducing baryonic matterM breaks the scale and conformal invariance of the dS spacetime
in the BH interior. Similarly to the galactic and cosmological regimes [72], in this case, a new
quantum scale ℓ is generated in terms of L̂ and RS as shown in Eq. (I.2.1). Using an argument
similar to that of Ref. [64], the generation of ℓ can be also explained in terms of the competition
between the short-range, volume contribution, and the Bekenstein-Hawking area-law contribution
to the entropy at the Schwarzschild radius RS, i.e., at great distances from the center of the object.

Such a multiscale description of gravitational interactions can be adopted to describe both
BHs in a cosmological background and the interior of asymptotically flat regular BHs. In the two
cases, however, the horizon positions are reversed. In the latter, the dS horizon is the internal
one, whereas the matter-determined horizon is the external one. For this reason, even if we
expect ℓ = f(L̂, RS), this relation needs not to be the same as that relating R0, L and RS in
Eq. (I.2.2). Another difference from the cosmological SdS case is that here we have the possibility
of an external description given by an asymptotic observer at r →∞. The latter sees “quantum”
deviations from the Schwarzschild geometry, parametrized by ℓ. In this respect, it should be
emphasized once again that the relation between the cosmological case, described by Eq. (I.2.2),
and the BH case, described instead by Eq. (I.2.1), is simply of an analogy, which prevents us from
finding any relation between the cosmological scales (L,R0) and the new scales (L̂, ℓ).

From this perspective, we have a new phase in the BH interior, in which the emergent-gravity
DOFs and matter should allow for an effective two-fluid description, i.e., an effective description
in terms of an anisotropic fluid [147]. In the next sections, we will construct a general class of
GR models describing gravity sourced by an anisotropic fluid, which allows for nonsingular BH
solutions with two event horizons and an internal dS core.

I.2.2 Spherically symmetric solutions sourced by anisotropic fluids

Our starting point is GR sourced by an anisotropic fluid. The stress-energy tensor Tµν appearing
in Einstein’s equations Gµν = 8πGTµν will be that pertaining to an anisotropic fluid. The latter
has a long history and has been fruitfully used in several different contexts in gravitational
studies, including compact objects, singular and non-singular BH models, and cosmology (for an
incomplete list, see, e.g., Refs. [71, 73–75, 77, 84, 118, 121, 132, 146–156, 197]).

We consider static, spherically symmetric solutions of the theory, whose metric part can be
written in the form

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2. (I.2.3)

where ν(r) and λ(r) are metric functions, depending on the radial coordinate r only, and dΩ2 =
dθ2 + sin2 θ dϕ2. The stress-energy tensor describing the anisotropic fluid can be written as [197]

Tµν = (ϵ+ p⊥)uµuν + p⊥ gµν −
(
p⊥ − p∥

)
wµwν , (I.2.4)

where ϵ(r), p∥(r) and p⊥(r) are the energy density and the radial and tangential pressure com-
ponents, respectively, while uµ and wµ are 4-vectors satisfying the normalization conditions
gµνuµuν = −1, gµνwµwν = 1 and uµwµ = 0. The independent Einstein’s field and stress-energy
tensor conservation equations read

1− e−λ + re−λλ′

r2
= 8πGϵ; (I.2.5a)

e−λ − 1 + re−λν′

r2
= 8πGp∥; (I.2.5b)

p′∥ +
ν′

2

(
ϵ+ p∥

)
+

2

r

(
p∥ − p⊥

)
= 0, (I.2.5c)
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where the prime denotes derivation with respect to r. Integration of the first equation yields

e−λ(r) = 1− 8πG

r

∫
ϵ r2dr ≡ 1− 2Gm(r)

r
(I.2.6)

where m(r) is the Misner-Sharp (MS) mass

m(r) ≡ 4π

∫ r

0

dr̃ r̃2 ϵ(r̃). (I.2.7)

Finally, Eq. (I.2.5b) can be recast, using Eq. (I.2.7), in the more useful form

ν′

2
=

4πGp∥r
3 +Gm

r (r − 2Gm)
. (I.2.8)

The system (I.2.5a)-(I.2.5c) is not closed. In order to determine the solution unambiguously,
we must support Eqs. (I.2.5a) and (I.2.5c) with two further equations. The simplest and physically
natural way to close the dynamical system is to provide a barotropic equation of state (EoS) for
the radial pressure p∥ = p∥(ϵ) and the matter density profile ϵ(r). In the following, we will
fix the equation of state and the matter density profile by imposing absence of singularities, a
Schwarzschild behavior at r → ∞, i.e., asymptotic flatness, and exploiting the analogy with
cosmology discussed in previously Section I.2.1.

I.2.2.1 Equation of state and energy conditions

The simplest and most natural EoS we can choose is

p∥ = −ϵ. (I.2.9)

This choice is physically well-motivated by the analogy with the cosmological and galactic regime
since it allows for both the dS and SdS (cosmological) phases. It allows for a pure dS behavior
near r = 0, which implies the absence of singularities in the BH interior. Moreover, the EoS also
allows for asymptotically-flat solutions at r → ∞, when both p∥ → 0 and ϵ → 0. One can now
easily check that, using Eq. (I.2.5a) and Eq. (I.2.5b), the EoS (I.2.9) implies λ(r) = −ν(r). In the
remainder of the chapter, we will adopt the following parameterization of the metric functions
eν = e−λ = A(r).

Eq. (I.2.8) can be readily integrated, using Eqs. (I.2.7) and (I.2.9), and yields

A(r) = 1− 2Gm(r)

r
. (I.2.10)

Finally, using Eqs. (I.2.5c), (I.2.7) and (I.2.9), we can express the fluid anisotropy p⊥ − p∥ as a
function of the MS mass as follows

p⊥ − p∥
r

=
1

4πr3

(
m′ − rm′′

2

)
. (I.2.11)

It is useful to write down explicitly the energy conditions for the specific case in which the
EoS (I.2.9) holds. We start with the null energy condition (NEC), which is satisfied when both
ϵ+ p∥ ≥ 0 and ϵ+ p⊥ ≥ 0 hold globally [198]. While the first one is trivially satisfied by virtue of
Eq. (I.2.9), the second one imposes

ϵ′(r) ≤ 0, (I.2.12)

upon using Eqs. (I.2.7) and (I.2.11). The strong energy condition (SEC), instead, is fulfilled when
ϵ+ p∥ + 2p⊥ ≥ 0 holds at any radii. Again, using Eqs. (I.2.7) and (I.2.11), the SEC is equivalent to

2rϵ(r) + r2ϵ′(r) ≤ 0. (I.2.13)
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I.2.2.2 Absence of singularity and behavior near r = 0

In order to avoid the presence of a central singularity at r = 0 we first impose a set of minimal,
very general requirements on the form of the metric functions and on the density and pressure
profiles.

• We require regularity of e−λ in r = 0 which, together with Eqs. (I.2.6) and (I.2.10), implies
m(r)/r → 0 or r → 0.

• We demand regularity of p∥ in r = 0 which, together with Eq. (I.2.8), entails rν′(r) → 0 for
r → 0.

• We require both p∥ to be smooth in r = 0. From Eq. (I.2.5c), the condition on p∥ also impose
regularity on the tangential-pressure component

lim
r→0

p⊥ − p∥
r

= 0. (I.2.14)

Equation (I.2.14), together with Eq. (I.2.11), implies the following behavior near r = 0 for the
mass function m(r)

m(r → 0) = m1 +
r3

2ℓ2PL̂
2
+O

(
r4
)
, (I.2.15)

with m1 and L̂ some integration constants. The absence of curvature singularities for the metric
in r = 0 requires m1 = 0. The other term, proportional to r3, instead, gives a local dS solution
with a dS length L̂

A(r → 0) = 1− r2

L̂2
+O

(
r3
)
. (I.2.16)

This dS description of the solution core is fully consistent with both the EoS (I.2.9) and the analogy
with the SdS solution in cosmology (see, e.g., Ref. [118] for a regular model with a Minkowski
core).

I.2.2.3 Asymptotic flatness and behavior at r → ∞
In the asymptotic (r → ∞) region, we require our solution to be (almost) indistinguishable from
the Schwarzschild spacetime. This implies the metric to be asymptotically flat, with a subleading
1/r term in the metric function A(r). Moreover, the two pressure components p∥ and p⊥ must
vanish in the limit r →∞. From Eq. (I.2.11), we see that the minimal condition to have p⊥ → 0 in
the asymptotic region is

m(r →∞) = C0r2 + C2r +M +O
(
1

r

)
, (I.2.17)

with C0, C2 and M integration constants. Asymptotic flatness and absence of conical defects
require C0 = C2 = 0, whereasM becomes the Arnowitt-Deser-Misner (ADM) mass of the solution
measured by the asymptotic observer, since

m(r →∞) =M +O
(
1

r

)
. (I.2.18)

I.2.3 A general class of nonsingular quantum black-hole models

The absence of a central singularity and the requirement of Schwarzschild asymptotics strongly
constrain, through Eqs. (I.2.16) and (I.2.18), the local form of the mass function m(r) (or, equiva-
lently, of the metric function A) in the limits r → 0 and r → ∞. However, the global behavior of
m(r), which interpolates between the internal and asymptotic regions, remains extremely poorly
constrained. In this section, we will use the analogy with the cosmological SdS case to further



Effective models of nonsingular black holes sourced by anisotropic fluids 17

restrict its global form. As a result, we obtain a general class of regular BH models, which can be
used to give an effective description of quantum BHs.

We assume thatm(r)depends only on the two parameters L̂ andRS, which characterize its local
behavior near r = 0 and near r → ∞. This implies that the IR quantum scale ℓ can is a function
of L̂ and RS only. The explicit relation between these three scales can be found using a simple
argument. Indeed, our models interpolate between the scale-invariant dS behavior in the core and
that of clustered matter, which gives the Schwarzschild solution at large radii. Therefore, there
must be some scale ℓ at which these two effects balance out. By exploiting the same arguments
used in Ref. [72], we expect this scale to correspond to the one at which the Compton length
associated with a test particle of mass m, experiencing the effect of a dS potential VdS = r2/L̂2, is
of the order of the Compton length of the particle if it felt the Schwarzschild potential generated
by the surrounding mass VSch = RS/r. The former cures the singularity at the center and reads
λc, dS ∼ ℏ/(|VdS|m) = ℏL̂2/r2m. The latter, instead, is responsible for the quantum correction at
the horizon scale and is given by λc, S = ℏr/RSm. We thus have

λc, dS
λc, S

∼ O(1)⇒ r ∼ ℓ ∼ R1/3
S L̂2/3, (I.2.19)

which is a scaling relation of the form given in Eq. (I.2.1), with a = 1/3, b = 2/3. We will check
these general results in two specific models in Sections I.2.4 and I.2.5.

The presence of a new IR quantum scale implies that we have two complementary descriptions
of the quantum BH. A BH-interior description, based on the parameters L̂ and M , and a BH-
exterior one, based instead on ℓ and M . The second case corresponds to the classical description
characterized by the classical hair M and by a quantum-deformation parameter, i.e., the hair ℓ.

A second requirement on the form of the function m(r) comes from the analogy with the
cosmological SdS spacetime case. The spacetime must allow for two horizons, a dS-like internal
one at r = r− and a Schwarzschild-like external one at r = r+. Depending on the value of the
parameter ℓ (or, equivalently, of the parameter L̂), the BH could pertain to one of the following
three cases: (i) a BH with two horizons, (ii) an extremal BH with two coinciding horizons, and
(iii) a horizonless compact object.

We can easily estimate the relation between the parameters in the extremal case (ii) using a
very simple argument. For the internal observer, which describes its spacetime as dS, the energy
density is constant and it is given by ϵ ≃ (L̂ℓP)

−2. The total energy inside a sphere of radius r is
E(r) ≃ r3(L̂ℓP)

−2. If we take, for the extremal case, r ≃ L̂ ≃ RS, then the total energy inside the
sphere becomes E(L) ≃ L̂ℓ−2

P . Moreover, E(L̂) must match the BH mass M seen by the outside
observer. Therefore, using Eq. (I.2.19), the new scale ℓ for the extremal case must be related to RS
and L̂ as

ℓ ≃ RS ≃ L̂. (I.2.20)

Here we can see that the new scale ℓ has a quantum origin, being related to L̂which is responsible
for the smearing of the singularity and should also be of the same order as the Schwarzschild
scale RS.

For ℓ ≲ RS, the presence of the dS core and asymptotic flatness force the metric to have an even
number of horizons. In the following, we will limit ourselves to the case of only two horizons.
In the limit ℓ → 0, corresponding to L̂ → 0, the inner dS horizon is pushed towards r = 0, it
disappears, and a singularity is generated in the center. The outer horizon, on the other hand,
becomes the classical Schwarzschild one. This case corresponds to the classical limit of our model,
in which the usual asymptotically-flat Schwarzschild solution is recovered and the quantum effects
can be neglected. In view of Eq. (I.2.18), the simplest way to recover the Schwarzschild solution
in the ℓ→ 0 limit is to assume that

m(r) = m
(r
ℓ
, M

)
. (I.2.21)

Conversely, in the ℓ → ∞ limit, corresponding also to L̂ → ∞, the outer horizon disappears
and the spacetime becomes dS. Notice that also M → ∞ in this case, consistently with the fact
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that the energy density is constant. This is the cosmological regime of emergent gravity, in which
dark energy in the form of the cosmological constant L−2 fully dominates [64]. Our description
in terms of a quantum BH with a dS interior sourced by an anisotropic fluid breaks down in
this limit. An effective description of gravitational interactions in terms of GR sourced by an
anisotropic fluid is still valid. It can be used to describe galactic dynamics and the generation of
the IR length of galactic size (I.2.2), giving rise to interesting effects, like the emergence of a dark
force at galactic level [70–72]. Finally, for ℓ ≳ RS, the solution has no horizons and can be thought
of as a horizonless star.

Let us now write down the most general form of the metric function satisfying the conditions
discussed above and in Sections I.2.2.2 and I.2.2.3. We first reparametrize the metric functionA(r)
in terms of a smooth function F as

A(r) = 1− RS

ℓ
F
(r
ℓ

)
≡ 1− αF (y) (I.2.22)

where we defined the dimensionless coupling α ≡ RS/ℓ and radial coordinate y ≡ r/ℓ. Further-
more, the function F must satisfy the following conditions:

1. At great distances the spacetime must asymptote Schwarzschild, therefore F must behave
as

F (y →∞) =
1

y
+O

(
y−2

)
. (I.2.23)

2. In the limit r → 0 the spacetime becomes dS and F behaves as

F (y → 0) = y2 +O
(
y3
)
. (I.2.24)

3. The equation 1 − αF (y) = 0 admits at most two real positive roots y+, y−. Moreover,
parameter regions in which the equation allows for two distinct, two coinciding, or no real
positive roots are present.

4. In the region y ≥ y+, F ′(y)/F has only one local extremum (a maximum).

When the roots are distinct, y+ corresponds to an event horizon and y− is the inner Cauchy
horizon. The presence of the latter horizons raised several concerns in the literature regarding
the stability and viability of such regular-BH solutions with two horizons. Indeed, according to
Poisson, Israel, and Ori [199, 200], the Cauchy horizon is typically exponentially unstable under
perturbations, an effect known as “mass inflation”. In standard regular-BH approaches with
ℓ ≃ ℓP, this instability develops in a time of order of the Planck time, which is a much shorter
timescale than the evaporation time. Mass inflation, therefore, seems to challenge these models’
ability to describe the evaporation process completely [201–203]. However, it has been shown
recently [204] that a more careful analysis is needed and that the mass instability does not occur in
some specific regular models, like those of Refs. [84, 192] (see also Refs. [205, 206] for more recent
results).3 Condition 4., instead, constrains the form of the derivative of F and is needed to have
the simplest thermodynamic phase portrait since the ratio F ′/F is related to the BH temperature
(see Section I.2.3.3).

Finally, imposing the quantum-corrected metric to comply precisely with certain effective
field equations, derived from some action principle, could introduce additional restrictions on
the behavior of F , a possibility that has been analyzed in Ref. [210]. The latter analysis is
mainly concerned with possible quantum corrections to the Schwarzschild metric, assumed to be
polynomial in 1/r at asymptotic infinity (even if the main results seem to hold even if the latter
assumption is relaxed). These corrections are derived as asymptotic solutions of effective field
equations derived from an Einstein-Hilbert action corrected by additional higher-order terms
in the curvature. What is found is that algebraic forms of F , like those of Refs. [84, 118], are
incompatible with a principle of least action unless either fine-tuning is assumed or strong infrared
non-localities in the gravitational action are taken into account. Therefore, their feasibility as

3We point the reader to Refs. [207–209], in the corpuscular gravity framework, and Ref. [5] for an alternative regular
model without the presence of inner Cauchy horizons.
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Figure I.2.1: Qualitative behavior of the metric functionA(r) as a function of the radial coordinate
for different values of the parameter α. The solutions can show no horizons for α < αc (blue
curve), be extremal for α = αc (red curve), or possess two horizons for α > αc (orange curve). We
also show the Schwarzschild metric function (black dashed curve) for comparison.

quantum-deformed BHs may be questionable, at least if one requires these solutions to be derived
from an Einstein-Hilbert action with higher-order terms in the curvature.

Condition 3. implies the existence of critical values αc and yc for α and y respectively, labeling
the extremal case, when the two BH horizons merge. These critical values are determined by
requiring the metric function to have a double-degenerate zero, i.e., by the system of equations

1− αcF (yc) = 0, (I.2.25a)
F ′(yc) = 0. (I.2.25b)

Notice that a simple principle of naturalness implies αc and yc being of order 1, so the critical
values for ℓ and r are of order RS. Therefore, αc allows us to distinguish three regimes for our
model.

(a) α ≫ αc, corresponding to ℓ ≪ RS (i.e., ℓ ∼ ℓP), describes the Schwarzschild BH with small
quantum corrections [131–142].

(b) α ∼ αc, corresponding to ℓ ∼ RS, where ℓ parametrizes quantum gravity effects at horizon
scales [6, 7, 35–39, 61–65, 69];

(c) α < αc, corresponding to ℓ > RS, describes horizonless stars.

In the following, we will be mainly concerned with (a) and (b) regimes, though (c) can give
interesting phenomenology as well as the other cases. Finally, we show the qualitative behavior
of the metric function A(r) in the three cases in Figure I.2.1.

I.2.3.1 Energy conditions revisited
Given the form (I.2.22) for the general metric function and taking into account (I.2.23) and (I.2.24),
we can rewrite the two energy conditions (I.2.12) and (I.2.13) in terms of the functionF and discuss
their behavior near r ∼ 0 and for r →∞. Using Eqs. (I.2.6) and (I.2.22) in (I.2.12) and (I.2.13), we
get

ϵ′ = − αF

4πGℓ3 y3
+

αF ′′

8πGℓ3 y
≤ 0, (I.2.26a)

2rϵ+ r2ϵ′ =
α (2F ′ + yF ′′)

8πGℓ
≤ 0. (I.2.26b)

Near y = 0 ϵ′ = 0, which satisfies the NEC. On the contrary, 2rϵ + r2ϵ′ ∼ 0+ for y → 0, i.e., the
SEC is violated somewhere deep in the core of the BH. This is expected since the SEC violation is



20 I.2.3 A general class of nonsingular quantum black-hole models

characteristic of the dS spacetime. On the other hand, for y →∞, using Eq. (I.2.23) we get ϵ′ → 0
and 2rϵ+ r2ϵ′ → 0. Thus, both the NEC and the SEC are satisfied in the asymptotic region, a fact
that is clearly related to the Schwarzschild asymptotics of the solutions.

Violation of the SEC in the inner core explains how the usual singularity theorems can be
circumvented in our models. Even if the dS behavior near r = 0 assures the absence of a curvature
singularity at r = 0, in principle it is not sufficient to guarantee the geodesic completeness of the
spacetime described by the metric function (I.2.22). In Appendix I.A we explicitly show that in our
models, caustics of time-like geodesics cannot form, proving therefore the geodesic completeness
of spacetimes described by Eq. (I.2.22).

I.2.3.2 Extremal limit
As it is usually the case for standard charged and/or rotating BHs [211–214], in the extremal limit
and in the near-horizon approximation, the local geometry of our spacetime behaves as AdS2×S2,
i.e., as the tensor product of a two-dimensional (2D) AdS spacetime and a two-sphere, with both
the AdS2 lengthL2 and the radius of S2 of orderRS. In fact, in the extremal limit r+ = r− = rc, the
metric functionA(r) must have a double zero at r = rc, determined by the solution of Eqs. (I.2.25).
Expanding it near the horizon, i.e., in power series of r − rc, we get at leading order

ds2 = −L−2
2 (r − rc)2dt2 + L2

2(r − rc)−2dr2 + r2cdΩ2, (I.2.27)

where we have defined L−2
2 = − 1

2A
′′(rc) and rc ∼ RS owing to Eq. (I.2.20). Moreover, for purely

dimensional reasons, the same equation implies A(rc)′′ ∼ R−2
S , from which L2 ∼ RS follows. A

translation of the radial coordinate r → r + rc brings the metric into the form

ds2 = − r
2

L2
2

dt2 + L2
2

r2
dr2 + r2cdΩ2, (I.2.28)

which describes an AdS2 × S2 spacetime, with the AdS2 metric written in Poincaré coordinates.
As we shall show in the next sections, the extremal solution is a zero-temperature, zero-entropy

solution. The extremal configuration will be then thermodynamically preferred. Even if a solution
with two horizons could result from the astrophysical collapse of a compact object, it will decay
in a much shorter time than the Hawking evaporation time into the extremal configuration. This
process has been studied and proved for the 2D version of the Hayward BH in Ref. [2], which will
be described in detail in Chapter I.3.

Let us conclude by noting that the extremal solution is stabilized by a particular profile for the
energy density ϵ and for the pressures p∥ and p⊥. In the near-horizon approximation, when the
metric takes the simple AdS2×S2 form, we expect them to be constant and to satisfy a simple EoS.
In fact, combining Eqs. (I.2.5c), (I.2.6) and (I.2.22), the extremality conditions in Eqs. (I.2.25) and
the EoS (I.2.9), we find that the leading terms for the near-horizon energy density and pressures
are

ϵ(NH) =
1

8πGr2c
, p(NH)

∥ = −ϵ(NH), (I.2.29a)

ϵ(NH)
(AdS) = −

1

8πGL2
2

, p(NH)
⊥ = −ϵ(NH)

(AdS), (I.2.29b)

where ϵ(NH)
(AdS) is the (negative) constant energy density sourcing AdS2. It is interesting to note

that both the radial and perpendicular components of the pressure satisfy the simple equation
of state p = −ϵ. The (positive) energy density associated with the two-sphere acts as a source
for the (negative) radial pressure, whereas the (negative) energy density associated with AdS2

acts as a source for the (positive) perpendicular pressure. Thus, the stabilization of the AdS2×S2

near-horizon, extremal solution is achieved in a rather non-trivial way.

I.2.3.3 Black hole thermodynamics
From the metric function (I.2.22) and using standard formulae, we can compute both the Hawking
temperature TH and the BH mass for the quantum corrected BH, as functions of the outer horizon
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radius r+ ≡ rH and of the quantum-deformation parameter ℓ

TH(rH, ℓ) =
1

4π

dA(r)
dr

∣∣∣∣
r=rH

= − α

4πℓ
F ′
∣∣∣∣
y=yH

, M(rH, ℓ) =
ℓ

2G
F−1(yH). (I.2.30)

An important point is that ℓ has to be considered as a quantum-deformation parameter which,
contrary to M , is not associated with conserved charges. This makes our quantum BH solution
drastically different from other two-parameter classes of solutions, e.g., the charged RN solution,
for which both parameters are associated with thermodynamic potentials.

Owing to this feature, we look for a first law of thermodynamics of the form dM = THdS, where
S is the BH entropy. One can easily check that the area law, i.e., an entropy equal to a quarter of the
area of the outer event horizon (in Planck units), cannot be valid for our class of BH models. In fact,
using SA = AH/4G = πr2H/G, we get dM − THdSA = −(1/2G)(dF/dyH)F

−1
(
F−1 − rH/ℓ

)
drH.

This tells us that, once the area law is assumed, the first principle is satisfied only for F (y) = ℓ/rH,
i.e., only for the Schwarzschild BH.

Let us now look for a new definition of the BH entropy S, generalizing the area law, such that
the first principle is satisfied. This generalized entropy can be found by noticing that Eq. (I.2.30)
implies the validity of the following relation

dM = 4πMTHdrH. (I.2.31)

By defining the BH entropy as

dS = 4πMdrH, (I.2.32)

we see that the first principle dM = TdS is satisfied. Moreover, the entropy (I.2.32) correctly
reproduces the area law in the Schwarzschild case, M = rH/2G. Eq. (I.2.32) defines the entropy
of the BH up to an integration constant, which can be fixed by requiring the entropy area law to
be recovered in the limit ℓ≪ RS, i.e., in the classical limit of our quantum model. This leads to

S(rH) = 4π

∫ rH

rm

M(r′H)dr′H, (I.2.33)

where rm is the minimum value of the horizon radius. In the limit ℓ≪ RS, we haveM(rH) = rH/2G
and rm = 0, so that Eq. (I.2.33) gives the area law S = πr2H/G.

For a generic quantum deformed BH, rm is given by the radius rc of the extremal BH. This
implies in particular that the extremal BH has zero entropy, i.e., S(rc) = 0. The extremal limit for
our quantum-deformed BH is, therefore, a state of non-vanishing mass but with zero temperature
and entropy. Again, this behavior is drastically different from that of usual extremal BHs, for
which the extremal configuration is a state with T = 0, but with S ̸= 0.

For both large BH radii rH →∞ and in the extremal limit, the temperature goes to zero. This
can be easily checked using Eq. (I.2.30) together with Eq. (I.2.24) and Eqs. (I.2.25). The smoothness
of the function F (y) then implies that the function TH(rH) has at least one local maximum in the
range [rc, ∞). In order to avoid an oscillating behavior of TH(rH), we have restricted ourselves
to the simplest case by imposing condition 4. on the form of the function F (see the beginning of
Section I.2.3).

The temperature starts from zero in the extremal limit, then it reaches a maximum TH,max
for some rH,max and then goes down to zero again for large values of rH/ℓ. This implies that
TH is always bounded, 0 ≤ TH ≤ TH,max. Only when we take the limit ℓ → 0 first, to recover
the Schwarzschild BH, can the temperature become arbitrarily large when rH → 0. Notice
that a nonvanishing quantum deformation parameter, ℓ ̸= 0 solves, as expected, the singular
thermodynamical behavior TH →∞ of the Schwarzschild BH for rH → 0. The typical qualitative
behavior of the temperature is shown in Figure I.2.2.

In order to study in detail the thermodynamic behavior of the BH near extremality, we expand
TH andM near rc. At leading order, we get TH = γ(rH−rc), whereasM =Mc+β(rH−rc)2, where
γ = dTH/drH|rc , β = (1/2)d2M/dr2H|rc and Mc = M(rc). Notice that dM/drH is always positive
and becomes zero at extremality, dM/drH|rc = 0. For this reason, the linear term in the expansion
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Figure I.2.2: Typical qualitative behavior of the BH temperature TH as a function of the BH radius
rH. We explicitly show the presence of the two branches (branch I in blue, with positive specific
heat, and branch II in red, with negative specific heat), the critical horizon radius, and rH,max. We
also show the typical behavior of the temperature of a Schwarzschild BH for comparison.

of M is absent. The previous expression implies a quadratic scaling with the temperature of the
mass above extremality

M −Mc ∼
ℓ3

G
T 2

H, (I.2.34)

which is fully consistent with the AdS2×S2 near-horizon behavior of the extremal limit [215–217].
This means that, in the near-extremal limit, the BH allows for an effective description in terms
of a 2D dilaton gravity theory, i.e., Jackiw-Teitelboim (JT) gravity, with the dilaton parametrizing
the radius of the 2-sphere S2 [93, 94, 218]. This in turn implies the possibility of using a dual 2D
conformal field theory to describe the near-horizon regime of the near-extremal BH. This fact may
be relevant for applications to the information puzzle in BH physics [42, 43, 54, 55, 96, 159, 176].

I.2.3.4 Phase transition
The nonmonotonic behavior of T (rH), which is common to a wide class of charged and/or AdS
BHs, signalizes a non-trivial thermodynamic phase structure, the presence of two thermodynamic
branches and a phase transition at the critical temperature TH,max (see, e.g., Refs. [219–228]). This
simply follows from the fact that there are two possible values of rH for a given value of TH. This
implies the presence of metastable states and the existence of two branches, I and II. The branch
I corresponds to small, order 1 values of the dimensionless BH radius yH = rH/ℓ (the left-hand
region of Fig. I.2.2). Here, rH varies between the extremal value rc and rH,max. Correspondingly,
the parameter ℓ can take values between ℓH,max and ℓc, both of order RS. Thus, branch I describes
quantum BHs whose quantum deformation parameter ℓ is of the same order of magnitude as
the classical Schwarzschild radius RS. Conversely, branch II corresponds to large values of yH
(the right-hand region of Fig. I.2.2). Here, rH can take values much larger than rH,max. This
corresponds to small values of the parameter ℓ. Hence, the far right region of branch II describes
classical BHs, with quantum deformation parameter ℓ≪ RS. A comparison with GR corroborates
this interpretation. Indeed, in the limit yH ≳ yc the temperature shows a very different behavior
with respect to its classical, GR analogous, while in the opposite case, yH → ∞, we see that TH
asymptotes to the Schwarzschild value.

The phase transition and the stability of the different thermodynamic phases can be investi-
gated by considering the specific heat of the BH, given by

C =
dM
dT =

dM
drH

(
dT
drH

)−1

. (I.2.35)

Typical values of C are shown in Fig. I.2.3 as a function of rH. Being dM/drH always positive, the
non-monotonic behavior of TH implies that
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Figure I.2.3: Typical qualitative behavior of the BH specific heat C as a function of rH. The rH-axis
starts from the value C(rH = rc) = 0, given by the solution of Eqs. (I.2.25). The point where C
diverges corresponds to the temperature maximum, where rH = rH,min. The vertical dashed lines
highlight the points rH = rc and rH = rH,max.

• For rc ≤ rH < rH,max, dT/drH is positive and thus C > 0;

• For rH > rH,max, dT/drH is negative and thus C < 0;

• For rH = rH,max, dT/drH = 0 and thus C →∞.

While in branch I the specific heat is always positive, indicating that the object is in equilibrium
with its radiation, in branch II the BH has negative C. Since the latter states of the BH are
thermodynamically disfavored with respect to the former, we see that the preferred configurations
are those with ℓ ∼ RS. Moreover, as can be clearly seen in Fig. I.2.3, a second order phase transition
occurs at rH = rH,max, where the object passes from branch II to branch I. Now, the states with
rH ≲ rH,max also correspond to ℓ ∼ ℓc, i.e., to near-extremal BHs with ℓ ∼ GM . This also
shows that the outcome of the evaporation process will be a cold remnant at zero temperature
and zero entropy. The latter, in particular, is again an intriguing property, as it could allow
circumventing problems on the viability of remnants as possible solutions to the information
paradox [229]. These thermodynamic aspects and the phase picture will be confirmed later when
we will consider particular cases of our general class of models and we will study their free energy.

The non-trivial phase space structure analyzed above is a consequence of the multiscale de-
scription of our models, discussed in Section I.2.1. In light of the similarity between this description
of gravitational interactions and glassy systems [64], one could ask whether our phase transition
could be interpreted as a glass transition. Indeed, even the latter is characterized by a divergence
in the specific heat at the transition point, but it is not generally classified as a second-order phase
transition. To answer this question, one would need first to define some Ehrenfest equations, to
describe variations of the specific heat and the derivatives of the volume between the two phases.
For a second-order phase transition, both these equations are satisfied, while either both or one
of them is violated in glassy systems. In the BH case, one can define Ehrenfest-like equations by
replacing the volume with the electric charge and/or the angular momentum [230] (if the model
is charged and/or rotating) and analyze their variations between the two phases.

Here, we can only speculate that the phase transition of our quantum-corrected BH could be
very similar to a glass transition instead of a second-order one. In fact, the absence of any thermo-
dynamic potentials related to ℓ or other physical observables prevents us from properly defining
Ehrenfest-like equations and therefore performing an analysis similar to the one in Ref. [230].
Consequently, this does not allow us to assess quantitatively the nature of the phase transition in
our models.

To summarize the results obtained so far, the stable configuration of our quantum-BH model,
realized using an anisotropic fluid, will be represented by an extremal (or near-extremal, if
we consider small deviations from extremality) BH. The geometry interpolates between a dS
spacetime in the object’s interior (near the location of the classical singularity), an AdS2 × S2
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geometry in the near-horizon region, and flat spacetime in the asymptotic, r → ∞, region. The
dS behavior near r = 0 solves the singularity problem. At extremality, the two (dual) quantum
scales characterizing the system (ℓ, L̂) have the same order of magnitude of the classical BH radius
RS. The scale ℓ, characterizing the quantum effects as seen by an external observer, is naturally
of the order of magnitude of the classical Schwarzschild radius RS of the BH. This opens the
possibility of having potentially observable phenomenological quantum signatures in the near
future through, e.g., the QNMs spectrum and the geodesic motion of particles near the horizon
(see Chapter I.4). Moreover, the near-horizon AdS2 × S2 behavior is very promising for tackling
the BH information puzzle.

I.2.3.5 Null geodesics and photon orbits

To compute photon orbits in our class of models, we start from the geodesic equation together with
the null-geodesic constraint (dot will refer to derivation with respect to some affine parameter)

ẍµ + Γµ
νλẋ

ν ẋλ = 0, gµν ẋ
µẋν = 0. (I.2.36)

The isometries of the metric (spherical symmetry and invariance under time translations) imply
two conservation equations, which by considering geodesics on the plane θ = constant = π/2,
take the form

ϕ̇ =
J

r2
, ṫ =

√
2E

|A(r)|
(I.2.37)

where J and E are integration constants and represent the total angular momentum and the energy
of the test particle, respectively. The geodesic equation for the coordinate r can be integrated to
give,

1

2
ṙ2 + V (r) = E , (I.2.38)

where V (r) is the effective potential

V (r) ≡ J2

2r2
A(r). (I.2.39)

Notice that Eq. (I.2.38) represents the energy conservation equation for the system. Since the
leading term of the metric function for r → 0 is A(r) ∼ 1, V (r) → ∞ in this limit. This behavior
differs from the Schwarzschild case, where V → −∞ for r → 0, as a consequence of the dS
behavior at the core. Conversely, for r → ∞, A(r) is dominated by the Schwarzschild-like 1/r
term and V (r) → 0. The shape of the effective potential V (r) at intermediate distances depends
crucially on the parameter α values.

The local extrema of V are the solution of the equation

rA′(r)− 2A(r) = 2αF − 2− αr

ℓ
F ′ = 0. (I.2.40)

Being F and F ′ both bounded, for any form of the function F it will exist a minimum value
αm = RS/ℓm < αc such that for α ≤ αm the equation has no real roots and bounded photon orbits
cannot exist. For α > αm, the equation allows instead for at most two real zeroes, corresponding
to a local minimum and a local maximum for V (r). On the other hand, for αm < α < αc, stable
and unstable photon orbits still exist, but the solution describes a horizonless compact object. In
the extremal configuration (α = αc), the minimum of the potential coincides with the horizon
position. In this case, the potential shows the presence of an unstable photon ring, located at some
r > rc, and a stable orbit located at r = rc. Finally, for α > αc, the local minimum is inside the
event horizon and there is only a bounded unstable photon orbit, similar to the Schwarzschild
one. The qualitative behavior of the potential is shown in the left panel of Fig. I.2.4. The qualitative
behavior of the position of the photon ring, instead, is plotted in the right panel of Fig. I.2.4 as a
function of ℓ.
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Figure I.2.4: Typical qualitative behavior of the effective potential V for null geodesics as a function
of r for different values of the coupling α. The potential shows always two extrema for α > αm,
but none for α < αm (blue curve). Moreover, depending on the value of α compared to its critical
value, the potential posses two distinct (α > αc, green curve), two coinciding (α = αc, orange
curve) or no (α < αc, red and blue curves) inversion points.

I.2.3.6 QNMs spectrum in the eikonal approximation

In this section, we consider QNMs for scalar perturbations in the fixed background given by our
general black-hole solution. We will then use the eikonal approximation to give an analytical
estimate of the QNMs frequencies.

The evolution of scalar perturbations Ψ, in the fixed gravitational background metric g(B)
µν

described by the metric function (I.2.22), is determined by the Klein-Gordon equation

2Ψ =
1√
−g(B)

∂µ

(√
−g(B)gµν(B)∂ν

)
Ψ = 0. (I.2.41)

Eq. (I.2.41) is separable into an angular and a radial part. By using the ansatz

Ψ =
ψ(r)

r
Ylm(θ, ϕ)eiωt, (I.2.42)

where Ylm(θ, ϕ) is the (l,m)-th spherical harmonic, Eq. (I.2.41) becomes

d2ψ

dr2∗
+
[
ω2 − VKG(r)

]
ψ = 0. (I.2.43)

Here, the potential is

VKG(r) = (1− αF )
[
l(l + 1)

r2
− αF

′

ℓr

]
, (I.2.44)

and r∗ is the tortoise coordinate, defined by dr∗/dr = 1/(1−αF ). The qualitative behavior of the
potential (I.2.44) is shown in Fig. I.2.5.

Analytical estimates of the QNMs frequencies can be obtained by using an intriguing relation
between QNMs and the parameters characterizing null geodesics in the eikonal limit l ≫ 1 first
noted in Ref. [231]. The vibration modes of the BHs, whose energy is gradually being radiated
away, are interpreted as photons moving along unstable null geodesics and slowly leaking out.
This correspondence was more recently analyzed in Refs. [232–234] and shown to agree with
WKB results [235, 236]. Specifically, the angular velocity Ωm, computed at the maximum of the
geodesic potential rm, determines the real part of the QNMs spectrum, while the imaginary part
is determined by the Lyapunov exponent λ. The latter, indeed, is related to the time scale of the
null-orbit instability. The QNMs, in this approximation, read

ωQNM = ωR + iωI = Ωml − i
(
n+

1

2

)
|λ|, (I.2.45)
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Figure I.2.5: Effective potential for scalar perturbations as a function of the tortoise coordinate r∗
for scalar perturbations, l = 0 and different values of ℓ. We also show the same quantity computed
with a Schwarzschild background metric (dashed black curve) as a comparison. The potential
always shows a peak and goes to zero both at spatial infinity and at the horizon (if there is one),
similarly to the Schwarzschild case. However, depending on the value of the quantum parameter
ℓ (or, equivalently, of the ratio α = RS/ℓ), its behavior near the peak can be significantly different
from the general relativistic vacuum solution.

where

Ωm =
ϕ̇

ṫ

∣∣∣∣∣
r=rm

=

√
A(rm)

rm
, (I.2.46a)

λ =

√
V ′′(r)

2ṫ2

∣∣∣∣∣
r=rm

=
1√
2

√
− r2m
A(rm)

(
d2

dr2∗

A(r)

r2

)
r=rm

. (I.2.46b)

Here V is the null-orbit potential given by Eq. (I.2.39) and rm the position of the peak of the
geodesic potential, i.e., the solution of Eq. (I.2.40).

Notice that, for extremal BHs, the potential V has an additional minimum exactly at the
horizon. We will not consider this contribution, as small perturbations from extremality have the
effect of moving this minimum towards the BH interior. The QNMs spectrum will be therefore
entirely determined by the contribution at the maximum of V .

The general expressions (I.2.46a) and (I.2.46b) are valid for all spherically-symmetric, static,
and asymptotically-flat solutions, in the eikonal limit. For our general class of models, using
Eqs. (I.2.22), (I.2.46a) and (I.2.46b) we get

ωR =
l

ℓym

√
1− αFm, (I.2.47a)

ωI = −
1√
2 ℓ

√
α (1− αFm) ym

∣∣∣∣(F ′

y

)′

m

∣∣∣∣ (n+
1

2

)
, (I.2.47b)

where the subscript m indicates that the corresponding quantity should be computed at r = rm.
It is important to stress that the QNMs frequencies depend both on the classical hair M and on
the quantum hair ℓ. This dependence on two parameters of the QNMs spectrum will have a well-
defined signature in the ringdown part of the gravitational wave. Next-generation gravitational-
wave detectors are expected to be sensitive enough to detect such an effect.

In the generic case, ωR and ωI will be complicated functions of α. Simpler expressions can
be obtained for near-extremal BHs, by expanding in powers of (α − αc). Taking into account
that |A|m ̸= 0 (see the remark above), if we just consider the near-extremal expansion but not
the near-horizon expansion, we will also have ∂r (∂rA(r)/r)m ̸= 0. At first order in (α − αc) we
get ωI = constant/ℓ + constant (G/ℓ2)(M −Mc) and similarly for ωR. Using Eq. (I.2.34), we can
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express the QNMs frequencies in terms of the BH temperature

ωR =
a

ℓ
+ b ℓ T 2

H, (I.2.48a)

ωI =
c

ℓ
+ d ℓ T 2

H, (I.2.48b)

where a, b, c, d are dimensionless constants.
On the other hand, if we take the near-horizon limit together with the near-extremal limit, the

metric satisfies ∂r (∂rA(r)/r) = 0, identically, since the geometry becomes that of AdS2× S2. While
the behavior of ωR remains that of Eq. (I.2.48a), we get a linear scaling of ωI with the temperature,
owing to the absence of the constant term inside the square root:

ωI ∝ TH. (I.2.49)

These results confirm partially Hod’s conjecture, which asserts the complete absence of the imagi-
nary damped part in the spectrum in the near-extremal case, both for RN and Kerr BHs [181–185].
In the case under consideration, Hod’s conjecture seems to hold true only in the near-extremal,
near-horizon case.

On the other hand, our results seem to confirm a general behavior found in Ref. [237] for the
near-extremal Kerr spacetime, which is characterized by a branching in the QNMs spectrum. One
family, corresponding to the simple near-extremal limit has indeed a nonvanishing imaginary
part in the extremal limit, while the other branch shows that the damped part of the spectrum
goes to zero in the near-extremal, near-horizon limit. Moreover, the temperature scaling (I.2.49)
fully confirms previous derivation of the QNMs spectrum for two dimensional AdS2 BHs [7,
177–180]. In fact, the latter allows for an explicit analytical treatment through different methods,
which all point towards the same result: a linear scaling of the imaginary part ωI with the
temperature of the hole. A quite interesting consequence of this scaling is the complete absence
of the imaginary damped part in the spectrum in the extremal case, as the temperature becomes
zero. These zero-damped (or nearly zero-damped) modes [181–187] would therefore represent a
clear phenomenological signature of extremal BHs.

I.2.4 A minimal model: the Hayward black hole

One of the simplest examples of our general class of models is given by the Hayward-black-hole
metric [84, 238], for which the metric function F in Eq. (I.2.22) reads

F (y) =
y2

y3 + 1
. (I.2.50)

As already mentioned in Section I.2.3, the analysis of Ref. [210] shows that an algebraic form of F
could be inconsistent with the semiclassical field equations derived from an action principle, at
least if one requires the solutions to be derived from an Einstein-Hilbert action with higher-order
terms in the curvature.

The horizon location and the extremality condition (I.2.25) are now

y3 − αy2 + 1 = 0, (I.2.51a)
−2αy + 3y2 = 0. (I.2.51b)

Solving the equations above yields the critical values αc and yc

αc =
3

41/3
, (I.2.52a)

yc =
3
√
2. (I.2.52b)

The BH has two horizons for ℓ < 2× 41/3GM/3, is extremal for ℓ = 2× 41/3GM/3 and it becomes
horizonless for ℓ > 2 × 41/3GM/3. The energy density ϵ and the mass function m sourcing the
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BH are given by

ϵ(r) =
3

4π

Mℓ3

(r3 + ℓ3)2
, (I.2.53a)

m(r) =
Mr3

r3 + ℓ3
. (I.2.53b)

The NEC (see Eq. (I.2.12)) is always satisfied, while the SEC (see Eq. (I.2.13)) is violated deep
inside the core of the object, for r ≤ ℓ/ 3

√
2. Moreover, in the limit ℓ ≪ GM or r ≫ ℓ, m(r) → M ,

i.e., the Hayward metric reduces to the Schwarzschild one. The deviation from the Schwarzschild
case can be characterized by defining a new quantity ∆m(r) as the difference between the mass
at infinity M and m(r), which in the present case reads

∆m ≡M −m(r) =
Mℓ3

r3 + ℓ3
. (I.2.54)

In the limit r →∞, it behaves as

∆m ∼ Mℓ3

r3
+O

(
1

r4

)
. (I.2.55)

The solution is asymptotically flat and satisfies the boundary conditions ϵ ∼ p∥ ∼ p⊥ → 0 for
r →∞, while it has a dS behavior near r = 0 with the dS length L̂ given by (see Eq. (I.2.15))

L̂ = ℓ3/2R
−1/2
S , (I.2.56)

which relates ℓwith the Schwarzschild radius and the dS length characterizing the small r behav-
ior. Eq. (I.2.56) fully confirms the validity of our general scaling given by Eq. (I.2.19).

We note that the same result in Eq. (I.2.56) can be obtained in the limit of very large ℓ. In this
case, however, we have an exact solution of Einstein’s equations, sourced by a constant-density,
isotropic and homogeneous fluid, with equation of state

p∥ = p⊥ = −ϵ = − 3

8πGL̂2
. (I.2.57)

Indeed, looking at the density profile (I.2.53a), the dS universe can be recovered in the limit ℓ→∞
only if M →∞, so that the energy density sourcing the Hayward spacetime becomes constant.

Forα > αc, the cubic equation in Eqs. (I.2.51) has three real roots, out of which two are positive,
r+ and r−, denoting the outer and inner horizons respectively, whereas the third, r3, is negative.
The metric function A factorizes as

A(r) =
(r − r+)(r − r−)(r − r3)

r3 + ℓ3
. (I.2.58)

In the extremal limit r+ = r− ≡ rc =
3
√
2ℓ, after a translation of the radial coordinate r → r + rc,

the metric becomes

ds2 = −Ã(r)dt2 + Ã−1(r)dr2 + (r + rc)
2dΩ2, (I.2.59a)

Ã(r) =
r2(r + rc − r3)
(r + rc)3 + ℓ3

, (I.2.59b)

describing an asymptotically flat region connected with an infinitely long throat of radius rc. The
near horizon (around r = 0) expansion of the metric (I.2.59) gives the AdS2× S2 spacetime (I.2.27),
with an AdS2 length L2 = (2/3)RS. The fluid stabilizing the extremal solution is characterized by
the equations of state (I.2.29), where now the AdS2 length L2 and the radius rc of the two-sphere
have the same value, L2 = rc = (2/3)RS.
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Figure I.2.6: Free energy F , in units of ℓ−1, as a function of the temperature, in units of ℓ−1, for
the two branches of the Hayward BH. We plot F for branch I, ℓ ∼ RS (solid blue curve), and for
branch II (solid orange curve) corresponding to ℓ ≪ RS. We see that "quantum deformed" BHs
with ℓ ∼ RS are always energetically preferred with respect to those with ℓ≪ RS.

I.2.4.1 Thermodynamics and phase transition

Inserting F given by Eq. (I.2.50) into Eq. (I.2.30), we get the mass and temperature of the BH

TH =
1

4π rH

r3H − 2ℓ3

r3H + ℓ3
, M =

1

2G

(
rH +

ℓ3

r2H

)
. (I.2.60)

The temperature behavior agrees with the expected qualitative one shown in Figure I.2.2. The
maximum of TH is obtained by solving the equation y6− 10y3− 2 = 0, giving rH = 3

√
(5 + 3

√
3) ℓ.

Expanding Eq. (I.2.60) near extremality, one easily finds the quadratic scaling (I.2.34) of the
mass with the temperature

M −Mc = 12π2 ℓ
3

G
T 2

H. (I.2.61)

The black-hole entropy satisfying the first principle of thermodynamics is easily obtained from
Eq. (I.2.32)

S =
πr2H
G
− 2πℓ3

GrH
. (I.2.62)

The first term is the standard area law, while the second term describes ℓ-dependent deviations.
The specific heat C can easily be calculated using Eq. (I.2.60) and agrees with the qualitative

behavior shown in Figure I.2.3. It diverges for rH = rH,max = (5 + 3
√
3)1/3 ℓ, indicating the onset

of the second order phase transition.4
The existence of this phase transition and related thermodynamical phase portrait can be

checked by computing the free energy F = M − THS as a function of the temperature. The free
energy for the two branches I and II has to be calculated numerically by inverting the equation
TH = TH(rH). We plot F(TH) in Figure I.2.6, from which we see that branch I is always ener-
getically preferred with respect to branch II, which further supports our interpretation in which
the quantum effects are nonnegligible at the horizon scale. Here, branches I and II have the
same meaning as in Section I.2.3.3. Branch I, we recall, corresponds to the configurations with
rc ≤ rH ≤ rH,max, thus describing quantum BHs with ℓ ≃ RS. Branch II, instead, is populated by
the "classical" BH states, where ℓ≪ RS and the quantum effects are negligible.

4The possibility of having a phase transition in the Hayward model has been previously recognized in Ref. [239].
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I.2.4.2 Null geodesics and QNMs in the eikonal limit
Let us now consider geodesic motion and QNMs for the Hayward BH. The effective potential
(I.2.39), which determines photon orbits in the black-hole background, in the present case reads

V (r) =
J2

2r2

(
1− RSr

2

r3 + ℓ3

)
. (I.2.63)

The extrema of V (r) are determined by Eq. (I.2.40) with A given by Eq. (I.2.58), i.e., by the roots of
the equation 2y6 − 3αy5 + 4y3 + 2 = 0. By solving this equation numerically, one can show that
no real roots exist for α < αm ≃ 1.64. The position of the maximum of the potential depends on
the value of the parameter α with respect to αm and αc = 3/41/3. Also here, we can distinguish
between the four cases shown in Figure I.2.4. The QNMs frequencies in the eikonal approximation
for the Hayward BH can be easily calculated by plugging Eq. (I.2.50) into Eqs. (I.2.47a) and (I.2.47b)

ωR =
l

ℓym

√
1− α y2m

y3m + 1
, (I.2.64a)

ωI = −
(
n+

1

2

) √
3α y

3/2
m√

2 ℓ (1 + ym)
2

√
|y3m − 5| (1 + y3m − αy2m). (I.2.64b)

By expanding around α = αc, we get

ωR ≃
0.21 l
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ℓ
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H; (I.2.65a)
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H, (I.2.65b)

where in the last equalities we used the definition of α and Eq. (I.2.61).

I.2.5 Gaussian-core black hole

Another explicit and simple realization of a regular quantum BH, sourced by an anisotropic fluid
with EoS given by Eq. (I.2.9), and satisfying the conditions outlined in Section I.2.3, can be obtained
by taking a Gaussian density distribution in the interior of the astrophysical object, peaked at r = 0

ϵ(r) =
M

π3/2ℓ3
e−r2/ℓ2 , (I.2.66)

The parameter ℓ represents here a smearing of the classical Schwarzschild-Dirac delta-density
profile (the latter is recovered in the limit ℓ → 0). Such a density profile is motivated by several
microscopic descriptions of BHs: non-commutative geometry [132, 240], loop quantum gravity
(LQG) [136], corpuscular picture [241]. The NEC condition (see Eq. (I.2.12)) is always satisfied,
while the SEC (see Eq. (I.2.13)) is again violated in the deep core of the body, i.e., for r < ℓ.

Near r = 0, the spacetime behaves as dS, with a dS length L̂ given by

L̂ =

√
3

4
π1/4 ℓ3/2R

−1/2
S , (I.2.67)

confirming again our general result given by Eq. (I.2.19).
As we also pointed out in Section I.2.4, the same result can be obtained as an exact solution

of Einstein’s field equations, sourced by the fluid with EoS (I.2.57), in the limit ℓ → ∞. Indeed,
looking at the density profile (I.2.66), the dS universe can be recovered in the limit ℓ→∞ only if
M →∞, and the energy density (I.2.66) behaves as a constant.
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Let’s turn our attention to the metric structure, by computing the MS mass at a generic r

m(r) = 4π

∫ r

0

dr̃ r̃2 ϵ(r̃)

=
2M√
π
γ

(
3

2
,
r2

ℓ2

)
=M

[
1− 2√

π
Γ

(
3

2
,
r2

ℓ2

)]
, (I.2.68)

where γ(a, z) =
∫ z

0
dt e−t ta−1 and Γ(a, z) =

∫∞
z
dt e−t ta−1 are the incomplete gamma functions.

The first term in Eq. (I.2.68) is the mass measured at infinity (the Schwarzschild ADM mass),
while the second term, parametrized by ℓ, encodes the quantum corrections, the effects of the
smearing of the singularity. The deviation from the Schwarzschild solution, described by the
mass deviation ∆m(r) ≡M −m(r), is strongly suppressed outside the core of the compact object,
as for r →∞ it behaves as

∆m ∼ M√
π
e−

r2

ℓ2

(
ℓ

r
+

2r

ℓ

)
(I.2.69)

which represents a stronger suppression with respect to that of the Hayward model (see Eq. (I.2.55)).
The metric components can be written in the form of Eq. (I.2.22) with the metric function F (y)

given by

F (y) =
1

y

[
1− 2√

π
Γ

(
3

2
, y2
)]

. (I.2.70)

Contrary to the Hayward model, in the present case, the non-algebraic form of F allows to
circumvent the viability constraints of Ref. [210].

Given the form of the metric functions, the position of the horizon(s) and the parameter range
discriminating among the different possible configurations have to be computed numerically. In
particular, the single-horizon, extremal case will satisfy both Eqs. (I.2.25). This translates into the
conditions

1− 2GM

yℓ
+

4GM

ℓ
√
πy

Γ

(
3

2
, y2
)

= 0, (I.2.71a)

1− 2√
π
Γ

(
3

2
, y2
)
− 4y3√

π
e−y2

= 0. (I.2.71b)

Solving these equations gives ymin ≃ 1.51, i.e., rmin ≃ 1.5 ℓ.5 Now, substituting the solution into
Eqs. (I.2.71), we observe that the critical value of α is α = αc ≃ 1.9, where, we recall, α = RS/ℓ and
αc = RS/ℓc. Therefore, when α < αc ≃ 1.9 the configuration shows two distinct horizons, when
α = αc ≃ 1.9 the configuration is extremal and presents two coinciding horizons, and it becomes
horizonless for α > αc ≃ 1.9.

This condition can be expressed in terms of the critical value ℓc for the quantum parameter ℓ

ℓc ≃ 0.53RS, (I.2.72)

which is close to the classical gravitational radius of the object. Again, this critical value discrimi-
nates between the three classes of solutions. When ℓ is above, equal, or below ℓc we have a solution
with two, one, or no horizons, correspondingly. ℓc, in turn, determines a critical value L̂c for dS
length through Eq. (I.2.67), which also turns out to be close to the classical Schwarzschild radius6

L̂c ≃ 0.31RS. (I.2.73)

The most interesting case is the extremal BH, obtained for ℓ = ℓc (L̂ = L̂c). As discussed in
Section I.2.3, in the extremal case the near-horizon geometry factorizes as AdS2×S2, with the AdS2

5We discard the trivial solution r = 0 since it does not represent a minimum.
6The fact that L̂c < ℓc is expected: the SEC is violated in the deep core of the object, namely for r < ℓ. This is perfectly

consistent with the fact that this energy condition is violated in a dS spacetime.
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length given by L−2
2 = −A′′(rc)/2. L2 can be calculated first using Eqs. (I.2.71a) and (I.2.71b),

which give

e−y2(rc) =

√
πℓ

4RSy2(rc)
. (I.2.74)

Using this equation together with Eqs. (I.2.68), (I.2.70), (I.2.71a) and (I.2.71b) enables us to find

−1

2
A(rc)

′′ ≡ 1

L2
2

=
1

ℓ2
− 1

r2c
. (I.2.75)

Now, since ℓc ≃ 0.53RS, we see that rmin ≃ 0.78RS and

L2 ≃ 0.70RS, (I.2.76)

confirming the general result of Section I.2.3, in which we found that both the radius of the
two-sphere and the AdS2 length are of order RS.

As shown at the end of Section I.2.3.2, the extremal solution is stabilized by a particular profile
for the energy density ϵ and for the pressures p∥ and p⊥, given by the expressions (I.2.29). In the
present case, the negative energy density sourcing the AdS2 spacetime reads

ϵ(NH)
(AdS) = −

1

8πGL2
2

= − 1

8πG

(
1

ℓ2
− 1

r2c

)
. (I.2.77)

I.2.5.1 Quantum black hole regimes

The parameter ℓ (or equivalently L̂) controls the scale of quantum effects in our quantum black-
hole model. In the usual, most conservative approach, which assumes quantum gravity effects to
be relevant only at the Planck scale ℓP, ℓ is assumed to be of the same order of magnitude of ℓP.
This assumption is surely justified when ℓ has an explicit origin in the microscopic description
of gravity at the Planck scale. It is for instance the case of Refs. [132, 136, 240, 241], where the
Gaussian model, and the parameter ℓ in particular, parametrizes UV non-commutative [132] or
LQG [136] effects.

However, this is not the case in those approaches, like the one we are discussing here, in which
an IR quantum scale, hierarchically larger than ℓP, is generated. Given the attention the model
with ℓ ∼ ℓP received in the past [131–139, 141], it is worthwhile to quantitatively compare the
two different regimes 1) ℓ ∼ ℓP and 2) ℓ ∼ RS for the black-hole model with a Gaussian core, and
analyze the possible impact on observable phenomenology in the two cases. Again, we remind
the reader that we are considering macroscopic BHs, i.e., RS ≫ ℓP.

ℓ ∼ ℓP

When ℓ ≃ ℓP ≪ RS, the BH has two horizons, is far from extremality, and the inner horizon
is very close to r = 0. It is quite easy to understand that these quantum effects are completely
irrelevant for macroscopic BHs, at least for what concerns the phenomenology accessible to
external observers. In fact, the matter density is sensibly different from zero only at distances of
order ℓP from the classical singularity at r = 0. Therefore, the deviations from the Schwarzschild
solution are expected to be incredibly small for the external observer. The only sensible deviations
from rH ∼ RS appear when the black-hole mass is of order the Planck mass mP = 1/

√
G and the

event horizon is slightly smaller than RS (the radius of the outer horizon is rH ≃ 1.8
√
G = 0.9RS).

However, as the mass increases, the outer horizon becomes rapidly indistinguishable from RS.
For example, for a solar mass BH, M = 1M⊙, the outer horizon of the metric (I.2.70) is at RS and
the corrections are exponentially suppressed by a factor Γ

(
3
2 ,

r2H
ℓ2P

)
∼ e−1076 . The mass deviation

at the horizon ∆m(rH) is of the same order of magnitude, which is effectively zero from the point
of view of an external observer.
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ℓ ∼ RS

As said in Chapter I.1, there are several indications pointing to the relevance of quantum effects
at horizon scales. However, presently we do not have a precise microscopic description of these
quantum effects, but only some quite interesting proposals, like fuzzballs, firewalls, non-local
effects, and corpuscular models. An interesting explicit corpuscular black-hole model with a
Gaussian core is the one given in Ref. [241], whose density profile is

ϵcorpuscular =
72mP√
πN

e
− 7

2
r2

Nℓ2P

ℓ3P
(I.2.78)

where N is the number of gravitons building up the BH. Comparing this profile with our model
(I.2.66), we can read the values of our parameters ℓ, M in terms of N

ℓ = ℓP

√
2N

7
, M = 49π

ℓ3

Nℓ4P
. (I.2.79)

From these equations, one easily gets the expected holographic scaling of N , N ∝ ℓ2PM
2 and a

value of ℓwhich is ℓ = RS/28π ≃ 0.01RS < ℓc. The BH has two horizons and is far from extremality.
The outer horizon is quite close to the classical Schwarzschild one, being rH ≃ 0.96RS. Therefore,
the mass deviation is

∆m

M

∣∣∣∣
H
=

2√
π
Γ

(
3

2
, y2H

)
∼ e−7733. (I.2.80)

We see that deviations from the classical behavior are still quite small for a value of ℓ which is
about 1/100 of the critical value ℓc.

However, when we consider a value ℓ < ℓc, but quite close to the critical value, e.g., ℓ = ℓc/2
the outer horizon is located at

rH ≃ 0.92RS, (I.2.81)

which is a small, but still important, difference with respect to the classical radiusRS. In this case,
the mass deviation is

∆m

M

∣∣∣∣
H
=

2√
π
Γ

(
3

2
,
c4r2H
G2M2

)
≃ 2√

π
Γ

(
3

2
, 1.842

)
≃ 0.07. (I.2.82)

These results further show that the most interesting regime is that for which ℓ ∼ RS from both a
purely theoretical and a phenomenological point of view.

I.2.5.2 Thermodynamics and phase transition
Inserting the metric function (I.2.70) into Eq. (I.2.30), we get the temperature and the ADM mass
of the Gaussian BHs

TH(rH) =
1

4πrH

(
1− 8GM(rH)r

2
H

ℓ3
e−r2H/ℓ

2

)
, (I.2.83a)

M(rH) =
rH

2G
[
1− 2√

π
Γ
(

3
2 ,

r2H
ℓ2

)] . (I.2.83b)

The temperature is given by the standard Hawking result plus an ℓ-dependent term, encoding
quantum deviations from standard BH thermodynamics, which are, however, exponentially sup-
pressed. The behavior agrees with the qualitative one depicted in Figure I.2.2. It starts from zero
in correspondence with the extremal case. Then, it rises and reaches a maximum at rH,max ≃ 2.38ℓ.
Finally, it decreases and reaches zero as rH/ℓ → ∞, recovering the standard Schwarzschild re-
sults TH = (4πrH)

−1 and M = rH/2G in this limit. Also in this case, the quantum deformation
parameter ℓ ̸= 0 solves the singular thermodynamic behavior of the Schwarzschild temperature
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Figure I.2.7: Left panel: plot of the entropy of the quantum Gaussian BH (red curve) as a function
of the horizon radius rH. As a comparison, we plot the standard Bekenstein-Hawking entropy
(minus the corresponding value at rH = rc) for a Schwarzschild BH (black dashed curve). Right
panel: free energy F as a function of the temperature for the Gaussian model. We distinguish
between two branches: one corresponding to BHs with ℓ ∼ RS (blue curve), the other (red curve)
corresponding to ℓ≪ RS.

at rH ≃ 0. The value ℓH,max of the quantum-deformation parameter can be obtained from rH,max
using Eqs. (I.2.71)

ℓH,max =
1− 2√

π
Γ
(
3
2 , y

2
H,max

)
yH,max

RS ≃ 0.42RS. (I.2.84)

Integrating Eq. (I.2.33) numerically and using the fact that the zero-entropy state is at the
extremal radius rc/ℓ ≃ 1.51, we can study the black-hole entropy. The result of the integral
is presented in the left panel of Figure I.2.7 and is compared to the standard result for the
Schwarzschild BH. The entropy does not differ significantly from the standard area law at great
horizon radii, as quantum deviations are expected to be exponentially suppressed [242–244] (see
also Eq. (I.2.69)).

Expanding Eq. (I.2.83b) near extremality yields the quadratic scaling (I.2.34) of the mass above
extremality with the temperature

M −Mc ≃ 15.55
ℓ3

G
T 2

H. (I.2.85)

The specific heat can be computed using Eq. (I.2.35) and follows the qualitative behavior of
Figure I.2.3: it diverges at rH,max ≃ 2.38 ℓ, indicating the onset of the second-order phase transition.
Indeed, by computing numerically the free energy F = M − THS and expressing it as a function
of TH, we get the phase diagram depicted in the right panel of Figure I.2.7.

Again, we have two branches. Branch I corresponds to rH taking values between the extremal
value rc and rH,max (correspondingly, the parameter ℓ takes values between ℓH,max ≃ 0.42RS
and ℓc ≃ 0.53RS), and therefore describes quantum BHs with ℓ ∼ RS. Conversely, branch II
corresponds to rH much larger than rH,max, corresponding to small (< 0.42RS) values for the
parameter ℓ. Thus, the far right region of branch II describes again classical BHs (ℓ≪ RS).

Figure I.2.7 shows that the free energy of branch I is always smaller than that of branch II .
This means that BHs in branch I , i.e., BHs with ℓ ∼ RS, are always energetically preferred.

I.2.5.3 Null geodesics and photon orbits
The effective potential (I.2.39) determining photon orbits in the Gaussian quantum BH reads

V (r) =
J2

2r2

[
1− 2GM

r
+

4GM√
πr

Γ

(
3

2
,
r2

ℓ2

)]
, (I.2.86)

and its behavior for different values of the parameter α ≡ RSℓ
−1 agrees with the qualitative plots

shown in Figure I.2.4.
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The extrema of the potential are given by the zeros of dV (r)/dr (see Eq. (I.2.40)), i.e., by the
solution of the equation

−r + 3GM − 4GM√
π

r3

ℓ3
e−r2/ℓ2 − 6GM√

π
Γ

(
3

2
,
r2

ℓ2

)
= 0. (I.2.87)

Notice that the presence of ℓ shifts the position of the photon sphere from the Schwarzschild
case r = 3GM . By solving Eq. (I.2.87) numerically, we distinguish again among three cases (two
distinct, two coinciding, or no horizons)

• Two horizons (α > αc): the potential has multiple zeros, corresponding to a minimum in
the black-hole interior and a maximum in the exterior, which corresponds to the position of
the unstable photon orbit. We are interested in the latter. For instance, for α = 2 (ℓ = GM ),
we get ym ≃ 2.99, corresponding to a photon ring located at rm ≃ 2.99ℓ = 2.99GM , very
close to the Schwarzschild light-ring location rSch

LR = 3GM .

• One horizon (α = αc): this case is similar to the previous one. The potential has a minimum
at r = rH associated with a stable photon orbit, and a maximum representing the unstable
photon orbit. Focusing again on the latter, we have ym ≃ 2.84, corresponding to rm ≃
2.98GM , again pretty close to the Schwarzschild result.

• No horizons (α < αc): there are two possible cases. If α is large enough (α ∼ [1.6, 1.8]),
there exists a maximum corresponding to a photon ring. For example, for α = 1.6 we get
rm ≃ 2.74GM . However, if α falls below the aforementioned interval there are no extrema
anymore, therefore the photon ring is absent.

I.2.5.4 QNMs spectrum in the eikonal limit
We can use the general arguments and results of Section I.2.3.6 to compute the expression of
the QNMs frequencies for the quantum Gaussian BH in the eikonal limit. Applying the general
formulae (I.2.47a), (I.2.47b) to the case of Eq. (I.2.70), we get
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By expanding around the critical value αc ≃ 1.9, we get

ωR ≃
l

ℓ
[0.20− 0.10(α− αc)] ≃ 0.20

l
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H, (I.2.89a)
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Chapter I.3
Evaporation of two-dimensional regular black

holes

Despite the huge recent progress on the observational side, achieved through gravitational-wave
detection [16, 245] and imaging [246, 247], black holes are still a source of challenges for theo-
retical fundamental physics. The usual black-hole solutions of general relativity (GR) harbour,
shielded behind event horizons, spacetime singularities, i.e., regions where the classical and semi-
classical descriptions break down [87, 114]. As discovered more than 50 years ago, black holes
behave as thermodynamic systems, whose microscopic description remains, however, still mys-
terious [6, 35, 248–253]. They emit thermal radiation, but the description of the information flow
during the evaporation has led to the information paradox, which most embodies the apparent
incompatibility between quantum mechanics and GR [42, 43, 159].

A possible solution to the information puzzle, which has been pursued in the literature, is
linking it to the singularity problem [1, 160–164]. The presence of a spacetime singularity makes
the very notion of a global quantum state for matter fields in the black-hole background ill-defined.
The loss of unitarity in the evolution of quantum states could be, therefore, traced back to the bad
definition of the latter. The main objection to this argument is that the “unitarity crisis” shows
up also for macroscopic black holes, i.e., those with masses hierarchically larger than the Planck
mass mp ≃ 1019GeV, that is at energy scales where the singularity cannot play any role. Also, the
possibility to shift the solution of the problem to the late stages of the evaporation, for instance
through the formation of Planck-scale remnants, seems untenable owing to the difficulty of storing
or recovering the huge amount of information at these small scales [229, 254].

The recent reformulation and proposal for a solution to the information puzzle [54–56, 255]
seem to bring further arguments against a close relationship between the singularity and the
information problem. This is because this novel approach is focused only on reconstructing the
correlations between early and late Hawking radiation and, thus, refers mainly to near-horizon
physics.

There is, however, an important feature of black-hole solutions, which could change drastically
the debate about the relationship between the singularity problem and the information paradox.
The most commonly used spacetime setup is that of a black-hole solution with a single event
horizon. Black holes with two (an inner and an outer) horizons introduce a new ingredient,
which drastically changes the rules of the game. First of all, these black holes typically admit a
ground state (GS) represented by an extremal configuration, in which the inner and outer horizons
merge in a single one. Moreover, the radius of the extremal black hole could be hierarchically
larger than the Planck scale [1, 3]. In the near-horizon region and in the extremal regime, the
geometry factorizes as a two-dimensional (2D) anti-de Sitter (AdS2) spacetime times a 2D sphere of
constant radius. This opens the way to the intriguing possibility that the information issue could
be solved in the final stages of the evaporation process using properties of AdS2 quantum gravity,
e.g., by reconstructing correlations between the two disconnected parts of AdS2 spacetime [256] or
by the topological properties of the fragmented GS [215]. Moreover, there is some evidence that,
for black holes with two horizons and without a central singularity [84, 140, 257], the evaporation
process could be unitary. Specifically, the presence of the inner Cauchy horizon could act as a
trapping region for high energy modes, which could be responsible for the release of information

37
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at late times, when the two horizons are about to merge [258, 259].
The most natural candidates for testing these ideas are four-dimensional (4D) nonsingular

black holes with a de Sitter (dS) core [1, 84, 134, 136, 158, 238, 260–262]. They appear as static
solutions of Einstein’s equations sourced by an anisotropic fluid. The corresponding spacetime
is asymptotically flat (AF) and at great distances is indistinguishable from the Schwarzschild
solution, whereas the singularity at the origin of the radial coordinate is regularized due to
inner dS behavior. The latter also produces an additional hair ℓ, which could have interesting
observational signatures in the geodesics motion of massless and massive particles, quasinormal
modes spectrum and gravitational waves (see, e.g., Refs. [1, 3, 263–266] and references therein).
Another consequence of the dS core is the presence, depending on the value of ℓ, of two horizons
and an extremal solution. From the thermodynamic point of view, these models are characterized
by a second order phase transition: the spectrum has a branch of large unstable configurations
and a stable branch of near-extremal solutions.

There are two main obstructions that prevent the direct use of such 4D models to address the
information paradox. Firstly, we do not have a microscopic model describing the sources of the
solutions. We can just give a coarse-grained description in terms of an anisotropic fluid, with
equation of state p = −ρ, and a given profile for the energy density ρ. Secondly, there is the usual
difficulty of describing semiclassical dynamics, including backreaction effects on the geometry, of
quantum Hawking radiation in the 4D classical black-hole background.

Here, we show that both issues can be addressed by considering 2D dilaton gravity models of
AF, nonsingular black holes with a dS core. As we shall show, these models can be formulated
at Lagrangian level and describe, in a simplified setting, the S-wave sector (radial modes) of
their 4D nonsingular counterparts. This will allow us to retain the qualitative features of the
higher-dimensional models, keeping, however, under control their dynamics. For concreteness,
our investigations will be focused on a particular, but quite relevant, case, namely the 2D Hayward
black hole.

We will be able to capture the main thermodynamic features of 4D regular models and, at
the same time, to describe their evaporation process and to solve the classical and semiclassical
dynamics, including the backreaction of Hawking radiation on the geometry. Having under con-
trol the latter will allow us to partially answer some important questions regarding the endpoint
of the evaporation process, the time evolution of the entanglement entropy, and the shape of the
related Page curve [43, 267]. The main limitation of this approach is obviously represented by the
limit of validity of the semiclassical approximation. Nonetheless, our results, together with some
known features of AdS2 quantum gravity, will allow us to have clear indications about the fate of
information during the evaporation of nonsingular black holes with a dS core.

The structure of this chapter is as follows. In Section I.3.1, we review some general properties
of 2D dilaton gravity models and we present our class of 2D, nonsingular, AF solutions with a
dS core. In Section I.3.2, we introduce the prototype model we will use throughout this chapter,
namely the 2D Hayward black hole. Section I.3.3 is devoted to the investigation of the thermo-
dynamic properties of our 2D models. In Section I.3.4, we discuss black-hole evaporation using
a quasistatic approximation. The coupling with conformal matter, in the form of N massless
scalars, is introduced in Section I.3.5. We consider, in particular, classical solutions corresponding
to a shock wave. In Section I.3.6, we discuss the evaporation process by quantizing matter in
the classical gravitational background and by including backreaction effects. The semiclassical
dynamics cannot be solved analytically, so we resort to numerical integration. The entanglement
entropy of the Hawking radiation is computed in Section I.3.7 and its Page curve is presented.
Some details of the calculations concerning the absence of divergences for the stress-energy tensor
in the GS and the boundary conditions used for the numerical integration of the field equations
are presented in Appendix I.C and Appendix I.D, respectively.

In this chapter, we use units in which c = ℏ = kB = 1.

I.3.1 Two-dimensional regular dilatonic black holes

The simplest black-hole models can be constructed in a 2D spacetime. However, the pure 2D
Einstein-Hilbert action is a topological invariant and a metric theory of gravity has to be built by
coupling the Ricci scalar with a scalar field ϕ, the dilaton. 2D dilaton gravity is generally described
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by the action (see Ref. [218] for a review; for a generalization, see Ref. [268])

L =
√
−g [D(ϕ)R+K(ϕ)gµν∂µϕ∂νϕ+ V(ϕ)] , (I.3.1)

where D, K, and V are functions of the dilaton, representing, respectively, the coupling with the
Ricci scalarR (the dimensionless inverse Newton constant), the kinetic term of the scalar field and
the potential. Using a Weyl transformation of the metric

gµν = eP(ϕ)g̃µν , P = −
∫ ϕ

dψK(ψ)
D(ψ)

, (I.3.2)

together with a field redefinition

D(ϕ)→ ϕ, (I.3.3)

it is always possible to set K = 0 and to recast the lagrangian into the simpler form [269, 270]

L =
√
−g [ϕR+ V(ϕ)] . (I.3.4)

This choice of the conformal (Weyl) frame is typically used when dealing with asymptotically AdS
black holes, while for AF configurations (which is the focus of the present chapter), a conformal
frame with K ≠ 0 is generally considered more appropriate [271–275]. This is particularly true
when 2D dilatonic black holes are used to describe the S-wave sector of higher dimensional
models (but see, e.g., Refs. [276–280]). However, as we shall see below, the description of also AF
black holes is much simpler in the conformal frame (I.3.4) than in a frame with K ≠ 0. Moreover,
the lagrangian (I.3.4) is fully characterized by the dilaton potential V(ϕ); this allows for a simple
classification of regular black-hole models in terms of the properties of V . For these reasons, in
the following, we will work in this frame, although this choice will introduce some difficulties
concerning the physical interpretation of the parameters we use to describe black holes.

The equations of motion stemming from Eq. (I.3.4), in the absence of matter fields, read

R+
dV
dϕ = 0, (I.3.5a)

(gµν2−∇µ∇ν)ϕ−
1

2
gµνV = 0. (I.3.5b)

I.3.1.1 Linear dilaton solution
Let us now first consider static solutions of Eq. (I.3.5b). In this case, the dilaton can be used as a
spacelike “radial” coordinate of the 2D spacetime,

ϕ = λr, (I.3.6)

where λ is a constant, with dimensions of the inverse of a length, characterizing the potential V .
This parametrization of the dilaton is particularly useful when the 2D theory is used to describe
the S-wave sector of 4D black holes. In this case, the dilaton is proportional to the radius of
the transverse two-sphere. Notice also that the dilaton represents the inverse of the 2D Newton
constant. This means that the region r ≪ λ−1 is in a strong coupling regime, whereas r ≫ λ−1

is a weak-coupling region. To be consistent, both interpretations of ϕ require to limit the range of
variation of the radial coordinate to r ∈ [0,∞).

Eq. (I.3.6) allows us to write the most general static solution of Eqs. (I.3.5a) and (I.3.5b) as the
linear dilaton solution (LDS)

ds2 = −f(r)dt2 + dr2
f(r)

, f = c1 +
1

λ

∫
drV (I.3.7)

where c1 is a dimensionless integration constant, which can be written in terms of the covariant
massM, which can be defined for a generic 2D dilaton-gravity theory [281]. For a static spacetime,
M is the conserved charge associated with the Killing vector χµ = F0ϵ

µν∂νϕ, generating time
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translations1. F0 is a constant, which is fixed by the normalization of χµ. As we will see in the
following, to make contact with four-dimensional models, a convenient choice2 is F0 = −1/λ.

In our Weyl frame,M reads

M =
F0

2

[∫ ϕ

dϕV − gµν∂µϕ∂νϕ
]
= −F0

2
c1λ

2. (I.3.8)

Choosing appropriately the form of V allows to generate different solutions. In particular, we
focus on dilaton gravity models allowing for AF nonsingular black holes.

A useful information for classifying different classes of models can be obtained from the
existence of solutions characterized by a constant dilaton, the so-called constant dilaton vacua
(CDV). Owing to the r-dependent parametrization of the dilaton (I.3.6), these solutions cannot be
obtained as particular LDSs given by Eq. (I.3.7) and must be discussed separately.

I.3.1.2 Constant dilaton vacua

The CDV solutions of Eqs. (I.3.5) can be obtained by setting ϕ = constant ≡ ϕ0. According to
Eq. (I.3.5b), these vacuum configurations must correspond to zeroes of the potential,V(ϕ0) = 0. On
the other hand, Eq. (I.3.5a) shows that they correspond to 2D spacetimes with constant curvature
and can be classified according to the sign of dV/dϕ|ϕ=ϕ0

. There are three possible cases

1. If dV/dϕ|ϕ0
< 0, R > 0, and the spacetime is de Sitter,

2. If dV/dϕ|ϕ0
> 0, R < 0, and the spacetime is anti-de Sitter,

3. If dV/dϕ|ϕ0
= 0, R = 0, and the spacetime is Minkowsky.

Notice that the condition for having a flat CDV is rather strong since it requires ϕ0 to be both a
zero and an extremum of V . Asymptotic flatness, moreover, also implies that we always have
V(∞) = dV/dϕ|∞ = 0. In this case, formally, we can consider ϕ = ∞, which corresponds to a
decoupled configuration (the 2D Newton constant vanishes), as a flat CDV. In the first case above,
instead, we can define

dV
dϕ

∣∣∣∣
ϕ0

≡ − 1

L2
dS
. (I.3.9)

From this, using Eq. (I.3.5a), we have

f(r) = 1− r2

L2
dS
, (I.3.10)

which describes two-dimensional dS (dS2) spacetime, with an associated dS length LdS.
In the second case, we define instead

dV
dϕ

∣∣∣∣
ϕ0

≡ 1

L2
AdS

. (I.3.11)

Eq. (I.3.5a) now yields

f(r) =
r2

L2
AdS

, (I.3.12)

which describes the AdS2 spacetime, with an associated AdS length LAdS.

1In this case M corresponds to the ADM mass of the solution [282, 283].
2Note that this normalization differs only in the sign with respect to the expression of Ref. [281].
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ϕ


(ϕ

)

Figure I.3.1: Qualitative behavior of the potential, characterizing the broad class of the regular
models satisfying the conditions (1), (2), (3). We restricted ourselves to the case of a single
maximum and a single minimum. The horizontal and vertical lines correspond to V = 0 and
ϕ = 0, respectively.

I.3.1.3 General class of 2D nonsingular, asymptotically-flat black holes with a de
Sitter core

We are interested in 2D dilatonic black holes, which mimic the behavior of 4D regular black holes.
Therefore we have to choose the form of the potential V such that: (a) the spacetime has one or
at most two horizons; (b) the spacetime curvature remains everywhere finite, in particular the
usual 4D curvature singularity at r = 0 is removed; (c) the spacetime is AF, with a Schwarzschild
subleading behavior at r →∞, i.e., f ∼ 1− c/r, with c a constant.

Condition (a) requires f(r) to have at least one zero and to stay positive outside the (outer)
horizon, i.e., ∫ ϕ

ϕH

dψV(ψ) ≥ 0. (I.3.13)

Condition (b) can be reformulated as a condition on the first derivative of V . In two dimensions,
the Ricci scalar is the only curvature invariant. Therefore, bounding it is sufficient to generate
regular spacetime metrics. According to Eq. (I.3.5a), this translates into requiring regularity of
dV/dϕ. Regularity at r = 0 can be achieved in different ways. The simplest and more physical
one, which has also been used for 4D models [1, 84, 134, 136, 158, 238, 260, 261], is to impose
dV/dϕ|0 to be finite and

V(0) = 0,
dV
dϕ

∣∣∣∣
0

< 0. (I.3.14)

According to the general discussion of Section I.3.1.2, this implies that our model must allow for
a dS2 CDV at ϕ = 0, given by Eq. (I.3.10), which will therefore describe the inner core of our
black-hole solutions. Using Eq. (I.3.10), one can easily find the form of the potential in the ϕ ∼ 0
region is,

V ∼ −2 ϕ

λL̂2
. (I.3.15)

Condition (c), i.e., asymptotic flatness and a Schwarzschild subleading behavior, can be imple-
mented by fixing the asymptotic behavior for ϕ→∞

V ∼ λ2

ϕ2
. (I.3.16)

Eq. (I.3.14) implies the dilaton potential to be zero at ϕ = 0, and to become negative and
decrease near ϕ ∼ 0. However, it has to grow again, cross the ϕ-axis at a finite value ϕ = ϕ1, and
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develop at least one minimum and one maximum to guarantee the positive fall of V at asymptotic
infinity, implied by Eq. (I.3.16). The model, therefore, must allow for three different CDV solutions
at ϕ = 0, ϕ = ϕ1 and ϕ =∞, describing, respectively, a dS2, AdS2 and flat spacetimes.

In principle, the potential could show any number of oscillations, but for simplicity in the
following we restrict ourselves to potentials with a single maximum and a single minimum. The
qualitative behavior of the general form of our potential V is shown in Fig. I.3.1. Quantitatively,
the potential will depend on some dimensional parameters. The most natural, minimal choice is
a potential depending on two parameters. Since ϕ is dimensionless, the parameter λ, introduced
above, is needed to give the right dimensions to V . At least a second parameter, however, which
we will call ℓ, is needed if we want to express the CDV ϕ0 in terms of the parameters of the model.
The values of such parameters will impact on the behavior of the metric function. Indeed, since
V = λdf/dr from Eq. (I.3.7), we see that the presence of two zeros for V implies the existence of
a minimum for f(r). Depending on the value of ℓ, this minimum can be above, below or exactly
at the r-axis, producing horizonless, two-horizon or extremal configurations, respectively. The
parameter λ, instead, does not affect the presence of extrema in f(r), nor their location in the
radial direction. Notice that the AdS2 CDV describes the near-horizon behavior of the extremal
black hole [284, 285].

One can easily construct dilatonic potentials V(ϕ) behaving as in Fig. I.3.1. Basically, for every
spherically-symmetric, regular 4D black hole, characterized by a single metric function f , one can
easily construct the corresponding 2D dilaton gravity theory by solving Eq. (I.3.7), determining
in this way the form of V . For instance, notable models are those which can be obtained from
the Hayward black hole [84], Gaussian-core black hole [134], the Fan-Wang model [158] or the
Bardeen solution [260].

For the sake of concreteness, in the following we will focus on a 2D dilaton gravity model
reproducing the Hayward black hole. However, all the considerations of the next sections can be
extended to the general class of models described in this section.

I.3.2 Two-dimensional Hayward black hole

One of the simplest cases of potentials behaving as shown in Fig. I.3.1 is given by

V(ϕ) = λ2
ϕ4 − 2ℓ3λ3ϕ

(ϕ3 + λ3ℓ3)2
, (I.3.17)

where ℓ is a parameter with dimensions of length. The potential has a zero at ϕ = 0, which gives
the dS CDV with a related dS length (I.3.9), given in this case by L2

dS = λℓ3, and goes to zero for
ϕ→∞. The other zero is at (

ϕ

λ

)3

= 2ℓ3 ⇒ ϕ0 =
3
√
2λℓ, (I.3.18)

which gives the AdS2 CDV and, as we shall see below, describes extremal black holes in the
near-horizon regime. The associated AdS length (see Eq. (I.3.11)) is L2

AdS = 3λℓ3.
With the potential (I.3.17), solving Eq. (I.3.7) yields

f =
2M
λ
− 1

λ

r2

r3 + ℓ3
, (I.3.19)

which interpolates between the Schwarzschild spacetime at great distances and the dS one at
r ∼ 0, modulo a rescaling of the coordinates t and r by the constant quantity 2M/λ. This peculiar
behavior, in which the mass term in the line element dominates at great distances, was analyzed
in 2D very recently in Ref. [286] and termed “mass-dominated” dilaton gravity.

The 4D Hayward black hole [84] is described by the metric element ds24 = −fH(r)dt2 +
f−1

H (r)dr2 + r2dΩ2, with the metric function given by

fH(r) = 1− 2Gmr2

r3 + ℓ3
, (I.3.20)

where m is the 4D ADM mass.
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One can easily check that the (constant) Weyl rescaling of the 2D metric, together with a
rescaling of the time coordinate

gµν →
λ

2M
gµν , t→ λ

2M
t (I.3.21)

brings the metric into the form

ds22 = −
(
1− 1

2M
r2

r3 + ℓ3

)
dt2 +

(
1− 1

2M
r2

r3 + ℓ3

)−1

dr2. (I.3.22)

This transformation leaves the 2D dilaton gravity action invariant up to a constant factor, which
does not alter the equations of motion.

If we now write the covariant mass of the 2D solution in terms the massm of the 4D black-hole
solution (I.3.20) we get

1

2M
≡ 2m

λ2
. (I.3.23)

The 4D metric element of the Hayward black hole can be simply written in terms of the 2D one
(I.3.22) and the dilaton as ds24 = ds22 + (ϕ/λ)2dΩ2.

The peculiar relation (I.3.23) can be seen as a consequence of both the specific conformal frame
chosen here (see the discussion at the beginning of Section I.3.1), which is particularly suited
for asymptotically AdS spacetimes, and of the normalization of the Killing vector F0 adopted in
Section I.3.1.1. As we shall see, the minus sign in F0 implies that an asymptotic observer in 2D
spacetime measures the energy of the system with the opposite sign with respect to the asymptotic
observer in the 4D spacetime. Hence, when the 2D mass becomes bigger, the corresponding 4D
mass decreases and viceversa, which is reflected in the inverse relation (I.3.23). We will further
confirm this below when studying the thermodynamic properties of the 2D model.

In the remainder of the chapter, we will consider the metric function f in the form (I.3.19). It
has a minimum at

rmin =
3
√
2ℓ. (I.3.24)

If f(rmin) < 0, the metric has two horizons, solutions of f(r) = 0, while if f(rmin) > 0, it has
no horizons. If f(rmin) = 0, the two horizons merge, become degenerate and the configuration
becomes extremal, with an event horizon located at rmin ≡ rext. Using the latter and setting
f(rext) = 0 yields the critical value of ℓ at extremality

ℓc =
1

3 3
√
2M

. (I.3.25)

Thus, for ℓ < ℓc the black hole has two horizons; for ℓ = ℓc the two horizon merge in a single one;
whereas for ℓ > ℓc the spacetime has no horizons.

Interestingly, the value of rext in Eq. (I.3.24) is the same at which the potential (I.3.17) changes
sign (see Eq. (I.3.18)). Indeed, as it is usually the case for two-horizon models [1, 211, 212], the
extremal, near-horizon metric is that of AdS2 spacetime.

I.3.3 Black-hole thermodynamics

I.3.3.1 Thermodynamic potentials and the first principle

Our 2D black-hole solutions can be considered as thermodynamic systems, characterized by a
Hawking tempertaure TH, an internal energy E and an entropy S. The Hawking temperature is
given by the standard formula

TH =
f ′(rH)

4π
=
V(ϕH)

4π
=

r4H − 2ℓ3rH

4πλ
(
r3H + ℓ3

)2 , (I.3.26)
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H

Figure I.3.2: Qualitative behavior of the temperature of the 2D black hole, according to Eq. (I.3.26).

where rH is the radius of the (outer) event horizon. The temperature becomes zero both at
extremality, i.e., for rH = rext =

3
√
2ℓ, and for rH →∞, whereas it reaches a maximum at

rH, peak =
ℓ
3
√
2

3

√
7 +
√
45. (I.3.27)

The qualitative behavior of TH is shown in Fig. I.3.2.
The internal energy is usually identified with the black-hole mass. However, in our case, we

have chosen a negative normalization of the Killing vector generating time translation, opposite to
the usual positive one. Consistency with this normalization requiresE = −M. Using Eq. (I.3.19),
we can expressM as a function of the outer event horizon radius

E = −M = −1

2

r2H
r3H + ℓ3

. (I.3.28)

A negative internal energy is somehow unusual for black holes, but it is perfectly consistent with
their description (and normalizations) as thermodynamic systems. Indeed, we will confirm this
below by using the euclidean action approach and proving the consistency of the first law of
thermodynamics. The energy E, thus, is always negative and goes to its maximum value E = 0
as rH →∞, whereas it reaches its minimum value Eext = −(3 3

√
2ℓ)−1 for the extremal black hole,

whose radius is given by Eq. (I.3.24)3. Moreover, for rH ≥ rext, as expected, E(rH) is a monotonic
increasing function.

Let us now calculate the entropy of the 2D Hayward black hole using the Euclidean action
formalism, which allows us to calculate the partition function Z of the thermodynamic ensemble
in terms of the Euclidean action I, i.e., I = − lnZ . By a Wick rotation of the time t, the action
of the lagrangian (I.3.4) becomes the euclidean bulk action Ib. It has been shown that, in order
to have a well-defined variational principle for “mass-dominated” dilaton gravity theories, the
action must be supported by (one half) the usual Gibbons-Hawking-York (GHY) boundary term
IGHY plus an additional one, containing the normal derivative of the dilaton [286].

The action reads

I = Ib + IGHY + I∂ϕ = −1

2

∫
d2x
√
−g (ϕR+ V)− 1

2

∫
r=r∞

dτ
√
h [ϕK − nµ∂µϕ] . (I.3.29)

We enclose the system into a hypersurface at constant r = r∞, where we define an induced,
one-dimensional, metric h, whose extrinsic curvature is described by Kµν (K is its trace). τ is the
euclidean time, which is periodic with period equal to the inverse of the temperature T−1

H ≡ β.
All quantities on the boundary will be evaluated at the cutoff r = r∞ and then we will let r∞ go
to infinity.

3Notice that, according to Eq. (I.3.23), E = 0 corresponds to the 4D Hayward black hole with an infinite mass m,
whereas the Eext corresponds to the mass mext of the extremal 4D black hole.
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Moreover, one could add a purely topological, Einstein-Hilbert term of the action Itopo ∝
ϕ0
∫
d2x
√
−gR, with ϕ0 a constant, which only changes the value of the entropy by an additional

constant S0, depending on ϕ0. This constant value can be identified as the entropy of the extremal
configuration.

Let us now evaluate the boundary term on the LDS. The induced metric with euclidean
signature reads hµν = h00 = f . The extrinsic curvature is defined in terms of the normal
vector to the hypersurface nµ as Kµν ≡ 1

2∇µnν + 1
2∇νnµ, where the normal vector reads, in

this case, nµ = f−1/2δrµ. Therefore, when evaluated on the solution for the dilaton, we have
IGHY = −λ

4βrf
′|r=r∞ , which vanishes in the limit r∞ → ∞ when f is given by Eq. (I.3.19). The

remaining boundary term, instead, gives

I∂ϕ =
β

2
λf

∣∣∣∣
r=r∞

= βM. (I.3.30)

Usually, one has to add a counterterm to the boundary action, needed to regularize divergences
arising in the limit r∞ →∞. This counterterm is written in terms of the extrinsic curvature of the
boundary embedded in flat spacetime. In our case, such term is not needed because there are no
divergences. Moreover, there is no contribution from flat spacetime (f(r) = 1) since Eq. (I.3.29)
gives Sflat = 2

∫
dtdrϕ′′, which is zero for the LDS (I.3.7).

We now evaluate the bulk action. Using Eqs. (I.3.6) and (I.3.7), we have

Ib = −1

2

∫
d2x
√
−g (−ϕf ′′ + V) = −βλ

2
[−rf ′ + 2f ]

r∞
rH

= −2βM− 2πλrH, (I.3.31)

where we used f(rH) = 0, r∞f ′(r∞)→ 0 and f(r∞)→ 2M/λ for r∞ →∞, and f ′(rH) = 4πTH =
4π/β.

Combining Eqs. (I.3.30) and (I.3.31) yields I = −βM−2πλrH = − lnZ , whereZ is the partition
function. The internal energy and entropy, thus, read

E = −∂β lnZ = −M, (I.3.32a)
S = β∂β lnZ − lnZ = 2πλrH = 2πϕ(rH). (I.3.32b)

Eq. (I.3.32a) confirms Eq. (I.3.28), as expected.
The black-hole entropy, instead, scales as the dilaton, i.e., as the inverse 2D Newton constant,

evaluated at the horizon. This is the usual formula for the entropy of 2D black holes [287, 288] and
represents the extension to two spacetime dimensions of the usual area law in higher dimensions.
This is also quite evident when the 2D black hole is derived from the dimensional reduction of
the 4D one, with the dilaton playing the role of the radius of the transverse S2 sphere, as it is here
the case.

Contrary to standard 4D regular black-hole solutions [1], here the entropy naturally follows the
area law. This is because our 2D solutions do not require external matter sources and, therefore,
are not coupled to a stress-energy tensor, which in the 4D case describes an anistropic fluid. In
general, for regular models, the latter is characterized by a density that depends on the ADM
mass of the model, which introduces extra (bulk) terms altering the area-scaling of the entropy [1,
289].

Adding the contribution S0 of the topological action leads to

S = S0 + 2πλrH. (I.3.33)

Because of the minus sign in Eq. (I.3.28), we need to check the consistency of our derivation
with the first principle of thermodynamics. By differentiating E and S, given respectively by
Eqs. (I.3.28) and (I.3.32b), with respect to rH, and using Eq. (I.3.26) for TH, we can easily check that
the identity dE = THdS is satisfied.

The previous results allow us to compute the energy difference between two configurations,
characterized by the two values ϕ1 and ϕ2 of the dilaton, in terms of the integral of the dilaton
potential. This can be done in all generality by integrating the first law, considering Eqs. (I.3.26)
and (I.3.32b)

∆E1,2 ≡ E(ϕ1)− E(ϕ2) =
1

2

∫ ϕ1

ϕ2

V(ϕH)dϕH. (I.3.34)
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Figure I.3.3: Qualitative behavior of the specific heat of the 2D black hole. The vertical dashed
line corresponds to the peak of the potential, ϕpeak.

Let us assume ϕ2 < ϕ1 and that ϕ2 represents a black-hole configuration. Then, for ϕ2, the
condition (I.3.13) holds, whether or not ϕ1 represents a black hole. Therefore, ∆E1,2 > 0 and
the black-hole energy increases monotonically, as already seen by analysing Eq. (I.3.28). The
consequence of this is that the configuration retaining the least internal energy will be the one
with the least dilaton, i.e., the extremal configuration.

I.3.3.2 Thermodynamic stability and second order phase transition
Let us now investigate the thermodynamic stability of our regular black-hole solutions. This can
be done by studying the specific heat and the free energy.

The specific heat of our solutions is given by

CH =
dE
dTH

=
dE
dϕH

(
dTH

dϕH

)−1

= 4π
dE
dϕH

(
dV
dϕH

)−1

. (I.3.35)

In Section I.3.3.1, we showed that the internal energy of black-hole configurations is always
increasing with ϕH . Therefore, the sign of CH is determined by the sign of dV/dϕH. As already
discussed in Section I.3.1, requiring the potential to satisfy the minimal requirements listed in
Section I.3.1.3 implies V to be necessarily nonmonotonic. Moreover, imposing a dS-like behavior
in the interior constrains the potential to have another zero at ϕH = ϕ0, which further restricts the
interval to ϕH ∈ [ϕ0,∞) where we have at least an extremum. The specific heat, thus, shows a
single maximum in this interval, located at ϕpeak (see Fig. I.3.1). Here, dV/dϕH changes sign (from
positive to negative) as the potential falls monotonically at infinity. Therefore, we have

• For ϕ0 ≤ ϕH < ϕpeak, dV/dϕH > 0 and therefore CH > 0. This correspods to a branch of
thermodynamically stable configurations;

• For ϕH > ϕpeak, dV/dϕH < 0 and therefore CH < 0. This is, instead, the branch of thermo-
dynamically unstable configurations;

• For ϕH = ϕpeak, dV/dϕH = 0 and CH →∞, which signals the onset of a second order phase
transition.

This general discussion also applies to the 2D Hayward black hole, described by the potential
(I.3.17). Using Eqs. (I.3.26) and (I.3.28), Eq. (I.3.35) reads

CH =
πλ
(
ℓ3 + r3H

) (
2ℓ3rH − r4H

)
ℓ6 − 7ℓ3r3H + r6H

, (I.3.36)

which diverges at the peak temperature (I.3.27). In terms of the event horizon radius we have

• An unstable branch of large black holes (rH ≫ rext), with negative specific heat;
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Figure I.3.4: Temperature T (ϕ) as a function of ϕ. Here, we highlighted the two configurations
corresponding to ϕ1 and ϕ2, respectively in the stable and unstable branch and their common
temperature T = T (ϕ1) = T (ϕ2). The areas representing (ϕ2 − ϕ1)T and the right-hand side of
Eq. (I.3.38), are coloured in blue and red, respectively.

• A stable branch of black holes close to extremality (rH ≳ rext) with positive specific heat.

CH goes to zero at extremality and, near rH ∼ rext, it behaves as

CH ∼ 2πλ(rH − rext) +O
[
(rH − rext)

2
]
, (I.3.37)

which scales linearly with rH, as the specific heat of AdS2 black holes [290]. This is fully consistent
with the AdS2 behavior of the 4D LDS Hayward metric in the near-extremal, near-horizon regime.
However, differently from its four dimensional counterpart, for which the AdS2 spacetime repre-
sents only an approximate solution, the AdS2 appears also as an exact CDV solution for the 2D
model.

The analysis of the specific heat allows us to distinguish between stable and unstable branches,
but it is not sufficient to select the energetically preferred configurations. To this end, we need
to analyze the difference in the free energy between different configurations sharing the same
temperature. We will consider LDS on different thermodynamic branches, with the same temper-
ature, but different dilaton (and, therefore, different horizon radius). In our analysis, we will not
consider the CDV solutions, but only LDS. The inclusion of the CDV will be discussed in the next
subsection.

We consider the situation depicted in Fig. I.3.4, where we present a qualitative plot of the
temperature T (ϕ) of our 2D black holes. We focus on two different configurations, ϕ1 and ϕ2, in
the stable and unstable branches, respectively, but with the same temperature T (ϕ1) = T (ϕ2) ≡ T .
We now evaluate the free energy difference ∆F2,1 ≡ F (ϕ2) − F (ϕ1) = ∆E2,1 − T∆S2,1. Using
Eqs. (I.3.32b) and (I.3.34), we have

∆F2,1 = 2π

∫ ϕ2

ϕ1

[T (ϕ)− T ]dϕ. (I.3.38)

From a geometric point of view, ∆F2,1/2π represents the area limited by the graph of T (ϕ) (solid
blue line in Fig. I.3.4) and the straight line T (dashed horizontal line in Fig. I.3.4). Since T (ϕ)
shows a single maximum located at ϕ = ϕpeak and ϕ1 < ϕpeak < ϕ2, then the relation T (ϕ) > T
holds true in the interval [ϕ1, ϕ2]. This implies ∆F2,1 to be strictly positive, i.e., F (ϕ2) > F (ϕ1).
Therefore, generic configurations in the stable branch are energetically preferred with respect to
configurations in the stable branch. These results show that configurations in the stable branch
retain the least free energy and are, thus, thermodynamically favoured.
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I.3.3.3 Including the constant dilaton vacuum
So far, in our thermodynamic considerations, we have considered only the LDSs. We have already
seen in Section I.3.1, however, that our dilaton gravity model allows, in its spectrum, a solution
with constant dilaton describing an AdS2 spacetime, the CDV. This solution represents a GS of
the theory, with different asymptotics not only with respect to the “excited” LDS, but also to the
extremal one. In fact, the LDS, including the extremal one, are metrically AF and the dilaton
depends linearly on r. Conversely, the CDV describes an AdS2 spacetime and the dilaton is
identically constant. Extremal LDSs, in the near-horizon approximation, are described by an
AdS2 spacetime, endowed, however, with a linear dilaton, the so called linear dilaton vacuum
(LDV) [285].

The situation described above is very common for 4D charged black holes [291], for which we
have both an extremal, AF solution, described in the near-horizon approximation by AdS2 with a
linear dilaton, and an AdS2 × S2 solution (our CDV).

Working in the context of 2D dilaton gravity, it has been shown that the AdS2 CDV does
not admit finite energy excitations, i.e., it is separated from the AdS2 LDV by a mass gap [217].
Moreover, there is the additional difficulty that the two spacetimes have different asymptotics
(linearly varying versus constant dilaton). The latter point makes it conceptually problematic to
compare the free energies of the two configurations and to assess which one is thermodynamically
favored. These difficulties can be circumvented, and one can show, computing the free energy,
that the AdS2 CDV is energetically preferred with respect to the AdS2 LDV [285]. Here, we will
use a similar procedure for the solutions of the 2D Hayward model and compare the free energy
of the AdS2 CDV with that of the extremal LDS.

Let us first note that we can formally consider zero mass, thermal excitations of the CDV using
a Rindler-like coordinate transformation, which generates a horizon with a related temperature

ds2 = −
(

r2

L2
AdS
− 4π2T 2

HL
2
AdS

)
dt2 +

(
r2

L2
AdS
− 4π2T 2

HL
2
AdS

)−1

dr2. (I.3.39)

We can now evaluate the bulk Euclidean action of the CDV (I.3.39), considering that the dilaton is
constant ϕ = ϕCDV and the potential is zero when evaluated in the CDV. We have4

ICDV
b = −1

2

∫
d2x
√
−g (−ϕCDVf

′′) = −βϕCDV

2
4πTH = −2πϕCDV. (I.3.40)

The free energy FCDV = −T lnZ reads

FCDV = −2πϕCDVTH. (I.3.41)

We can now compute the difference in the free energy between a generic black-hole configuration
of the LDS and the CDV. Using the result of Eq. (I.3.32b) for the entropy of the LDS and the
equation F = E − THS we obtain

∆F BH−CDV ≡ F BH − FCDV = −M− 2πTH (ϕH − ϕCDV) . (I.3.42)

Since, for every black-hole solution, ϕH > ϕCDV, we have F BH < FCDV, and thus the black-hole
configuration is always thermodynamically preferred.

However, this is true whenever TH ̸= 0. At TH = 0, we do not have thermal contributions to
the free energy anymore and ∆F reduces to the difference of the masses contributions. On the
other hand, at TH = 0 the semiclassical approximation is broken, as signalized by the generation
of the mass gap (see Section I.3.4.3) [215, 217, 285], and thus we cannot rely on the euclidean
action approach anymore. This does not allow to define a proper mass for the CDV, consistently
with the fact that pure AdS2 spacetime does not admit finite energy excitations. One could argue,
following the argument of Ref. [285], that at TH = 0 the only contribution to ∆F BH−CDV comes
from the mass difference, which, due the absence of finite energy excitations, should diverge,
which makes the CDV energetically preferred with respect to the extremal LDV.

4We are implicitly considering also a renormalization contribution to the action, to renormalize the divergent contri-
bution at infinity due to the AdS asymptotics.
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I.3.4 Black-hole evaporation in the quasistatic approximation

In the following, we will describe the evaporation process of our regular 2D black hole working in
the quasistatic approximation and in the semiclassical regime, in which the mass is slowly varying
with time so that it can be considered almost constant for each individual evaporation step. In
this way, the backreaction of the geometry due to the radiation is not taken into account in a
fully dynamic way, but it is described in a very simplified, rough manner. The dynamic character
of this backreaction will be, instead, fully taken into account in the next section, where we will
consider the coupling of gravity to the matter fields describing Hawking radiation. We expect our
quasistatic approximation to hold for black holes very far from extremality and to break down in
the near-extremal regime, where the semiclassical approximation is not capable of describing the
dynamics.

Since our black holes behave as black bodies with a Planckian thermal spectrum, we use the
Stefan-Boltzmann (SB) law to describe the time variation of the internal energy, which in arbitrary
d+ 1 dimensions reads [292]

dE
dt = σAd−1T

d+1
H , σ =

dΓ
(
d
2

)
ζ (d+ 1)

2πd/2+1
, Ad−1 =

2πd/2

Γ
(
d
2

)rd−1, (I.3.43)

where σ is the SB constant,Ad−1 is the (d− 1)-dimensional emitting surface, Γ(x) and ζ(s) are the
gamma and Riemann zeta functions, respectively. In the present case, d = 1, and thus

dE
dt = −dM

dt = −π
6
T 2

H, (I.3.44)

where we used the fact that E = −M.

I.3.4.1 Evaporation time
To compute the evaporation time, we expressM as a function of the event horizon radius and use
dM/dt = (dM/drH)(drH/dt) together with Eqs. (I.3.26), (I.3.28) and (I.3.44), to obtain

drH

dt = − 1

12λ
TH. (I.3.45)

Inverting and integrating yields the evaporation time required to pass from an initial configuration
with event horizon radius rH,0 ≫ rext to a final one with radius rH,final

∆t = −12λ
∫ rH,final

rH,0

drH

TH
. (I.3.46)

From this expression, it is already evident that, as TH → 0, i.e., as we approach extremality,
∆t → ∞. In other words, reaching the extremal configuration, in the quasistatic semiclassical
approximation, requires an infinite time, consistently with the thermodynamic stability analysis
of the previous subsections.

For the particular model under investigation described by Eq. (I.3.19), Eq. (I.3.46) reads

∆t = −48πλ2
∫ rH, final

rH,0

drH
(r3H + ℓ3)2

r4H − 2ℓ3rH
= −8πλ2

[
2r3H − 3ℓ3 ln rH + 9ℓ3 ln

(
r3H − 2ℓ3

)]rH, final

rH,0
.

(I.3.47)

In the extremal limit rH, final → 3
√
2ℓ = rext we have a logarithmic divergence, as expected. This is

consistent with the behavior of 4D regular models (see [5, 202, 293] and references therein).

I.3.4.2 Time variation of mass and entropy
Let us now compute how the mass of our 2D Hayward black hole evolves in time due to the
emission of Hawking radiation, according to the SB law (I.3.44). This can be done by first inverting
rH and TH, to express them as functions ofM and then by numerically solving Eq. (I.3.44) written
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Figure I.3.5: Panel (a): Numerical solution of Eq. (I.3.44) (blue solid line), which shows the
time evolution of the mass of an evaporating black hole as a function of time, in the quasistatic
approximation. We see that at large times, the numerical solution asymptotes the extremal mass
(orange dashed line). For the numerical integration, we setM(t = 0) = 0.1λ as an initial condition.
Panel (b): Time variation of the entropy of the black hole according to Eq. (I.3.33). At late times, the
entropy goes to zero, after subtracting the topological term S0. In both figures, we set λ = ℓ = 1.

in the form dM/dt = πT 2
H(M)/6. As a boundary condition, we imposeM(t = 0) = 0.1λ. We

also set λ = ℓ = 1. Using the expression for rH as a function of the mass obtained by inverting
Eq. (I.3.28), forM = 0.1, we have rH ≃ 4.96, which is about twice as large as that pertaining to the
temperature peak (I.3.27) (rH, peak ≃ 1.9 with ℓ = 1), which confirms that the initial state belongs
to the unstable branch. We have also checked that the final results are independent of the value
of the initial mass.

The result of the numerical integration is shown in Fig. I.3.5a. We see that, at large times,
the mass asymptotes the extremal one. The mass increases during the evaporation due to the
negative normalization of the Killing vector generating time translations. Indeed, the internal
energy E = −M is decreasing, as it should be during the evaporation.

We can also derive the time evolution of the black-hole entropy. This can be done by simply
combining the solution of Eq. (I.3.44) together with the function rH(M) (obtained by inverting
Eq. (I.3.28)) and Eq. (I.3.33). The result is reported in Fig. I.3.5b and confirms the fact that, as the
solution asymptotes the extremal one, the entropy reduces to zero. This is true only if we subtract
the contribution S0 of Eq. (I.3.33).

These results will be extended in Section I.3.6, where we will go beyond the quasistatic ap-
proximation and we will consider the full dynamics of the backreaction of Hawking radiation on
the background geometry. We will show that the inclusion of the latter causes the evaporation
process to take place in a finite time.

I.3.4.3 Approaching extremality and breakdown of the semiclassical approximation

The divergence of the evaporation time for black holes approaching extremality, found in the
previous section, signalizes the breakdown of the semiclassical approximation. Let us now study
in details how an excited configuration approaches the extremal limit, by solving Eq. (I.3.45) at
leading order around extremality, i.e., around rH ∼ 3

√
2ℓ.

Near extremality, at leading order, the temperature varies linearly with rH,

TH ≃
rH − 3

√
2ℓ

6πλℓ3
+O

[(
rH − 3

√
2ℓ
)2]

, (I.3.48)

which gives, after solving Eq. (I.3.45), the time-dependence of rH

rH(t) ≃ 3
√
2ℓ+ α1e

− t
72πλ2ℓ3 , (I.3.49)

where α1 is an integration constant.
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Figure I.3.6: Panel (a): Plot of ∆E as a function of time (solid blue line). The horizontal dashed
orange line corresponds to the value of the mass gap (I.3.52). The intersection point between the
two curves gives the time when the semiclassical approximation breaks down. Panel (b): Mass
evolution in time (solid blue line). The horizontal dashed orange line corresponds to the value
of the mass of the extremal configuration. The horizontal dotted green line corresponds to the
value of the mass at the temperature peak (I.3.27). The vertical dashed line, instead, signals the
instant of time where |M −Mext| ∼ Egap, with Egap given by Eq. (I.3.52). As can be seen, the
breakdown of the semiclassical approximation happens after the evaporation process reaches the
temperature peak. For both figures, we setM(t = 0) = 0.1λ and ℓ = λ = 1.

Moreover,M(t) behaves, near extremality, as

M≃

(
3
√
2ℓ+ α1e

− t
72πλ2ℓ3

)2
2

[
ℓ3 +

(
3
√
2ℓ+ α1e

− t
72πλ2ℓ3

)3] , (I.3.50)

which reduces to 1
3 3√2ℓ

=Mext only for t → ∞, confirming the numerical results of the previous
subsection. The entropy, instead, approaches exponentially that of the extremal configuration at
t→∞, according to Eq. (I.3.49).

However, one must question the validity of the semiclassical approximation near extremality.
The latter breaks down when the energy of Hawking quanta, which is of order TH, becomes
comparable with the energy of the black-hole energy above extremality ∆E = |M−Mext| (see,
e.g., Ref. [215]). The energy scale at which this breakdown occurs determines the mass gap
separating the CDV from the continuous part of the spectrum (the LDS) [215, 217].

This mass gap can be determined by expanding Eq. (I.3.28) near extremality, which yields

∆E ≃
(
rH − 3

√
2ℓ
)2

6ℓ3
= 6π2λ2ℓ3T 2

H. (I.3.51)

From ∆E ≃ TH, we easily find the energy gap

Egap ≃
1

6π2ℓ3λ2
. (I.3.52)

This result is consistent with those obtained for 4D black holes with two horizons merging into
a single one, in particular for charged black holes. For instance, in the Reissner-Nordström case,
the energy gap behaves as Egap ∝ Q−3, whereQ is the black-hole charge [215]. As one can expect,
here the role of Q is played by ℓ.5 Fig. I.3.6a shows the time variation of ∆E = |M−Mext|: the
intersection with the horizontal dashed line, corresponding to ∆E ∼ Egap, identifies the time at
which the semiclassical approximation breaks down.

It is interesting to notice that the limit of validity of the semiclassical approximation sets also
the limit of validity of the quasistatic one, which cannot be valid when the former is broken. In
fact, the quasistatic approximation is valid in the initial stages, when the black hole is macroscopic,

5An important difference is that, contrary to Q, ℓ is not related to any conserved quantity at infinity and thus it is not
associated to any thermodynamic potential.
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which essentially evaporates as a GR one. It remains also valid for most of the evaporation process
because the evaporation time is much larger than the typical black-hole time scale 1/∆E (see also,
e.g., Refs. [192, 202]). Only at extremality, when ∆E goes to zero, the two time scales become
comparable.

Moreover, it should be considered that the time at which the semiclassical approximation
breaks down (which can be read from Fig. I.3.6a) is close to the time at which the evaporation
process reaches the maximum of the temperature (I.3.27), where we expect the system to go
through a second order phase transition (see Fig. I.3.6b).

I.3.5 Coupling to conformal matter

In the previous section, we described the black-hole evaporation process in the semiclassical and
quasistatic approximations. Within these approximations, the backreaction effects of the geometry
on the presence of Hawking radiation is completely encoded in the change in time of the black-
hole massM. As we have seen above, this may be a good approximation in the early stages of the
evaporation, but it is expected to fail at later times. Another shortcoming of the approximation
is that the backreaction is not fully dynamic, since it does not involve the full metric solution. Its
role is simply encoded in the variation of the black-hole mass.

In this section, we will give an exact semiclassical description of the evaporation process by
studying the coupling of our 2D model to quantum conformal matter, in the form of N massless
scalar fields. This coupling is most easily analyzed in the conformal gauge, where the 2D metric
reads

ds2 = −e2ρ(x
+,x−)dx+dx−, (I.3.53)

where e2ρ is the conformal factor of the metric. The transition from the metric in the Schwarzschild
gauge (I.3.7) to that in the form Eq. (I.3.53) is realized by using the coordinates, x± = t± r∗, where
r∗ ≡

∫
dr/f is the tortoise coordinate. The system of coordinates x± does not cover the interior

of the black hole, but only the region outside the outer horizon. Indeed, x+ − x− → −∞
corresponds to the horizon (x+ → −∞ gives the past horizon, while x− → ∞ future horizon),
while x+ − x− →∞ corresponds to asymptotic infinity.

The field equations stemming from Eq. (I.3.4) are now

8e−2ρ∂+∂−ρ = −dV
dϕ , (I.3.54a)

∂2+ϕ− 2∂+ρ∂+ϕ = 0, (I.3.54b)
∂2−ϕ− 2∂−ρ∂−ϕ = 0, (I.3.54c)

∂+∂−ϕ+
V
4
e2ρ = 0. (I.3.54d)

The solution reads

e2ρ = f =
2M
λ

+
1

λ2

∫ ϕ

dψV ≡ 2M
λ

+ J (I.3.55a)∫ ϕ dψ
e2ρ

=

∫ ϕ dψ
2M
λ + J

= λr∗ =
λ

2

(
x+ − x−

)
, (I.3.55b)

where we defined J = λ−2
∫ ϕ dψV(ψ).

I.3.5.1 Coupling to matter: shock wave solution
We now couple 2D dilaton gravity to the N massless scalar fields describing conformal matter.
The full action reads

S =
1

2

∫
d2x
√
−g

[
ϕR+ V − 1

2

N∑
i=1

(∇fi)2
]
. (I.3.56)



Evaporation of two-dimensional regular black holes 53

The stress-energy tensor of matter fields is given by

Tµν = −1

4
gµν

N∑
i=1

gρσ∂ρfi∂σfi +
1

2

N∑
i=1

∂µfi∂νfi. (I.3.57)

The field equations (I.3.54) now become

8e−2ρ∂+∂−ρ = −dV
dϕ , (I.3.58a)

∂2+ϕ− 2∂+ρ∂+ϕ = −T++ = −1

2

N∑
i=1

∂+fi∂+fi, (I.3.58b)

∂2−ϕ− 2∂−ρ∂−ϕ = −T−− = −1

2

N∑
i=1

∂−fi∂−fi, (I.3.58c)

∂+∂−ϕ+
V
4
e2ρ = 0, (I.3.58d)

∂+∂−fi = 0. (I.3.58e)

Notice that Eq. (I.3.58e) can be readily solved and implies fi = fi,+(x
+) + fi,−(x

−). The matter-
coupled field equations above admit an exact solution if we consider an ingoing shock wave
starting at x+ = x+0 and propagating in the x− direction, while no energy flux is present in the x+
direction

T++ = −Mδ
(
x+ − x+0

)
=

1

2

N∑
i=1

∂+fi∂+fi, T−− = 0. (I.3.59)

The minus sign in T++ is again due to the normalization of the Killing vector of the metric.
From Birkhoff’s theorem, we can write the full solution by patching, on the infall line x+ = x+0 ,

the vacuum solution together with the one after the shock wave [279].
x+ ≤ x+

0 —At the end of Section I.3.3.1, we showed that, in the linear dilaton case, the GS of the
theory, i.e., the state retaining the least internal energy, is the extremal black-hole configuration,
characterized by a massMext given by Eq. (I.3.25).

The vacuum solution (before the shock wave) therefore is equivalent to Eqs. (I.3.55) with
M =Mext

e2ρ =
2Mext

λ
+ J ,

∫ ϕ dψ
2Mext

λ + J
=
λ

2

(
x+ − x−

)
. (I.3.60)

x ≥ x+
0 —Since T−− = 0, now the solution is (see Ref. [279])

e2ρ =

(
2M
λ

+ J
)
F ′(x−), (I.3.61)∫ ϕ dψ

J + 2M
λ

=
λ

2

[
x+ − x+0 − F (x−)

]
, (I.3.62)

F ′(x−) ≡ dF (x−)
dx− =

J0 + 2Mext
λ

J0 + 2M
λ

, (I.3.63)

whereJ0 ≡ J |x+=x+
0

and F (x−) is a function needed to map the old coordinate x− of the observer
in the GS solution into a new coordinate, which pertains to an observer in the excited solution.
Its form is fixed by requiring continuity of the metric function across the shock wave at x+ = x+0 .
This defines the function up to an integration constant, which is fixed by requiring the continuity
of the dilaton across the shock wave.

As usual, and as we will see in more detail in Section I.3.6.2, the function F (x−) generates
the Hawking flux of particles, which can be described in terms of the change of the coordinate
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Figure I.3.7: Metric functions for different values of the black-hole massM. The blue solid line
refers to the extremal configuration withM =Mext. The orange dashed line, instead, refers to an
excited state (after the shock wave) withM = 0.9Mext, which presents two event horizons.

x− defined by F . In fact, in 2D, the flux of Hawking particles can be described in terms of the
Schwarzian derivative of the function F (x−) (see, e.g., Refs. [279, 294]).

Due to the sign of the shock wave (I.3.59) and to the minus sign in Eq. (I.3.28), the massM of
the excited states is less than the extremal mass, as the shock wave increases the internal energy
of the system. The physical picture we expect is therefore the following (see also Fig. I.3.7). The
shock wave increases the internal energy of the initial system, i.e., the GS, extremal configuration:
the degenerate horizon splits into two apparent horizons. According to the thermodynamic
analysis and the results of Section I.3.4.2, we then expect that, when dynamically evolving the
system, these two horizons will meet again at the end of evaporation, and merge to give again
the extremal configuration. We will confirm this in the next section by keeping into account the
dynamic contributions of backreaction effects of the radiation on the geometry and dynamically
describing the evaporation process by numerically integrating the field equations.

I.3.6 Black hole evaporation and backreaction

The evaporation and its backreaction effects on the spacetime geometry, are studied by quantizing
the conformal matter on the curved 2D background. An important consequence of the curvature
of the spacetime is that the otherwise classically traceless stress-energy tensor acquires a nonzero
trace, proportional to the Ricci scalar, which is the so-called conformal anomaly [295]

⟨Tµ
µ ⟩ =

N

24
R, (I.3.64)

where N is the number of matter fields. This can be accounted for by adding, to the classical
action, the nonlocal Polyakov term

SPol = −
N

96

∫
d2x
√
−gR2−1R, (I.3.65)

where 2−1 is the scalar Green function.
Using Eq. (I.3.64), we can derive the expectation value of T+−, which in the conformal gauge

is entirely local

⟨T+−⟩ = −
N

12
∂+∂−ρ. (I.3.66)

The nonlocal effects stemming from the action (I.3.65) are, instead, encoded in the other compo-
nents of the stress-energy tensor ⟨T±±⟩, which can be obtained from covariant conservation of the
latter

⟨T−−⟩ = −
N

12

[
∂−ρ∂−ρ− ∂2−ρ+ t−(x

−)
]
, (I.3.67a)

⟨T++⟩ = −
N

12

[
∂+ρ∂+ρ− ∂2+ρ+ t+(x

+)
]
. (I.3.67b)
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Here, t±(x±) are integration functions, which depend on the boundary conditions and therefore
encode the nonlocal effects of the Polyakov action (I.3.65). These functions are also sensitive
to the choice of the coordinates. Indeed, under a conformal transformation of the coordinates
x± → y±(x±), the conformal factor transforms as

ρ(y+, y−) = ρ(x+, x−)− 1

2
ln

dy+
dx+

dy−
dx− , (I.3.68)

which, plugged into Eqs. (I.3.66), (I.3.67a) and (I.3.67b), yields the anomalous transformation of
the stress-energy tensor with the Schwarzian derivative(

dy±
dx±

)2

T±±(y
±) = T±±(x

±)− N

12

{
y±, x±

}
, {y, x} = y′′′

y′
− 3

2

y′′2

y′2
, (I.3.69)

where the prime indicates a derivative with respect to x. The form of the stress-energy tensor in
the new coordinate system is preserved if the t±’s trasform as(

dy±
dx±

)2

t±(y
±) = t±(x

±) +
{
y±, x±

}
. (I.3.70)

Including the conformal anomaly, the field equations (I.3.58) become

8e−2ρ∂+∂−ρ = −dV
dϕ , (I.3.71a)

∂2+ϕ− 2∂+ρ∂+ϕ =Mδ
(
x+ − x+0

)
+
N

12

[
(∂+ρ)

2 − ∂2+ρ+ t+(x
+)
]
, (I.3.71b)

∂2−ϕ− 2∂−ρ∂−ϕ =
N

12

[
(∂−ρ)

2 − ∂2−ρ+ t−(x
−)
]
, (I.3.71c)

∂+∂−ϕ+
V
4
e2ρ = −N

12
∂+∂−ρ, (I.3.71d)

fi = fi,+(x
+) + fi,−(x

−). (I.3.71e)

Eqs. (I.3.71) can be solved once suitable initial conditions to fix the functions t±(x±) are imposed.
These can be determined assuming the GS as the initial state. In conventional AF models, like
the CGHS one [271], the GS is pure Minkowski spacetime. One can therefore define a global
coordinate transformation in which the conformal metric (I.3.53) is manifestly flat, i.e., we can
define a system of coordinates in which e2ρ = constant = 1. One can then assume that there is
no incoming radiation (except from the classical shock wave) and that there is no net outcoming
flux, so that

⟨Tµν⟩GS = 0 (I.3.72)

identically, which implies t± = 0 on the GS in this system of coordinates. One can then transform
back to the original coordinates and exploit the anomalous transformation (I.3.70) to obtain their
final form in the new coordinates.

In the case under consideration, however, we saw that the GS does not correspond to Minkowski
spacetime (which is only reached asymptotically), but it is given by the extremal configuration
(I.3.60). This, of course, prevents from defining a global coordinate transformation which brings
e2ρ → constant. Despite this difficulty, we can still use Eq. (I.3.72) as a boundary condition,
similarly to the CGHS model.

Once the boundary conditions on the GS have been imposed, the solution before the shock
wave (x+ < x+0 ) is Eq. (I.3.60), the vacuum one, while after the shock wave (x+ > x+0 ) it is given
by an evaporating black-hole solution.

I.3.6.1 Adding counterterms and fixing the boundary conditions
In order to preserve the physically motivated boundary condition (I.3.72), we can follow Refs. [279,
282] and modify the usual Polyakov action (I.3.65) by adding the most general local covariant
counterterms with no second order derivatives

SPol = −
N

96

∫
d2x
√
−g
[
R2−1R− 4A(ϕ)R+ 4B(ϕ) (∇ϕ)2

]
, (I.3.73)
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where A and B are functions of the scalar field. The presence of these new terms, of course, does
not alter the classical limitN → 0. Also notice that the addition of new counterterms was already
employed in, e.g., the CGHS model, in order to make the theory exactly solvable [296, 297].

In Ref. [279], the addition of the counterterms was necessary to prevent ⟨Tµν⟩GS from diverging
for ϕ → ∞. In the present case, it can be shown that divergences are absent due to the peculiar
properties of the potential outlined in Section I.3.1.3 (see Appendix I.C). Nevertheless, adding
counterterms is needed to implement the boundary condition (I.3.72) in a consistent way. With
the new terms, the components of the stress-energy tensor (I.3.66), (I.3.67a) and (I.3.67b) become

⟨T+−⟩ = −
N

12
(∂+∂−ρ+ ∂+∂−A) , (I.3.74a)

⟨T±±⟩ = −
N

12

[
∂±ρ∂±ρ− ∂2±ρ+ 2∂±ρ∂±A− ∂2±A− B∂±ϕ∂±ϕ+ t±(x

±)
]
. (I.3.74b)

We now impose the boundary condition (I.3.72). Requiring t±(x±) = 0 on the GS completely fixes
the two functions A and B (see also Ref. [279])

A(ϕ) = −1

2
ln

(
2Mext

λ
+ JGS

)
= −ρGS, (I.3.75a)

B(ϕ) = − (∂ϕρGS)
2
= − 1

4
(
2Mext

λ + JGS
)2 (dJGS

dϕ

)2

, (I.3.75b)

where the subscript GS indicates that J is computed at extremality.
Eqs. (I.3.74a) and (I.3.74b) now read

⟨T+−⟩ = −
N

12

(
∂+∂−ρ−

∂+∂−JGS

2
(
2Mext

λ + JGS
) + ∂−JGS∂+JGS

2
(
2Mext

λ + JGS
)2
)
, (I.3.76)

⟨T±±⟩ = −
N

12

[
∂±ρ∂±ρ− ∂2±ρ−

∂±ρ∂±JGS
2Mext

λ + JGS
+

∂2±JGS

2
(
2Mext

λ + JGS
)+ (I.3.77)

− ∂±JGS∂±JGS

2
(
2Mext

λ + JGS
)2 +

∂±ϕGS∂±ϕGS

4
(
2Mext

λ + JGS
)2 (dJGS

dϕ

)2
]
. (I.3.78)

Since the scalar field is a function of x+ and x−, while we are treating J as a function of ϕ,
it is convenient to rewrite all derivatives of J with respect to the coordinates as derivatives with
respect to ϕ (to lighten the notation, we indicate derivation with respect to ϕ with a subscript ,ϕ).
With the new components of the stress-energy tensor (I.3.76) and also using Eq. (I.3.60), the field
equations (I.3.71) become

8e−2ρ∂+∂−ρ = −V,ϕ, (I.3.79a)

∂2+ϕ− 2∂+ρ∂+ϕ =Mδ
(
x+ − x+0

)
+
N

12

[
∂+ρ∂+ρ− ∂2+ρ−

λ

2
∂+ρJGS,ϕ+

+
λ2

8

(
2Mext

λ
+ JGS

)
JGS,ϕϕ +

λ2

16
(JGS,ϕ)

2

]
, (I.3.79b)

∂2−ϕ− 2∂−ρ∂−ϕ =
N

12

[
∂−ρ∂−ρ− ∂2−ρ+

λ

2
∂−ρJGS,ϕ +

λ2

8

(
2Mext

λ
+ JGS

)
JGS,ϕϕ +

λ2

16
(JGS,ϕ)

2

]
,

(I.3.79c)

∂+∂−ϕ+
V
4
e2ρ = −N

12

[
∂+∂−ρ+

λ2

8

(
2Mext

λ
+ JGS

)
JGS,ϕϕ

]
. (I.3.79d)

I.3.6.2 Hawking flux and apparent horizon trajectory
We now derive the asymptotic form of the Hawking flux in our model. This can be done by
studying the behavior of ⟨Tµν⟩ at future null infinity x+ →∞. In this region, we are considering
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ϕ → ∞. We are, therefore, in the decoupling regime, where the gravitational coupling is weak,
so that the effects of backreaction can be approximately neglected. This means that the solution
in the region of interest (x+ > x+0 ) corresponds to the classical one (I.3.63). In this limit, J → 0,
J,ϕ → 0 and J,ϕϕ → 0. We have thus

⟨T+−⟩ → 0, (I.3.80a)
⟨T++⟩ → 0, (I.3.80b)

⟨T−−⟩ →
N

24

{
F, x−

}
,

{
F, x−

}
=
F ′′′

F ′ −
3

2

(
F ′′

F ′

)2

, (I.3.80c)

where now ′ indicates differentiation with respect to x−. This result agrees with that of Ref. [279],
as it is naturally expected. As it is noted there, this expression diverges once the (outer) event
horizon is reached, due to the choice of coordinates adopted. One way to solve this problem is
to redefine the x− coordinate as x̂− ≡ F (x−) and exploit the anomalous transformation (I.3.69).
This leads to a well-behaved expression at the horizon, which reads

⟨T̂−−⟩ =
N

24

{F, x−}
F ′2 . (I.3.81)

Using the form of F given by Eq. (I.3.63), we obtain, approaching the horizon

⟨T̂−−⟩ =
N

192
[V(ϕH)]

2 ∝ T 2
H. (I.3.82)

The proportionality relation is the same as the SB law (I.3.44), which confirms the Planckian nature
of the emitted spectrum. Here, however, the flux is modified with respect to standard singular
models due to the specific form of the potential (I.3.17).

Since the outgoing flux of Hawking radiation is positive, we expect the (outer) apparent event
horizon to recede. To see this, we closely follow the approach adopted in Ref. [298]. The apparent
horizon trajectory x̂− = x̂−(x+) can be derived using the definition of apparent horizon, which
satisfies ∂+ϕ = 0. This implies

0 =
d

dx+ ∂+ϕ
∣∣∣∣
x−=x̂−

= ∂2+ϕ+

(
dx̂−
dx+

)
∂+∂−ϕ, (I.3.83)

from which follows

∂+∂−ϕ = −∂2+ϕ
(

dx̂−
dx+

)−1

. (I.3.84)

Combining Eqs. (I.3.79a), (I.3.79b) and (I.3.79d) into the above yields

dx̂−
dx+ =

N

12

∂+ρ∂+ρ− ∂2+ρ−
∂+ρ
2λ VGS +

e2ρext

8 VGS,ϕ +
V2

GS
16λ2

V
4 e

2ρ + N
96 (e

2ρextVGS,ϕ − e2ρV,ϕ)
. (I.3.85)

The qualitative behavior of the trajectory of the apparent horizon is determined by the sign of
the right hand side of the expression above. In order to assess the latter, we would need the full
solution of Eqs. (I.3.79a) and (I.3.79d), which however can only be solved numerically. This will
be done in the next section. Here, as a first test, we exploit the fact that the full solution of the
field equations approaches the classical one in the asymptotic region ϕ→∞, where the coupling
with matter fields and backreaction effects become negligible. In this region, the solution is then
given by Eq. (I.3.63). Using this solution into Eq. (I.3.85), it can be shown that dx̂−/dx+ is indeed
positive. This implies a receding outer apparent horizon, as expected. Moreover, it confirms
the qualitative picture we expect from evaporation, outlined in Section I.3.4 and at the end of
Section I.3.5.1: the outer horizon recedes and approaches the horizon of the extremal GS.

Notice that, due to the limitations caused by the adopted system of coordinates, we are able to
describe the behavior of the outer horizon only.
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I.3.6.3 Numerical results
We now numerically solve the equations of motion given in Eqs. (I.3.79). This will allow us
to capture the full dynamics of the evaporation process, keeping into account also backreaction
effects. A numerical study of evaporating 2D models was performed in the past for the CGHS [299–
301] and other (singular or regular) 2D models [278, 302].

To numerically integrate the equations of motion, we construct a spacetime lattice by means
of a grid of null lines and we impose two different sets of boundary conditions, one along x+ and
one along x−:

• At the shock wave, i.e., at x+ = x+0 , we require the solution to coincide with the GS, given
by Eq. (I.3.60);

• Above the shock wave, along I−, i.e., at x− → −∞, where backreaction effects are expected
to be negligible, we require the solution to match Eq. (I.3.63), the classical one. Of course,
we cannot numerically set a condition at infinity, so we choose a reasonably large negative
value. Here we set x−∞ = −220. This value is found to be the minimal one for which the
numerical solution coincides, in the classical limit N → 0, with Eq. (I.3.63), for every value
of x+ and x−, within a reasonably small numerical error. For values of x−∞ greater than
−220, the numerical solution deviates from the expected analytical one, while for smaller
values the results are the same as the one obtained with x−∞ = −220, but with a much higher
integration time.

Both the boundary conditions at x+ = x+0 and at x− → −∞ are given in implicit form. We
therefore first need to integrate and invert the corresponding expressions (the details of this
computation are reported in Appendix I.D).

To numerically integrate the field equations, we also need to select an appropriate integration
interval along x+, from the shock wave at x+0 up to a maximum value x+max. We chose the interval
x+ ∈ [x+0 , 5] (where we set x+0 = 1). We expect the general results to hold also for larger values of
x+max. We chose it equal to 5 to have a reasonable integration time interval. For larger values of x+max,
the time required to complete a computation increases considerably, given the high computational
cost of the algorithm.

The interval on the x+-axis is then discretized into a number nsteps of small intervals, with
length ∆x = (x+max − x+0 )/nsteps. The number of steps was set equal to nsteps = 1000. We checked
that, for larger values of nsteps, the results of the integration remain qualitatively the same, at the
price of having, again, a much longer computational time.

Each point of the discretized x+-axis is labeled by an index i. We choose to discretize the
derivatives in the x+ direction accordingly,

∂+ϕ =
ϕ(x+i+1, x

−)− ϕ(x+i , x−)
∆x

+O(∆x), (I.3.86)

∂+ρ =
ρ(x+i+1, x

−)− ρ(x+i , x−)
∆x

+O(∆x). (I.3.87)

Notice that, with this choice, our algorithm converges to the solution only at first order in∆x. How-
ever, since we are interested in the qualitative behavior of the solutions, Eqs. (I.3.86) and (I.3.87)
represent a good approximation for the derivatives of ϕ and ρ.

Along x− at fixed x+, the field equations reduce to ordinary differential equations. Therefore,
for each step in the x+ direction, we numerically integrate the equations along x− by means of a
4th-order Runge-Kutta algorithm. The outcome, thus, is a list of x−-profiles of ϕ and ρ for each
point of the discretized interval on x+ (see Fig. I.3.8).

For all the cases considered here, the values of the parameters are set equal to λ = 1 and ℓ = 1.
The mass of the evaporating solution is fixed equal toM = 0.1 (in these units).

As a first test, we have verified the accuracy of the integration algorithm in the absence of
backreaction, i.e., for N = 0, by comparing the numerical solution with the analytical classical
one (I.3.63). Overall, we find that the relative difference between the numerical and the analytical
solutions is smaller than 1% as long as we consider large negative values of x−, while it increases
for x− → 0, staying however ≲ 20% (see Fig. I.3.9). We checked that increasing nsteps leads to



Evaporation of two-dimensional regular black holes 59

Figure I.3.8: Schematic representation of the numerical algorithm adopted to numerically integrate
Eqs. (I.3.79a) and (I.3.79d). We discretize the x+-axis, and for each interval on the latter, we
numerically integrate the field equations along x− using a Runge-Kutta algorithm.

x+ = x0
+

x+ = 5

-200 -150 -100 -50 0
0.00

0.05

0.10

0.15

0.20

0.25

x-

|ϕ
nu
m
(x

-
)-
ϕ
an
(x

-
)|
/ϕ
an
(x

-
)

Figure I.3.9: Relative difference between the numerical (obtained by setting N = 0) and the exact
(I.3.63) solutions at x+ = x+0 and x+ = 5. As it can be seen, the difference increases as we move
towards small negative values of x−. The numerical integration has been carried out on an x+

interval of [x+0 , x+max] = [1, 5], while on the x− direction, in the interval [−220, 0]. The parameters
of the integration are the following: λ = ℓ = 1, M = 0.1 (in these units), nsteps = 1000, so
that ∆x = 4 · 10−3. We checked that, for higher values of nsteps, the relative differences decrease,
without however altering the qualitative final results and with a much higher computational time.

an improvement in the accuracy of the integration algorithm (the relative differences decrease),
without, however, altering the qualitative final results and at the price of having a much longer
computational time. Although a relative discrepancy of 20% may seem quite important, one
should consider that, in the presence of backreaction (see below), the extremal solution is reached
at values of x− for which the relative discrepancy stays always below 5%. As in the following
we are not interested in the exact details of the evaporation process, but rather in its qualitative
evolution and outcome, we will adopt nsteps = 1000 anyway, favouring time efficiency over high
precision.

After this preliminary test, we analyse three different cases of increasing N : N = 0, N = 24
and N = 2400, to study the backreaction effects in different regimes.

The x−-profiles of ϕ and ρ, together with their variations ∆ϕ = |ϕ(x−) − ϕext(x
−)|, ∆ρ =

|ρ(x−) − ρext(x
−)| with respect to the extremal configurations, are computed numerically for

several values of x+ in the range x+ ∈ [x+0 , 5]. At x+ = x+0 , the numerical solutions match exactly
the extremal ones, as it should be according to the boundary condition imposed at the shock wave.
For simplicity, in Figs. I.3.10 to I.3.12, we only show the plots for x+ = 5 and N = 0, 24, 2400. The
plots for the other values of x+ in the range considered here have the same qualitative behavior.
Moreover, given the increase in computational errors near x− ∼ 0, we performed the integration
in the range x− ∈ [−220, 0] for convenience. We have checked that the results do not differ from
those shown, even if we extend the x− axis to positive values: the convergence to the extremal
solution either does not occur in the entire axis or always occurs in the x− < 0 region.
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Figure I.3.10: Upper panels: Comparison between the numerical (solid blue line) and analytical
extremal (dashed orange line) dilaton solutions (left figure), and difference between the two (right
figure), as functions of x−. Lower panels: Comparison between the numerical (solid blue line)
and analytical extremal (dashed orange line) metric solution (left figure), and difference between
the two (right figure), as functions of x−. All figures are evaluated at x+ = 5 and with N = 0, in
units where λ = ℓ = 1.

ForN = 0, i.e., in the absence of backreaction, we see, as expected, that the black-hole solution
remains different from the extremal one for every value of the coordinate x−. ForN = 24, namely
when backreaction effects begin to become relevant, we see that, although ∆ϕ and ∆ρ remain
different from zero for all values of x−, they begin to decrease towards zero after reaching a
maximum. For N ≫ 24, i.e., N ∼ 2400, when backreaction effects become stronger, we see that
∆ϕ and ∆ρ become always zero at some finite (negative) value of x−. In general, the largerN , i.e.,
the stronger backreaction effects, the faster the evaporating configuration reaches the extremal
GS. As remarked above, the convergence to the extremal configuration occurs at values of x− for
which relative numerical errors are less than 5%.

It is very important to notice that the convergence of the excited, evaporating solution towards
the extremal one is non-monotonic. As one can see clearly from the plots shown (but the same
happens also for other values of N not shown here), ∆ϕ and ∆ρ stay almost flat in the region of
large ϕ (corresponding to x− ≪ 0). Then, they reach a sharp maximum at relatively large values
of x− before falling rapidly toward zero. This behavior cannot be traced back to backreaction
effects, since it is present also in the N = 0 case. The sharp maximum seems to be related to
the presence of the maximum in the potential V at (relatively) small values of the dilaton (see
Fig. I.3.1), thus to a self-interaction effect of the dilaton. On the other hand, this maximum in V
is also responsible for both the presence of two horizons (instead of only one) and for the phase
transition small/large black holes (see Sections I.3.1.3 and I.3.3).

Summarizing, the numerical integration of Eqs. (I.3.79) clearly shows that, differently from
what we obtained in the rough quasistatic description, the effect of the backreaction is to bring
the excited, evaporating solution back to the extremal state after a finite time, whenN is chosen to
be sufficiently large, i.e., at least N ∼ O(102 − 103).
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Figure I.3.11: Upper panels: Comparison between the numerical (solid blue line) and analytical
extremal (dashed orange line) dilaton solutions (left figure), and difference between the two (right
figure), as functions of x−. Lower panels: Comparison between the numerical (solid blue line)
and analytical extremal (dashed orange line) metric solution (left figure), and difference between
the two (right figure), as functions of x−. All figures are evaluated at x+ = 5 and with N = 24, in
units where λ = ℓ = 1.

I.3.7 Entanglement Entropy and the Page curve

In this section, we compute the entanglement entropy (EE) of Hawking radiation, described here
as a collection ofN massless scalar fields, in the 2D nonsingular black-hole geometry. By assuming
that the evaporation process is quasistatic, we also determine the time variation of the EE and
construct the related Page curve.

The EE of the radiation can be computed by using Kruskal coordinates, covering the region
outside the outer event horizon of the black hole,

κX± = ±e±κx±
←→ x± = ± 1

κ
ln
(
±κX±) , (I.3.88)

where κ is the surface gravity at the outer event horizon. In these coordinates, the conformal
factor of the metric (I.3.53) can be written as

e2ρ =
f(r)

−κ2X+X− . (I.3.89)

The entanglement entropy of N massless scalar fields in two spacetime dimensions on a line can
be evaluated by tracing out the degrees of freedom in a spacelike slice [x, y] connecting two points.
The resulting expression is6 (see, e.g., Refs. [54, 55, 303, 304])

Smatter =
N

6
ln d2(x, y), (I.3.90)

where d(x, y) is the geodesic distance between x and y. In principle, Eq. (I.3.90) is valid for a
QFT on a flat spacetime [305], but it has been generalized to static curved spacetime [303], where

6This expression should depend also on ultraviolet cutoffs, which are here considered as addittive constants.
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Figure I.3.12: Upper panels: Comparison between the numerical (solid blue line) and analytical
extremal (dashed orange line) dilaton solutions (left figure), and difference between the two (right
figure), as functions of x−. Lower panels: Comparison between the numerical (solid blue line)
and analytical extremal (dashed orange line) metric solution (left figure), and difference between
the two (right figure), as functions of x−. All figures are evaluated at x+ = 5 and with N = 2400.
The x− axis has been cut at the point where the numerical solution matches the extremal one.

d2(x, y) reads

d2(x, y) = −
[
X+(x)−X+(y)

] [
X−(x)−X−(y)

]
eρ(x)eρ(y). (I.3.91)

To compute the entanglement entropy, we construct a spacelike surface encompassing different
regions of the black hole. In Fig. I.3.13, this surface is ΣL ∪ I ∪ ΣR, where ΣL and ΣR are two
hypersurfaces on the outside regions of the two copies of the black hole, where an observer collects
Hawking radiation. They are the portion of the hypersurface, where the radiation degrees of
freedom are defined. They are anchored to two timelike surfaces (dashed black lines in Fig. I.3.13)
at the points b+ = (tb, b) (right wedge) and b− = (−tb + iβ/2, b) (left wedge). The surface J
defines, instead, the interior region of the black hole. The radiation quantum state over the whole
hypersurface ΣL∪ I ∪ΣR is pure. When tracing out the interior degrees of freedom in I , we obtain
the mixed state of the radiation described by the density matrix ρrad, which can therefore be used
to compute the entanglement entropy. This is reminiscent of the thermofield double state of the
black hole [256, 306]: the entanglement entropy takes into account the correlations between the
two disjointed copies of the black hole (right and left wedges). Since we have radiation outside
the black hole, there will be two copies of this thermal bath (the two regions ΣL and ΣR).

In our case, Eq. (I.3.91) reads

d2(b+, b−) = −
1

κ2

[
eκtb+κb − e−κtb+κbeiκβ/2

] [
−e−κtb+κb + eκtb+κbe−iκβ/2

] f(b)
e2κb

. (I.3.92)

This is valid off-shell. On shell κ→ κH, we have βκH
2 = π, and thus

d2(b+, b−) =
4f(b)

κ2H
cosh2(κHtb). (I.3.93)

Finally, the EE of the matter fields is

Smatter =
N

6
ln

[
4f(b)

κ2H
cosh2(κHtb)

]
. (I.3.94)
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Figure I.3.13: Penrose diagram of the maximally extended spacetime of the nonextremal con-
figuration. The two points b+ and b−, belonging to the right and left wedges, respectively, are
highlighted, and represents points anchored to two timelike curves (dashed black lines in the two
wedges). The union between the three hypersurfaces ΣL ∪ I ∪ ΣR (the red and orange curves) is
a spacelike surface and the state defined on it is pure. The radiation is defined on ΣL and ΣR and
its state is mixed.

As stressed above, this is valid as long as we consider the static case. However, κH varies due to
the evaporation process. To get a qualitative picture of the behavior of the entropy in time, we can
assume that the evaporation process happens in an adiabatic way, so that we can use a quasistatic
approximation. The evaporation is thus again modelled in terms of a sequence of static states
with decreasing mass. As we have seen explicitly in Section I.3.4.3, the quasistatic approximation
is reliable as long as the semiclassical one is valid. In a first approximation, therefore, we can use
the time variation of the event horizon rH = rH(t), computed as a solution of the SB law (I.3.45),
and plug it into the expression of the surface gravity

κH(rH) =
f ′(rH)

2
=

r4H − 2ℓ3rH

2λ
(
ℓ3 + r3H

)2 . (I.3.95)

The qualitative result (obtained neglecting the irrelevant constants N
6 ln [4f(b)]) is plotted in

Fig. I.3.14. As in singular black-hole models, initially the entanglement entropy of the radiation
grows. However, this growth reaches a maximum at the “Page time” tP and then the entropy
starts decreasing, due to the peculiar form of the surface gravity, which is related to the absence
of a singularity.

It is interesting to note that tP physically coincides with the onset time of the second order
phase transition (graphically, the intersection point between the solid blue and the horizontal
dotted lines in Fig. I.3.6b). This feature was found before for nonsingular black holes in Ref. [258],
where it was noted that the presence of the dS core traps Hawking modes, which cause a decrease
in entropy once freed from the trapping region. This indeed happens as we get closer to the
extremal configuration, right after the onset of the second order phase transition, as the role of the
inner horizon becomes increasingly important. This release of information could also be related
to the peculiarities of the latter, which has negative surface gravity, causing an outburst of energy
in the final stages of the evaporation [259], a process similar to the mass inflation.

The mechanism described above is qualitative similar to that taking place in the island pro-
posal [54–56, 255] (for an application to two-horizon models, both singular and regular, see, e.g.,
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Figure I.3.14: Qualitative time variation of the entanglement entropy of matter fields, according
to Eq. (I.3.94), where we considered the time variation of the surface gravity, calculated using
the solution of Eq. (I.3.45). The vertical, dashed green line corresponds to the maximum of the
curve (the Page time tP), while the vertical dashed orange one indicates the time tB at which the
semiclassical approximation should break down.

Refs. [307–309]; for an application to dS spacetime, see, e.g., Refs. [310, 311]), where the resolution
of the information paradox is traced back to a transition in the behavior of the entanglement
entropy functional. At late times (right after the Page time), this functional starts receiving con-
tributions from nontrivial configurations in the black hole interior (the “islands”). This allows to
correctly keep track of the entanglement structure of both the black hole and the radiation sub-
systems and to reconstruct the Page curve. Our approach provides, at qualitative level, a physical
explanation for the appearance of such configurations in the black-hole interior. In our descrip-
tion, the islands correspond to the inner horizon, while the transition in the entropy functional is
physically realized by the second order phase transition7. In this work we have only considered
nonsingular black holes with two horizons, characterized therefore by a timelike singularity. It
is, therefore, currently unclear if and how the results of the present work compare with the is-
land rule applied to black holes possessing spacelike singularities (see, e.g., Refs. [312–314])8. In
general, we expect the single-horizon case to be qualitatively different from the two-horizon one.
On the other hand, at least in some particular cases, the behavior of regular models with a single
event horizon could be not so drastically different from that of two-horizon black holes (see, e.g.,
Refs. [5, 119, 275, 276]).

The assumptions used so far are the validity of the quasistatic and the semiclassical approxi-
mations. As we have seen in Section I.3.4.3, the semiclassical approximation (and hence also the
quasistatic one) breaks down near extremality, when we reach the energy gap (I.3.52). This hap-
pens at the time corresponding to the vertical dashed orange line in Fig. I.3.14. Therefore, we have
to cut the Page curve when the semiclassical approximation breaks down. What happens beyond
this point cannot be inferred from our semiclassical description of the dynamics. In particular,
we cannot assess whether the decrease in EE continues until it becomes zero at extremality, as it
would be expected for an evaporation process that leaves behind a quantum pure state. Results
from AdS2 quantum gravity indicate the occurrence of a quantum phase transition from the LDS
vacuum to the AdS2 CDV [285]. Similarly to what happens in the case of extremal charged black
holes, the near-extremal, near-horizon state of 4D nonsingular Hayward black holes, described by
the AdS2 × S2 spacetime, could have a purely topological entropy content, explained in terms of
AdS2 fragmentation [215].

7As it was noted in Ref. [308], the expression for the entanglement entropy in the island, when applied to singular
two-horizon models, becomes mathematically ill-defined for the extremal configurations, as the boundary of the islands
necessarily ends at the singularity at r = 0. This problem is naturally avoided when dealing with regular models, as we
do in this work.

8It was shown in Ref. [314] that the quantum extremal surface, identifying the position of the island, could meet the
singularity during the evaporation, leading to the impossibility of following the evaporation process until completion, at
least in this setup. The absence of the singularity could possibly lead to a resolution of this problem.



Chapter I.4
Testing regular BHs with S2 orbits

Since its formulation, General Relativity (GR) has been widely tested in several different contexts.
In particular, one of its most intriguing predictions is the existence of black holes, whose possible
presence has been tested both directly [16, 246, 247] and indirectly [315, 316]. Although black-hole
imaging, gravitational wave and iron-line observations are compatible with the presence of Kerr
black holes [12, 15, 16, 246, 317], there is still room for small deviations, which could be tested with
present and future experiments. For this reason, there has been an increasing interest in studying
black-hole mimickers. These objects share some properties with GR solutions but allow for a
different phenomenology at the horizon scale, which, if observed, would represent a smoking
gun for deviations from GR.

Regular black holes are among the most fascinating mimickers. Contrary to classical black
holes which present a singularity at their core [87, 114], indicating the breakdown of the classical
theory, these objects are completely regular everywhere. This point is particularly significant,
since we expect a quantum theory of gravity to resolve the classical singularity problem. Although
there have been some attempts to capture the main properties of the fundamental theory [61, 318,
319], a clear understanding of its dynamics and of the mechanism leading to the formation of
these regular spacetimes is still lacking. Consequently, mainly bottom-up approaches have been
followed until now [1, 84, 118, 120, 206, 260, 320–322], in which one usually modifies GR solutions
to test possible deviations in a phenomenological fashion. This is particularly suitable, for instance,
to study orbits of test particles [323, 324], and it has been used to investigate modifications to the
black-hole shadow, gravitational waves and X-ray emission (see, e.g., Refs. [13, 15, 90, 92, 171,
325–328] and references therein). An intriguing feature of nonsingular black-hole models is the
presence of a new length scale (hair) ℓ, which can be hierarchically larger than the Planck scale
[1]. An important question to be answered is whether such models with super-Planckian hair can
be excluded by present experimental data.

In this chapter, following this type of approach, we consider the Fan-Wang regular black-hole
metric [158], a particular case of the general class of models explored in Ref. [1]. The reason for
this choice is that the corrections to the Schwarzschild spacetime decrease sufficiently slowly to be
experimentally observable also at great distances from the horizon. Therefore, we test our model
with the orbital motion of the S2 star around the compact radio source Sagittarius A* (SgrA* [247])
in the Galactic Center (GC) [329, 330]. If this spacetime cannot be tested with current S2-star data,
no other models belonging to the same class can.

In this chapter, we use units in which c = ℏ = kB = 1.

I.4.1 The model

In this chapter, we discuss how to constrain the deformation parameter ℓ introduced in Chapter I.2,
responsible for the smearing of the classical singularity. Again, The starting point is the general
class of dS-core BHs, which can be parameterized in spherical coordinates, as (cfr. Eqs. (I.2.3),
(I.2.6), (I.2.7), (I.2.10) and (I.2.22))

ds2 = −A(r)dt2 + dr2
A(r)

+ r2dΩ2, (I.4.1)
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where dΩ2 = dθ2 + sin2 θdϕ2 is the line element on the unitary 2-sphere, and

A(r) = 1− RS

ℓ
F
(r
ℓ

)
. (I.4.2)

We recall that the function F can be written in terms of the MS mass as

m(r) =
rRS

2Gℓ
F
(r
ℓ

)
. (I.4.3)

As discussed in the previous chapter, one way to avoid the presence of the classical curvature
singularity at r = 0 is to require a dS-like behavior at the BH core. One way of achieving this is
by requiring the function F (r/ℓ) to behave as F ≃ αr2/ℓ2 +O

(
r3/ℓ3

)
, with α > 0, when r ≪ RS.

On the other hand, asymptotic flatness requires F (r/ℓ) ≃ ℓ/r + βℓ2/r2 + O
(
ℓ3/r3

)
for r ≫ RS.

The parameters α and β are two dimensionless parameters related to the dS length scale and to
the strength of the corrections at infinity, respectively.

In the past, there have been several proposals to test GR predictions against other possibili-
ties, the latter coming from theories beyond GR or from phenomenological modifications of the
Schwarzschild and Kerr metrics (see, e.g., Ref. [105] and references therein for tests with electro-
magnetic signals, and Refs. [15, 18]). In this chapter, we discuss our recent tests of the metric of
a spherically-symmetric, static spacetime with the orbits of stars around supermassive BHs. In
particular, the most accurate and complete dataset of this kind is the one relative to the motion of
the S2 star around Sagittarius A∗. Indeed, the S2-star motion happens sufficiently far away from
the central BH that the effects of the spin of the latter are completely negligible, a fact that makes
this system suitable for testing our regular BH models and constraining the quantum-deformation
parameter ℓ.

To do so, we consider a particular case of the Fan-Wang regular-black-hole metrics [158], i.e.,

F
(r
ℓ

)
=

ℓr2

(r + ℓ)3
, (I.4.4)

for which α = 2GM/ℓ and β = 6GM/ℓ.
The main reason to choose this metric is that it givesO

(
ℓ2/r2

)
corrections to the Schwarzschild

geometry at great distances, which are the strongest possible admitted in the general class de-
scribed in Chapter I.2 and compatible with the Schwarzschild asymptotics, reason why we expect
this spacetime to show important phenomenological differences with respect to the GR classical
solution (at least when ℓ≫ ℓP). Moreover, any other solution will be less constrained, when tested
against the S2-star data, due to the weaker asymptotics. Therefore, if this simple model cannot
be tested with this system, no other models belonging to the same class can. In addition, while
other metrics (with corrections of O

(
ℓ3/r3

)
or O

(
ℓ4/r4

)
, corresponding to the Bardeen and the

Hayward spacetimes, respectively) have been extensively investigated, this model is relatively less
studied. Finally, the metric has also a nice astrophysical analogy. Indeed, the density associated
with the MS mass that generates the considered spacetime is

ρ =
3Mℓ

4π(r + ℓ)4
, (I.4.5)

whose large r behavior resembles that of some density profiles of dark matter in elliptical and
spherical galaxies [331, 332] with different characteristic scales involved.

Also in this case, as already discussed in the previous chapter, the spacetime structure is
the same as the general class to which this model pertains. It has an outer event horizon and
an inner Cauchy horizon, respectively located at r = rH and r = r−, where rH and r− are
the positive roots of A(r) = 0. The two horizons coincide in the extremal configuration where
rH = r− = rc = 2ℓc and ℓc = 8GM/27. Moreover, when ℓ > ℓc, the horizon disappears and the
configuration represents a compact horizonless object.

I.4.2 Black hole thermodynamics

Analogously to the spacetime structure, the Fan-Wang model’s thermodynamic behavior is similar
to the general one discussed in Section I.2.3.3. We start by defining the Hawking temperature of
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Figure I.4.1: Left panel: Temperature as a function of the horizon radius for the Fan-Wang minimal
model. As for the general case discussed in Section I.2.3.3, also this model shows a nonmonotonic
behavior of the temperature, which is peaked for rH = rH,max = (2 +

√
6)ℓ. We also highlight

the presence of the two branches I and II, where the temperature is respectively an increasing
and a decreasing function of the horizon radius. Right panel: Specific heat as a function of the
horizon radius for the Fan-Wang model. Again, the behavior of this quantity is analogous to the
one shown in Section I.2.3.3. The specific heat is positive for rc < rH < rH,max, it diverges for
rH = rH,max and is negative for rH < rH,max. The divergence at rH = rH,max signals the onset of a
second-order phase transition.

the BH in terms of the event horizon radius as

TH =
1

4π

dA(r)
dr

∣∣∣∣
r=rH

=
rH − 2ℓ

4πrH(ℓ+ rH)
, (I.4.6)

and we rewrite the BH mass in terms of its outer horizon location as

M =
(ℓ+ rH)

3

2Gr2H
(I.4.7)

for convenience. Notice that the behavior of the temperature is nonmonotonic (see Fig. I.4.1: it
has a peak at rH = rH,max = (2 +

√
6)ℓ and goes to zero for rH → ∞ and rH → rc, exactly as the

other models analyzed in Section I.2.3.3. This behavior indicates the presence of metastable states,
with the same temperature but with different radii and thermodynamic properties. Indeed, by
inspecting the specific heat of this model, given by

CH =
dM
dTH

= − 2π(rH − 2ℓ)(ℓ+ rH)
4

GrH(r2H − 4ℓrH − 2ℓ2)
, (I.4.8)

we can clearly see the presence of two different branches. The first branch (branch I) is characterized
by quantum black holes with rH ≃ rc ≃ ℓ and a positive specific heat (because of the increasing
behavior of the temperature). Branch I also include the extremal configuration, for which CH = 0.
The second branch (branch II), instead, is characterized by a more Schwarzschild-like, classical
behavior (at least for great values of the horizon radius), large horizon radii rH > rH,max and
a negative specific heat closely resembling that of the vacuum general-relativity solutions. At
rH = rH,max, the specific heat diverges since dTH/dM = 0: this signals the onset of a second-order
phase transition that separates the quantum-like branch from the classical one. The separation
between the two branches can also be translated in terms of the quantum-deformation parameter
ℓ. Quantum-like black holes, indeed, correspond to those having ℓH,max ≲ ℓ ≤ ℓc, being ℓH,max =
4(3−

√
6)/9 ≃ 0.245GM , while the classical ones are those with ℓ < ℓH,max. This behavior is shown

in the right panel of Fig. I.4.1.
In order to assess which branch is thermodynamically favored we compute the free energy

F = M − THS, where M and T are given respectively by Eqs. (I.4.6) and (I.4.7), while the
entropy can be computed with the generalized formula in terms of the integral of the mass
given by Eq. (I.2.33). As shown in Fig. I.4.2, the quantum configurations, corresponding to
rc ≤ rH < rH,max, are thermodynamically favored with respect to their classical counterparts,
corresponding to rH ≥ rH,max, since they retain the least free energy.
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Figure I.4.2: Free energy as a function of the BH temperature. We explicitly show the presence
of two branches, I (in blue) and II (in red), corresponding to stable, quantum black holes and to
classical, unstable black holes.

I.4.3 Orbits of test particles

In order to test the Fan-Wang metric with the S2-star orbital data, we first need to analyze the
orbits of a generic test particle in this spacetime. Here, we study such orbits using a standard
procedure (see, e.g., Ref. [333] for a more extensive presentation of the method). Although we
already discussed the behavior of null orbits in Section I.2.3.5, here we show a different method
for obtaining the equations of motion for both massive and massless particles in a spherically
symmetric spacetime and we finally specialize the formalism to the Fan-Wang model.

We start by writing the Lagrangian for the geodesic motion around this spacetime

L =
1

2
gµν ẋ

µẋν =
1

2

[
−A(r)ṫ2 + ṙ2

A(r)
+ r2θ̇2 + r2 sin2 θ ϕ̇2

]
. (I.4.9)

Here, xµ expresses the position of the particle in the specified coordinate system, and the dot
indicates differentiation with respect to some affine parameter λ. We can simplify Eq. (I.4.9) by
using the isometries of the spacetime. Indeed, the quantities

pt = ∂tL = −A(r)ṫ = −E , (I.4.10a)
pϕ = ∂ϕL = r2 sin2 θ ϕ̇ = L, (I.4.10b)

are the conserved momenta related to the symmetries under time translations and rotations in the
equatorial plane, respectively, while E is the energy of the particle andL is its angular momentum.
Moreover, using the Euler-Lagrange equations, the equation of motion for the θ component reads

r2θ̈ + 2rṙθ̇ − r2 sin θ cos θϕ̇2 = 0. (I.4.11)

We can easily see, from Eq. (I.4.11), that by rotating the reference frame to set θ(λ = 0) = π/2 and
(̇λ = 0) = 0, then θ = const. = π/2 for any value of the affine parameter λ. Therefore, without
loss of generality, we can focus on equatorial orbits only. Finally, since the Lagrangian does not
depend explicitly on the affine parameter, we see that the Hamiltonian

H = L = −1

2
ϵ2 (I.4.12)

is also conserved. Here, the parameter ϵ = ±1 for timelike orbits and ϵ = 0 for null trajectories.
Now, using Eqs. (I.4.10) and (I.4.12) and fixing the reference frame to θ = π/2, we get an

equation for the radial coordinate r

ṙ2 +A(r)

(
ϵ2 +

L2

r2

)
= E2. (I.4.13)
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Figure I.4.3: Left panel: effective potential as a function of the radial coordinate for different
values of the angular momentum L and ϵ2 = 0 (null orbits). Right panel: effective potential as
a function of the radial coordinate for different values of the angular momentum L and ϵ2 = 1
(timelike orbits).

Fan-Wang

Schwarzschild

0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ℓc
LR / G M

ℓ / G M

r L
R
/
G
M

Figure I.4.4: Light-ring location for the Fan-Wang model as a function of the quantum-deformation
parameter ℓ. We also highlight the light-ring radius for the Schwarzschild spacetime, located at
r = 3GM .

Notice that Eq. (I.4.13) can be interpreted as the energy conservation law for the motion in the
spacetime described by the metric function A. Indeed, the term

Veff = A(r)

(
ϵ2 +

L2

r2

)
(I.4.14)

plays the role of an effective potential whose properties determine the trajectory of the particle.
The qualitative behavior of the effective potential is shown in Fig. I.4.3. When ϵ = 0, the potential
behaves as described in Section I.2.3.5. Veff has a minimum in the region r− < r < rH and a
maximum at r > rH, the latter corresponding to an unstable circular orbit, i.e., the light ring. The
light-ring radius, in particular, decreases when ℓ increases and disappears when ℓ > ℓLR

c ≃ 0.317.
The photon-ring location, as measured by an asymptotic observer, is shown in Fig. I.4.4. On the
other hand, when ϵ = ±1, i.e., for timelike geodesics, the potential can have up to three extrema,
depending on the angular momentum. The first one is again located between the two horizons,
at some r ∈ (r−, rH). The other two correspond to a maximum and a minimum that represent the
marginally bound and the stable circular orbits, respectively.

To proceed in our analysis and study the orbits of stars around such a BH, we rewrite Eq. (I.4.13)
in terms of the new variable u = 1/r. Moreover, since we want to describe the trajectory on the
orbital plane, we compute the derivatives in terms of the azimuthal angleϕ. The equation becomes(

du
dϕ

)2

+A(u)

(
ϵ2

L2
+ u2

)
=
E2

L2
, (I.4.15)
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where A(u) reads now

A(u) = 1− 2GMu

(1 + uℓ)3
. (I.4.16)

In order to further simplify Eq. (I.4.15), we differentiate with respect to ϕ and we get

d2u

dϕ2 +A(u)u+
dA
du

(
ϵ2

L2
+ u2

)
= 0. (I.4.17)

In the following, we will focus on timelike geodesics, therefore we set ϵ2 = 1. For simplicity,
we also introduce the dimensionless quantities σ = (GM/L)2, ℓ̄, and the new variable ξ =
GMu/σ3. The advantage of these new variables is that, when σ is small, Eq. (I.4.17) can be
solved perturbatively. This analysis is well motivated for the S2-star orbits since σ = 1.9 × 10−4.
Therefore, we expand the solution as ξ = ξ0 + σξ1 +O

(
σ2
)
. At zeroth order we obtain

d2ξ0
dϕ2 + ξ0 = 1, (I.4.18)

which gives the well-known Newtonian orbits given by ξ0 = 1+ e cosϕ, where e is the eccentricity
of the orbit. Here, C1,2 are constants of integration, to be fixed with the boundary conditions. We
are more interested in the first correction which solves the equation

d2ξ1
dϕ2 + ξ1 = 3ξ0

(
ξ0 − 2ℓ̄

)
. (I.4.19)

The linear term in the right-hand side of the equation depends on the particular asymptotics of
the Fan-Wang spacetime and is present, at this order, only if the corrections to the large-r behavior
of the metric is A(r ≫ ℓ) ≃ 1− 2GM/r + βℓ2/r2 +O

(
ℓ3/r3

)
. Moreover, notice that the quantum

deformation introduced by the parameter ℓ enters in Eq. (I.4.19) with an opposite sign with respect
to the usual Schwarzschild equation. This strongly impacts the behavior of orbits in this model
since it modifies the precession angle by a quantity proportional to ℓ, as we shall show in the
following.

Eq. (I.4.19) can be solved using standard methods and gives

ξ1 =
3

2

(
e2 − 4ℓ̄+ 2

)
+ 3eγ cosϕ− 1

2
e2 cos 2ϕ+ 3eγϕ sinϕ, (I.4.20)

where γ = 1− ℓ̄. As in the Schwarzschild case, the dominant term is clearly the one proportional
to ϕ sinϕ since after a few orbits it becomes large while the others stay bounded. For this reason,
neglecting subdominant contributions, we can rewrite the solution as

ξ = 1 + e cos [(1− 3γσ)ϕ] , (I.4.21)

from which we see that the precession angle is given by ∆ϕ ≃ 6πσγ = 6πσ(1− ℓ̄). While the usual
Schwarzschild result is obtained in the limit ℓ → 0, we see that ∆ϕ decreases linearly with the
quantum deformation, and the precession becomes retrograde for ℓ̄ > 1, i.e., for ℓ > GM . This
interesting feature is not present in the orbits of the Schwarzschild spacetime, therefore can be
used to strongly constrain the model.

I.4.4 Numerical integration of the equations of motion

In order to probe the possible existence of the hair ℓ in Section I.4.1, we have developed an orbital
model for the S2 star in the galactic center based on the numerical integration of Eq. (I.4.17). In
particular, one can recast the energy E and the angular momentum L in Eq. (I.4.17) in terms of
the classical Keplerian elements: the semi-major axis a, the eccentricity e, the time of pericenter
passage tp and the orbital period T (which can, in fact, be derived fromM and a through Kepler’s
third law). A choice of these parameters uniquely identifies a Keplerian ellipse on the equatorial
plane, that we assume to osculate the real trajectory of the star at a given time. We hence make
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Figure I.4.5: Left panel: orbital precession for the S2 star for our model as a function of ℓ. The
black solid line reports the results of our numerical integration of the geodesic equations in
Eq. (I.4.17), and the blue dashed line represents our first-order perturbative prediction for the
precession angle. For ℓ = 0 we obtain the Schwarzschild precession of 12.1 arcmin per orbital
period observed in Ref. [335]. Moreover, we are able to confirm the perturbative result for small
values of ℓ up to a few tens of gravitational radii, where departure from the linear trend in ∆ϕ is
exhibited by the numerical prediction. Finally, we confirm numerically that for ℓ ≥ GM , the orbital
precession becomes retrograde. Right panel: marginalized posterior probability distribution for
the parameter ℓ resulting from our MCMC analysis. We are able to constrain the parameter ℓ by
providing a 95% confidence level upper limit of ℓ ≲ 0.019 AU, corresponding to ℓ ≲ 0.47GM .

use of such ellipse to set the initial conditions at a time t0 that, without loss of generality, we fix to
be the last time of apocentre passage for S2 in ∼2010.35.

Starting from such initial conditions, we integrate the geodesic equations numerically by
means of a fourth-order Runge-Kutta scheme, over approximately two orbital periods, covering
the time range that spans from 1990 to 2017. The use of an adaptive step size in our integration
algorithm ensures control over the integration relative error that we fix to be ≲ 10−12. Finally,
to compare our synthetic orbit with public data, we need to reconstruct the observable quanti-
ties for S2, i.e., the astrometric sky-projected position over time for an Earth-based observatory
and the spectroscopically-measured line-of-sight velocity of the star. To this aim, we perform a
geometric projection of the star’s trajectory in the observer reference frame by means of the Thiele-
Innes formulas computed from the three angular orbital elements: i, the orbital inclination; Ω,
the longitude of the ascending node; ω, the argument of the pericenter. Additionally, for the
spectroscopic observables, we take into account the post-Newtonian time-dilation effects on the
light emitted by the star, namely the special-relativistic transverse and longitudinal Doppler effect
and the general-relativistic gravitational redshift (for more details on how such quantities can be
appropriately accounted for, we refer to previous works on the subject [266, 324]).

The orbital precession is naturally taken into account on our synthetic orbits since we directly
integrate the fully-relativistic geodesic equation (I.4.17). As a matter of fact, our numerically-
integrated orbit allows us to effectively validate the perturbative results for the precession angle
by computing ∆ϕ as the angle spanned by the star between two subsequent radial turning points.
In Fig. I.4.5 we report a comparison between the numerically computed orbital precession (black
solid line) for the S2 star as a function of the parameter ℓ, once all the other Keplerian elements
have been fixed to the ones of S2, as derived from the analysis in Ref. [334] (based on a Newtonian
orbital model). For ℓ = 0 we obtain the Schwarzschild precession of 12.1 arcmin per orbital period
observed in Ref. [335]. The linearly decreasing trend predicted by our perturbative analysis
(dashed blue line) is confirmed up to a few tens of gravitational radii for the parameter ℓ, where
our numerical predictions start to depart. Moreover, we are able to confirm numerically the
prediction that the orbital precession becomes retrograde for ℓ ≥ GM .
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I.4.5 Constraining the model with S2 orbital data

We have explored the parameter space of our orbital model for the S2 star, using the publicly
available orbital data for S2. In particular, we have used near-infrared astrometric positions and
radial velocities, coming from 25 years of uninterrupted monitoring of stellar orbits in the GC
between ∼ 1992 and ∼ 2017, presented in [334]. These data do not cover the last S2 pericenter
passage in May 2018 nor its subsequent motion observed by the GRAVITY Collaboration [335,
336]. Information provided by such portion of the orbit is crucial in the deed of constraining
the gravitational field of SgrA* [337]. However, as demonstrated in previous works [266, 323],
one can consider orbital data that do not cover the pericenter passage and, then, add as a single
datapoint the precession measurement (fSP = 1.10± 0.19 from [335], where fSP = 0 corresponds
to a non-preceding ellipse from Newtonian gravity and fSP = 1 corresponds to the GR rate of
orbital precession for the Schwarzschild spacetime).

Besides the knowledge of ℓ, the full orbital model requires the knowledge of the seven Keplerian
parameters, (i.e., the time of pericenter passage, tp; the orbital period, T ; the semi-major axis,
a, which implies leaving the mass of the central object, M , as a free parameter, as well; the
eccentricity, e; the orbital inclination, i; the longitude of the ascending node, Ω; and the argument
of the pericenter, ω), along with the observer galactocentric distance D and 5 reference frame
parameters to take into account potential offsets and drifts of the astrometric reference frame
[334, 338]. The 14-dimensional parameter space has been explored through a Markov-Chain
Monte Carlo (MCMC) algorithm. More specifically, we employed the affine invariant ensemble
samplers [339] implemented in [340]. For the sake of generality, we have employed uniform priors
on all the Keplerian parameters of our orbital model corresponding to an interval centered on
the best-fit values from [334], with amplitude being 10 times the corresponding observational
uncertainty. For the reference frame parameters, on the other hand, we have taken priors from the
independent analysis in [338]. The interval for the hair ℓ has been set heuristically between 0 and
5 AU, corresponding to over 100 gravitational radii of the central source. The likelihood adopted
for our analysis is the following

logL = −1

2

∑
i

(R.A.i − R.A.obs,i√
2σR.A.,i

)2

+

(
Deci −Decobs,i√

2σDec,i

)2

+

(
RVi − RVobs,i√

2σRV,i

)2

+

(
∆ϕ/∆ϕGR − fSP√

2σfSP

)2
 , (I.4.22)

where R.A., Dec, and RV correspond to the sky-projected right ascension and declination of S2 and
its radial velocity, respectively, while∆ϕGR is the precession angle predicted for the Schwarzschild
spacetime. The subscript obs represents the observed quantity at the i-th epoch, and the σ’s are the
corresponding observational uncertainties. As done in [323], the factors

√
2 in the denominators

are introduced in order not to double count data points when considering the last term with the
orbital precession (that has been derived with the same dataset).

The results of our posterior analysis are presented in Table I.4.1 (while a detailed, full posterior
distribution is shown in Fig. I.6.1 of Appendix I.B) where the medians and the 68% confidence
level intervals for each bounded parameter are reported. They agree within 1σ with previous
results in the literature [334]. We are able to place an upper limit ℓ ≲ 0.019 AU (corresponding
to ℓ ≲ 0.47GM ) at 95% confidence level on the additional hair, whose marginalized posterior
distribution is shown in Fig. I.4.5. Finally, we tested deviations from a Schwarzschild black hole
using a mock catalog (for more details see [266]) that mirrors future GRAVITY observations of S2,
and we proved the ability of GRAVITY to improve the upper limit on the hair ℓ derived in this
chapter by a factor ∼ 10.

Our results rule out most horizonless solutions but allow the existence of thermodynamically
stable regular black holes, i.e., models with 0.254 ≤ ℓ/GM ≤ 0.296. Our results show that
regular black holes with super-Planckian hair are not excluded by the S2 star observational data.
The actual proof of the existence of our nonsingular black holes requires the measurement of
ℓ-dependent deviations from GR, which could be detected by observations at the light-ring scale,
e.g., with the black hole shadow or gravitational wave experiments. Nonetheless, we expect our
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Parameter (units) Best-fit Parameter (units) Best-fit

D (kpc) 8.24± 0.22 ω (◦) 65.23+0.78
−0.77

T (yr) 16.050± 0.028 x0 (mas) 0.26± 0.16

tp (yr) 2018.379± 0.024 y0 (mas) −0.04+0.19
−0.20

a (as) 0.1249+0.0011
−0.0010 vx,0 (mas/yr) 0.071+0.053

−0.052

e 0.8828± 0.0024 vz,0 (mas/yr) 0.092± 0.062

i (◦) 134.42+0.48
−0.49 vz,0 (km/s) −3.4± 4.5

Ω (◦) 226.75+0.83
−0.82 ℓ̄ ≲ 0.47 (95% c.l.)

Table I.4.1: Results of our posterior analysis for the 14 parameters of our orbital model for the
S2 star. In particular, for the bounded parameters, we derived and reported the 68% confidence
interval around the median of the marginalized distributions. On the other hand, for the parameter
ℓ, our analysis yields an upper limit which, at 95% confidence level, is given by ℓ ≲ 0.019 AU
(corresponding to the dimensionless value ℓ̄ ≲ 0.47).

model not to be a good approximation at that scale, and that a rotating generalization could be
necessary.





Chapter I.5
Probing deviations from Kerr with

superradiance

While nowadays observations agree with numerical simulations based on Einstein gravity, the
current uncertainties on the measurements of the black-hole parameters leave room for alterna-
tives. A possible framework is to describe this freedom by introducing suitable parametrized
deviations from the Kerr geometry. The observed interval values for the black-hole mass M and
angular momentum J = aM can be therefore translated in an allowed range for the deviation
parameters. Of course, we do not expect these deviations to be exceedingly large or they would
be observable in the weak-field regime as well. But, for instance, one can consider non-negligible
deviations from Kerr and obtain the same quasinormal frequencies. If the geometry of the space-
time is different from Kerr only in a small region near the would-be horizon, asymptotically the
geometry would be barely distinguishable from Kerr, leaving a weak signature in the form of
gravitational-wave echoes at late times [51, 341–345].

From this point of view, instead of testing a specific theory against general relativity case by
case and/or a specific black-hole alternative, it could be more convenient to work in a model-
independent framework describing the most generic black holes in any metric theory of gravity.
The idea of this framework is similar to the parametrized post-Newtonian (PPN) formalism [11]
but in this case, it is valid in the whole space outside the event horizon.

In Refs. [90, 165, 166], deviations from general relativity and the general-relativistic black-
hole geometry are written in terms of an expansion in M/r being r some radial coordinate.
Some coefficients are easily constrained with the PPN parameters, while a very large number
of equally important coefficients remains undetermined in the near-horizon region, with the
additional drawback of a lack of a hierarchy among them. Even if this formulation works well for
small deviations from general relativity, it fails for, e.g., Einstein-dilaton-Gauss-Bonnet with large
coupling constants [167].

A more robust general parametrization to describe, respectively, spherically symmetric and
axisymmetric asymptotically flat black holes has been introduced by Konoplya, Rezzolla and
Zhidenko in Refs. [91, 92], and tested to constrain deviations from the Kerr hypothesis with the
iron-line method [168–170] and to produce black-hole shadows simulations [171, 172]. In this
framework, deviations from general relativity and the Kerr metric are given again as an expansion
whose coefficient values can be fixed from observations in the strong-gravity regime (close to
the horizon) and in the post-Newtonian region (far from the black hole). This parametrization
also allows for non-spherical deformations of the horizon, provides a faster convergence of the
series, and typically requires a small number of parameters to approximate known solutions to
the desired precision. Besides, there exists a hierarchy among the parameters.

A different perspective is to modify each mass and spin term in the Kerr metric and test
whether the magnitude of the spacetime curvature matches with that predicted by general rela-
tivity [346]. More recently, the work of Ref. [165] has been extended to the most general stationary,
axisymmetric and asymptotically flat spacetime with separable geodesic equations [347]. How-
ever, even if these parametrizations may depend on a large number of parameters to be fixed with
data, it is natural to think that astrophysical observables—e.g., quasinormal frequencies, orbits of
particles, accretion, parameters of the shadow, electromagnetic radiation—depend only on a few
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of them [348].
A common feature of rotating spacetimes is the multifaceted phenomenon of superradi-

ance [349–351]: in a gravitational system and under certain conditions, the scattering of radiation
off absorbing rotating objects produces waves with amplitude larger than the incident one. For a
monochromatic wave of frequency ω scattering off a body with angular velocity Ω, the superra-
diant condition is satisfied as long as ω < mΩ, being m the azimuthal number with respect to the
rotation axis.

When rotating black holes are surrounded with matter, superradiance gives rise to exponen-
tially growing modes, i.e., black-hole bombs [352, 353]. The scattering of massive fields produces
a similar effect: the mass term can effectively confine the field giving rise to floating orbits and
superradiant instabilities which extract rotational energy away from the black hole [354–356]. The
observation or the absence of effects related to these instabilities can be used to impose bounds
on the mass of ultralight bosons, see, e.g., Refs. [357–361].

Similarly to the Kerr black hole, Kerr-like spacetimes dissipate energy as well as any classical
dissipative system, and the aim of this chapter is to investigate differences and analogies for these
objects with respect to the superradiant scattering around Kerr black holes. We stress that these
spacetimes are not solutions to the field equations of any specific gravitational theory, meaning
that we can only study test fields propagating in these backgrounds while the gravitational-wave
dynamics is excluded. However, in extended theories of gravity exact rotating solutions are
difficult to derive and in some cases they are known only perturbatively in the spin parameter,
or numerically. To our knowledge, there are no studies of superradiant amplification in these
extended theories, neither for those which admit general-relativistic solutions [362, 363] but
predict different dynamics.

In the most general parametrization, there is no reason to believe that the separability property
of the Kerr metric is guaranteed, not even for the Klein–Gordon equation. In particular, the class
of Kerr-like spacetimes which allows for the separation of variables in the Klein–Gordon and
Hamilton–Jacobi equations has been derived in Ref. [364], which is a subclass of the Johannsen
metrics [165]. In this chapter we show that, under given conditions, a subclass of the metrics
presented in Ref. [364] also allows for the separation of variables in the Maxwell equation.

The results presented in this chapter are mostly relative to the Konoplya-Zhidenko black
hole [365], which introduces a single extra parameter. Despite its simplicity, this model preserves
a lot of features of the Kerr spacetime: the asymptotic properties, the post-Newtonian expansion
coefficients, the relation between quadrupole moment and mass, the spherical horizon, and the
mirror symmetry. Yet, it allows for significant differences in the near-horizon region [366–368].

The scope of this chapter is twofold: first we analyze the structure of the Konoplya-Zhidenko
spacetime, and second we study superradiant scattering of test fields. In particular, the chapter is
organized as follows. In Section I.5.1 we review the family of spacetimes which admits separability
of the perturbative equations for massless spin-0 and spin-1 fields, with a particular focus on the
Konoplya-Zhidenko rotating black hole. In Section I.5.2 we present our results regarding the
superradiant emission in the Konoplya-Zhidenko spacetime for massless and massive bosonic
test fields. In Appendix I.E we derive the angular and radial equations for a general non-Kerr
black-hole parametrization and study their boundary conditions. In Appendix I.F we provide
helpful formulas for the Konoplya-Zhidenko spacetime, namely the Einstein tensor, the geodesic
equations, and the four-velocity of a zero-angular-momentum observer. In Appendix I.G we
study the instability of the Konoplya-Zhidenko black hole against massive scalar fields in the low-
frequency, small-mass, and small-deformation limit. Throughout this chapter, we use G = c = 1
units.

I.5.1 Deformed Kerr spacetimes and the Konoplya-Zhidenko black hole

The metric of a generic axially symmetric, stationary, and asymptotically flat spacetime can be
written as

ds2 = −N
2 −W 2 sin2 θ

K2
dt2 − 2Wr sin2 θ dtdφ+K2r2 sin2 θ dφ2 +

Σ

r2

(
B2

N2
dr2 + r2 dθ2

)
,

(I.5.1)
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where N , W , K, Σ and B are in general functions of r and θ. In this chapter, we focus on
deformed Kerr spacetimes which possess Kerr-like symmetries and admit separable Klein-Gordon
equations for test fields [364]. As in Ref. [364], we are not interested in the general conditions
for the separability of variables, which are related to the symmetry of the background and the
choice of appropriate coordinates. Being our pragmatic objective to test strong-gravity effects in an
asymptotically flat and axisymmetric spacetime describing a Kerr-like black hole, we can simplify
the above spacetime metric leaving only three arbitrary functions of the radial coordinate, so that

B(r, θ) = RB(r), Σ(r, θ) = r2RΣ(r) + a2 cos2 θ, (I.5.2a)

W (r, θ) =
aRM (r)

Σ(r, θ)
, N2(r, θ) = RΣ(r)−

RM (r)

r
+
a2

r2
, (I.5.2b)

K2(r, θ) =
1

Σ(r, θ)

[
r2R2

Σ(r) + a2RΣ(r) + a2 cos2 θ N2(r, θ)
]
+
aW (r, θ)

r
. (I.5.2c)

For further convenience, we define ∆ ≡ r2N2 = r2RΣ − RMr + a2 and we observe that for this
class of spacetimes the event horizon is defined by the largest positive root of ∆ = 0.

Asymptotic flatness and current PPN parameters implyRM → 2M +O (1/r2) as r →∞. With
a suitable change of the radial coordinate it is possible to setRB orRΣ to 1, so only two of the three
radial functions are independent. The Kerr metric is recovered for RΣ = RB = 1 and RM = 2M .
Eq. (I.5.2) describe a Petrov D spacetime, and as a consequence, the Hamilton–Jacobi equation
is separable with a generalized Carter constant [364]—see also Appendix I.F. In Appendix I.E,
we show that the subclass of this spacetime such that RB = 1 and RΣ = (1 + ξ/r)2 also admits
separable Maxwell equations for test fields.

A minimal deformation for the Kerr spacetime was introduced by Konoplya and Zhidenko in
Ref. [365] and can be obtained from Eq. (I.5.2) by setting RΣ = RB = 1 and RM = 2M + η/r2.
In the following, we consider this background geometry, although we expect the results to hold,
though with some differences, for the whole class of models.

I.5.1.1 Event horizons and causal structure
For the Konoplya-Zhidenko metric the event horizon radius is given by the largest positive real
root of ∆ = r2 − 2Mr + a2 − η/r = 0, which in general admits three (possibly complex-valued)
solutions

rk =
2M

3
+

2

3

√
4M2 − 3a2 cos

(
β − 2kπ

3

)
, (I.5.3)

β =
1

3
cos−1 16M3 − 18Ma2 + 27η

2 (4M2 − 3a2)
3/2

, k = 0, 1, 2 .

We immediately notice that the Kerr limit η → 0 is not continuous, as in looking for the roots of
∆ = 0 we pass from solving a cubic to a quadratic equation. Nevertheless, for a < M and in the
small η/M3 limit, we have

r0 = r+ +
η

r+(r+ − r−)
− η2(2r+ − r−)
r3+(r+ − r−)3

+O
(
η3
)
, (I.5.4)

where r± =M ±
√
M2 − a2 are the radii of the event and Cauchy horizon for the Kerr spacetime.

For |η|/M3 ≲ 7/100 the difference between r0 calculated as a linear correction to r+ and the exact
value as in Eq. (I.5.3) is less than 1% for values of a ≲ 0.9M . Eq. (I.5.4) does not apply in the
extremal limit, which must be treated separately, as in this case the leading order correction is
O
(
η1/2

)
and r0 is given by

r0 =M +

√
η

M
− η

2M2
+O

(
η3/2

)
. (I.5.5)

Under these assumptions, the compactness of the spacetime for a < M is

C = CKerr

(
1− η

r2+(r+ − r−)

)
+O

(
η2
)
, (I.5.6)
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Figure I.5.1: Light-cone structure in advanced coordinates for a Konoplya-Zhidenko black hole
below the Kerr bound.

being CKerr =M/r+ the compactness of the Kerr black hole, while in the extremal case (CKerr = 1)

C = 1−
√

η

M3
+

3η

2M3
+O

(
η3/2

)
. (I.5.7)

Eq. (I.5.6) indicates that positive (negative) values of η corresponds to less (more) compact config-
urations.

For a < M , instead of working with η, deviations from the Kerr spacetime can be parametrized
in terms of the quantity δr, such that the position of the event horizon can be written as r0 =
r+ + δr—cfr. Eq. (I.5.4), although δr can account for large values of η/M3 and it is not limited to
a perturbative expansion. This writing is obviously coordinate-dependent but since we are using
asymptotic Boyer–Lindquist coordinates, a significant deviation from Kerr should be similarly
acknowledged by different observers.

Differently from the Kerr case, in the Konoplya-Zhidenko spacetime there exists no maximum
value for a beyond which the spacetime always describes a naked singularity. As a always enters
quadratically in Eq. (I.5.3), without loss of generality, in the following we consider positive a.

Although this spacetime belongs to a class of metrics which are constructed to describe the
spacetime outside the event horizon, it is instructive to explore the implications inside the horizon.
This should be taken with great care and interpreted prudently, but it might give insights about
what a small difference at infinity entails about the structure of the spacetime inside the horizon.
This being said, in what follows we do not limit our analysis to the largest positive real root of
∆ = 0 but we give a more comprehensive discussion.

The Ricci scalar of the Konoplya-Zhidenko metric is non-vanishing,R = 2η/
[
r3
(
r2 + a2 cos2 θ

)]
,

from which we infer that r = 0 is a physical singularity.
To classify the solutions of ∆ = 0 it is helpful to introduce

η± =
2

27

[
9Ma2 − 8M3 ±

(
4M2 − 3a2

)3/2]
, (I.5.8)

and to define three separate parameter regions as (I) η < η−; (II) η− ≤ η ≤ η+; (III) η ≥ η+. Then
we sort configurations according to the value of the spin parameter: below the Kerr bound, a < M ;
highly spinning M ≤ a < a∗ ≡ 2M/

√
3; and ultra spinning a ≥ a∗.

Below the Kerr bound: In region (I), there is only one real solution given by r2 in Eq. (I.5.3) which
is always negative and hence the spacetime describes a naked singularity. In region (II), the
equation ∆ = 0 admits three real solutions, and the event horizon is r0. The root r1 is always
positive while r2 is negative (positive) for η− < η < 0 (0 < η < η+). In particular for η = η−,
r0 = (1/3)(2M +

√
4M2 − 3a2),1 while for η = η+, r0 = (2/3)(M +

√
4M2 − 3a2). In region

(III), r0 is the only positive-definite real root.

1Notice, however, that ∂r0/∂η diverges as η → η−.
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Highly spinning: Fora =M and η > 0 the event horizon is r0 = (2/3)
[
1 + cos

(
1
3 arccos (27η/2− 1)

)]
.

The other solutions r1 and r2 are generically complex-valued but for 0 < η < 4M3/27 the
imaginary part goes to zero and the real part is positive. ForM < a < a∗, η− is positive and
in the subregion of region (I) such that 0 < η < η−, the only real positive root is r2. In region
(II) the three real roots are positive and the event horizon is given by r0, while in region (III)
the only real solution is r0. Notice that for each value of η in the range 0 < η < 8M3/27,
there exists a value of a

a+ =
M√
3

(
1 + 2

√
1 +

27η

M3
cosβ+

)1/2

, (I.5.9)

with

β+ =
1

3
cos−1 8M6 − 540ηM3 − 729η2

8 (M4 + 27ηM)
3/2

,

for which the largest root of ∆ = 0 passes from r0 to r2 discontinuously. Alternatively,
for a fixed a, the largest root of ∆ = 0 passes from r2 to r0 at η = η−. Depending on the
specific values of the parameters the ratio r0/r2 can be of several orders of magnitude, and
the compactness of the black hole changes accordingly.

Ultra spinning: For the particular case a = a∗ with η > 0, r0 = 2M/3 + 3
√
η − 8M3/27 and r1

and r2 are complex-valued unless η = 8M3/27, for which r0 = r1 = r2 = 2M/3. For a > a∗,
η± in Eq. (I.5.8) become complex-valued and independently on the value of η, r0 and r2 are
complex-valued, while r1 is positive for η > 0.

The light-cone structure of these configurations can be richer and significantly different than
that of a Kerr black hole. As an example, consider a Konoplya-Zhidenko black hole below the Kerr
bound. Following a standard procedure, we define advanced coordinates and we plot null rays in
Fig. I.5.1, where t∗ = t+ r− r∗ being r∗ a tortoise coordinate defined by dr∗/dr = (r2 + a2)/∆. In
the external regions, i.e., for r > r0, we observe a peeling structure, typical of black-hole horizons.
In region (II), for η− < η < 0, the light-cone structure is nearly similar to that of a Kerr black
hole, there are an outer and an inner horizon and a timelike singularity. In region (II) but for
0 < η < η+, a null trajectory encounters a black-hole horizon, a white-hole-like horizon, and then
again a black-hole-like horizon to eventually reach a spacelike singularity. In region (III) there is
only one horizon and the light-cone structure looks like the Schwarzschild one with a spacelike
singularity.

For further convenience, we introduce the angular velocity Ωk = −gtφ/gφφ|r=rk at the horizon
reads

Ωk =
a

r2k + a2
=

a

2Mrk + η/rk
, (I.5.10)

where the value of k depends on the specific values of the black-hole parameters.

I.5.1.2 Ergoregions
An ergosurface is a static limit surface, i.e., no static observer is allowed beyond this surface.
Ergosurfaces in these black-hole spacetimes are defined as the roots of the equation gtt = 0, or
equivalently r2 − 2Mr + a2 cos2 θ − η/r = 0, which read

r
erg
k =

2M

3
+

2

3

√
4M2 − 3a2 cos2 θ cos

(
β erg − 2kπ

3

)
, (I.5.11)

β erg =
1

3
cos−1 27η + 16M3 − 18Ma2 cos2 θ

2 (4M2 − 3a2 cos2 θ)
3/2

, k = 0, 1, 2 .

For configurations below the Kerr bound in regions (II) and (III), the location of the ergosurface
is rerg

0 (see Fig. I.5.2). For highly spinning configurations, the ergosurface is again rerg
0 in regions
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(b) Region (I) (η− < η < 0).
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(c) Region (II) (0 < η < η+).
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Figure I.5.2: Position of the event horizon and of the surface of the ergosphere for a Kerr and a
Konoplya-Zhidenko black hole and for different values of the deformation parameter and in the
three different regions of the parameter space.

(II) and (III), but it is piecewise and non-continuous in region (I): it is given by rerg
0 in the angular

interval [θ1, θ2] and rerg
2 in the complementary interval, [0, θ1)∪ (θ2, π] where θ1,2 (θ2 = π− θ1) are

the solutions of

η =
2

27

[
9Ma2 cos2 θ − 8M3 −

(
4M2 − 3a2 cos2 θ

)3/2]
, (I.5.12)

once the values of M , a and η are fixed; the maximum value of θ1 is cos−1 (M/a), attained for
η → 0+. This means that when passing from a configuration in region (I) to one in region (II), the
volume between the ergosurface and the event horizon, the ergoregion, can change dramatically.

Notice that for configurations below the Kerr bound and highly spinning and values of η in
regions (II) and (III) the volume of the ergoregion is maximum for η = η− and it decreases for
larger values.

For the particular case a = a∗, the location of the ergosurface is rerg
0 as long as η ≥ 8M3/27,

but piecewise and discontinuous for 0 < η < 8M3/27 as described above. For superspinning
configurations, let θ∗ the smallest root of cos2 θ = a2∗/a

2. For 0 < η < 8M3/27 the ergoregion is
piecewise and discontinuous: it is given by rerg

1 for [0, θ∗)∪ (π− θ∗, π], r
erg
2 for [θ∗, θ1)∪ (θ2, π− θ∗],

and rerg
0 for [θ1, θ2]where θ1,2 are again the solutions of Eq. (I.5.12). For η ≥ 8M3/27 the ergoregion
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is still piecewise but no longer discontinuous: it is given by rerg
0 in the interval [θ1, θ2] and rerg

1 in
the complementary interval [0, θ1) ∪ (θ2, π].

The fact that superspinning configuration for some values of the deformation parameter can
have a piecewise and non-continuous ergoregion, i.e., no longer an ergosurface, poses a serious
problem on the viability of these particular configurations as black-hole mimickers. We expect
these particular solutions to be dynamically unstable, but this analysis is beyond the scope of this
thesis and is left for future work.

I.5.1.3 Photon orbits
Photon orbits for the Konoplya-Zhidenko black hole can be studied starting from the geodesic
equations derived in Appendix I.F. In particular, the radial null geodesic in the equatorial plane is

ṙ2 = E2 +
a2E2 − L2

r2
+

2M (L− aE)
2

r3
+
η (L− aE)

2

r5
, (I.5.13)

where the dot indicates derivative with respect to an affine parameter, while E and L are, respec-
tively, the energy and the angular momentum of the photon, although it is more convenient to
characterize the geodesic by the impact parameter D ≡ L/E.

The radius of photon orbits rc and its corresponding impact parameter Dc are determined by
Eq. (I.5.13) and its derivative evaluated at r = rc = const. The problem is well-known for the Kerr
black hole [333], but the term introduced by the deformation parameter η makes the equation
no longer amenable to analytical methods for all values of L and E. Therefore, we decide to
adopt a small η/M3 approximation and work below the Kerr bound. This guarantees some level
of analyticity and exploits known results to be compared with. In what follows, the sign of a is
important to distinguish between direct (a > 0) and retrograde (a < 0) orbits, so uniquely for the
remainder of this subsection we allow a ∈ [−M,M ].

In practice, we expand the light ring radius rc and the impact parameter Dc around the Kerr
values in powers of η/M3. Here we report the leading-order corrections for the most familiar
cases, i.e. a = −M, 0, M . When a = −M we find

rc ≃ 4M +
13η

72M2
, Dc ≃ 7M +

η

6M2
. (I.5.14)

In the non-rotating limit, i.e., for a = 0, we get

rc ≃ 3M +
5η

18M2
, Dc ≃ 3

√
3M +

√
3η

6M2
. (I.5.15)

For a =M the leading order correction is milder,

rc ≃M +

√
4η

3M
, Dc ≃ 2M +

√
3η

M
. (I.5.16)

For general values of the deformation parameter, and to allow the spin parameter above the
Kerr bound, the radius of the photon orbits and the corresponding impact parameter can be
determined numerically. For |η|/M3 ≲ 1/10, rc and Dc have maximum deviations from the Kerr
values, respectively, of ∼ 3% and ∼ 4% for 0 ≤ a < 0.9M , which reduce to less than 1% for
−M ≤ a < 0. We have also checked that the light ring is always outside the horizon for η > η−
and a ≤ a∗.

I.5.1.4 The Konoplya-Zhidenko black hole as a solution of general relativity
Although these parametrically deformed metrics are built not to be exact solutions to any grav-
itational theory,2 it is an interesting exercise to figure out what kind of matter distribution one
would need in general relativity to obtain the Konoplya-Zhidenko black hole as an exact solution,
and which energy conditions must be violated.

2In Refs. [369, 370] it is shown that the Konoplya-Zhidenko metric is an exact solution of a (non-analytical) mixed
scalar-f(R) gravitational theory.
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We start by defining the stress-energy tensor out of the Einstein tensor, i.e., Tµν = Gµν/8π,
whose non-zero components are given in Appendix I.F. To characterize the would-be matter
content of this spacetime, a first possibility is to compute the eigenvalues of Tµ

ν . In particular, we
identify the energy density with the opposite of the eigenvalue relative to the timelike eigenvector,3

ρ = − η

4πr (r2 + a2 cos2 θ)
2 . (I.5.17)

This matter distribution is concentrated close to the singularity and mainly along the equatorial
plane, but it extends beyond the event horizon although it decays quite fast for large values of the
radius.

Alternatively, the distribution of energy can be characterized in an observer-dependent way
by analysing the contraction of the stress-energy tensor with the velocity of a physical observer,
i.e., ρ = Tµνu

µuν . In view of the angular distribution of Eq. (I.5.17), for simplicity, consider a
zero-angular-momentum observer (ZAMO) in the equatorial plane, whose four-velocity in given
in Appendix I.F. It can be verified that

ρZAMO|θ=π/2 = −
η
(
2r2 + 5a2

)
8πr7

. (I.5.18)

Inspection of Eqs. (I.5.17) and (I.5.18) reveals that the sign of these energy densities is purely deter-
mined by the sign of η: negative (positive) values of η correspond to a positive (negative) energy
density; assuming a < M and in the small η/M3 regime, they also correspond to configurations
more (less) compact than a Kerr black hole with the same spin—cfr. Eq. (I.5.6). These results
further imply that, for positive values of η, this matter distribution violates—at least—the weak
energy condition.

Within this effective description, it is possible to relate the above matter distribution to the flux
contribution to the Komar mass [371],

2

∫
Σ

d3y
√
h

(
Tµν −

1

2
Tgµν

)
nµξν , (I.5.19)

where Σ is a spacelike hypersurface that extends from the event horizon to infinity, nµ the unit
normal, h the determinant of the induced metric on Σ, T the trace of the stress-energy tensor, and
ξν the timelike Killing vector. Explicit evaluation of Eq. (I.5.19) indicates that this contribution can
be of the same magnitude ofM for some specific values of the black-hole parameters, although for
configurations below the Kerr bound it is typically of order ±20% of M , where the sign depends
on the sign of η. It would be interesting to explore whether this amount of putative matter can be
used to model “dirty” black holes as well.

Configurations on the edge of η = η−, i.e., configurations between regions (I) and (II)—which
describe black holes for a > M—seem particularly unstable. As the radius of the event horizon
and the volume of the ergoregion can change abruptly and widely, one passes from small to
enormous violations of the energy conditions. Together with the odd piecewise and disconnected
ergosurface for some values of the parameter space, this might suggest that not every configuration
can mimic actual Kerr black holes.

Nonetheless, if we drop the assumption that general relativity is the correct gravitational
theory, the discussion above might be extremely different.

I.5.2 Superradiance from the Konoplya-Zhidenko black hole

In the Konoplya-Zhidenko background, the scalar (s = 0) and electromagnetic (s = ±1) wave
equations are separable with the angular part described by the spin-weighted spheroidal har-
monics equation and the radial part by

∆−s d
dr

(
∆s+1 dRs

dr

)
+

(
K2 − 2is

(
r −M + η

2r2

)
K

∆
+ 4isωr − λ− s(s+ 1)η

r3

)
Rs = 0 , (I.5.20)

3Being vt = {a+ r2/a, 0, 0, 1}, vr = {0, 1, 0, 0}, vθ = {0, 0, 1, 0}, and vφ = {a sin2 θ, 0, 0, 1} the eigenvectors of Tµ
ν ,

the timelike vector is vt for ∆ > 0 and vr otherwise.
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where K ≡ (r2 + a2)ω − am and λ ≡ A + a2ω2 − 2maω, being A the eigenvalue of the angular
equation,ω the frequency of the perturbation andm its azimuthal number. The angular eigenvalue
is also characterized by the harmonic number l. As discussed in Appendix I.E, the physical
information contained in the solution with spin-weight s is equivalent to that with spin-weight−s.
This property will be particularly important when computing the energy fluxes of electromagnetic
waves at infinity.

I.5.2.1 Boundary conditions
To integrate Eq. (I.5.20) we need to supply it with boundary conditions. We first introduce a
tortoise-like coordinate dr∗/dr ≡ (r2+a2)/∆ and a new radial functionYs(r) =

√
r2 + a2 ∆s/2Rs(r)

such that the radial equation becomes

d2Ys
dr2∗

+

(
K2 − 2is

(
r −M + η

2r2

)
K + (4irsω − λ)∆

(r2 + a2)
2 − dG

dr∗
−G2 − s(s+ 1)η∆

r3 (r2 + a2)
2

)
Ys = 0,

(I.5.21)

where G = r∆/(r2 + a2)2 + s∆′/2(r2 + a2). Asymptotically (r →∞), Eq. (I.5.21) becomes

d2Ys
dr2∗

+

(
ω2 +

2isω
r

)
Ys ≃ 0 , (I.5.22)

whose solutions are Ys ∼ r±se∓iωr∗ where the plus (minus) sign refers to outgoing (ingoing)
waves.

Near the event horizon r0 (r∗ → −∞), let k ≡ ω −mΩ0, Ω0 being defined in Eq. (I.5.10), then
Eq. (I.5.21) becomes

d2Ys
dr2∗

+ (k − isσ)2 Ys ≃ 0 , σ =
a2 + r0(3r0 − 4M)

2r0 (r20 + a2)
, (I.5.23)

and the purely ingoing solution at the horizon is Ys ∼ exp [−i (k − isσ) r∗] ∼ ∆−s/2e−ikr∗ .

I.5.2.2 Amplification factors
The asymptotic solutions to Eq. (I.5.22) can be used to define the energy fluxes of bosonic fields
at infinity. Since the Konoplya-Zhidenko spacetime shares the same asymptotic behaviour and
symmetries of the Kerr spacetime, the derivation of this section is very similar to what happens
for Kerr [372].

Consider an incident wave of amplitude I from infinity producing a reflected wave of ampli-
tudeR, the asymptotic solution to Eq. (I.5.22) can be written as

Ys ∼ I e−iωr∗rs +R eiωr∗/rs . (I.5.24)
The total energy flux at infinity per unit solid angle can be computed out of the stress-energy

tensor of the test fields as
d2E

dtdΩ =
d2

dtdΩ (Ein + Eout) = lim
r→∞

r2T r
t , (I.5.25)

where the ingoing and outgoing fluxes dEin/out/dt are proportional, respectively, to |I|2 and
|R|2 [372]. When energy is extracted from the black hole, the flux of energy through the horizon
is negative and energy conservation implies dEin/dt < dEout/dt. It is then possible to define the
quantity Zs,l,m = dEout/dEin − 1 which gives the amplification or absorption factor for bosonic
waves of spin-weight s and quantum numbers (l,m) off a black hole.

In our case of interest, the amplification factors are

Z0,l,m =
|R|2

|I|2
− 1 , Z±1,l,m =

|R|2

|I|2

(
16ω4

B2

)±1

− 1 , (I.5.26)

whereB2 = [λ+s(s+1)]2+4maω−4a2ω2. Notice that the expressions in Eq. (I.5.26) are the same
as for Kerr as the asymptotic behavior and the symmetries of the Konoplya-Zhidenko black hole
are the same. However, the deformation parameter η changes the geometry of the near-horizon
region and is responsible for a different amplification factor, as shown in the next section.
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Figure I.5.3: Spectra of the amplification factor for a scalar (left panel) and electromagnetic (right
panel) field with l = m = 1 off a Konoplya-Zhidenko black hole with a = 0.99M for selected
values of η in units of M3. Inset: Zoom in the superradiant region.

I.5.2.3 Numerical results

For general ω we need to numerically integrate the angular and radial equations. Our numerical
routine works as follows. For each value of the spin-weight s, the quantum numbers (l,m) and aω,
we first determine the angular eigenvalue using the Leaver method [373]. Second, fixed a value
for η, we integrate Eq. (I.5.21) from the horizon onwards until a sufficiently large radius. Then we
compare our numerical solution and its radial derivative to the asymptotic behavior in Eq. (I.5.24)
and its derivative to extract the coefficients I andR. Finally, we compute the amplification factor
using Eq. (I.5.26). To increase the accuracy of this numerical procedure, we consider a higher-
order expansion near the horizon and in the asymptotic region which reduces to those reported
in the previous section at the leading order. The routine is repeated for several values of the
frequency (typically) in the interval 0 < ω < 2mΩ0. Modes with m ≤ 0 are not superradiant and
as a consequence of the symmetries of the angular and radial equation, the amplification factor is
symmetric under Zs,l,m(ω) = Zs,l,−m(−ω) we can consider positive frequencies only.

We now define our working assumptions for what follows. We allow the deformation pa-
rameter in the range η ≥ η− and we mainly exclude superspinning configurations from our
investigation, i.e., we focus on black holes below the Kerr bound and highly spinning in regions
(II) and (III) introduced above. This has a practical advantage: the event horizon and the ergosur-
face are always given by r0 and rerg

0 . Despite the lack of observational evidence for rotating black
holes beyond the Kerr bound [374], it cannot be excluded that some highly spinning objects can
be produced in high-energy astrophysical phenomena that dynamically evolve in less spinning
configurations. Hence it makes sense to explore a bit this parameter region.

Some of our results are presented in Fig. I.5.3 and more are available online [375]. Both for
scalar and electromagnetic fields with quantum numbers l = m = 1, scattered off a black hole
with spin a = 0.99M , we observe in the insets of Fig. I.5.3 that the position of the maximum of
the amplification factor is close to the superradiant threshold ω = mΩ0 where the curve becomes
very steep, as in the Kerr case.

In absolute values, the maximum amplification factor is about 0.4% and 4.4% for scalar and
electromagnetic waves, as for Kerr. However, in the left panel of Fig. I.5.4 we notice that for scalar
waves scattering off a deformed black hole with η/M3 ≃ 4/100 the maximum amplification factor
is about 6% larger than in the non-deformed Kerr case, while for electromagnetic waves, we observe
a maximum amplification factor roughly 1% larger than in the Kerr case for η/M3 ≃ −1/100.

These values of η/M3 are not universal but depend on the value of a/M . For smaller values
of a/M , the maximum value of Zs,l,m gets smaller, the position of the peak moves towards
smaller values of η/M3 and the frequency range for which the amplification factor is positive
shrinks. For configurations with higher spin, say at the Thorne limit a = 0.998M , the scalar
(electromagnetic) amplification factor can be up to 15% (1%) larger than in the Kerr case. This
bigger amplification factor does not mean that these deformed spacetimes are more superradiant
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Figure I.5.4: Maximum value of the amplification factor Zs,1,1 (left panel) and integral of the
superradiant spectrum Is,1,1 (right panel) for a scalar and electromagnetic field with l = m = 1 as
functions of η, normalized to the maximum value in the Kerr case, i.e., η = 0, for a = 0.99M .
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Figure I.5.5: Typical spectra of the amplification factor Z0,l,m for different superradiant scalar field
modes off a Konoplya-Zhidenko black hole with a = 0.99M and η = 5M3/100.

than the Kerr spacetime, as the quantity

Is,l,m =

∫ mΩ0

0

dω Zs,l,m , (I.5.27)

is always smaller than in Kerr, for positive values of η, as shown in the right panel of Fig. I.5.4.
However, a bosonic wave with frequency close to the superradiant threshold can be significantly
more enhanced in a deformed Kerr background. For negative values of η, which correspond
to more compact configurations, Is,l,m is typically bigger than in Kerr and maximal close to
η = η−. For large enough positive values of the deformation parameter the maximum value of the
amplification factor and the range of superradiant frequencies are always smaller than in the Kerr
case. The physical explanation to this result is that, typically, for values of η/M3 ̸= 0 the volume
of the ergoregion is smaller and hence the energy that can be extracted. In the non-rotating limit,
i.e., a = 0, superradiance disappears and we recover the recent results on absorption in deformed
Schwarzschild backgrounds [376, 377].

In the inset of the left panel of Fig. I.5.4, we observe that the same maximum value of the
amplification factor for a scalar field is obtained for Kerr (η = 0) and for η/M3 ≃ 12/100. This is
nothing but an apparent degeneracy, as the spectra and the superradiant ranges of frequency are
significantly different.

In Fig. I.5.5 it is evident that the most superradiant mode corresponds to the minimum allowed
value of l = m, as in the Kerr case. Modes with different values of (l,m > 0) qualitatively share
the same behavior with the l = m = 1 mode, though the maximum amplification factor is
hierarchically smaller than the dominant one. For example, in the range 0.5M ≲ a < M , for
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Figure I.5.6: Spectra of the amplification factor for a scalar field with l = m = 1 off a superspinning
Konoplya-Zhidenko black hole with η =M3 for selected values of a.

both scalar and electromagnetic fields we find Zmax
s,2,1/Z

max
s,2,2 ∼ 10−3 while Zmax

s,2,2/Z
max
s,1,1 ∼ 0.1 for

a ≳ 0.8M . For the l = m = 2 modes, Zmax
s,2,2 and Is,2,2 are always smaller than in the Kerr case

for positive values of η and a < M , but for negative values, the amplification factor can be bigger
than in Kerr. Again, this could be interpreted as a consequence of the fact that, for a given a, the
ergoregion is larger than the Kerr ergoregion for negative values of η. On the other hand, the
l = 2, m = 1 modes can be more superradiant than in the Kerr case, in the sense of Eq. (I.5.27),
even for positive values of η when a ≳ 0.8M . For the remaining modes, i.e., with m ≤ 0, we
have verified that the amplification factor is always negative, meaning that these modes are not
superradiant.

As previously discussed, the Konoplya-Zhidenko black hole also admits superspinning con-
figurations, i.e., with spin parameter a > M . If the rotation parameter is (slightly) above the
Kerr bound, in principle, such energy extraction could rapidly spin down these configurations to
produce a black hole with a < M .

For completeness, we consider the scattering of a scalar field off a superspinning black hole. We
observe in Fig. I.5.6 that for η/M3 = 1 and selected values of the black-hole spin, the maximum
value of the amplification factor can grow (in principle indefinitely), as well as the range of
frequency for which the process is superradiant. But to obtain amplification factors larger than
100% one needs configurations with very large spin parameter or very small positive deformation
parameter, which are unlikely to describe astrophysical black holes. Moreover, as discussed in
Section I.5.1.1, one needs to be careful with these configurations, as in the range 0 < η < 8M3/27
the position of the event horizon is not always given by r0 for all values of a, and perhaps even
more gravely, the ergosurface can be piecewise and non-continuous.

I.5.2.4 Massive scalar fields
The extension to a massive scalar field with mass µsℏ is quite simple: such mass term in the Klein-
Gordon equation introduces, after separation, a quantity −µ2

sr
2∆/

(
r2 + a2

)2 in the coefficient of
Y0 in Eq. (I.5.21) and shifts the frequency of the angular equation as ω2 → ω2 − µ2

s.
The boundary conditions are slightly modified. In particular, purely ingoing solutions at the

horizon still require Y0 ∼ e−ikr∗ , while the asymptotic behaviour at infinity is

Y0 ∼ r−Mµ2
s/ϖ eϖr∗ ∼ rM(µ2

s−2ω2)/ϖ eϖr , ϖ = ±
√
µ2
s − ω2 . (I.5.28)

Massive waves can be superradiant for frequencies in the range µs < ω < mΩ0, while they are
trapped near the horizon and exponentially suppressed at infinity for ω < µs.

The numerical routine for the computation of the amplification factor is adapted from that
used for massless waves, correcting the asymptotic behaviours accordingly. We limit this analysis
to the l = m = 1 mode for which, in analogy with the massless case, we expect the dominant
contribution. We repeat the routine for several values of the frequency in the interval µs < ω <
2Ω0 − µs. Our results, as those in the left panel of Fig. I.5.7, show that superradiance grows with
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Figure I.5.7: Left panel: Spectra of the amplification factor for massive scalar fields with l = m = 1
off a Konoplya-Zhidenko black hole with a = 0.99M and η = 5M3/100, for selected values of the
mass parameter. Right panel: Maximum value of the amplification factor Z0,1,1 for a massive
scalar field with l = m = 1 as a function of η normalized to the maximum value in the Kerr case,
i.e., η = 0, for a = 0.99M and for selected values of the mass parameter.

the spin parameter a and is less pronounced for more massive fields, as in the Kerr spacetime. The
right panel of Fig. I.5.7 shows that massive waves can be more amplified than in a Kerr background
with the same spin parameter for some values of the deformation parameter, analogously to what
we found for massless fields, though waves with larger masses are still less enhanced. Even in this
case, for positive values of η, the Konoplya-Zhidenko black hole is less superradiant than Kerr in
the sense of Eq. (I.5.27) with the interval of integration adapted to [µs,mΩ0].

Kerr black holes develop superradiant instabilities against massive fields [378] which can
be used to constraint the existence and the mass of ultralight bosons, i.e., using black holes as
“particle detectors” [379]. In addition, the bosonic cloud can produce long-lasting, monochromatic
gravitational-wave signals observable, in principle, in the sensitive band of current detectors [358,
359, 380]. We do not expect this picture to be considerably changed for deformed rotating black
holes. Small values of the deformation parameter unveiled an interesting feature in the massless
case, and we also expect a good black-hole mimicker not to turn upside-down the Kerr metric.
This motivates us to investigate the stability of the Konoplya-Zhidenko spacetime against massive
scalar fields in the small η/M3 limit. Remarkably, in this limit, in the low-frequency regime, i.e.,
for ωM ≪ 1 and aω ≪ 1 and in the small mass approximation Mµs ≪ 1, the problem can be
tackled with analytical methods—see Appendix I.G for details.

At leading order, the growth time of instability τ for a Kerr black hole perturbed by an axion
with mass maxion = µaxionℏ = 10−20 eV is

τ =
(
1.58× 106 s

)(µaxion

µs

)
M

a

1

(Mµs)8
, (I.5.29)

to which the deformation parameter adds the contribution (valid as long as η/M3 is small)

δτ = −
(
7.89× 103 s

)(µaxion

µs

)(
η/M3

0.01

)(
M

a

)3
1

(Mµs)8
. (I.5.30)

Eq. (I.5.30) implies that for positive (negative) values of the deformation parameter (within a
perturbative regime), the growth time of instability is shorter (longer), i.e., the Konoplya-Zhidenko
black hole is more (less) unstable than Kerr. For an axion cloud around a supermassive black
hole with M = 109M⊙, Mµaxion ≈ 10−1, and the growth time of instability would be shorter but
comparable with the age of the Universe. Yet, this timescale should also be shorter than the decay
time of the particle for the instability to be really effective.

As this preliminary result relies on several assumptions, it is to be confirmed by an exhaustive
computation of quasi-normal modes and bound states, which is left for future work. In fact, this
result is valid for slowly rotating black holes hence we cannot conclude whether highly spinning
configurations are more unstable or not.





Chapter I.6
Summary of part I

In this part of the thesis we analyzed some potential black-hole mimicker candidates, putting
a particular emphasis on regular black-hole models, the interpretation of the sources of their
gravitational field and their rich phenomenology. Here we report a brief summary of what
discussed so far, and we present some ideas left for future research.

In Chapter I.2, we presented and discussed a general class of black holes that are regular every-
where, being the central singularity resolved by the presence of a de Sitter core. The regularity of
these spacetimes is then linked to the presence long-range quantum-gravity effects at the horizon
scale. The quantum corrections are effectively accounted in the source term, which has the form of
an anisotropic fluid with equation of state p∥ = −ϵ and described by a single parameter ℓ. This also
avoids the assumptions of Penrose’s theorem by violating the strong energy condition somewhere
in the black-hole core, naturally smearing the classical Schwarzschild singularity. Because of the
presence of this additional quantum hair, black holes pertaining to our class of models present in-
teresting and rich thermodynamical and phenomenological features. Indeed, in Section I.2.3.3 we
showed that, differently from their classical counterpart, objects presenting quantum corrections
at the horizon scale, for which ℓ ≃ RS, are thermodynamically stable, providing further evidence
for the relevance of quantum effects at horizon scale. From a phenomenological point of view,
instead, we showed that when the quantum hair ℓ is comparable with the classical gravitational
radius, both the quasinormal modes spectra and the null orbits manifest measurable departures
from the general-relativistic solutions (see Sections I.2.3.5 and I.2.3.6).

Chapter I.3 is devoted to the study of the thermodynamical properties and the evaporation
process of 2D asymptotycally-flat regular models. The choice of working in two dimensions is
dictated by the fact that, in this simplified environment, we cab solve the semiclassical dynamics, at
least at numerical level, following the evaporation process until the point where the semiclassical
approximation breaks down. Both the numerical and the analytical results of this chapter indicate
that regular black holes decay to an extremal, zero-entropy state in a finite amount of time due to
the Hawking effect. We have also been able to reconstruct the Page curve, which clearly shows a
maximum followed by a descent, indicating that the information contained in the object is starting
to flow out. However, our approach is limited by the necessary semiclassical approximation, which
breaks down when quantum effects become dominant, i.e., when ℓ ≃ RS.

In Chapter I.4, we finally tested a particular model pertaining to our class of metrics, the
Fan-Wang black hole, against the S2-star data. This geometry is particularly interesting because
of its asymptotics. Indeed, the chosen model has the strongest corrections, among the general
class discussed in Chapter I.2, compared to the Schwarzschild black hole. For this reason, the
Fan-Wang metric seems to be most suitable to be tested, at the moment, with the data relative to the
orbits of stars around the Saggitarius A∗. In order to actually constrain the additional parameter
of the model, the quantum hair ℓ, we first studied the deviations the orbits of massive particles
in our model, Specifically, we find that the precession angle decreases linearly with ℓ, is zero
when ℓ = GM , and becomes negative (the precession is retrograde) when ℓ > GM . Exploiting
this fact, we have been able to constrain this parameter through a Markov-chain Monte Carlo,
setting the upper bound at ℓ < 0.47GM at 95% confidence level. This value does not exclude the
thermodynamically stable configurations.

Finally, in Chapter I.5, we discuss the effect of the deviations from general relativity in a rotating
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spacetime, with a particular focus on the imprint of these modifications on the superradiant
scattering of electromagnetic and scalar test fields. The idea, here, was again to investigate
completely the phenomenological differences between the general-relativistic solutions and the
possible alternatives. We focused on the Konoplya-Zhidenko metric, pertaining to the much more
general one presented in Ref. [91, 92], as a proxy for generic rotating spacetimes presenting an
ergoregion. The advantage of this metric is that the deviations, encoded in a single parameter, η,
leads to a spacetime with a rich structure without modifying the asymptotics and the symmetries
in relation to the Kerr spacetime. Regarding superradiance, we found that superradiance is still
present in these kind of spacetimes, but it is strongly suppressed for large values of the deformation
parameter. We also investigated the superradiant instability, happening when the black hole is
surrounded by a cloud of massive scalar particles. We found that for η > 0 the instability time
decreases. These results, however, should be taken as indicative due to the several assumptions
made to obtain an analytical estimation and we leave further investigation for future work.



Appendices—Part I

I.A Geodesic completeness

In this appendix, we show that spacetimes described by Eq. (I.2.22) are geodesically complete.
We start with Raychaudhuri’s equation, which describes the evolution of a time-like geodesic
congruence Θ

dΘ
dτ = −1

3
Θ2 − σµνσµν + ωµνωµν −Rµνu

µuν , (I.6.1)

where τ is the proper time, uµ = dxµ/dτ the proper time-like velocity, while σµν = Θµν −Θhµν/3
is the shear tensor (hµν = gµν + uµuν is the transverse metric) and ωµν = hρµh

σν∇[σuρ] is the
vorticity tensor. If we consider geodesics to be hypersurface orthogonal, then ωµν = 0. Since
both the shear and the vorticity tensors are purely spatial, i.e., ωµνω

µν ≥ 0, σµνσµν ≥ 0, and if we
assume the SEC to hold, i.e., Rµνu

µuν ≥ 0, we expect in all generality a focusing of the geodesic
congruence, i.e., dΘ/dτ ≤ 0 and the formation of caustics, which represent singularities of the
congruence. This is the essence of the original Penrose singularity theorem [114]. Let us now
show that caustics cannot form for the models described by Eq. (I.2.22). We start by considering
a generic static spacetime described by the metric function A. We study time-like geodesics,
focusing on those lying on the plane θ = cons. and φ = constant, for which uθ = uφ = 0, and

gµνu
µuν = −A(r)(u0)2 + (ur)2

A(r)
= −1. (I.6.2)

Here u0 = dt/dτ = 1/A(r) since the metric redshift factor determines the relation between the
coordinate and proper time, therefore

− 1

A(r)
+

(ur)2

A(r)
= −1⇒ ur = ±

√
1−A(r). (I.6.3)

This yields the congruence

Θ =
1

r2
∂r
(
r2ur

)
=

1

r2

(
2rur + r2

dur

dr

)
= ±

[
2

r

√
1−A(r)− A′(r)

2
√

1−A(r)

]
. (I.6.4)

The geodesic congruence evolution as a function of the proper time can therefore be written as

dΘ
dτ =

dΘ
dr

dr
dτ = Θ′ur = −2(1−A(r))

r2
− A′(r)

r
− A′′(r)

2
− A′(r)2

4(1−A(r))
, (I.6.5)

where we used the fact that Θ is a function of r only.
We can now express Eq. (I.6.5) in terms of the function F in Eq. (I.2.22), where we wrote

A(r) = 1− 2GMℓ

r
F (
r

ℓ
). (I.6.6)
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Eq. (I.6.5) now reads

dΘ
dτ = −2αF (y)

y2ℓ2
+

α

yℓ2
F ′(y) +

α

2ℓ2
F ′′(y)− α

4ℓ2
F ′(y)2

F (y)
(I.6.7)

Since, for large y, our general model behaves essentially as the Schwarzschild BH, we focus on the
behavior of the geodesics bundle in the core of the object, i.e., for y → 0, where F ∼ y2 according
to Eq. (I.2.24). Therefore, F ′ ∼ 2y and F ′′ ∼ 2, and thus

dΘ
dτ ∼ −

2α

ℓ2
+

2α

ℓ2
+
α

ℓ2
− α

ℓ2
∼ 0, (I.6.8)

so that there are no caustics in the center, the bundle of geodesics is defocused and therefore
they can be extended beyond r = 0. This is consistent with the form of the Penrose diagram for
such models (see, e.g., Refs. [84, 240]), which shows that, apart from the presence of the central
singularity, the maximal extension of these spacetimes is similar to that of RN BHs. These results
can be further confirmed by computing dΘ/dτ for the two specific models investigated in detail
in Chapter I.2, namely the Hayward and the Gaussian-core BHs.

For the Hayward BH, plugging the function F (I.2.50) into Eq. (I.6.7) yields

dΘ
dτ = −

9αy3
(
y3 + 4

)
4ℓ2 (1 + y3)

3 . (I.6.9)

Near y ∼ 0, we have dΘ
dτ ∼ −

9αy3

ℓ2 +O(y4), so no caustic is present in the interior, at r = 0.
In the Gaussian-core BH case, using the function F (I.2.70) into Eq. (I.6.7), we get

dΘ
dτ =

α

ℓ2

{
e−y2 (

6− 4y2
)

√
π

− 4e−2y2

y3

π − 2
√
πΓ
(
3
2 , y

2
) − 9

4
√
πy3

[√
π − 2Γ

(
3

2
, y2
)]}

(I.6.10)

Near y ∼ 0, we have dΘ
dτ ∼ −

4αy2

√
πℓ2

+O(y4), so that again caustics do not form and the spacetime
is geodesically complete.
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I.B Parameter estimation for the S2-star orbits
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Figure I.6.1: Full 14-dimensional posterior probability distribution for the parameter space of our
orbital model. The contour plots report the 68%, 95%, and 99.7% confidence regions (lighter to
darker colors, respectively) for each parameter pair, while the marginalized posterior distributions
are reported, for each parameter, in the first-row histograms. The inset plot zooms into the
posterior distribution for our parameter of interest, ℓ, reporting, as a red dashed line, the upper
limit that we derived at the 95% of the confidence level.
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I.C No divergences in the ground state stress-energy tensor

In Ref. [279], counterterms are added to the Polyakov action (as in Eq. (I.3.73)) to eliminate a
divergence in the stress-energy tensor of the GS ⟨Tµν⟩ ∼ ϕ2a, which, for a > 0 diverges at
asymptotic infinity ϕ → ∞. We show that in our case the rapid fall of the potential at infinity
allows to avoid this divergent behavior.

We consider, as an example, ⟨T+−⟩GS, but similar considerations also hold for the other com-
ponents of Tµν . Using Eq. (I.3.66), we have

⟨T+−⟩GS = −N
12
∂+∂−ρ

∣∣∣∣
GS
, (I.6.11)

where ρ, computed at the GS, is given by Eq. (I.3.60)

ρGS =
1

2
ln

(
2Mext

λ
+ JGS

)
, J ≡ 1

λ2

∫ ϕ

dψ V(ψ) . (I.6.12)

Therefore

∂−ρGS =
1

2

∂−JGS
2Mext

λ + JGS
=

1

2

∂−ϕGS JGS,ϕ
2Mext

λ + JGS
= − 1

4λ
VGS , (I.6.13)

where J,ϕ = λ−2V and we used the vacuum solution Eq. (I.3.55b). Differentiating with respect to
x+ yields

∂+∂−ρGS = − 1

4λ
∂+ϕVGS,ϕ = −1

8
e2ρVGS,ϕ . (I.6.14)

For ϕ→∞, e2ρ → constant, while V,ϕ ∼ −ϕ−3 → 0. So we do not have divergences.

I.D Boundary conditions for numerical integration

I.D.1 Boundary condition at x+ = x+
0

For our numerical integration, we set λ = 1 and ℓ = 1.
When the shock wave is turned on, the solution is set equal to the extremal configuration

(I.3.60). Our procedure to implement this boundary condition is the following:

1. We first integrate the equation for the dilaton (expression on the right of Eq. (I.3.60)), leading
to an implicit relation between the dilaton and the coordinates;

2. We numerically invert it to have explicitly ϕ = ϕ(x+, x−);

3. We plug the result into the equation for e2ρ.

The first point is achieved by solving the differential equation

dr∗
dψ =

1
2Mext

λ + J (ψ)
. (I.6.15)

This integral can be done analytically. WithMext =
3
√
2 ℓ/3 and ℓ = λ = 1 it reads

r∗,ext = 25/3 ln
(∣∣∣ 3
√
2− ϕ

∣∣∣)+ 3ϕ

22/3
+

3
3
√
2− ϕ

+
ln
(
2ϕ+ 3

√
2
)

2 3
√
2

. (I.6.16)

We then numerically invert the result to get ϕ = ϕ(x+, x−) and plug the result into Eq. (I.3.60)
to get ρ = ρ(x+, x−), both evaluated at extremality.
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I.D.2 Boundary condition at x− → −∞
The procedure is exactly the same as before, withMext replaced by a different value of the mass.
Here, we chooseM = 0.1λ.

The coordinate r∗ as a function of ϕ in this case reads

r∗ ≃ −1.37 ln(|0.47− ϕ|) + 25.42 ln(|4.96− ϕ|) + 5ϕ+ 0.95 ln(ϕ+ 0.43) . (I.6.17)

Again, we numerically invert this expression, to get ϕ = ϕ(x+, x−). In this case, however, the
quantity we are (improperly) calling r∗ contains the function F (x−), which has to be computed to
fully obtain ϕ as a function of the coordinates. Starting from

F [ϕ(x+, x−)] ≡
∫ ϕ dψ

2M
λ + J

=
λ

2

[
x+ − x+0 − F (x−)

]
, (I.6.18)

we note that, when evaluated at x+ = x+0 , it reads

F [ϕ(x+0 , x−)] = −
λ

2
F (x−) , (I.6.19)

from which we get

ϕ(x+0 , x
−) ≡ ϕ0(x−) = F−1

[
−λ
2
F (x−)

]
. (I.6.20)

This expresssion of ϕ(x+0 , x−) can be used in Eq. (I.3.63) to compute J0. This gives us a
differential equation in terms of F which reads

F ′(x−) =
2Mext

λ + J0,ext(x
−)

2M
λ + J0 [ϕ0(x−)]

≡
2Mext

λ + J0,ext(x
−)

2M
λ + J0

(
F−1

[
−λ

2F (x
−)
]) . (I.6.21)

This equation is solved numerically. The integration constant is chosen so that, once the solution
of F is plugged into the dilaton solution (I.3.63), at x+ = x+0 , the dilaton is equal to the extremal
one computed at x+0 . This guarantees the continuity of the scalar field across the shock wave.

Once F (x−) is computed, we plug it into ϕ = ϕ(x+, x−). With this and Eq. (I.3.63), we obtain
also ρ = ρ(x+, x−) above extremality.

I.E The Klein-Gordon and Maxwell equations in Kerr-like backgrounds

Being s the spin weight of the test field, in linear perturbation theory the scalar (s = 0) and
Maxwell (s = ±1) fields propagate in the background metric. The Klein–Gordon equation for a
massless scalar field Φ is easily obtained from2Φ = 0, where the D’Alambert operator is built out
of the metric (I.5.2). We follow the method proposed in Ref. [381] to derive the Maxwell equations
in such spacetime.

First we choose a suitable null tetrad e µ
(a) = {l

µ, nµ,mµ, m̄µ} that easily reduces to the Kinner-
sley tetrad [382] in the Kerr spacetime, i.e.,

lµ =
1

∆

[
r2RΣ + a2,

∆

RB
, 0, a

]
, (I.6.22a)

nµ =
1

2Σ

[
r2RΣ + a2,− ∆

RB
, 0, a

]
, (I.6.22b)

mµ =
1√
2ρ̄

[ia sin θ, 0, 1, i csc θ] , (I.6.22c)

where ∆ = r2RΣ −RM r + a2, Σ = r2RΣ + a2 cos2 θ and ρ = r
√
RΣ − ia cos θ. The tetrad vectors

satisfy

e µ
(a)e(b)µ =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 . (I.6.23)
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The non-vanishing spin coefficients are

ϱ = −
(
r2RΣ

)′
2RBΣ

− ia cos θ
Σ

, (I.6.24a)

ϵ = − ia cos θ
4rRBΣ

[
2rRB −

(
r2RΣ

)′
√
RΣ

]
, (I.6.24b)

µ = − ∆

4RBΣ2

[(
r2RΣ

)′
+ 2iaRB cos θ

]
, (I.6.24c)

γ =
∆′

4RBΣ
− ∆

8Σ2

[(
ρ̄+ r

√
RΣ

)
rRB

√
RΣ

(
r2RΣ

)′
+ 2ia cos θ

]
, (I.6.24d)

τ =
a sin θ

2
√
2RBΣρ̄

[
2aRB cos θ − i

(
r2RΣ

)′]
, (I.6.24e)

α =
1

8
√
2Σρ

[
cot θ

(
Σ− 5a2 − 5r2RΣ

)
+

2ia sin θ
RB

(
r2RΣ

)′
+ sin θ

(
7iar

√
RΣ − 3iaρ

) ]
, (I.6.24f)

π =
ia sin θ√
2Σρ

[
r
√
RΣ +

(
r2RΣ

)′
2RB

− ρ

]
, (I.6.24g)

β =
1

2
√
2Σρ̄

{
ia sin θ

[
r
√
RΣ −

(
r2RΣ

)′
2RB

]
+Σcot θ

}
. (I.6.24h)

The sourceless decoupled Newman–Penrose equations for the massless spin-1 field are given
by [381][

(D − ϵ+ ϵ̄− 2ϱ− ϱ̄) (∆+ µ− 2γ)− (δ − β − ᾱ− 2τ + π̄)
(
δ̄ + π − 2α

)]
ϕ0 = 0 , (I.6.25a)[

(∆+ γ − γ̄ + 2µ+ µ̄) (D − ϱ+ 2ϵ)−
(
δ̄ + α+ β̄ + 2π − τ̄

)
(δ − τ + 2β)

]
ϕ2 = 0 , (I.6.25b)

where D = lµ∇µ, ∆ = nµ∇µ and δ = mµ∇µ, and the complex fields are defined as ϕ0 =
Fµν l

µmν and ϕ2 = Fµν m̄
µnν , being Fµν the electromagnetic field tensor.

Differently from the Kerr case, the spin coefficient ϵ is generally non-zero; consequently,
Eqs. (I.6.25) are not separable into a radial and angular part. However, one can always perform a
null rotation of the tetrad to set ϵ = 0 [383]. Alternatively, we can restrict our metric performing a
change of the radial coordinate such that RB = 1 and solving ϵ = 0 for RΣ,

RΣ =

(
1 +

ξ

r

)2

, (I.6.26)

where ξ is a constant parameter.
Under the above assumptions, decomposing the test fields as e−iωt eimφ S(θ)Rs(r), the scalar

and electromagnetic wave equations separate, with the angular part described by the spin-
weighted spheroidal harmonics equation

1

sin θ

d
dθ

(
sin θ

dS
dθ

)
+

(
a2ω2 cos2 θ − m2

sin2 θ
− 2aωs cos θ − 2ms cos θ

sin2 θ
− s2 cot2 θ + s+A

)
S = 0 , (I.6.27)

while the radial part by the following equation,

∆−s d
dr

(
∆s+1 dRs

dr

)
+

[
K2 − is∆′K

∆
+ 4isrRΣω − λ+

s(s+ 1) (∆′′ − 2)

2

]
Rs = 0 , (I.6.28)

where K =
(
r2RΣ + a2

)
ω − am and λ = A+ a2ω2 − 2amω. The radial functions R0, R1 and R−1

correspond to Φ, ϕ0 and ϕ2/ρ2.
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Eq. (I.6.27) together with regular boundary conditions at θ = {0, π} is an eigenvalue problem
for the separation constant A. For each value of s, m and aω, the eigenvalues are identified
by a number l, whose smallest value is max (|m|, |s|). The eigenfunctions form a complete and
orthonormal set in θ ∈ [0, π]. For aω = 0, Eq. (I.6.27) reduces to the spin-weighted spherical
harmonics equation and A = (l − s)(l + s + 1) [384]; for aω ≪ 1, Eq. (I.6.27) can be solved
perturbatively [385], but in general it must be solved numerically [386].

To integrate Eq. (I.6.28) it is necessary to give boundary conditions at the horizon and at infinity.
Therefore, we first introduce a tortoise-like coordinate given by dr∗/dr ≡ (r2RΣ + a2)/∆ and the
radial function Ys(r) =

√
r2RΣ + a2∆s/2Rs(r). With these substitutions, Eq. (I.6.28) becomes

d2Ys
dr2∗

+

{
∆ [s(s+ 1) (∆′′ − 2) /2− λ+ 4isω(r + ξ)]

[(r + ξ)2 + a2]
2 +

K2 − iKs∆′

[(r + ξ)2 + a2]
2 −

dG
dr∗
−G2

}
Ys = 0,

(I.6.29)

where G = s∆′/2(r2RΣ + a2) + r
√
RΣ∆/(r

2RΣ + a2)2 and r is an implicit function of r∗.
At infinity (r∗ →∞), Eq. (I.6.29) can be approximated as

d2Ys
dr2∗

+

(
ω2 +

2isω
r

)
Ys = 0 , (I.6.30)

from which we see that Ys ∼ r±se∓iωr∗ , where the upper (lower) sign refers to outgoing (ingoing)
waves.

Near the event horizon r0 (r∗ → −∞), Eq. (I.6.29) becomes

d2Ys
dr2∗

+ (k − isσ)2 Ys = 0 , (I.6.31)

where

k = ω

(
1 +

ξ(2r0 + ξ)

(r0 + ξ)2 + a2

)
−mΩ0 , (I.6.32)

σ =
r20 (1−R′

M (r0))− ξ2 − a2

2r0 [(r0 + ξ)2 + a2]
. (I.6.33)

The purely ingoing solution at the horizon is given by Ys ∼ exp [i(k − iσ)r∗] ∼ ∆−s/2e−ikr∗ .
Teukolsky and Press showed that one solution of the Teukolsky equation with spin-weight

s contains the same physical information of that with spin-weight −s [372]. This result is a
consequence of the fact that the Kerr spacetime is stationary and axisymmetric. This fact holds
for this class of deformed metrics too, in fact, repeating the same derivation for Eq. (I.6.28) but
starting with the tetrad

l̃µ = −2Σ

∆
nµ , ñµ = − ∆

2Σ
lµ , m̃µ =

r
√
RΣ − ia cos θ

r
√
RΣ + ia cos θ

m̄µ , (I.6.34)

related to Eqs. (I.6.22) by the simultaneous transformation φ → −φ, t → −t, one finds that, after
the separation of the radial and angular variables, the radial function R̃s satisfies Eq. (I.6.28) with
s→ −s and it is related to R−s through

R̃s =

(
2

∆

)s

R−s . (I.6.35)
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I.F Einstein tensor, geodesic equations, and ZAMO for the
Konoplya-Zhidenko spacetime

The non-zero components of the Einstein tensor for the Konoplya–Zhidenko metric read

Gtt = η
r2
(
3 cos2 θ − 5

)
a2 + 2r

(
−r3 + 2Mr2 + η

)
− a4 cos2 θ sin2 θ

r3 (r2 + a2 cos2 θ)
3 , (I.6.36a)

Gtφ = aη sin2 θ
a2
(
r2 + a2

)
cos2 θ + r

(
5r3 − 4Mr2 + 5a2r − 2η

)
r3 (r2 + a2 cos2 θ)

3 , (I.6.36b)

Grr =
2η

r∆(r2 + a2 cos2 θ)
, (I.6.36c)

Gθθ = −
η
(
3r2 + a2 cos2 θ

)
r3 (r2 + a2 cos2 θ)

, (I.6.36d)

Gφφ = −η sin2 θ
a2
(
a4 − r4 + 4Mr3 + 2rη

)
cos2 θ + r

[
3r5 + 5a4r − 2a2

(
(2M − 4r)r2 + η

)]
r3 (r2 + a2 cos2 θ)

3 .

(I.6.36e)

The geodesic equations can be obtained via the Euler-Lagrange equations from the Lagrangian
L = 1

2gµν ẋ
µẋν , where a dot indicates differentiation with respect to an affine parameter λ. How-

ever, it is simpler to use the integrals of motion, two of which are related to the obvious symmetries
of the metric, i.e., stationarity and axisymmetry, that can be expressed respectively by

pt ≡ gttṫ+ gtφφ̇ = −E , pφ ≡ gφφφ̇+ gtφṫ = Lz , (I.6.37)

where E and Lz represent the energy and the angular momentum along the φ axis of the particle.
Another constant of motion can be obtained observing that the Hamiltonian H = 1

2gµνp
µpν ,

where pµ = ∂L/∂ẋµ, is independent of the affine parameter. Therefore we can write H = − 1
2ϵ

2,
where ϵ2 is a constant parameter that can be +1, 0,−1, respectively, for timelike, null and spacelike
geodesics. The last integral of motion is less obvious and it is related to the separability of the
Hamilton–Jacobi equation

Ṡ =
1

2
gµν

∂S

∂xµ
∂S

∂xν
, (I.6.38)

where S is a function of λ and the coordinates. In fact, with the ansatz S = − ϵ2

2 λ− Et+ Sθ(θ) +
Sr(r) + Lzφ, Eq. (I.6.38) separates into an angular and a radial part. The (generalized) Carter
constant Q = K − (aE − Lz)

2 is related to the separation constant K associated to the hidden
symmetry of the metric generated by a second-order Killing tensorKµν that satisfies∇(ρKµν) = 0,
where the round parentheses denote symmetrization with respect to the indices. The explicit form
of Kµν is

Kµν = 2Σ l(µnν) + r2gµν , (I.6.39)

where Σ = r2+a2 cos2 θ while lµ and nµ are the vectors defined in Eqs. (I.6.22) withRΣ = RB = 1
and RM = 2M + η/r2.

Using these four integrals of motion it is possible to write the geodesic equations as

ṫ = E +

(
2Mr2 + η

) (
(r2 + a2)E − aLz

)
r∆Σ

, (I.6.40a)

φ̇ =
1

rΣ

(
a
(
2Mr2 + η

)
E − a2Lzr

∆
+

r Lz

sin2 θ

)
, (I.6.40b)

Σ2ṙ2 =
[
aLz − E

(
a2 + r2

)]2 −∆
[
(aE − Lz)

2 +Q+ r2ϵ2
]
, (I.6.40c)

Σ2θ̇2 = a2 cos2 θ (E2 − ϵ2)− L2
z cot

2 θ +Q . (I.6.40d)
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The four-velocity of a zero-angular-momentum observer in the equatorial plane is readily
obtained,

ut =
r5 + a2

(
r3 + 2Mr2 + η

)
r3∆

, (I.6.41a)

ur = −
√

(a2 + r2) (η + 2Mr2)

r5
, (I.6.41b)

uφ =
a
(
2Mr2 + η

)
r3∆

. (I.6.41c)

I.G Frequency eigeinvalues in the low-frequency, small-mass and
small-deformation limit

In the low-frequency regime, i.e.,Mω ≪ 1 and aω ≪ 1, the amplification factor for waves scattered
off a Kerr black hole can be computed analytically [387–389]. The angular equation reduces to the
scalar spherical harmonics equation and the angular eigenvalue λ can be approximated as l(l+1).
For massive scalar field a similar technique can be applied in the small mass limitMµs ≪ 1 [355].
We extend this result to the Konoplya–Zhidenko black hole in the limit η/M3 ≪ 1.

The asymptotic matching technique consists in solving the radial equation in the asymptotic
and near-horizon regions and relies on the existence of an overlap region in which the two solutions
can be matched.

In the large r limit the radial equation for a massive scalar field in the Konoplya–Zhidenko
background becomes

R′′
0 (r) +

2

r
R′

0(r) +

(
− l(l + 1)

r2
+

2Mµ2
s

r
+ ω2 − µ2

s

)
R0(r) = 0 . (I.6.42)

Defining k2 = µ2
s − ω2, ν =Mµ2

s/k, and x = 2kr the above equation reads

xR′′
0 (x) + 2R′

0(x) +

(
− l(l + 1)

x
+ ν − x

4

)
R0(x) = 0 , (I.6.43)

i.e., the same equation which governs an electron in the hydrogen atom. For large x the two
independent solutions of Eq. (I.6.43) behave as R0(x) ∼ x±(ν+1) e∓x/2. Since we are interested
in the unstable modes we take the solution with the upper signs, and the complete solution to
Eq. (I.6.43) with such asymptotic behaviour is

R0(x) = e−x/2xlU(l − ν + 1, 2l + 2, x) (I.6.44)

being U the confluent hypergeometric function.
The regularity of the electron wave-function in x = 0 implies that the bound states of the

hydrogen atom corresponds to integer values of ν as ν = l + 1 + n with n positive. As the
boundary conditions in this case are slightly different from the quantum mechanics problem
(ingoing waves at the horizon) we guess ν = l + 1 + n+ δν where δν is a small complex number.

In the small x limit, Eq. (I.6.44) is

R0(x) ≈
Γ(−2l − 1)

Γ(−l − ν)
xl +

Γ(2l + 1)

Γ(l − ν + 1)
x−l−1 . (I.6.45)

In terms of the coordinate r and in the small δν limit

R0(r) ≈ (−1)n (2l + n+ 1)!

(2l + 1)!
(2kr)l + (−1)n+1δν(2l)!n!(2kr)−l−1 . (I.6.46)

In the near-horizon region we write R0(r) = R̊0(r) + η δR0(r) and we solve order by order
in η/M3. We define a new dimensionless coordinate x ≡ (r − r+)/(r+ − r−) and the quantity
q ≡ (am−2Mr+ω)/(r+− r−) where r± =M ±

√
M2 − a2 are the radial location of the Kerr event

and Cauchy horizon.
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At zeroth order, the radial equation reduces to

x2(x+ 1)2R̊′′
0 (x) + x(2x+ 1)(x+ 1)R̊′

0(x)

+
(
q2 − l(l + 1)x(x+ 1)

)
R̊0(x) = 0 , (I.6.47)

whose general solution is a combination of the associated Legendre functions c1P l
2iq(1 + 2x) +

c2Q
l
2iq(1 + 2x) which represent, respectively, the ingoing and outgoing waves at the horizon.
Now assume there exists an intermediate region in which the two solutions calculated asymp-

totically and close to the horizon overlap. Then the small x limit of the asymptotic solution (I.6.46)
must be equal to the large x limit of the near-horizon solution, supplied with the requirement of
no outgoing waves at the horizon (c2 = 0). We have

P l
2iq(1 + 2x) ∼ (2l)!xl

l!Γ(l + 1− 2iq) +
(−1)−1−ll!x−l−1

(2l + 1)!Γ(−l − 2iq) . (I.6.48)

The constant c1 can be determined by comparing the rl terms,

c1 =
(2k)l(r+ − r−)l(−1)nl!(2l + n+ 1)!Γ(l + 1− 2iq)

(2l + 1)!(2l)!
, (I.6.49)

while by comparing the r−l−1 terms we get

δν = 2iq [2k(r+ − r−)]2l+1

(
l!

(2l)!(2l + 1)!

)2

×

(2l + n+ 1)!

n!

l∏
j=1

(
j2 + 4q2

)
. (I.6.50)

Finally, the relation among n, δν and ω = σ + iγ gives σ ≈ µs from the real part, while from
the imaginary part

iγ =

(
Mµs

l + 1 + n

)3
δν

M
. (I.6.51)

Now we are able to give an estimate for the growth time of the instability. At zeroth order,
combining Eqs. (I.6.50) and (I.6.51) we notice that for m > 0 the imaginary part of the frequency
is positive and hence the mode is unstable. In particular, for the most unstable mode, l = m = 1
and n = 0, at leading order

γ = µs
a

M

(Mµs)
8

24
, (I.6.52)

and the growth time, for an axion with mass maxion = µaxionℏ = 10−20 eV,

τ ≡ 1/γ =
(
1.58 · 10−6 s

)(µaxion

µs

)
M

a

1

(Mµs)8
. (I.6.53)

At first order, the zeroth-order solution enters as a “source term”,

x2(x+ 1)2δR′′
0 (x) + x(2x+ 1)(x+ 1)δR′

0(x)

+
(
q2 − l(l + 1)x(x+ 1)

)
δR0(x) = T (x) , (I.6.54)

where

r+(r+ − r−)2T (x) = −R̊′
0(x)

−

(
2q2

x
+
q2
(
r2− − 5r−r+ + 2r2+

)
Mr+

− l(l + 1)

)
R̊0(x) , (I.6.55)
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with R0 = c1P
l
2iq(1 + 2x) and c1 given by Eq. (I.6.49).

The homogenous problem associated to Eq. (I.6.54) for δR0 is the same as in Eq. (I.6.47) for
R̊0, meaning that its general solution is again a combination of the associated Legendre functions,
c3P

l
2iq(1 + 2x) + c4Q

l
2iq(1 + 2x). Again, c4 can be set to zero by the request of no outgoing waves

at the horizon. The particular solution can be obtained with the method of variation of constants,

δR0,p =− δR0,1

∫
dz T (z) δR0,2(z)

z2(1 + z)2W (z)

+ δR0,2

∫
dz T (z) δR0,1(z)

z2(1 + z)2W (z)
, (I.6.56)

whereW (x) is the Wronskian associated with δR0,1(x) = P l
2iq(1+2x) and δR0,2(x) = Ql

2iq(1+2x).
As in the zeroth-order calculation, assume that there exists an intermediate overlapping region

in which the solution in Eq. (I.6.46) is glued with the large r behaviour of the near-horizon solution.
At this stage, we focus on the l = m = 1 and n = 0 mode which is, at zeroth order, the most

unstable. Using Eq. (I.6.48) with l = 1 and

δR0,p ∼ −
c1x

[
R1Mr+ +R2r

2
− +R3r−r+ +R4r

2
+

]
2Mr2+(r+ − r−)2q2(1 + 2iq) (1− 2iq)3 Γ(1− 2iq)

, (I.6.57)

where

R1 = 8iq(1− 2iq)
(
2q2 + 1

)
[ψ (−2iq) + γE] , (I.6.58a)

R2 = q2(1− 2iq)
(
28q2 − 4iq + 1

)
, (I.6.58b)

R3 = 280iq5 − 120q4 + 70iq3 − 32q2 + 5iq − 2 , (I.6.58c)
R4 = −112iq5 + 20q4 + 28iq3 − 25q2 + 5iq − 2 , (I.6.58d)

being ψ(z) the digamma function, γE the Euler–Mascheroni constant and q is now meant to be
computed for m = 1, we repeat what we have done for the zeroth-order solution, but matching
Eq. (I.6.46) with c1R̊0+η

(
c3δR0,1 + δR0,p

)
. We first solve for c3 and find that δν gains a correction

proportional to η, whose imaginary part sums up to γ computed at zeroth order,

δγ =
ηk3Mµ3

s(r+ − r−)
48r2+q (4q

2 + 1)

[
g1Mr+ + g2r

2
− + g3r−r+ + g4r

2
+

]
, (I.6.59)

where

g1 = 8q
(
2q2 + 1

) (
4q2 + 1

)
ℑψ(−2iq) , (I.6.60a)

g2 = −q2
(
4q2 + 1

) (
28q2 + 1

)
, (I.6.60b)

g3 = 2
(
280q6 + 130q4 + 21q2 + 1

)
, (I.6.60c)

g4 = −
(
224q6 − 36q4 − 35q2 − 2

)
. (I.6.60d)

We can now evaluate how this correction contributes to the growth time of the instability. At
leading order, for an axion,

δτ = −
(
7.89× 103 s

)(µaxion

µs

)(
η/M3

0.01

)(
M

a

)3
1

(Mµs)8
. (I.6.61)





Part II

The geometry of quantum delocalized
sources and microscopic models

In this second part, we review our efforts in introducing the notion of quantum
delocalization in Einstein’s theory and and in constructing microscopic quantum
models for black holes in terms of ensembles of harmonic oscillators. We tackle this
problem from two different perspectives. The first aims to considering the source of
the gravitational field to be in a quantum superposition of position states and then
use a sort of semiclassical approximation: the delocalized gravitational masses are
taken as sources of a clasical gravitational field described by general relativity. In
particular, when we consider a quantum particle of mass M in a delocalized state,
we observe that the classical gravitational field sourced by this system corresponds
to a regular-black-hole or a wormhole, depending from the value of the parameters
of the model. The second approach, instead, inspired by what we know about quasi
normal modes spectra, models the internal structure of the compact object in terms
of an ensemble of quantum harmonic oscillators. Adopting this perspective, we
first show that the Bekenstein-Hawking entropy of a Schwarzschild black hole is the
same of an ensamble of N noninteracting oscillators with proper frequency given
by the quasinormal frequencies of the hole. We then study a similar system in 2D
Jackiw-Teitelboim gravity finding the same relation between a 2D black hole and a
set of oscillators. Moreover, since these black holes also admit a dual description in
terms of a conformal field theory, we study the relation between the set of harmonic
oscillators and the quasinormal modes, finding a natural correspondence between
the latter and the de Alfaro-Fubini-Furlan conformally invariant quantum mechanics,
which corresponds to the conformal generalization of the harmonic oscillator.

This part is mainly based on:
A. Akil et al. “Semiclassical spacetimes at super-Planckian scales from delocalized
sources”. Phys. Rev. D 108.4 (2023), 044051. arXiv: 2211.01657 [gr-qc] for
Chapter II.2,
M. Cadoni et al. “Quasinormal modes and microscopic structure of the Schwarzschild
black hole”. Phys. Rev. D 104.12 (2021), L121502. arXiv: 2109.10744 [gr-qc] for
Chapter II.3,
M. Cadoni et al. “Quasi-normal modes and microscopic description of 2D black
holes”. JHEP 01 (2022), 087. arXiv: 2111.07763 [gr-qc] for Chapter II.4.
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https://arxiv.org/abs/2109.10744
http://dx.doi.org/10.1007/JHEP01(2022)087
https://arxiv.org/abs/2111.07763




Chapter II.1
Hints for a microscopic description of gravity

General relativity and quantum mechanics stand as two of the most triumphant and remarkable
theories ever conceived by the physics community. On one hand, the latter explains the behaviors
of fundamental particles existing within a spacetime that serves as the stage upon which quantum
systems interact with one another. On the other hand, spacetime itself, as delineated by general
relativity, plays a dynamic role, not only dictating the motion of particles but also reacting to
their presence. Nevertheless, the domains of applicability of these theories diverge significantly:
the former proficiently characterizes the behavior of macroscopic bodies, which can be treated
classically and their quantum nature can be safely neglected. In contrast, the latter exhibits extraor-
dinary precision in describing microscopic phenomena, where gravity is completely negligible.
In light of these vastly distinct scopes, a fundamental question arises: what happens in regimes
where these two descriptions must be used together? Regrettably, and yet intriguingly, we lack a
definitive answer to this puzzle, as the two theories are very different both from a physical point
of view and in the formalism they use, and we lack any experimental signatures of what a putative
quantum-gravity effect could look like. This is mainly due to the fact that it is very hard to probe
the regimes where the two descriptions must be used together. As discussed in the previous part
of this thesis, a plausible physical system in which general relativity and quantum mechanics
could, instead, talk to each other are black holes.

Over the past seven decades, extensive efforts within the literature have aimed at understand-
ing how classical gravity can be modified to align with a quantum framework. The initial steps
gave rise to the (incomplete) semiclassical framework, where quantum field theories are con-
sidered in a curved, classical spacetime [390]. Despite its incompleteness, this approximation
allowed for deeper exploration of fundamental aspects and resulted in the prediction of novel
effects, such as Hawking radiation [41]. Subsequently, numerous theories and frameworks have
emerged to address the challenge of describing a quantum theory of gravity. Examples include
string theory [27–29], supergravity [391, 392], loop quantum gravity [33, 34], euclidean quantum
gravity [393], noncommutative geometry [134, 394, 395], asymptotic safety [193, 396], and cor-
puscular quantum gravity [35–40]. However, despite these extensive efforts, a complete and fully
convincing quantum theory of gravity remains elusive, and every theory we concieved fails at
describing some of the phenomenology we observe in the universe.

Over the years, various physical systems have been proposed as probes for quantum gravity.
These systems include gamma-ray bursts, which offer the potential to investigate modifications
of the dispersion relations of electromagnetic radiation [397]; ultra-high-energy cosmic rays [45]
and particle-physics experiments [45, 46], where one can explore modifications of the uncertainty
principle, which is expected to be influenced by quantum gravity effects [47–50], or modifications
to the cross sections of some scattering processes; and gravitational waves, which may provide
insights into the quantum structure of spacetime near event horizons [51, 52]. Nevertheless,
current experiments still lack evidence of quantum-gravity effects, making the construction of a
comprehensive theory of gravity in the microscopic regime a formidable challenge (for a more
exhaustive discussion, see, e.g., Ref. [398] and references therein).

The absence of experimental evidence has been long attributed to the difficulty of probing the
Planck scale, at which quantum mechanics and gravity are expected to play comparable roles [44].
However, as we already discussed in the Introduction and in Part I, in more recent times, we

105



106

have gained more theoretical evidence about the fact that some of the interesting phenomenology
arising from quantum gravity could be measured even at larger scales. This new view, motivated
by the corpuscular approach to quantum gravity, also stems from the fact that the underlying
theory could show a multi-scale behavior, which is expected to generate some infrared scales
effectively encoding quantum effects at the Schwarzschild radiusRS [1, 2, 5], or even at galactic or
cosmological distances [64, 65, 71, 72, 399].

Another interesting perspective in studying the quantum gravity problem is to use a bottom-
up approach, similarly to what we did in Part I, in particular in Chapter I.2. In the previous
chapters, we discussed the possibility of parameterizing some beyond-general-relativity effects.
For instance, assuming that quantum effects can be effectively described by an anisotropic fluid
(see Chapter I.2 and Ref. [1]), we showed that the most interesting phenomenology arises when
the length scale at which these deviations take place is of the order of the classical horizon radius
RS. Using the same logic, one could try to start from general relativity and insert some level of
"quantumness" into Einstein’s theory (see, e.g., Refs. [400–406]), or, on the contrary, to begin with
quantum mechanics in order to see that is the impact of the quantum description on the dynamics
of the gravitational field (see, e.g., Refs. [47–50, 402, 404, 407, 408]).

In this second part of the present dissertation, we choose to follow this idea in two distinct
ways. On one hand, in Chapter II.2, we use the uncertainty principle to derive a quantum-regular-
black-hole metric. On the other hand, in Chapters II.3 and II.4, we adopt the opposite perspective,
in which we start from quantum mechanics and we try to reproduce the Bekenstein-Hawking
entropy formula modelling a black hole as a set of oscillators.



Chapter II.2
Regular geometries sourced by quantum

delocalized sources

The presence of singularities in general relativity (GR) [86, 87, 114], both for black holes and
cosmology or even deviations from Newtonian dynamics at galactic scales or the accelerated
expansion of the universe [39, 64, 70–72], can be regarded as a problem that could possibly find a
natural resolution in a quantum theory of gravity.

In this chapter, instead of trying to construct a fully consistent, i.e., finite or renormalizable,
theory of quantum gravity (QG), we follow a bottom-up approach, starting from GR and quan-
tum theory and trying to gradually insert more “quantumness” into gravity. This is suited, for
instance, to study quantum superpositions of reference frames or detectors [402, 404, 407, 408],
entanglement of quantum systems mediated by gravitational fields [409, 410], and the investiga-
tion of the behavior of gravitational sources (and even spacetimes) in quantum superpositions
[400–406]. The advantage of these approaches is that they do not rely on a definite ultraviolet (UV)
formulation of QG, so that they are likely to be experimentally tested in the foreseeable future.
In fact, there is a number of table-top experiments, not only being designed and discussed in the
literature [409–413], but attempts to implement them are ongoing as well [414–416]. On the other
hand, deviations from GR could be also probed and measured in the strong gravity regime, i.e.,
via gravitational-wave (GW) experiments (see, e.g., Refs. [343, 365, 417–419]) or, potentially, in
black-hole shadow observations (see, e.g., Refs. [13, 420–422]).

This bottom-up approach faces, however, a number of difficulties. For instance, it was argued in
[423, 424] that gravity may cause decoherence, forcing the collapse of the quantum wave functions
of matter, hence leaving no space for quantum superpositions of gravitational states. According
to Penrose, the fundamental problem lies in the inconsistency between general covariance and the
equivalence principle with the linearity of quantum mechanics. This idea was further explored for
quantum states near a black hole [425–427]. It was, however, shown in [428] that, when the black
hole is put in a superposition of masses, this decoherence of the quantum state largely decreases.
Penrose’s arguments were also challenged in [407, 429], where a unitary locally-inertial-reference-
frame transformation was derived within a set of assumptions, supporting the validity of the
equivalence principle for observers in a quantum superposition of reference frames.

The main goal of the present chapter is trying to build a bridge between these different
approaches. Without making any assumption about the underlying fundamental quantum theory
of gravity, we derive an effective description of gravity emerging from quantum superposition of
configurations of the source. We first follow a simplified approach by working in a Newtonian
framework and regarding the standard gravitational potential as an operator acting on a Hilbert
space spanned by states of the source of the gravitational field. We consider the source in
a superposition of different locations in space, with a general isotropic probability amplitude
ϕ(r). We then derive the effective Newtonian potential by taking the expectation value of the
gravitational-potential operator, and the effective metric is derived using a covariant uplifting
method. We then reproduce and extend the previous results by using a more general approach.
We still consider a source in a quantum superposition of different locations, but we assume, in
addition, that the metric is described by the classical Schwarzschild solution in each branch of
the superposition. We then derive the explicit form of the effective metric by assuming that the
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source is in a quantum state described by a Gaussian wave-packet of width R.
The resulting spacetime metric is asymptotically flat and quickly tends to the Schwarzschild

one at large distances. However, important differences emerge in the inner core of the solutions.
The metric is invariant under reflection of the radial coordinate r ←→ −r, so that it describes two
asymptotically-flat and equivalent regions. Moreover, due to the quantum uncertainty ∆r ∼ R
in the position of the source, the radius of the transverse S2 in the metric does not shrink to
zero for r → 0, but reaches a non-zero R-dependent value. The latter represents the radius
of a throat connecting the two asymptotically-flat regions, and thus resembles the throat of a
wormhole. Depending on the strength of the quantum-superposition effects, our metric describes
three classes of objects: (1) nonsingular black holes with an event horizon and a “quantum hair”;
(2) one-way critical wormholes; (3) traversable (in the sense of Morris-Thorne [82]) wormholes.

Our approach does not rely on a would-be specific microscopic theory of gravity. The simplest
and more general guess for the effective theory is GR sourced by an anisotropic fluid. This
type of fluid has been extensively used to construct stellar and black-hole models (both singular
and regular) and in cosmology to address the dark matter and dark energy problems (for an
incomplete list, see, e.g., Refs. [1, 71, 73, 75, 77, 118, 145, 147–149, 151, 152, 155, 197, 430–432] and
references therein). We therefore compute the stress-energy tensor and discuss the associated
energy conditions by assuming our effective metric to represent an exact solution of Einstein’s
field equations, sourced by an anisotropic fluid. As expected, we find that all the usual energy
conditions are violated in all the three models.

We then study the thermodynamic properties of the black-hole model. We find two thermody-
namic branches of black-holes: those in the “Hawking branch”, which are unstable with respect to
their radiation (they have negative specific heat), and those which, instead, represent thermody-
namically stable configurations and have positive specific heat. By computing the free energy, we
show that the latter are always thermodynamically preferred. Using the general entropy formula
recently proposed in Ref. [1] we show that the extremal black hole configuration not only has zero
temperature, but also is a zero-entropy state. We also revisit the Hawking radiation spectrum
and show it is Planckian, but with a different surface gravity. We compute the evaporation time,
which turns out to be infinite in the extremal limit, thus confirming the thermodynamic stability
of this configuration.

Finally, we extensively analyze the phenomenological properties of our spacetimes, which
could possibly give observable signatures in the near future. We study the geodesic structure in
detail, focusing on time-like and null geodesics. In both cases, we analyze the evolution of the
geodesic congruence, showing that in neither of the two cases we have formation of caustics, which
thus further confirms the geodesic completeness of our spacetime. This is a clear consequence of
the violation of the energy conditions, which allows to circumvent Penrose’s singularity theorems.
Additionally, we compute the position of the light ring, i.e., the position of the last unstable photon
orbit, showing that the presence of R causes potentially detectable deviations from the standard
Schwarzschild prediction.

We also study scalar perturbations in this spacetime. While for small values of R, the effective
potential in the Klein-Gordon equation has a single peak, for the stellar wormhole we observe a
double peak. This indicates the possibility of having characteristic signatures in the quasi-normal
modes (QNMs) spectrum, namely echoes [51, 175, 343, 433–435]. For models with a single peak,
we exploit the construction of Ref. [234] to derive an analytical expression of the quasi-normal
frequencies in the eikonal regime.

The chapter is organized as follows. In Section II.2.1, we derive the metric for our models
following the two approaches mentioned above. The general geometric properties of the met-
ric are studied in Section II.2.2, where we also investigate the usual energy conditions and find
violation of all of them. We also explicitly prove that the horizonless wormhole is traversable.
Section II.2.3 contains an extensive analysis on the thermodynamic properties of the black-hole
model, its Hawking radiation and the evaporation time. In Section II.2.4, we investigate the phe-
nomenological properties of our models.Specifically, we analyze the time-like and null geodesics
and the evolution of their congruence and we show that the spacetime is geodesically complete.
In the case of null-geodesics, we also compute the position of the light ring. Finally, we compute
the analytical expression of the quasi-normal frequencies in the black-hole case in the eikonal
regime.

In this chapter, we use units in which c = ℏ = kB = 1.
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II.2.1 The derivation of the metric

Localized gravitational sources have been studied for centuries, and can be described through
Newtonian mechanics or GR, depending on the physical settings. However, quantum mechanics
showed that matter cannot be completely localized. Therefore, it is natural to study quantum
delocalized gravitational sources. Here, we consider a point-like particle in a quantum superpo-
sition of different locations, and we probe its gravitational field. We will first study the quantum
corrected Newtonian potential, and do a covariant uplifting to derive the spacetime metric that
it generates. The resulting “quantum” metric will turn out to be a regular black hole that has
interesting properties. We will then proceed by considering the superposition in a full covariant
framework. We will use the formalism established in [429, 436], through which one can construct
a quantum superposition of classical spacetimes. We assume GR to hold in each branch of the
superposition. Then, we will use the resulting state to compute the expectation value of the metric
operator and get the effective quantum spacetime metric. In principle, in such a situation, the
probe would get in a joint superposition (entanglement) with the source, as shown in [436] and
as intuitively expected. However, we are here only interested in an average/statistical description
of the source, which is the heart of semi-classical approximation, and thus we will treat the probe
classically.

II.2.1.1 Quantum Newtonian potential uplifting
In this section we will work in the framework of Newtonian gravity. We assume that a point
source of mass M interacts gravitationally with a probe P of mass m through the Newtonian
potential. While the latter is treated as a classical particle, the source is assumed to be in a
quantum superposition of different locations. We use a spherical coordinate system where r
indicates the radial distance from the origin. The gravitational-potential operator describing the
system is

V̂ = − GMm

|r̂M − IM rm|
(II.2.1)

where r̂M is the position operator for the source, while rm is treated as a c-number giving the
three-dimensional vector position of the probe. IM , instead, is the identity operator acting in
the Hilbert space HM pertaining to the source. Moreover, the operator being in the denominator
simply denotes the inverse of that operator, i.e., in our notation 1

Â+Îb
= (Â+ Îb)−1.

InHM , we define the state of the source as

|ψ⟩M =

∫
d3r ϕ(r) |r⟩M , (II.2.2)

i.e., we express it in terms of a superposition of the complete set of orthonormal generalized
eigenstates of r̂M , being ϕ(r) a complex function whose modulus gives the probability amplitude
for the position of the source.
The quantum corrected potential is given by the expectation value of V̂ with respect to the state
|ψ⟩M , which gives1

⟨V̂ ⟩ = −M⟨ψ|
GM

|r̂M − IM rm|
|ψ⟩M (II.2.3)

= −GM
∫

d3r
|ϕ(r)|2

|r− r′|
(II.2.4)

= −2πGM
∫ π

0

dθ sin θ
∫ ∞

0

dr r2 |ϕ(r)|2√
r2 + r′2 − 2rr′ cos θ

(II.2.5)

= −2πGM

r′

∫ ∞

0

dr r (r′ + r − |r − r′|) |ϕ(r)|2, (II.2.6)

1We note that there are strong similarities with the approaches based on the Newton-Schrödinger (NS) equation [437–
441] (however, see, e.g., Refs. [440, 442, 443] for challenges to this approach). These analogies are mostly embodied by
Eq. (II.2.4), which is the usual way to write the potential appearing in the NS equation. Despite this, it is important to
stress that in our approach we do not rely here on any dynamics described by the NS equation.
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where, to lighten the notation, we indicated with r and r′ the positions of the source and the probe,
respectively, while the last two equalities are valid only if we assume ϕ(r) to be isotropic. Given
the spherical symmetry of the case under consideration, this assumption is satisfied. Notice that
⟨V̂ ⟩ does not depend on the relative phases between the states |r⟩M . The latter commonly arise
due to a unitary time-evolution of a would-be joint state of the probe, which gets entangled with
the source [436]. In this work, however, we are not interested in a fine-grained picture describing
the quantum state of one particle and its entanglement with the gravitational field, but rather in
the effective description of how, on average, classical localized test particles behave in presence
of quantum delocalized sources. This is fully consistent with our choice of treating sources as
quantum objects and test particles classically. In this "semiclassical" framework, computing the
expectation value Eq. (II.2.3) in eigenstates of V̂ , erases completely all information regarding
possible relative phases in the superposition (II.2.2).

Following the standard method of covariant uplifting, one can use this potential to construct
some components of the spacetime metric. The idea is that this potential can be seen as some
weak field limit of a general relativistic metric, which can be guessed from the potential as

−g00 = g−1
rr ≡ f(r′) = 1 + 2⟨V̂ (r′)⟩. (II.2.7)

Note that the conventional minus sign is already inserted in the definition of ⟨V̂ ⟩.
Looking at Eq. (II.2.2), the most basic requirement we can impose on ϕ(r) is L2-integrability

(so that the state (II.2.2) can be correctly normalized). This requirement is sufficient to guarantee
asymptotic flatness (more precisely, an asymptotic Schwarzschild form) of the resulting metric at
spatial infinity, as we now show. Using Eqs. (II.2.3) and (II.2.7), we write the metric function in
terms of the probability amplitude ϕ(r) of the position of the source

f(r′) = 1− 4πGM

r′

∫ ∞

0

dr r (r′ + r − |r − r′|) |ϕ(r)|2. (II.2.8)

To get rid of the absolute value, we separate the integral into two parts, one for r < r′, for which
|r − r′| = −(r − r′), and the other for r > r′, for which |r − r′| = r − r′. Therefore, the integral in
the metric function is separated accordingly

1

r′

∫ ∞

0

dr r (r′ + r − |r − r′|) |ϕ(r)|2 =
2

r′

∫ r′

0

dr r2 |ϕ(r)|2 + 2

∫ ∞

r′
dr r |ϕ(r)|2. (II.2.9)

L2-integrability and normalization of the ϕ(r) distribution gives a constraint on the form of the
probability amplitude, namely

4π

∫ ∞

0

dr r2 |ϕ(r)|2 = 1. (II.2.10)

We will consider the behavior at asymptotic infinity first. Indeed, by taking the r′ → ∞ limit of
Eq. (II.2.9), the second integral goes to zero, since the two integral extrema become identical. This
is true as long as the integral converges, so that the r′ →∞ limit and the integral commute, which
is guaranteed by virtue of Eq. (II.2.10). Indeed, ϕ(r) is L2-integrable when the minimal condition

|ϕ(r)|2 ∼ 1

r4
+O(r−5), for r →∞ (II.2.11)

is satisfied. In this case, the integral in Eq. (II.2.9) reduces to∫ ∞

r′
dr r |ϕ(r)|2 ∼

∫ ∞

r′
dr 1

r3
∼ 1

r′2
→ 0 for r′ →∞. (II.2.12)

The first integral, on the other hand, is equal to 1/4π by virtue of Eq. (II.2.10). In other words, the
metric reduces to f(r′) = 1− (4πGM/r′)(1/2π) = 1−2GM/r′, which is the usual, asymptotically-
flat, Schwarzschild metric.
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One can also show that L2-integrability of ϕ(r) is only a necessary condition2 to have a
nonsingular metric, i.e., a spacetime without a central singularity at r′ = 0. However, the analysis
is more involved than before. We first separate the integral in the condition (II.2.10) into two parts∫ r′

0

dr r2 |ϕ(r)|2 +
∫ ∞

r′
dr r2 |ϕ(r)|2 =

1

4π
. (II.2.13)

Next, we use this decomposition to rewrite the right-hand side of Eq. (II.2.9) as follows

2

r′

∫ r′

0

dr r2 |ϕ(r)|2 + 2

∫ ∞

r′
dr r |ϕ(r)|2 =

1

2πr′
− 2

r′

∫ ∞

r′
dr r2 |ϕ(r)|2 + 2

∫ ∞

r′
dr r |ϕ(r)|2.

(II.2.14)

The second integral on the right-hand side is well-behaved by virtue of L2-integrability and, in
the r′ → 0 limit, the divergent factor 2/r′ in front of it cancels the other divergent term 1/2πr′.
The last integral, instead, can be evaluated by parts to yield

2

∫ ∞

r′
dr r |ϕ(r)|2 =

[
r2|ϕ(r)|2

∣∣∣∣∞
r′
−
∫ ∞

r′
dr r2 ∂r|ϕ(r)|2

]
. (II.2.15)

As long as we consider ϕ as a function and not as a distribution (thus, as long as we have smearing
effects), the first “boundary” term will always be zero. Therefore, we see that the requirement
of also ∂r|ϕ(r)|2 being an L2-function seems to guarantee absence of singularities for r′ → 0.
This additional condition alone, however, is still insufficient, as it does not automatically prevent
the presence of conical singularities. The latter can be avoided if the spacetime is endowed
with a throat, i.e., the angular part of the metric does not shrink to zero for r′ → 0 [116]. In
Section II.2.2, we will argue that an important consequence of superposing sources in different
locations, together with the related uncertainty principle, guarantees the presence of a throat
whenever ϕ(r) is L2-integrable and sharply peaked at r = 0.

The specific spacetime describing the local behavior of the metric near r′ → 0 will, of course,
strongly depend on the function of r′

F(r′) ≡
∫ ∞

r′
dr r2 ∂r|ϕ(r)|2 , (II.2.16)

and on the precise form of the angular part of the metric. This is a clear manifestation of the
nonlocal nature of the quantum-mechanical approach we are using. The fact that the angular part
of the metric is unspecified in this construction prevents us from performing a complete analysis
of the different possibilities.

II.2.1.2 A simple realization: Gaussian distribution
Our approach does not allow to determine the probability amplitude function ϕ(r). In fact, we
are not making any assumption on the fundamental QG dynamics, which should determine ϕ.
The latter is only weakly constrained by general quantum mechanical principles. It must be L2-
integrable, implying that it must decrease sufficiently fast as r →∞. Moreover, the existence of a
classical limit, in which the mass M behaves as a point particle in the Newtonian theory (or GR),
requires |ϕ|2 to be peaked in r = 0. The most natural and simple candidate, respecting these and
the other requirements listed in the previous subsection, is a Gaussian distribution of width R
centered in r = 0. That is

|ψ⟩M =

(
2
√
2

π3/2R3

) 1
2 ∫

d3r e−
r2

R2 |r⟩M . (II.2.17)

Physically, this means that we are using a wave packet with uncertainty∆r ∼ R as a quantum state
describing the superposition of the source location states. The resulting momentum uncertainty

2L2-integrability alone is not sufficient to guarantee regularity of the metric. For example, a distribution like δ(r)/r2,
which is L2-integrable, generates the usual Schwarzschild singularity when plugged into Eq. (II.2.8).
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reads ∆P ∼ 1/R. We can therefore associate to our superposition state a De Broglie length
λDB ∼ R. As we will show in the following sections, a comparison of λDB with the gravitational
(Schwarzschild) radius of the source will allow us to measure the strength of quantum effects.

Plugging Eq. (II.2.17) into Eq. (II.2.3) we get

⟨V̂ ⟩ = −GM
r

Erf
(√

2
r

R

)
. (II.2.18)

Here and in the rest of the present work, unless otherwise specified, we have dropped the prime
symbol to simplify the notation. Eq. (II.2.18) gives, upon covariant uplifting,

−g00 = g−1
rr = 1− 2GM

r
Erf
(√

2
r

R

)
. (II.2.19)

As we shall see in Section II.2.2, for particular values of the width R, this metric has a horizon at
r = rH, where g00(rH) = 0, but no divergences at r = 0, as expected. The classical Schwarzschild
solution, compatible with a classical source exactly placed at r = 0, is only recovered when the
uncertainty in the position, quantified by R, is sent to zero.

Interestingly, the same metric function was found also in other works dealing with non-local
gravity effects and black-hole mimickers in this framework [319, 444–447].

II.2.1.3 A more general approach
In the previous section we derived the expectation value of the potential operator, given a source
in a quantum superposition and a localized probe. Here we will take a slightly different approach
which will turn out to give the same results, but further allowing for a derivation of the angular
part of the metric as well. The main difference is that we will now work in a full covariant
framework and the source is treated as being in a superposition of different locations of a given
classical manifold. The mathematical formalism needed to do this was introduced in [448], and
further developed by Giacomini, Brukner and others [407, 429, 449] in a series of papers focused
on quantum observers in a superposition of different reference frames. In their approach, they
also consider the possibility of having a superposition of different classical manifolds.

They start with the state |Ψ(i)⟩describing a delocalized gravitational source in a single manifold,
labeled by a fixed index i, and the gravitational field associated with it

|Ψ(i)⟩ = 1

2

∫
d4xS

√
−g(i)(xS)ϕi(xS)|g(i)(xS − xP )⟩|x(i)S ⟩ . (II.2.20)

Here, |x(i)S ⟩ is the position eigenstate of the source, while we are again treating the probe classically,
at a position xP . This implies that also here the source coordinate xS is an operator, whereas xP
is a number. As in the previous section, ϕi(xS) describes the probability amplitude of the source
position xS in the i-th manifold, whereas |g(i)(x)⟩ is the state describing the spacetime metric.
The factor 1/2 is due to the symmetry under the exchange of xS and xP . Moreover, |g(i)(x)⟩
describes a classical spacetimeMi, with i running through the manifolds of the superposition, i.e.,
M = {Mi}i=1,...,N . By summing over the states labelled by i, as well as by integrating over xS , we
construct a quantum superposition of classical spacetimes described by the state |Ψ⟩ =

∑
i |Ψ(i)⟩.

We stress, again, the fact that this is not meant to represent a fully consistent second quantization
of the gravitational field, but it just represents a way to build a quantum superposition of classical
geometries in a first-quantization framework. Thus, summing over manifolds has not the meaning
of summing over different spacetime geometries in a diffeomorphism-invariant way, but it is just
a formal definition of such superposition.

Now we assume that, in each manifoldMi, there exists a metric operator ĝ(i)µν(x̂) acting on the
Hilbert space spanned by its generalized eigenstates |g(i)(x)⟩ as

ĝ(i)µν(x̂)|g(i)(x)⟩ = g(i)µν(x̂)|g(i)(x)⟩. (II.2.21)

The eigenvalues g(i)µν(x̂) are not numbers, but rather operators acting on the Hilbert space spanned
by the eigenstates of the coordinates |x⟩. When acting on a position eigenstate, it gives the usual
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spacetime metric as eigenvalues

g(i)µν(x̂)|x⟩ = g(i)µν(x)|x⟩. (II.2.22)

Describing states of the gravitational field as a quantum superposition of positions and spacetimes
is not straightforward and can be controversial [423]. However, there was a very nice argument
presented in Ref. [436] supporting the validity of this construction. The authors start with a
massive object (the source) in a superposition of 2 locations, and a localized probe falling through.
They do not construct an a priori superposition of spacetimes, like |g1⟩+|g2⟩. Instead, they construct
a quantum-reference-frame transformation which makes the source localized and leaves the free-
falling probe in a superposition of 2 locations. In that case, the physics is described by the
semiclassical approach. They then evolve the superposed probe state on the determined curved
background, and, at the end of the evolution, they transform back to the original frame in which
the source is in a superposition. The result turns out to be in exact accordance with the case where
the whole process is done with the source being in a superposition of the two locations, described
by the state |g1⟩+ |g2⟩.

The state |Ψ⟩ defined above can now be used to compute the metric operator expectation value,

⟨ĝµν(x̂)⟩ ≡ ⟨Ψ|ĝµν(x̂)|Ψ⟩ =
1

4

N∑
i,j=1

∫
d4x′S

√
−g(j)(x′S)ϕ

∗
j (x

′
S)⟨g(j)(x′S − xP )|⟨x

′(j)
S |ĝ

(i)
µν(x̂)

×
∫

d4xS

√
−g(i)(xS)ϕi(xS)|g(i)(xS − xP )⟩|x(i)S ⟩

=

N∑
i=1

∫
d4xS

√
−g(i)(xS) |ϕi(xS)|2 g(i)µν(xS − xP ), (II.2.23)

where we assumed that the metric and the position eigenstates of the source are orthogonal to
each other, and specifically (see also Refs. [429, 449])

1

4
⟨g(j)|g(i)⟩⟨x′(j)S |x

(i)
S ⟩ =

δ(4) (xS − x′S)√
−g(i)(xS)

δij , (II.2.24)

where the Kronecker delta emphasizes the fact that gravitational fields on different manifolds
are perfectly distinguishable. On a curved background, the distribution |ϕi(x)|2 now satisfies
the normalization condition

∫
d4x

√
−g(i)(x) |ϕi(x)|2 = 1. Note also that we are summing over

different manifolds in order to account for extra physical parameters which can as well be in
quantum superpositions. That sum can also be an integral for continuous parameters. The mass
of the source or the probe being in a superposition is a simple example (see the end of the present
Section).

As previously noticed, summing over geometries, even in a first quantization framework,
is a quite involved procedure. The completeness of the space spanned by these geometries
and diffeomorphism invariance are important issues one should address before performing the
summing [450]. In order to avoid these problems and to keep things as simple as possible, we just
consider superposition of the positions of a gravitational source in a single given geometry and
in a given coordinate system. We fix therefore a particular gauge, requiring that the spacetime
metric is the Schwarzschild metric. We also fix the parametrization by writing the latter in the
Eddington-Finkelstein coordinates (v, r, θ, φ) for simplicity. Therefore, Eq. (II.2.23) becomes

⟨ĝµν(x̂)⟩ = N 2 2
√
2

π
3
2R3

∫
dv dr dθ dφ r2 sin θ e−2r2/R2

gµν(r − rP ). (II.2.25)

Given that the metric is static, i.e., invariant under v-translations in each branch of the superpo-
sition, we have to renormalize the integral over v with a renormalization factor N 2. Moreover,
given the spherical symmetry of the metrics g(i), we can also integrate over φ. This yields

⟨ĝµν(x̂)⟩ =
4π
√
2

π
3
2R3

∫
dr dθ r2 sinθ e−2r2/R2

gµν(r − rP ). (II.2.26)
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Plugging the explicit expressions of gµν in terms of the Schwarzschild metric into the above, the
expectation value of the metric operator reads

⟨ds2⟩ =
[
−1 + 2GM

r
Erf
(√

2
r

R

)]
dv2 + 2dvdr +

(
r2 +

3R2

4

)
dΩ2, dΩ2 = dθ2 + sin2 θdφ2,

(II.2.27)

where now the radial coordinate r corresponds to the distance of the probe to the source. In-
terestingly, thus, for a Gaussian distribution of the probability amplitude of the source, one gets
the same metric components computed in the previous section, supporting the result, and, in
addition, interesting angular components emerge.

Transforming to the Schwarzschild coordinates yields

⟨ds2⟩ =
[
−1 + 2GM

r
Erf
(√

2
r

R

)]
dt2 + 1

1− 2GM
r Erf

(√
2 r
R

)dr2 +
(
r2 +

3R2

4

)
dΩ2. (II.2.28)

Note that we can also introduce a superposition of masses. In a simplified formulation, one
can promote the mass in the Schwarzschild metric to an operator, and let it act on a state vector
accounting for the dependence of the system from its ADM mass. In this way, we can consider
a quantum superposition of mass eigenstates. Note that the mass operator corresponds to an
observable in quantum gravity, since it is an explicitly gauge-invariant quantity. Its nonlocal
nature is here inherited from the superposition of the different eigenstates. We start therefore by
writing the state as

|Ψ⟩ = 1

2

∫
d4xS

√
−g(xS)ϕ(xS)|g(xS − xP )⟩|xS⟩

∫
dM ψ(M)|M⟩. (II.2.29)

whereψ(M)describes the distribution of different masses. The previously defined metric operator,
on the other hand, will be promoted to ĝµν(x̂, M̂). Then, assuming the Schwarzschild metric in
each branch of the superposition, and focusing on the mass state, we have

⟨gµν(x̂, M̂)⟩ =
∫

dM ′ ψ∗(M ′) ⟨M ′| ĝµν(x̂, M̂)

∫
dM ψ(M) |M⟩. (II.2.30)

Substituting the zeroth component of the metric as an example reads

⟨g00⟩ =
∫

dM ′ ψ∗(M ′) ⟨M ′|

(
1− 2GM̂

r̂

)∫
dM ψ(M) |M⟩. (II.2.31)

Assuming ψ(M) to be normalized to 1, we have∫
dM |ψ(M)|2 = 1 (II.2.32)∫
dM |ψ(M)|2M = ⟨M⟩ ≡Mcl, (II.2.33)

where we have identified the classical mass Mcl with the expectation value of the operator M̂ .
When plugged together into Eq. (II.2.30), one easily finds

⟨gµν(x̂, M̂)⟩ = 1− 2GMcl
r̂

. (II.2.34)

The same works for the other components of the metric tensor. An important remark is that these
results are totally independent of the details of the superposition, i.e., of the explicit form of the
distribution ψ(M). Eq. (II.2.28) is again recovered when we compute the expectation value of the
operator (II.2.34) with the position states of the source.
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Figure II.2.1: Left panel: Horizon radius as a function of the smearing parameter R, both in units
of GM . We see that, for values of R greater than Rc ≃ 3.19GM , the horizon disappears and we
are left with a horizonless object. The horizontal dashed line corresponds to the position of the
classical Schwarzschild horizon 2GM . Right panel: Behavior of the metric function (II.2.35) as a
function of the radial coordinate for different value of R: R = 2GM (solid red line), R = Rc (solid
blue line) andR = 4GM (solid orange line). The first case corresponds to a solution with an event
horizon (regular black holes), the second to a “critical” wormhole with a null throat, while the
latter to a horizonless object, which is a two-way wormhole.

II.2.2 Metric Structure

In the remainder of the work, we will use f(r) to indicate the metric function in Eq. (II.2.28), i.e.,

f(r) = 1− 2GM

r
Erf
(√

2
r

R

)
. (II.2.35)

The metric tends to the standard Schwarzschild metric for r ≫ R. As also mentioned at the end of
Section II.2.1.2, this last result can also be obtained in theR→ 0 limit, i.e., in the limit in which the
width of the Gaussian position distribution goes to zero, which yields the standard Dirac-delta
distribution, thus recovering the classical central singularity.

In the r → 0 limit, instead, the metric function behaves as

f(r) ≃ 1−
4GM

√
2/π

R
+

8GM
√

2/π

3R3
r2 +O(r3). (II.2.36)

We see that there are no spacetime singularities at r = 0. This suggests the relevance of the
present approach to the construction of nonsingular black-hole models, which have recently
gained increasing attention (see, e.g., Refs. [1, 116, 118, 451]). The local r = 0 behavior of the
metric function f is similar, except for the constant term, to that of the anti-de-Sitter case. We
have explicitly computed the curvature invariants for our spacetime metric (see Appendix II.A)
and showed that they remain finite at r = 0. One can also easily show that the r = constant-time
slices of our spacetime have a surface with area A = 4π

(
r2 + 3

4R
2
)
, which is minimized at r = 0.

The radius of the two-sphere does not shrink to zero, but to the minimal non-vanishing value√
3/4R. This means that, near r = 0, the t = constant sections of our spacetime exhibit a R× S2

local topology. Additionally, we have an invariance of the metric under r ←→ −r. Altogether
this means that the metric (II.2.28) describes two asymptotically-flat equivalent regions, connected
through a long throat of minimal radius

√
3/4R, i.e., a wormhole. Indeed, in the M → 0 limit,

our metric reduces to the standard Morris-Thorne wormhole [82, 452]

ds2 = −dt2 + dr2 +
(
r2 +

3R2

4

)
dΩ2. (II.2.37)

The r → 0 behavior of the metric is what distinguishes our solution from other either phenomeno-
logical [1, 84, 118] or “quantum-inspired” regular models [132, 136, 192, 207, 453]. Similarly to
our case, these solutions are parametrized by a quantum hair R and are usually endowed with
a de Sitter core, which determines the presence of two (or, more generally, an even number
of) horizons. Inspection of Eq. (II.2.36) reveals that f(0) changes sign at the critical value of
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R = Rc = 4
√
2/π GM ≃ 3.19GM . This signalizes the presence of horizons, whose position can

be easily found by computing the zeroes of f(r). For R < Rc, we have one horizon, while for
R > Rc we have no horizons (see Fig. II.2.1). At R = Rc, instead, the metric function has a zero at
r = 0 and we have an “extremal configuration”, separating solutions with and without horizons.

The occurrence of different solutions for different values of the parameter R has a nice ex-
planation in terms of the strength of quantum effects characterizing our quantum superposition
of spacetimes. R and Rc are of the order of magnitude of the De Broglie length λDB of our
quantum state and of the classical gravitational radius of the source RS = 2GM , respectively.
Thus, R ≪ Rc means that quantum effects are completely negligible and we are describing the
classical limit of a fully localized source. Correspondingly, the solutions of the effective theory are
indistinguishable from the classical Schwarzschild black hole with its singularity at r = 0. When
R ∼ Rc, instead, quantum effects become relevant and the solution of the gravitational theory
is a “quantum-deformed” Schwarzschild black hole: R plays the role of a quantum hair and the
classical singularity at r = 0 is resolved. Finally, R > Rc corresponds to a regime that is fully
dominated by the quantum effects generated by the superposition of the source location states.
On the effective gravitational theory, we have now a horizonless wormhole solution. This is a
quite intriguing result, reminiscent of the ER = EPR conjecture [306, 454]. When quantum effects
become fully dominant, both the singularity and the horizon disappear, leaving behind a fully
regular traversable wormhole. Notice that the relation between quantum effects and wormhole
geometries is not completely new (see, for an incomplete list, e.g., [455–460]), instead, our result
seems to align with those already present in literature.

One could ask whether the presence of a wormhole in the effective theory is generic or a
consequence of assuming the Gaussian form (II.2.17) for the distribution ϕ(r). We can easily show
that a wormhole solution will always be present, regardless of the specific form of ϕ(r), whenever
the latter is L2-integrable and sharply peaked at r = 0 (as required by a meaningful quantum
picture and for consistency with the classical description in terms of localized source-particle)
and whenever the metric is Schwarzschild in every branch of the superposition. Indeed, from
Eq. (II.2.23) we see that the gθθ component of the effective metric can be written as

⟨gθθ⟩ = 2π

∫ π

0

dθ
∫ ∞

0

drS r
2
S sin θ |ϕ(rS)|2 (r2 + r2S − 2rrS cos θ), (II.2.38)

where rS indicates the radial coordinate of the source. The integral over θ can be done immediately,
giving

⟨gθθ⟩ = 4π

∫ ∞

0

drS r
2
S |ϕ(rS)|2 (r2 + r2S) = 4πr2

∫ ∞

0

drS r
2
S |ϕ(S)|2 + 4π

∫ ∞

0

drS r
4
S |ϕ(rS)|2 .

(II.2.39)

Using Eq. (II.2.10), the first integral gives 1/4π. By defining a new dimensionless variable ξ = rS/R,
the second one, can be written in the form,∫ ∞

0

drS r
4
S |ϕ(S)|2 = R5

∫ ∞

0

dξ ξ4 |ϕ(ξ)|2 . (II.2.40)

If we assume the integral to be convergent, as it is the case for a sharply peaked function, simple
counting of dimensions in the normalization of ϕ, gives ϕ ∼ R−3/2. This implies in turn that
integral (II.2.40) gives a2R2, where a2 is some real constant. Therefore, the metric can always be
written in the form

ds2 = −f(r,R)dt2 + dr2
f(r,R)

+ (r2 + a2R2)dΩ2. (II.2.41)

Additionally, if ϕ has a narrow maximum at r = 0, the first integral in Eq. (II.2.12) is dominated
by the contribution near this maximum, so that this integral, and hence the metric function f(r)
in Eq. (II.2.41), are even functions of r. Finally, L2-integrability guarantees that the metric is
asymptotically flat, as shown in Section II.2.1.1. Altogether, these features tell us that the metric
(II.2.41) represents a wormhole.
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II.2.2.1 Effective theory and energy conditions
From Birkhoff’s theorem, the only static, vacuum solution of Einstein’s equations is the Schwarzschild
metric. Therefore, if we interpret our spacetime as a solution of standard GR equations, it must be
sourced by some non-zero stress-energy tensor. As previously stated, we are not making any as-
sumption about the fundamental quantum theory of gravity underlying our quantum description
of spacetime. Our goal is restricted to deriving the effective description of gravity emerging from
quantum superposition of positions of the source. Owing to our lack of knowledge about the
underlying theory of QG, the simplest, and more general, guess on the emerging effective theory
is that of GR sourced by an anisotropic fluid [197, 430], which is characterized by profiles for the
energy density ϵ and for the radial and transverse components of the fluid pressure, respectively
given by p∥ and p⊥. This means that the effect of the quantum superposition of spacetimes allows
for an effective classical description in terms of an anisotropic fluid. This kind of fluids are very
promising for parametrizing QG effects both for black holes/compact objects [1, 77, 84, 118, 132,
151, 152, 155, 431, 432, 453] and for galactic dynamics and cosmology [71–73, 75, 147–149]. The
information about the effective theory will be encoded in the profile ϵ(r) and the equation of
state p∥ = p∥(ϵ), whereas p⊥ is determined by the conservation equation for the stress energy
tensor. Using Einstein’s equations, we can compute the explicit expressions of the density and the
pressure components for the anisotropic fluid

ϵ =
−3R3 + 4e−2r2/R2

GM
√

2
π

(
3R2 + 4r2

)
+ 6GMR3

r Erf
(√

2 r
R

)
2πGR (3R2 + 4r2)

2 , (II.2.42a)

p∥ =
−3R3 − 4e−2r2/R2

GM
√

2
π

(
3R2 + 4r2

)
+ 6GMR3

r Erf
(√

2 r
R

)
2πGR (3R2 + 4r2)

2 , (II.2.42b)

p⊥ =
6R5r3 + 2e−2r2/R2

GM
√

2
π r
(
9R6 + 30R4r2 + 48R2r4 + 32r6

)
4πGR3r3 (3R2 + 4r2)

2

−
3GMR5

(
3R2 + 8r2

)
Erf
(√

2 r
R

)
4πGR3r3 (3R2 + 4r2)

2 . (II.2.42c)

We now analyze the energy conditions, focusing on the Null Energy Condition (NEC). In order
for this condition to be satisfied, we have to require both ϵ+p∥ ≥ 0 and ϵ+p⊥ ≥ 0 to hold globally.
It is sufficient to consider that, from Eqs. (II.2.42a) and (II.2.42b), it follows

ϵ+ p∥ = − 3R2f(r)

Gπ (3R2 + 4r2)
2 , (II.2.43)

with f(r) given by Eq. (II.2.35). For R > Rc, i.e., for horizonless objects, the NEC is always
violated, since f(r) > 0 everywhere (see Fig. II.2.1). This means that the wormhole is potentially
traversable [82, 110] (see Section II.2.2.2). For R = Rc, the NEC is always violated except from
the point r = 0. This means that this model represents a one-way wormhole with a null throat at
r = 0, which poses restrictions to its traversability as we will see in detail in the following section.

In the black-hole case, things are a little more subtle. In the exterior region, the NEC is always
violated, since f(r) > 0. In the interior, we have that the time and the radial coordinates swap, so
that we now have ϵ = −T r

r and p∥ = T 0
0 , while p⊥ remains unchanged. Therefore, the right-hand

side of (II.2.43) changes sign. This implies that also in the interior, f(r) < 0, and thus the NEC is
violated.

For R→ 0 (the limit in which our spacetime reduces to the standard Schwarzschild solution),
we have that ϵ + p∥ = 0 and the NEC is of course satisfied. Violation of the NEC is a sufficient
condition for violating all the other energy conditions [110, 119]. Indeed, it has been proved
[119] that, for a general metric of the form ds2 = −f(r)dt2 + f−1(r)dr2 + Σ(r)dΩ2, there is a
violation of all energy conditions (regardless of whether t is a temporal or a spatial coordinate,
i.e., regardless of whether we are inside or outside the horizon) whenever f(r) ̸= 0 and Σ(r) is
non-zero everywhere and satisfies Σ(r) > 0 and Σ′′(r) > 0, which is indeed the case here.

We have explicitly checked that the other energy conditions are also violated. It is worth
noting that the weak energy condition ϵ ≥ 0 is typically strongly violated in the region near the
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Figure II.2.2: Density ϵ as a function of the radial coordinate r in the three cases: black-hole (solid
red line), “critical wormhole” (dashed blue line) and wormhole (dot-dashed blue line). In the first
case, the dashed red vertical line corresponds to the position of the event horizon.

Schwarzschild radius, whereas it holds both inside the latter and in the asymptotic (r →∞) region
(see Fig. II.2.2).

II.2.2.2 Wormhole traversability

The violation of the standard energy conditions is only a necessary, but not sufficient, condition
to have an “in-principle” traversable wormhole. An additional condition, commonly referred to
as “flaring-out”, needs to be satisfied. To properly explain the physical meaning and implications
of this requirement, we write a general-wormhole metric in the standard form

ds2 = −e2Φ(r)dt2 + dr2

1− b(r)
r

+ r2dΩ2 (II.2.44)

where Φ(r) and b(r) are functions of r only. b(r) controls the spatial shape of the wormhole and
is therefore called the “shape function”, while Φ(r) is the “redshift function”.

The “flaring-out” condition guarantees the existence of a throat connecting the two asymptotic
regions, where the radius of spherical shells, as a function of the proper radial distance from the
throat itself L, attains a minimum [82, 110, 461]. We, thus, compute the proper radial distance
from the throat in the wormhole spacetime (II.2.44), which is

L(r) = ±
∫ r

rthroat

dr√
1− b(r)

r

. (II.2.45)

The radius of the throat rthroat is given by the minimum of r (L), which translates to imposing

dr
dL = ±

√
1− b(rthroat)

rthroat
= 0, (II.2.46)

which gives rthroat as the solution of b(rthroat) = rthroat. Finally, in order for the proper distance to
be strictly increasing on both sides of the minimum rthroat, we require

d2r

dL2
=

1

2rthroat

(
−b′(rthroat) +

b(rthroat)

rthroat

)
> 0. (II.2.47)

Since b(rthroat) = rthroat, the “flaring-out” condition translates to requiring b′(rthroat) < 1.
To explicitly analyze this condition in our model, we need first to recast our metric (II.2.28)

into the form of Eq. (II.2.44). This is simply realized by the coordinate change r′ ≡
√
r2 + 3R2

4 ,
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and the metric (II.2.28) becomes

ds2 = −

1− 2GM√
r′2 − 3R2

4

Erf
(√

2

R

√
r′2 − 3R2

4

)dt2

+
r′2 dr′2(

r′2 − 3R2

4

) [
1− 2GM√

r′2− 3R2

4

Erf
(√

2
R

√
r′2 − 3R2

4

)]
+ r′2dΩ2, (II.2.48)

from which we immediately read the “redshift” and the “shape” functions

Φ(r′) =
1

2
ln

1− 2GM√
r′2 − 3R2

4

Erf
(√

2

R

√
r′2 − 3R2

4

) ; (II.2.49a)

b(r′) = r′ − 1

r′

(
r′2 − 3R2

4

)1− 2GM√
r′2 − 3R2

4

Erf
(√

2

R

√
r′2 − 3R2

4

) . (II.2.49b)

The position of the throat is given by solving the equation b(rthroat) = rthroat, so that

(
r2throat −

3R2

4

)1− 2GM√
r2throat −

3R2

4

Erf
(√

2

R

√
r2throat −

3R2

4

) = 0. (II.2.50)

Regularity of the redshift function (II.2.49a) everywhere [82, 110], required to have traversability,
implies that the quantity in square brackets in Eq. (II.2.50) is different from zero, which isolates
the throat radius rthroat =

√
3/4R, as expected.

Taking the derivative of b(r) with respect to r′ and evaluating it at r′ =
√
3/4R yields

b′

(√
3

4
R

)
= −1 + 8GM

R

√
2

π
. (II.2.51)

For b′(
√
3/4R) < 1, i.e., for R > 4

√
2/π GM , we have a traversable wormhole, while it is non-

traversable otherwise. It is interesting to note that the same value of R discriminating between
traversable and non-traversable wormholes is the same discriminating between the presence or
absence of an event horizon, which correspond, respectively, toR < Rc andR > Rc, with, we recall,
Rc = 4

√
2/π GM the critical value corresponding to the extremal configuration. Specifically,

horizonless wormholes will be traversable, while those with an event horizon will not. The object
with R = Rc falls in this last category as a particular configuration with a null throat.

This is consistent with the usual Morris and Thorne’s requirement [82] of the absence of event
horizons to guarantee traversability, as the presence of a horizon prevents two-way travel through
the wormhole. This is of course a consequence of the requirement of the regularity of the redshift
function (II.2.49a), which implies the absence of a horizon. Indeed, if we had fixed rthroat as the
zero of the square bracket in Eq. (II.2.50), we would have had Φ(r) → −∞ and thus a horizon
(since we would have had e2Φ → 0 in Eq. (II.2.44)).

II.2.3 Thermodynamics and Hawking evaporation

The discussion of the present section is focused on configurations endowed with an event horizon,
namely configurations with R ≤ Rc.

II.2.3.1 Thermodynamic properties
From the metric function (II.2.35), using the standard black-hole thermodynamic relations, we
can compute both the black-hole mass and the Hawking temperature TH as functions of the event
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Figure II.2.3: Qualitative behavior of the temperature as a function of the event horizon radius.
We highlighted the two thermodynamic branches: thermodynamic stable configurations (blue
line) and the unstable (Hawking) branch (orange line).

horizon radius rH and the position uncertainty R

M(rH, R) =
rH

2GErf
(√

2
R rH

) , (II.2.52a)

TH(rH, R) =
1

4π

df(r)
dr

∣∣∣∣
r=rH

=
GM(rH, R)

2π3/2r2H

[
−2
√
2 e−2r2H/R

2

R
rH +

√
π Erf

(√
2

R
rH

)]
. (II.2.52b)

Specifically, Eq. (II.2.52a) is the implicit relation between the ADM mass and the event-horizon
radius. Plugging it into Eq. (II.2.52b) yields the explicit expression of the temperature

TH(rH, R) =
1

4πrH
−

√
2
π e

−2r2H/R
2

2πR Erf
(√

2
R rH

) . (II.2.53)

The first term corresponds to the standard Hawking result. Indeed, it is easy to see that, in the
R → 0 limit, rH → 2GM and TH → 1/ (8πGM). In the rH → 0 limit, instead, the temperature
goes as TH ≃ rH/3πR

2 + O(r2H), so it goes to zero linearly. The temperature also vanishes as
rH → ∞. This signals the non-monotonic behavior of the temperature, which must have at least
an extremum somewhere. Indeed, solving dTH/drH = 0 yields the position of the maximum
rH, max ≃ 0.97R. A qualitative plot of the temperature is shown in Fig. II.2.3.

As expected, the divergence of the temperature at rH → 0 of the Schwarzschild black hole is
cured. The rH = 0 configuration corresponds to the “extremal” wormhole, which, therefore, is a
perfectly regular, zero-temperature state. In the limit rH → 0, M(rH, R)→ Mc ≡ (1/4G)

√
π/2R,

which is a non-zero value. This signals the transition from an object with an event horizon to a
horizonless one.

An important remark is that R has to be considered as a quantum deformation parameter
that, contrary to M , is not associated with conserved charges defined at infinity. This makes our
quantum black hole solution drastically different from other two-parameter classes of solutions,
like, e.g., the charged Reissner-Nordström solution, for which both parameters are associated with
thermodynamic potentials. Owing to this feature, we expect a first law of thermodynamics of the
form dM = THdS, where S is the black-hole entropy. It is known that the presence of a quantum
deformation parameter R, not associated with a thermodynamic potential, implies violation of
the area-law for the entropy [1]. An entropy formula, which generalises the area-law and applies
to “quantum-deformed” black holes, has been proposed in Ref. [1]

S = 4π

∫ rH

rmin

M(r′H) dr′H. (II.2.54)
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Figure II.2.4: Numerical evaluation of the entropy of the quantum black hole (solid blue line),
compared to Hawking’s standard result SH = AH/ (4G) (with AH the area of the event horizon),
as a function of the event horizon radius in R units yH ≡ rH/R. We set G = 1.

where rmin is the minimum value rH can attain, corresponding to the radius of the extremal-
state event horizon. One can easily check that Eqs. (II.2.52a) and (II.2.52b) imply the validity of
the relation dM = 4πMTHdrH, from which it follows that the entropy (II.2.54) satisfies the first
principle dM = THdS. In the case under consideration, rmin = 0 and, therefore, the entropy of
the extremal, TH = 0, configuration vanishes. This TH = S = 0, M ̸= 0 extremal state separates
solutions with horizons from horizonless wormholes. In Fig. II.2.4 we plotted the result of the
numerical integration of the entropy expression (II.2.54).

As mentioned before, the entropy formula (II.2.54) is a consequence of the validity of the first
law of black-hole thermodynamics in its standard formulation, i.e., with M(r) identified as the
internal energy of the system. This eventually led to deviations from the entropy area law. It
is worth stressing that a parallel, but conceptually different, thermodynamic description can be
given [289], in which instead the area-law is satisfied, but the first law gets modified: the internal
energy is not identified with M anymore, but also the matter-fields contribution is taken into
account. This is due to the extra dependence on M contained in the stress-energy tensor, which
leads to a first law of the form

C(rH,M)dM = TH d
(
AH

4

)
, C(rH,M) ≡ 1 + 4π

∫ ∞

rH

dr r2 ∂T
0
0

∂M
, (II.2.55)

where AH is the area of the event horizon. In the standard case, ∂T 0
0 /∂M = 0, C(rH,M) = 1 and

we recover the usual formulation of the first law.
However, this discussion is limited to an analysis of the equations of motion and a Lagrangian

description of these models is clearly required to have a precise thermodynamic interpretation of
the internal energy of the system and of the entropy (see Ref. [462]), which would allow one to
prefer one approach over the other.

Let us end this section by briefly discussing the behavior of our solutions near the “extremal”
configuration, i.e., the configuration with rH = 0, TH = 0, to gain some insights into the transition
between the black-hole and the horizonless wormhole models. Expanding around this critical
value, at leading order we get, for the mass and the temperature

M ≃Mc + βr2H, (II.2.56a)
TH ≃ γrH, (II.2.56b)

where we have defined β ≡ (1/2)d2M/dr2H|rH=0 and γ ≡ dTH/drH|rH=0. Combining the two
expressions together, we find the scaling of the mass above extremality in terms of the temperature

M −Mc ∼
β

γ2
T 2

H. (II.2.57)

This scaling of the mass above extremality with the temperature squared is typical of several
black-hole models [216, 217].
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II.2.3.2 Particle production and evaporation time
In this section we will study the Hawking radiation for our regular black hole. We will give a
lightning presentation of the derivation, following the original computation in Ref. [41]. Since the
geometric optics approximation is valid in both cases, the equations of motion will be identical,
the only differences being in the metric matching, which will—as we shall show—appear only in
the expression of the surface gravity. We start by assuming a Vaidya-like gravitational collapse
of a null-shell at the lightcone coordinate v = v0 that leads to the metric (II.2.28)3. For such a
collapse, there is an “in” region described by the Minkowski metric

ds2in = −dt2 + dr2 + r2dΩ2, (II.2.58)

and an “out” region where the metric reads

ds2out = −
[
1− 2GM

r
Erf
(√

2
r

R

)]
dt2 + dr2

1− 2GM
r Erf

(√
2 r
R

) + (r2 + 3R2

4

)
dΩ2. (II.2.59)

We consider a massless scalar field ϕ(x) obeying the usual Klein-Gordon (KG) equation in the
fixed spacetime background given by the previous metric. The field can be expanded in terms of
both in and out wave-mode functions

Ψ(x) =
∑
k

akuk(x) + a†ku
∗
k(x) (II.2.60)

=
∑
k

bkvk(x) + b†kv
∗
k(x), (II.2.61)

where ak is the particle annihilation operator in the “in” region, bk in the “out” region. uk and
vk are thus the corresponding “in” and “out” wave modes. Each set of modes is a complete basis
and the two sets can be related to each other through the Bogoliubov transformations

vk(x) =
∑
j

αkjuj(x) + βkju
∗
j (x). (II.2.62)

One can then easily check that

αkj = (vk, uj) and βkj = −(vk, u∗j ), (II.2.63)

where the canonical inner product (vk, uj) is defined by

(vk(x), uj(x)) =

∫
dΞnµ

[
vk(x)∂µu

∗
j (x)− u∗j (x)∂µuk(x)

]
. (II.2.64)

Ξ is a Cauchy hypersurface, andnµ its normal vector. This product can be shown to be independent
of the choice of the hypersurface (see, e.g., Ref. [463]).

Similarly, also the “in” and “out” creation and annihilation operators are related through
Bogoliobov transformations. We can now compute the expectation value of the number operator
of “out” modes in the “in” vacuum and we find

⟨Nout⟩ =
∑
j

|βkj |2. (II.2.65)

Information about the number of Hawking quanta of each mode k is encoded in the β coefficient,
which requires evaluating the integral in (II.2.63). To do so, one has to find both the “in” and “out”
wave-modes that are solutions of the KG equation, each in its corresponding spacetime geometry.
Following Hawking’s computations [41, 464], one arrives at4

⟨Nout
ω ⟩ =

∑
ω′

|βωω′ |2 =
1

e−2πωκ − 1
. (II.2.66)

3A dynamic study of the formation of objects with such metrics from gravitational collapse is an important issue,
which is left to future investigations.

4In the following, we will adopt the s-wave approximation in which all Hawking modes propagate freely. This is
a reasonable approximation since the KG potential appearing in Eq. (II.2.97) vanishes both at I+ and near the horizon,
where it is believed that relevant physics happens. Therefore we will not include the backscattering effects by the potential
in the KG equation, which usually determine the greybody factors and only affect luminosity.
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Figure II.2.5: Spectral radiance of the black holes for different values of R (in units of GM ), in
comparison with the Schwarzschild case.

As it is known, the equation for Nout
ω describes a thermal flux of particles with a Planckian

spectrum at temperature T = κ/2π. The only difference with respect to the original Hawking
calculation is the explicit expression of the surface gravity κ evaluated at the horizon, which also
depends onR, which, therefore, also alters the spectral radiance (see Fig. II.2.5). Specifically, from
the temperature (II.2.53), the surface gravity reads

κ =
1

2rH
−

√
2
π e

−2r2H/R
2

R Erf
(√

2
R rH

) . (II.2.67)

Since the spectrum of the quantum corrected black holes is Planckian, we can use the Stefan-
Boltzmann law to compute the luminosity,

L = σSBAHT
4
H, (II.2.68)

where σSB is the Stefan-Boltzmann constant and AH = 4π
(
r2H + 3R2/4

)
is the surface area of the

2-sphere computed at rH. We then use this to compute the mass loss rate which is simply

dM(t)

dt = −L = −4π σSB

(
r2H +

3

4
R2

)
T 4

H. (II.2.69)

The main problem is the absence of an analytic formula isolating rH as a function of the black-hole
massM . We however get around this difficulty by expressingM in terms of rH as in Eq. (II.2.52a).
Thus, the variation of M(t) with time is

dM
dt =

 1

2GErf
(√

2rH(t)
R

) −
√

2
π rH(t)e

− 2rH(t)2

R2

GRErf
(√

2rH(t)
R

)2
 drH(t)

dt . (II.2.70)

Plugging Eqs. (II.2.53) and (II.2.70) into Eq. (II.2.69) and integrating from an initial radius rH, 0
down to rH = 0 yields

∆t = −
∫ 0

rH, 0

128π5r4H R
3 e6r

2
H/R

2 Erf
(√

2rH
R

)2 [
Re2r

2
H/R

2 Erf
(√

2rH
R

)
− 2
√

2
π rH

]
GσsB

(
4r2H + 3R2

) (√
π R e2r

2
H/R

2Erf
(√

2rH
R

)
− 2
√
2 rH

)4 drH. (II.2.71)

Since we are interested in the final part of the evaporation process, i.e., rH ∼ 0 (which coincides
with the extremal configuration), we look at the expansion of the integrand near this point. We

get, after integration, ∆t ∼
[

R5

Gr2H
+O(r−3

H )
]∣∣∣∣0

rH,0

, which diverges in rH = 0. This is perfectly

consistent with the thermodynamic behavior analyzed in Section II.2.3.1: for values of rH smaller
than that in correspondence with the temperature peak (see Fig. II.2.3), we have stable remnants.
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II.2.4 The phenomenology

The aim of this section is to compute phenomenological observables and to compare them to the
Schwarzschild case. In fact, despite the simplicity of our derivation, the presence of the additional
parameter R entering the wave function for the source may have observational signatures, which
could be tested in the near future by black-hole imaging and GWs observations. In particular, we
will analyze the geodesic structure of our spacetime, focusing on null and time-like geodesics,
and the QNMs for a scalar perturbations in the eikonal regime.

II.2.4.1 Geodesic structure
In order to study the geodesics equation, we start by considering the following Lagrangian in the
usual (t, r, θ, φ) Schwarzschild coordinates, which can be easily derived from the metric (II.2.28)

L =
1

2
gµν ẋ

µẋν =
1

2

[
−f(r)ṫ2 + ṙ2

f(r)
+

(
r2 +

3R2

4

)(
θ̇2 + sin2 θ ϕ̇2

)]
, (II.2.72)

where the dot indicates differentiation with respect to some affine parameter λ. The equations of
motion of a particle in such a spacetime are given by(

∂

∂λ

∂

∂ẋµ
− ∂

∂xµ

)
L = 0, (II.2.73)

and the conjugate momenta are given by

pt = ∂ṫL = −f(r)ṫ, pr = ∂ṙL =
ṙ

f(r)
, (II.2.74a)

pθ = ∂θ̇L =

(
r2 +

3

4
R2

)
θ̇, pφ = ∂ϕ̇L =

(
r2 +

3

4
R2

)
sin2 θ ϕ̇. (II.2.74b)

Notice that the lagrangian is not explicitly dependent on t and φ. The corresponding quantities
pt = −E and pφ = L are conserved, a clear consequence of the isometries of the metric. Moreover,
from the equations of motion, it follows that

∂pθ
∂λ

=
∂

∂λ

(
r2θ̇
)
= −∂L

∂θ
=

(
r2 +

3

4
R2

)
sin θ cos θ ϕ̇2, (II.2.75)

so that, if we choose θ = π/2 when θ̇ is zero, θ̈ will be zero as well, and the motion will be
constrained on the equatorial plane since θ will remain constant at the assigned value. In order
to find another integral of motion, we can build the hamiltonian corresponding to the lagrangian
(II.2.72) as

H = pµẋ
µ − L. (II.2.76)

It is straightforward to see that neither the lagrangian nor the hamiltonian depend on the affine
parameter, therefore H = L = const. = −ϵ2/2, where ϵ = 0 or ϵ = ±1 for null and time-like
geodesics, respectively. From the constancy of the lagrangian, we can write

ṙ2 + f(r)

(
ϵ2 +

L2

r2 + 3R2/4

)
= E2, (II.2.77)

which is the desired equation for geodesics in the spacetime (II.2.28).

II.2.4.2 Time-like geodesics
Proper time of radially infalling time-like particles

We want to compute the proper-time interval a massive particle in radial free-fall in the metric
(II.2.28) takes to reach r = 0 starting from some finite distance r = r0. We take radially (infalling)
time-like geodesics, which therefore satisfy the constraint

gµνu
µuν = −1, (II.2.78)
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together with uθ = uφ = 0. Using the geodesic integral of motion ṫ = E/f , Eq. (II.2.78) translates
to

− E2

f(r)
+

ṙ2

f(r)
= −1 ⇒ ṙ2 = E2 − f(r) . (II.2.79)

Since the value of E will not alter the qualitative results of this section, we can choose E = 1,
which means that the particle starts at infinity at rest (marginally bound geodesics). Since we are
interested in the behavior near r = 0, we expand Eq. (II.2.79) around r = 0(

dr
dτ

)2

≃ 4GM

R

√
2

π
− 8GM

3R3

√
2

π
r2 ≡ Rc

R
− 2Rc

3R3
r2 (II.2.80)

where we defined λ = τ as the proper time and Rc is the critical value of R at which we have the
transition to a horizonless wormhole, i.e., 4

√
2/πGM . Therefore, the proper time, as measured

by a particle moving from r0 to r, is given by the integral

∆τ(r) = −
∫ r

r0

dr′√
Rc
R −

2Rc
3R3 r′2

(II.2.81)

where the minus accounts for radial infalling geodesics. This integral is analytical. Evaluating it
in the limit r → 0 yields the finite results

∆τ(r → 0) =

√
3

2

R3/2

√
Rc

arctg
[ √

2Rc r0√
Rc(−2r20 + 3R2)

]
. (II.2.82)

This result is particularly important in the horizonless wormhole case, since it confirms that indeed
it is traversable, as massive particles can reach the throat in a finite interval of proper time.

Time-like geodesic congruence

We can now study the expansion rate of the metric to check whether the spacetime is geodesically
complete or not. To do so, we need to compute the geodesic congruence’s expansion rate as

dΘ
dτ = ṙ

dΘ
dr = ṙ

d
dr

[
1√
−g

∂µ
(√
−guµ

)]
, (II.2.83)

where uµ is the 4-velocity of a particle orbiting the quantum black hole. If we consider time-like
radial geodesics, the components of the vector uµ read

uµ =

(
1

f(r)
,±
√
1− f(r), 0, 0

)
, (II.2.84)

where the upper (lower) sign refers to outgoing (ingoing) geodesics. Therefore, Eq. (II.2.83)
becomes just

dΘ
dτ = ṙ

d
dr

[
1

ρ2
d
dr
(
ρ2 ur

)]
, (II.2.85)

where ρ2 = r2 + 3R2/4. The evaluation of Eq. (II.2.85) in terms of the metric functions around
r = 0 gives

dΘ
dτ = −4

(
2

π

)1/4
√
GM

R5
ṙ +O(r2), (II.2.86)

which indicates that the solution is regular near this point and caustics cannot form.
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Figure II.2.6: Position of the light ring and horizon radius as a function of R, both in units ofGM .

II.2.4.3 Null geodesics
Null-geodesic congruence

We start from a null vector field kµ = dxµ/dλ (where λ is as usual the affine parameter), satisfying
the normalization condition kµkµ = 0, tangent to a bundle of radial in-going null geodesics. The
null-geodesic congruence therefore reads

Θ = ∇µk
µ =

1√
−g

∂µ
(√
−gkµ

)
. (II.2.87)

We first need to compute the components of the vector field kµ. To do so, we consider again radial
null geodesics, setting θ = constant and φ = constant. Also in this case it is useful to introduce
the Eddington-Finkelstein coordinates

u = t− r∗, v = t+ r∗, r∗ =

∫
f−1dr. (II.2.88)

We see that the vector field kµ = −∂µu is tangent to the outgoing geodesics, while kµ = −∂µv
is tangent to the ingoing ones. We are interested in the latter, whose components are kµ =
(−1,−f−1, 0, 0). So, we also have kµ = gµνkν = (f−1,−1, 0, 0), and we see that the constraint
kµk

µ = 0 is satisfied. Therefore, the congruence reads

Θ = − 1

r2 + 3R2

4

∂r

(
r2 +

3R2

4

)
= − 8r

4r2 + 3R2
. (II.2.89)

The null-geodesic expansion thus reduces to

dΘ
dλ =

dΘ
dr k

r =
8
(
4r2 − 3R2

)
(4r2 + 3R2)

2 , (II.2.90)

which near r = 0 behaves as

dΘ
dλ ≃ −

8

3R2
+

32

3R4
r2 +O(r3). (II.2.91)

As in the previous case, no caustics form.

Photon sphere

The second term in the left-hand side of Eq. (II.2.77) (for null geodesics), i.e.,

V (r) = f(r)
L2

r2 + 3R2/4
, (II.2.92)
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Figure II.2.7: Typical qualitative behavior of the effective potential V for null geodesics as a
function of r for R < Rc, R = Rc, Rc < R < Rmin and R > Rmin.

can be thought of as an effective potential felt by massless particles orbiting around either the
black hole or the wormhole. Therefore, minima and maxima of this potential correspond to the
radii of stable and unstable orbits, respectively. In order to determine the position of such points,
we have to find the zeroes of dV (r)/dr, i.e., the roots of the equation

−3GMRe
2r2

R2
(
4r2 +R2

)
Erf
(√

2
r

R

)
+ 2

√
2

π
GMr

(
4r2 + 3R2

)
+ 4r3Re

2r2

R2 = 0. (II.2.93)

Inspection of Eq. (II.2.92) shows that the potential has always a maximum for values of R less
than a minimum value Rmin ≃ 4.8GM , while, for larger values, the maximum shifts to r = 0. The
maximum corresponds to the so-called photon sphere (or light ring) rLR. The numerical solution
of Eq. (II.2.93) is shown in Fig. II.2.6 as a function of R, from which we see that there could be
potentially detectable deviations from the standard Schwarzschild value 3GM .

The qualitative behaviors of the effective potential for different values of R is instead depicted
in Fig. II.2.7. We note that both the “extremal” configuration with R = Rc and the traversable
wormhole with Rc < R < Rmin have also a minimum, corresponding to a stable photon orbit at
r = 0 (at the throat), which is however excluded.

II.2.4.4 Scalar perturbations and quasi-normal modes
In this section we investigate QNMs for scalar perturbations in the fixed background given by
our solutions. We will then use the eikonal approximation to give an analytical estimate of the
quasi-normal frequencies for the black-hole model.

In order to discuss scalar perturbations and QNMs in our gravitational background, we start
from the KG equation for a scalar field in spherical coordinates Ψ = Ψ(t, r, θ, φ)

2Ψ =
1√
−g

∂µ
(√
−g gµν∂ν

)
Ψ = 0 (II.2.94)

where
√
−g is the square root of the determinant of the metric (II.2.28). Due to the spherical

symmetry of the metric, we can separate the angular dependence ofΨ from its radial and temporal
dependence, i.e., Ψ(t, r, θ, φ) ≡ Rℓm(t, r)Yℓm(θ, φ). The angular part is given in terms of spherical
harmonics, while the radial part satisfies a Schrödinger-like equation[

∂2r∗ − ∂
2
t − Veff(r)

]
ψ = 0. (II.2.95)

Here ψ(t, r) is related to R(t, r) by

Rℓm(t, r) ≡ ψℓm(t, r)√
r2 + 3R2

4

, (II.2.96)
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Figure II.2.8: Qualitative behavior of the effective potential (II.2.97), with ℓ = 0, for the black-hole
model (R < Rc), the “extremal model” (R = Rc) and the wormhole (R > Rc).

while Veff(r) is the effective potential, namely

Veff(r) =
12R2f2

(4r2 + 3R2)
2 +

4f

4r2 + 3R2
[ℓ(ℓ+ 1) + rf ′] , (II.2.97)

where primes indicate derivation with respect to r. We see that the presence of both R and a
non-trivial angular metric function introduce an additional term in the effective potential with
respect to the Schwarzschild case, which goes to zero as R2 in the limit R → 0. In Fig. II.2.8,
we plot some examples for different values of R. The traversable-wormhole case is particularly
interesting, as the double peak in the potential always signals the possibility of having echoes in
the QNMs spectrum [51, 175, 343, 433–435].

II.2.4.5 Analytic expression of QNMs in the eikonal limit

We can exploit the construction of Ref. [234] to find an analytic expression of the quasi-normal
frequencies in the eikonal regime, i.e., in the ℓ ≫ 1 limit. This construction only works in the
case in which the effective potential in the KG equation has a single peak (the presence of the
double peak in the horizonless-wormhole case invalidates a direct application of this algorithm
[465]). The basics of the construction of Ref. [234] is to exploit a relation between the ringing
modes of black holes and photons on the unstable light ring. Specifically, the black-hole vibration
modes, whose energy is gradually being radiated away, are interpreted as photons moving along
an unstable null-geodesics and slowly leaking out. The real part of the quasi-normal spectrum
ωR (corresponding to the periodic oscillations of the modes) is given by the angular velocity of
photons on the light ring, whose position is at rLR, namelyΩ = ϕ̇/ṫ|r=rLR . The imaginary part of the
quasi-normal frequencies ωI, instead, responsible for the damping of the modes, is associated to
the inverse of the time-scale of the instability of the circular null geodesics, given by the Lyapunov
exponent, whose form reads

λ =

√
−V

′′(r)

2ṫ2

∣∣∣∣
r=rLR

, (II.2.98)

where V (r) is the potential for null geodesics (II.2.92), while the minus sign is required since the
light ring corresponds to an unstable orbit. Therefore, the spectrum of QNMs reads, in the eikonal
regime

ωQNMs = ωR + iωI = Ω ℓ− i
(
n+

1

2

)
λ (II.2.99)

with n an integer (the overtone number). Ω can be easily computed exploiting Eq. (II.2.74) and the
fact that pt = E and pϕ = L. Moreover, using Eq. (II.2.77), setting ϵ = 0 to consider null geodesics,
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R/GM GMΩ GMλ

10−4 0.19245 0.19245
0.5 0.19048 0.19179
1 0.18508 0.18978
1.2 0.18219 0.18861
1.4 0.17901 0.18716
1.6 0.17562 0.18511
1.8 0.17211 0.18201
2 0.16856 0.17754
2.2 0.16506 0.17171
2.4 0.16167 0.16470
2.6 0.15845 0.1567
2.8 0.15542 0.14803
3 0.15262 0.13877
Rc 0.15015 0.12945

Table II.2.1: Values of Ω and λ, which determine the QNMs frequencies in the eikonal limit
through Eq. (II.2.99), for different values of the quantum-deformation parameter R (in units of
GM ).

and making use of the fact that ṙ = 0 at the light ring, yield a relation between E and L

E

L
= ±

√
f(rLR)

r2LR + 3R2

4

. (II.2.100)

Therefore, Ω reads

Ω =
ϕ̇

ṫ

∣∣∣∣
r=rLR

=

√
f(rLR)

r2LR + 3R2

4

= 2

√
f(rLR)

4r2LR + 3R2
. (II.2.101)

To compute λ, we start from Eq. (II.2.98). Using the fact that V ′(rLR) = 0, we simplify the
expression for V ′′(rLR) and we get

λ =

√
−f(r) [−8f(r) + f ′′(r) (4r2 + 3R2)]

8r2 + 6R2

∣∣∣∣
r=rLR

. (II.2.102)

By numerically solving Eq. (II.2.93) to find the position of the light ring for different values of
R (limited to the black-hole and the “extremal” model cases), one can find the explicit values of
the quasi-normal frequencies (II.2.99), given the values of Ω and λ reported in Table II.2.1. We also
checked that, in the small R limit (the first value in Table II.2.1), the quasi-normal frequencies are
consistent with the Schwarzschild ones in the eikonal regime, for which Ω = |λ| = 1/(3

√
3GM)

[466].
Finally, we can study how QNMs behave near the extremal configuration. We can expand both

Ω and λ around R = Rc (before computing them at rLR). We get

Ω ≃ a+ b (R−Rc) ∼ a+ b′ (M −Mc); (II.2.103a)
λ ≃ d+ e (R−Rc) ∼ d+ e′ (M −Mc), (II.2.103b)

where we have defined a ≡ Ω (Rc), b ≡ dΩ/dR|R=Rc , d ≡ λ(Rc), e ≡ dλ/dR|R=Rc . If we take the
near-horizon5 limit together with the near-extremal limit, it is easy to see that both the constant
and the linear term R−Rc of λ go to zero, and therefore we are left with

ωI ∝ λ ∝M −Mc ∝ TH, (II.2.104)

5A problem of the near-horizon limit is that the minimum of the null-geodesic effective potential gets shifted inside
the event horizon at soon as we move away from “extremality”.
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where we took cognisance of Eq. (II.2.57). This scaling of the imaginary part of the quasi-
normal frequencies with the temperature is consistent with some conjectures [181, 183, 184, 186,
187]. These zero-damped (or nearly zero-damped) modes [187] would therefore represent a clear
phenomenological signature of the extremal configuration.



Chapter II.3
The Schwarzschild black hole as a set of

quantum harmonic oscillators

Classically, a perturbed black hole reacts dynamically, producing characteristic oscillations, called
quasi-normal modes (QNMs), which decay exponentially in time. At linear perturbation level,
QNMs correspond to complex eigenfunctions of the system, namely modes characterized by
complex frequencies, whose imaginary part describes the damping of the mode in time (see, e.g.,
Refs. [467–469]). Moreover, boundary conditions at infinity and at the horizon imply a discrete
spectrum for the frequencies ωn, with the imaginary part depending on an integer n, the overtone
number.

In the high-damping regime (large-n limit), the spectrum of QNMs for a Schwarzschild black
hole (SBH), with mass M , is independent of l, the angular momentum “quantum” number, and
reads1 [236, 470–472] (see Refs. [467–469, 473] for reviews)

8πGMωn ∼ ln 3 + 2πi
(
n+

1

2

)
+O

(
n−1/2

)
. (II.3.1)

By studying the system’s response to external perturbations, in principle we could also have
access to its internal microscopic structure. Therefore, despite being classical, QNMs could contain
signatures of quantum gravity effects, encoding information about the quantum properties of
black holes and their horizons [474]. This is particularly true in the large-n limit, which is
expected to probe the black hole at short distances.

There are several indications supporting this perspective. On one hand, QNMs could be useful
to understand the AdS/CFT conjecture. In fact, in the case of AdS black holes, the damping of
QNMs can be mapped into the thermalization of the conformal field theory on the boundary
[475]. On the other hand, the emergent and corpuscular gravity scenarios suggest that black holes
could be characterized by long-range quantum gravity effects of N quanta building the black
hole [35–40]. Similarly to what happens for the surface gravity of a black hole (see Ref. [39]), the
quantum nature of Eq. (II.3.1) is obscured (the Planck constant ℏ does not appear) by expressing
ωn in terms of the black-hole mass M , but becomes fully evident when we express it in terms
of the black hole temperature TH. Thus, the QNMs spectrum could represent a coarse-grained
description of the response of these N microscopic degrees of freedom to external perturbations,
in the same spirit as the spectrum of the black body radiation is a manifestation of the collective
behavior of a photon gas.

However, the no-hair theorem [476, 477] makes a black hole drastically different from a black
body. In the latter case the extensive thermodynamic parameters scale with the volume, while
the number of photons, i.e., the number of microscopic degrees of freedom, is independent of
the size of the system. For a black hole, on the other hand, the mass M and the entropy S are
fixed by the temperature or, equivalently, by the horizon radius rh. From a corpuscular gravity
point of view, moreover, we can consider the black hole as a macroscopic quantum state that
saturates a maximally packaging condition [40, 66–68], which has been shown to be equivalent to

1here and in the remainder of the chapter, we adopt natural units, c = ℏ = 1.
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the holographic scaling of N [39]. Essentially, in a black hole of a given mass, we can “pack" a
maximum amount of degrees of freedom, which is constrained by the size of the system.

The proposal of using QNMs to capture some microscopic properties of black holes is not
completely new, but was first proposed by Maggiore in [69]: the linear scaling of the QNMs
frequencies with the overtone number n suggests that a SBH can be described, in the high-
damping limit, as a harmonic oscillator, with proper frequency

ω =
√
ω2

R + ω2
I , (II.3.2)

where ωR and ωI are the real and imaginary parts of the frequencies (II.3.1) respectively2.
Until now, the high-damped QNMs spectrum has been used in the quantum gravity context

to explain and fix the area spectrum of the event horizon (see, e.g., Refs. [471, 478–480]), whose
quantization was first suggested by Bekenstein in [481, 482]. This also allowed to fix the Barbero-
Immirzi parameter [478], which is essential to correctly account for the Bekenstein-Hawking (BH)
entropy in Loop Quantum Gravity [483, 484].

In this chapter, we use Maggiore’s result to model the SBH as a canonical ensemble of N
harmonic oscillators and derive the black-hole entropy using the QNMs frequencies only, without
assuming horizon-area quantization. Consistently with the no-hair theorem, for an asymptotic
observer, the only physical observable is the black-hole massM , which also determines the QNMs
frequency spectrum. On the other hand, we assume that, quantum mechanically, the horizon area
and the temperature can fluctuate independently fromM . This will allow us to consistently define
the canonical ensemble and to circumvent the no-hair theorem at quantum level.

In this chapter, we use units in which c = ℏ = kB = 1.

II.3.1 The model

In the high-damping regime, ωI ≫ ωR, QNMs probe the internal structure of the black hole, as the
wavelength of each oscillator gets smaller and smaller as n grows. From Eqs. (II.3.1) and (II.3.2),
we easily get the frequency spectrum

ωn ≃ |ωI| =
1

4GM

(
n+

1

2

)
+O(n−1/2). (II.3.3)

Following Maggiore’s proposal, we model the black hole as a statistical ensemble of N ≫ 1
indistinguishable non-interacting (at least in a first approximation) quantum harmonic oscillators
with frequencies

ωn = ω0

(
n+

1

2

)
, (II.3.4)

where ω0 = 1/(4GM) is the proper frequency of each oscillator.
Our derivation relies entirely on equilibrium statistical mechanics, without resorting to usual

black-hole thermodynamics. The black hole will be regarded as an ensemble in thermal equi-
librium with its surroundings at temperature T = 1/β. We will therefore work entirely in the
canonical ensemble and consider the number of oscillators N fixed. This is motivated by the
no-hair theorem, which tells us that the chemical potential of a SBH is zero, being the mass M
the only classical hair of the hole. Considering the SBH as a system at fixed temperature is also
consistent with the fact that the QNMs spectrum is computed at fixed black-hole mass. For the
asymptotic observer, the latter is related to the Hawking temperature, which is therefore fixed.

It is very important to stress that, in our statistical description, we treat β and ω0 as independent
variables, i.e., the temperature of the ensemble can change independently from the black-hole
mass. At first sight, this may seem at odds with standard black-hole thermodynamics. However,
we argue that quantum mechanically this is fully consistent.

In standard black-hole thermodynamics, the Hawking temperature TH can be defined as the
coefficient of proportionality between the entropy (the area of the black-hole event horizon, AH)

2A similar proposal for the description of a black hole as a harmonic oscillator, from a corpuscular gravity perspective,
can be found in [241].
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and its energy (the mass M ). Classically, AH is a function of M , i.e., AH = 16πG2M2. The latter,
however, should be considered as the mean value, measured at infinity, of the area of the event
horizon, which can fluctuate around its expectation value, from a quantum mechanical point of
view [481, 482, 485]3. Only local measurements would allow to probe these fluctuations [485].
An observer at infinity therefore would not have access to them, as the only degree of freedom
he/she can measure is the classical hair of the black hole, i.e., its mass. This tells us that, at least
quantum mechanically, the area of the event horizon can fluctuate independently from M . Hence,
only the observer at infinity can make the identification β = βH = 1/TH = 8πGM .

Using the spectrum (II.3.3), the statistical Boltzmann weight of each harmonic oscillator black
hole microstate is therefore

e−βωn = e−βω0(n+ 1
2 )e

−β κ√
n , (II.3.5)

where κ is a dimensionful constant, proportional to ω0 on dimensional grounds, parametrizing
the low-n behavior of the damping modes. As long as we consider the limit of large-mass black
holes ω0 → 0 (or the high-temperature limit, β → 0), the factor e−βκn−1/2 can be set equal to 1 and
the partition function will be insensible to the subleading terms O(n−1/2).

Being the SBH effectively featureless, except from its mass, and having zero chemical potential,
the probability of occupying a given energy level will be the same for all oscillators. The partition
function for the composite system of N oscillators therefore reads

Z =

( ∞∑
n=0

e−βω0(n+ 1
2 )

)N

=

(
eβω0/2

eβω0 − 1

)N

, (II.3.6)

lnZ =
Nω0

2
β −N ln

(
eβω0 − 1

)
. (II.3.7)

Using standard statistical mechanics relations, we compute the mean energy and the entropy

⟨E⟩ = −∂β lnZ =
Nω0

2
cotgh

(
βω0

2

)
, (II.3.8)

S = lnZ + β⟨E⟩ = −N ln
(
eβω0 − 1

)
+
Nβω0e

βω0

eβω0 − 1
. (II.3.9)

As expected for consistency, the expressions above satisfy the first law of thermodynamics, d⟨E⟩ =
TdS.

Let us now focus on macroscopic black holes, by considering the large M limit, i.e., ω0 → 0.
By expanding the mean energy (II.3.8) and the entropy (II.3.9), we get:

⟨E⟩ = N

β
+
N

12
βω2

0 +O(ω3
0), (II.3.10)

S = N −N ln (βω0) +
N

24
β2ω2

0 +O(ω3
0). (II.3.11)

We see that the leading terms in the expansions satisfy ⟨E⟩ = TS, hence they capture only
the purely thermal extensive contribution TS to the mean energy. However, for β → ∞ (zero-
temperature limit), the sub-leading terms in Eq. (II.3.10) diverge at fixed ω0. The same problem
appears in standard black-hole thermodynamics, where a zero Hawking temperature implies
a divergence of the black-hole mass M . However, this is an artefact of the expansion. This
divergence problem can be simply solved in our approach by first taking the β → ∞ limit in
the exact expression for ⟨E⟩ given by Eq. (II.3.8). We get ⟨E⟩ = Nω0/2. This is a finite value,
which cures the divergence appearing in Eq. (II.3.10) and has the simple physical interpretation
of the zero-point energies ω0/2 of the N oscillators, representing therefore the contribution of the
vacuum. Notice that this contribution cancels out when we perform first the ω0 → 0 limit and
keep the leading terms only.

The black-hole massM measured by an observer at infinity can be seen as the sum of the purely
extensive contribution of Eq. (II.3.10) and the contribution of the vacuum EV . Our microscopic

3This is also supported by the fuzzball proposal for black holes in string theory [61].
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description of the SBH in terms of N non-interacting harmonic oscillators holds in the large-n
limit. Thus, we may expect deviation of EV from the naive value Nω0/2. Owing to the absence
of an external scale different from the thermal one βH = 1/TH, we nevertheless expect EV to get
only order-one corrections, and M to take the form

M =
N

β
+ c

Nω0

2
, (II.3.12)

where c is a O(1) constant, which can be fixed using symmetry arguments. The expansions
(II.3.10) and (II.3.11) can be also obtained by considering the limit β → 0 instead of ω0 → 0 in
Eqs. (II.3.8) and (II.3.9). Despite being mathematically equivalent, these two limits have a very
different physical meaning. While the latter corresponds to black holes with large masses, the
former is related to small-mass SBHs. Treating ω0 and β separately introduces some kind of
duality between small and large black holes, which is again a consequence of the absence of
an external scale different from βH. This implies that in our microscopic description there is no
difference between the thermodynamic properties of small- and large-mass black holes (a behavior
very different from AdS black holes [219]).

Since the asymptotic observer can only measure the classical hair M , both the limits β → 0
and β →∞ in Eq. (II.3.12) must lead to the same result, giving c = 1/π.

For the asymptotic observer, the black-hole equilibrium temperature is TH, so that Eq. (II.3.12)
gives

N =
βHM

2
= 4πGM2. (II.3.13)

Seen by the distant observer, therefore, the number of oscillators scales holographically with
the area of the event horizon. The leading term of Eq. (II.3.11), together with Eq. (II.3.13), yields

S = N = 4πGM2 (II.3.14)

which is exactly the BH entropy. The sub-leading term in Eq. (II.3.11) represents a logarithmic
correction N lnT , which is consistent with several results in the literature (see, e.g., Refs. [485–
498]).

Our description of the black hole in terms of a canonical ensemble of harmonic oscillators, with
frequency given by the fundamental QNMs frequency ω0, is fully consistent with the corpuscular
description [35, 65]; the latter sees the black hole as a coherent state of particles with occupation
numbers nj(p) sharply peaked around the characteristic momentum p ∼ 1/RH, with j labeling
some internal microscopic degrees of freedom (DOF). The relation ω0 ∼ p is a highly non-
trivial check of this consistency. Unfortunately, our thermodynamic treatment based on the
QNMs spectrum does not give any information about the origin of these internal DOF and their
occupation numbers nj(p). This is mainly due to the fact that the oscillators are treated as
indistinguishable from the beginning, coherently with the no-hair theorem. Consequently, we
do not have any chemical potential and the only observable is the total number of oscillators
N =

∑
j nj . It is quite obvious that, in order to gain information about nj , we need some further

insight, beyond the QNMs spectrum, on the "quantum hair" associated with the internal DOF.



Chapter II.4
Two-dimensional black holes as sets of

harmonic oscilaltors

In recent times, we have gained growing theoretical evidence that some peculiar and puzzling fea-
tures of the gravitational interaction could be addressed by assuming the underlying microscopic
quantum theory of gravity to have a multi-scale behavior, with the generation of different infrared
(IR) length-scales, both at the black hole horizon and at galactic and cosmological level [64, 65,
71, 72, 399]. The holographic principle, the information paradox for black holes, the deviation
from Newtonian dynamics at galactic scales and the origin of dark energy stand out among these
puzzles.

Evidence along this direction came out few years ago from the proposal to describe a black
hole with mass M and radius RS = 2GM as a condensate of a large number Ng ∼ ℓ2PM

2 (where
ℓP =

√
G is the Planck length)1 of soft gravitons with typical energy ϵ ∼ 1/RS [35, 36, 39, 499,

500]. This is tightly connected to the classicalization idea, according to which gravity achieves
UV-completion by using classical objects of size RS ≫ ℓP, but composed by a huge number of
weakly coupled soft quanta of momenta p ∼ 1/RS [35, 67, 68]. In this way, a strong ’t Hooft-like
coupling λ = αNg (with α the running coupling) is traded for a large number of weak interacting
particles, generating an IR length-scale ℓ ∼ ℓP

√
Ng [35, 65, 399].

The same idea can be applied at cosmological and galactic scales. Indeed, in the former
case, the de Sitter universe can be seen as a bound state of a huge number of soft particles with
typical energy ϵ ∼ 1/L, with L the size of the cosmological horizon. In the latter case, long-range
quantum gravity effects could generate an IR length-scale of galactic size r0 = ℓP

√
NG, at which

the dynamics deviates from the Newtonian behavior [64, 71, 72]. Here,NG ∼ ℓ2PM2
G is the number

of particles associated with the mass MG of the galaxy.
A quite similar black hole description emerged also in the string-theory context, and led to the

fuzzball proposal [61, 143, 144, 501]. Specifically, a black hole is considered as a bound state of
a large number of extended objects (fuzzballs) of size R ∼ RS + ℓP. These configurations receive
contributions also from virtual fluctuations of the quantum gravity vacuum, dubbed as VECROs
[62, 63].

Altogether, these results may be seen as a strong indication of the existence of an internal, non-
trivial, microscopic black hole structure, which should represent the starting point for explaining
the black hole macroscopic behavior. Unfortunately, owing to the classical no-hair theorems,
it is almost impossible for a distant observer to have direct access to this internal microscopic
information. The only direct window an asymptotic observer has on the microscopic black-hole
structure is the way the hole responds to external perturbations. This response is codified in
the quasi-normal modes (QNMs) spectrum [467–469]. QNMs are the characteristic oscillations
produced by a perturbed black hole and they decay exponentially in time. Their spectrum can be
experimentally detected, by observing the gravitational wave signal originated in the ringdown
phase of two compact objects merging to form a black hole.

QNMs correspond to complex eigenfunctions of the linearized system. They are characterized
by complex frequencies, where the imaginary part describes the damping of the mode caused

1We adopt natural units, c = ℏ = 1.
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by purely ingoing boundary conditions at the horizon. Moreover, Dirichlet boundary conditions
at infinity imply a discrete spectrum for the frequencies ω = ωR + iωI, with the imaginary part
depending on an integer n, the overtone number.

Despite QNMs being classical, there has been strong indications that they could contain
information about the quantum properties of black holes [69], their horizons and their internal
microscopic structure. In particular, this is true in the high-damped (large-n) regime, when QNMs
are expected to probe the black hole at very short distances.

The high-damped QNMs spectrum, together with an analogue of Bohr’s correspondence
principle, has been used by Hod to explain and fix the area spectrum of the event horizon (see,
e.g., Refs. [471, 478–480]), whose quantization was first suggested by Bekenstein in Refs. [481,
482]. The QNMs spectrum has been also used in the Loop Quantum Gravity framework to fix
the Barbero-Immirzi parameter [478], which is essential to correctly account for the Bekenstein-
Hawking (BH) entropy [483, 484].

The next, crucial, step along this direction was done by Maggiore [69], who showed that the
QNMs spectrum for the Schwarzschild black hole, in the high-damping limit, can be interpreted
as a damped harmonic oscillator, with proper frequency ω =

√
ω2

R + ω2
I . Moreover, he argued

that this result corresponds to the dispersion relation of a massive particle quantized on a circle
with length given by the inverse of the black-hole Hawking temperature.

In Ref. [6], building on Maggiore’s result, we have proposed a microscopic description of the
Schwarzschild black hole in terms of a canonical ensemble of N decoupled harmonic oscillators.
Using this model, we have reproduced the BH entropy as the leading contribution to the Gibbs
entropy, in the large-mass black hole limit. We have also derived subleading, logarithmic correc-
tions to the BH result, in agreement with several results in the literature. We additionally found
that the number of oscillators scales holographically with the area of the event horizon.

The natural question that now arises is how general the results of Ref. [6] are. Do they represent
a peculiarity of the Schwarzschild black hole or are they, instead, a feature common to all black
holes? Since the imaginary part of ω always scales linearly with n in the high-damping regime,
we expect the main results of Ref. [6] to generally hold.2

In this work, we tackle this issue by considering a two-dimensional (2D) dilaton gravity model,
namely Jackiw-Teitelboim (JT) gravity [93, 94, 218]. Despite being particularly simple, this model
allows for AdS2 black holes, i.e., 2D solutions with anti de Sitter asymptotic behavior. Because
of its simplicity, the model has been used in several contexts [218], like for instance the Hawking
evaporation process [279, 294, 502–504] and the related information puzzle [54, 55, 176, 304,
505–508], AdS/CFT correspondence and computation of entanglement entropy; it is also closely
related to the Sachdev-Ye-Kitaev (SYK) model [96].

We first extend previous results for the QNMs spectrum of the JT black hole [180] to include
the case of massive scalar perturbations. We show that, for generic (massless or massive) scalar
perturbations, the quasi-normal frequencies are purely imaginary and scale linearly with the
overtone number.

We then show that the QNMs spectrum agrees with the dispersion relation of a massless
particle, quantized on a circle of length given by half of the inverse Hawking temperature of the
hole. We use the same approach of Ref. [6] to model the JT black hole first as coherent state
with occupation numbers sharply peaked on the characteristic QNMs frequency ω̂, and then as
a statistical ensemble of N decoupled quantum harmonic oscillators of frequency ω̂. This latter
description enables us to derive the BH entropy of the hole as the leading contribution to the
Gibbs entropy, in the high-temperature regime. Sub-leading corrections are also computed and
shown to behave logarithmically. Further, we find that N equals the BH entropy.

Furthermore, apart from its simplicity, the JT black hole is interesting because it allows for a
dual description in terms of a conformal field theory (CFT). Motivated by this, we investigate the
relationship between our description in terms of a set of harmonic oscillators and the dual CFT. We
find a natural holographic correspondence between QNMs in the AdS2 bulk and de Alfaro-Fubini-
Furlan (DFF) conformally invariant quantum mechanics, which gives a conformally-invariant
generalization of the usual quantum harmonic oscillator.

2A general description of a black hole as a set of quantum harmonic oscillators has been also proposed in Ref. [241],
by modelling the black hole as a spherical cavity.
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The present chapter is organised as follows. In Section II.4.1 we briefly review the main
features of black-hole solutions in JT gravity. In Section II.4.2 we review the calculations of the
QNMs spectrum for external massless scalars and extend these to massive scalar perturbations.
The microscopic descriptions of the JT black hole in terms of quantum particles and a canonical
ensemble of decoupled harmonic oscillators are presented in Sections II.4.3 and II.4.4, respectively.

In this chapter, we use units in which c = ℏ = kB = 1.

II.4.1 2D AdS black holes

In this work we consider AdS2 black-hole solutions of Jackiw-Teitelboim (JT) gravity, a well-known
gravity theory in two space-time dimensions, described by the action

SJT =
1

2π

∫
d2x
√
g ϕ
(
R+ 2Λ2

)
, (II.4.1)

where ϕ is a scalar field (the dilaton), R the 2D Ricci scalar, 2Λ2 the cosmological constant. In the
Schwarzschild gauge, where the line element can be written as ds2 = −f(r)dt2 + dr2/f(r), the
vacuum solutions for the metric and the dilaton read

ds2 = −
(
r2

L2
− a2

)
dt2 +

(
r2

L2
− a2

)−1

dr2, ϕ(r) = ϕ0
r

L
, (II.4.2)

whereL = 1/Λ is the AdS length, ϕ0 and a2 are integration constants, parametrizing the solutions.
Since ϕ0 is not relevant for our discussion, we will set it to 1 for simplicity in the following. The
Arnowitt-Deser-Misner (ADM) mass of the solution, therefore, takes the form [294, 509]

M =
a2

2L
. (II.4.3)

In this work, we will only consider solutions with a2 ≥ 0, which have positive ADM mass and
a Killing horizon at r = rH = aL, and describe asymptotically AdS black holes, with an event
horizon at r = rH and a singularity at r = 0 [294].

Using the standard procedure, one easily finds the temperatureTH and the entropyS associated
with the black hole [509]

TH =
rH

2πL2
=

1

2π

√
2M

L
, (II.4.4a)

S = 4π

√
ML

2
= 2π

rH

L
. (II.4.4b)

To conclude this section, let us briefly discuss the causal structure of AdS2. The maximal extension
of our black hole geometry, the full AdS2 space-time, is regular and has two disconnected parts.
In the Penrose diagram, the black-hole geometry represents only one of the two wedges building
the maximally extended AdS2 up [294]. We will use this causal structure in Section II.4.4, when
dealing with the microscopic derivation of the black-hole entropy.

II.4.2 Scalar perturbations and quasi-normal modes

Quasi-normal modes (QNMs) represent the characteristic oscillations of a black hole reacting to
external perturbations. In the linear regime, one finds that QNMs are characterized by a discrete
spectrum of complex frequencies, whose imaginary part describes the damping of the mode in
time, once appropriate boundary conditions at infinity and at the horizon are imposed (see, e.g.,
Refs. [467–469]).

The 2D case is peculiar since pure Einstein gravity is topological in two space-time dimensions.
In JT gravity, the presence of a further degree of freedom (DOF), i.e., the dilaton, allows for the
existence of global modes, but not for vectorial nor tensorial propagating ones. Thus, in this
theory, QNMs are linked only to external scalar perturbations of the black hole space-time (II.4.2).
The QNMs spectrum for massless scalar perturbations in 2D-gravity has been already investigated
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in the literature, by imposing either usual boundary conditions or monodromy conditions around
the black-hole horizon [177–180, 510]. In this section, we will briefly review the relevant results
and extend them to the case of massive scalar perturbation.

Consider a perturbing, external, massless scalar field Φ in the black hole space-time (II.4.2).
This perturbation satisfies a generalized Klein-Gordon equation

1√
−g h(ϕ)

∂µ
(√
−g h(ϕ)gµν∂νΦ

)
= 0, (II.4.5)

where h(ϕ) is a generic arbitrary coupling between the dilaton and the perturbing field Φ. Since
the background dilaton solution is a function of the radial coordinate (see Eq. (II.4.2)), we have
h(ϕ) ≡ h(r). The presence of the coupling h(ϕ) is justified in a general setting. Moreover, it is
fully natural if one considers the JT black hole as a dimensional reduction of higher-dimensional
models– and in particular of the 3D BTZ black hole [511]. In this case, h(ϕ) encodes the information
on the higher-dimensional theory.

Decomposing Φ(t, r) into Fourier modes, we can redefine the perturbing field as

Φ(t, r) = eiωt R(r)√
h(r)

. (II.4.6)

Eq. (II.4.5) can then be written in terms of the radial function R(r) only, which satisfies

d2R

dr2∗
+
[
ω2 − V (r)

]
R = 0, (II.4.7)

where we introduced the tortoise coordinate r∗, defined by dr∗/dr = L2/(r2−r2H) or, equivalently,
by r = −rH coth

(
rHr∗/L

2
)
. This transformation maps the horizon r = rH into r∗ → −∞ and

spatial infinity r →∞ into r∗ = 0. Moreover, the potential V (r) is given by

V (r) =
f(r)

2h(r)

[
f(r)

d2h

dr2
+
df

dr

dh

dr
− f(r)

2h(r)

(
dh

dr

)2
]
. (II.4.8)

We adopt usual boundary conditions for QNMs requiring Dirichlet conditions at infinity, i.e.,
the radial function has to behave as R(r) ∼ 0 at r →∞, and we must have purely ingoing modes
at the horizon. Eq. (II.4.7), together with boundary conditions, represents an eigenvalue problem
in the frequency ω, which can be solved once the function h(ϕ) is chosen.

As expected in view of the non-existence of vectorial and tensorial propagating modes in pure
JT gravity, a non-trivial coupling function between the scalar field Φ and the dilaton is required to
have non-trivial propagating solutions. In fact, when h(r) = constant, the potential V (r) vanishes
and Eq. (II.4.7) is solved by a freely propagating perturbation, which is not compatible with the
QNMs boundary conditions.

The most natural choice for the coupling function h is a power law in ϕ (hence in r: h(r) =
(r/L)α. This is motivated not only by simplicity arguments, but also by regarding JT gravity
as the dimensional reduction of a d + 2 dimensional theory. Indeed, in the latter case, we have
h(r) = ϕ(r) = r/L [179, 288]. Adopting the power-law form for h, the potential (II.4.8) becomes

V (r) =
1

4
α(α+ 2)

r2

L4
+

(α− 2)αr4H
4L4r2

− α2 r
2
H

2L4
, (II.4.9)

which, in terms of the tortoise coordinate, reads

V (r∗) =
r2Hα

4L4 sinh2 (rHr∗/L2) cosh2 (rHr∗/L2)

[
α+ 2 cosh

(
2rHr∗/L

2
)]
. (II.4.10)

As already mentioned at the beginning of the section, the QNMs spectrum forω can be obtained
either by solving Eq. (II.4.7) with usual boundary conditions at infinity and at the horizon [512],
or by imposing a monodromy condition around the black hole horizon (see, e.g., Ref. [179]). In
the following, we will briefly review the computations of Ref. [512] and then we will apply them
to derive the frequency spectrum for scalar perturbations.
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The Klein-Gordon equation (II.4.7), together with the potential (II.4.10), can be recast in a
more suitable form by introducing a new radial coordinate x = 1/ cosh(rHr∗/L

2). This coordinate
change maps the horizon and spatial infinity respectively to x = 0 and x = 1. Moreover, it is
useful to factorize the asymptotic behavior ofR(x) in these two limits. Since boundary conditions
require R(x) to be purely ingoing at the horizon and to vanish at spatial infinity, one can write
R(x) = (x− 1)(α+2)/4x−iL2ω/2rHF (x), so that Eq. (II.4.7), once written in terms of F (x), takes the
form

x(1− x)d2F

dx2 +

[
1− iω̃

rH
− 1

2

(
α− 2iω̃

rH
+ 5

)
x

]
dF
dx −

(2rH − iω̃) [(α+ 1)rH − iω̃]
4r2H

F (x) = 0,

(II.4.11)

where ω̃ = L2ω. The solution of this equation is a combination of hypergeometric functions. By
selecting purely ingoing modes at the horizon, we are left with

F (x) = C 2F1

(
1− iω̃

2rH
,
1 + α

2
− iω̃

2rH
, 1− iω̃

rH
, x

)
=

= C(1− x)−
α+1
2 2F1

(
− iω
2rH

,
1− α
2
− iω

2rH
,
1 + α

2
− iω

2rH
, x

)
, (II.4.12)

where C is a constant. Eq. (II.4.12) still does not automatically satisfy boundary conditions at
infinity. Requiring

2F1

(
− i ω̃
2rH

,
1− α
2
− i ω̃

2rH
,
1 + α

2
− i ω̃

2rH
, 1

)
=

Γ
(
1+α
2

)
Γ
(
1− iω̃

rH

)
Γ
(
1− iω̃

2rH

)
Γ
(

1+α
2 −

iω̃
2rH

) = 0, (II.4.13)

and by solving Eq. (II.4.13), we get the desired behavior. Eq. (II.4.13) is satisfied only when α is a
non-even real number and ω is

ω ≡ ωn = −2irH

L2

(
n+

α+ 1

2

)
, (II.4.14)

where n is the overtone number, an integer labelling the mode.
Notice that the quasi-normal frequencies are purely imaginary and the resulting modes purely

damped. This fact derives from the asymptotic AdS2 behavior of the JT black hole, which is
reflected in the form of the potential and in the related boundary conditions.

II.4.2.1 Quasi-normal modes for massive scalar perturbations

Previously, we considered the evolution of external massless scalar perturbations in the fixed
gravitational background (II.4.2). Let us now consider external perturbations due to a scalar field
Φ of mass m and a coupling function with the dilaton h(ϕ). The equation for the perturbation is
now [

1√
−g h(ϕ)

∂µ
(√
−g h(ϕ)gµν∂ν

)
−m2

]
Φ = 0. (II.4.15)

We will consider the same coupling function h(ϕ) = (r/L)α used for the massless case. Our results
will therefore generalize those in Ref. [178], derived considering a trivial couplingh(ϕ) = constant.
This choice, together with the ansatz (II.4.6), leads to the equation

d2R

dr2∗
+
[
ω2 − V (r)−m2(r2 − r2H)

]
R = 0, (II.4.16)

where V (r) has been defined in Eq. (II.4.9). Following the same procedure described in the
previous subsection when dealing with the massless case, we get the spectrum of QNMs for
massive scalar perturbations
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ωn = −2 irH

L2

(
n+

1 + α

4
+

1

4

√
(1 + α)2 + 4L2m2

)
. (II.4.17)

The results of this section show that, for both massless and massive scalar perturbations, the
QNMs spectrum of JT black holes takes the general form ωn = − 2i rH

L2 (n+ γ), where γ is some real
number of order one. The frequencies are purely imaginary and grow linearly with the overtone
number n. This latter behavior is reminiscent of the energy spectrum of a one-dimensional
quantum harmonic oscillator [69].

In the high-damping regime, we can neglect γ. The relevant information here is the linear scal-
ing of ωn with n. We can now exploit Maggiore’s argument, originally used for the Schwarzschild
black hole [69], to suggest a correspondence between the QNM frequenciesωR+iωI and the proper
frequency ω of an harmonic oscillator via the relation ω =

√
ω2

R + ω2
I . In the present case, this

gives

ωn ≡ |ωI| = ω̂ (n+ γ) , ω̂ =
2rH

L2
, (II.4.18)

where the characteristic frequency ω̂ if defined in terms of the fundamental frequency of the
oscillator ω0 as ω̂ ≡ ω0/γ. ω̂ can also be written in terms of the black hole temperature (II.4.4a)
as ω̂ = 4πTH. This relation differs by a factor of 2 from the one pertaining to 4D black holes,
ω̂ = 2πTH [69, 236, 470–472, 513–515]. This fact seems to be a peculiarity of black-hole solutions
in 2 and 3 space-time dimensions [180, 512, 516, 517].

Finally, we notice that, in the large-n regime, the QNMs are probing the JT black hole at small
distances. This should provide us with information about its microscopic structure, similarly to
what happens for the Schwarzschild case. On the other hand, the small-n behavior corresponds
to probing large distances, of order of the horizon size. This regime is instead not universal, but
depends on γ, i.e., on the mass of the scalar field and on the form of the coupling function h(ϕ)
(see the parameter α in the spectra (II.4.14) and (II.4.17)).

We will use this information in the next two sections, first to give a corpuscular description
of the black hole, then to improve such a description by considering the black hole as a statistical
ensemble of harmonic oscillators.

II.4.3 Corpuscular description

A black hole can be considered as a macroscopic quantum system, built up by a large number N
of microscopic DOFs [35–40]. The theoretical evidence supporting the validity of this corpuscular
description is mounting. Specifically, a black hole can be seen as a coherent quantum state, which
classicalizes forN ≫ 1, and satisfies a maximally packaging condition, relating the maximal amount
of DOFs one can pack in the system to its size [35, 36]. This condition has been shown to be
equivalent to the holographic scaling of N [39]. The possible existence of macroscopic quantum
gravity states emerged also in investigations concerning galactic dynamics [70–72]. The latter
perspective is further supported by the formulation of a generalized thermal equivalence principle
(GTEP), which relates the temperature of the statistical ensemble of the N DOFs to the surface
gravity of a black hole or to the cosmological acceleration [72].

Recently, this corpuscular hypothesis gained support also from an apparent relation between
the form of the QNMs spectrum of the Schwarzschild black hole and its microscopic description
in terms of an ensemble of quantum harmonic oscillators [6].

This corpuscular interpretation, finds strong support in the Maggiore proposal [69], according
to which in the large overtone number-regime, the proper frequency of the harmonic oscillator
describing the QNMs spectrum of the Schwarzschild black hole ω =

√
ω2

R + ω2
I can be recast as the

dispersion relation of a relativistic particle, i.e., ωn =
√
m2 + p2n. Specifically, the particle mass m

is defined in terms of the real part of the frequency,m = ln 3 TH, with TH the Hawking temperature
of the hole, while the particle momentum pn is defined in terms of ωI (hence its dependence on the
overtone number) and reads pn = 2πTH

(
n+ 1

2

)
. The latter expression, in particular, is pertinent

to a particle quantized on a circle, with length L = 1/TH, with antiperiodic boundary conditions.
Applying the same reasoning to the QNMs spectrum of the JT black hole (II.4.18) considered in
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this work, we can rewrite it in the form of a dispersion relation for a relativistic particle with
vanishing rest mass

ωn = pn, pn =
4π

βH
(n+ γ) , (II.4.19)

where now βH = 1/TH is the inverse of the black hole temperature (II.4.4a). As in Ref. [69], the
form of pn is that pertaining to a particle described by a wave function, Ψ, quantized on a circle of
length βH/2, with boundary conditions

Ψ

(
x+

βH

2

)
= e2πiγΨ(x). (II.4.20)

In a corpuscular description, we can therefore consider the JT black hole as a coherent state
representing a classical configuration localized in a region of size rH, with occupation numbers
nj(p) sharply peaked around the characteristic QNMs frequency p = ω̂. Being ω̂ ∝ TH, this is
fully in agreement with a thermal, coarse grained, description of the system, according to which
the statistical occupation number distribution should be peaked at energies around TH.

Since the system is expected to be weakly coupled in the regimeN ≫ 1, on a first approximation
we can neglect the interactions. We can consequently consider the JT black hole as a bound state
of free particles, each with typical energy ω̂ = 4πTH. This yields

M = Nω̂, (II.4.21)

where M is the black hole mass.
Eqs. (II.4.4a) and (II.4.4b) give the scaling of M and S with the temperature TH: M =

2π2LT 2
H, S = 4π2LTH, typical of a two-dimensional CFT. This is, therefore, a manifestation of

the AdS/CFT correspondence for JT gravity [518, 519]. By using Eq. (II.4.21) together with these
scaling relations, one can now easily find that the black hole entropy S is proportional to N

S ∝ N. (II.4.22)

This is fully consistent with the corpuscular description of the JT black hole as a bound state of N
particles, whose thermodynamic entropy roughly scales as the number of DOFs.

In view of the discussion of the next section, it is quite interesting to compare the behavior
of the JT and of the Schwarzschild black holes. As remarked above, in the latter case, the QNMs
spectrum, in the large-n limit, has the same form given in Eq. (II.4.18), with ω̂ = 1/(2rH) = 2πTH
and γ = 1/2, where now TH = 1/(4πrH), corresponding to a particle quantized on a circle of length
βH, with antiperiodic boundary conditions. The corpuscular interpretation of the Schwarzschild
black hole is quite the same as the JT case: it can be regarded as a coherent bound state of N
particles with occupation numbers sharply peaked at ω̂ ∼ TH, such that M = Nω̂ and S ∝ N on
a first approximation.

On the other hand, the scaling ofM and S with the Hawking temperature TH is quite different:
M = 1/(8πGTH), S = 1/(16πGT 2

H). This behavior reflects the fact that we do not have a thermal
CFT, dual to the black hole, in the Schwarzschild case. This can also be seen as a consequence of the
presence of two different length-scales in the two gravity theories. In JT gravity, the gravitational
coupling constant is dimensionless and we have an external length-scale, i.e., the AdS length
L. Conversely, in general relativity, the gravitational coupling constant has dimensions of length
squared and we have no external length-scale. In the next section, we will show that these features
have a deep impact on the black hole description in terms of harmonic oscillators.

Let us conclude this section by noticing an intriguing relationship between our QNMs-
motivated corpuscular description of black holes and the recently proposed GTEP [72]. As
already mentioned, the latter explains acceleration in gravitational systems, such as the surface
gravity κ for black holes and the cosmological acceleration for the de Sitter universe, as a universal
macroscopic effect of a large number of thermalized quantum gravity DOFs. The proportionality
relation ω̂ ∝ TH we found for both the Schwarzschild and the JT black holes also implies ω̂ ∝ κ.
This result, therefore, could be seen not as a mere coincidence, but as a consequence of the GTEP.
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II.4.4 The JT black hole as statistical ensemble of oscillators

In the previous section, we gave a corpuscular description of the JT black hole in terms of a coherent
state of a large number N of particles, with occupation numbers sharply peaked around the
characteristic quasi-normal frequency ω̂. In this section, we will give support to this microscopic
picture of the black hole. Motivated by the form of the QNMs spectra (II.4.14) and (II.4.17), we will
model the black hole as a statistical (canonical) ensemble of N harmonic oscillators of frequency
ω̂. We will follow here the same procedure adopted in Ref. [6] for the Schwarzschild black hole.

Similarly to the Schwarzschild case, we are mainly interested in macroscopic black holes, i.e.,
in their large-mass (M → ∞) behavior. There is, however, a crucial difference between the four-
dimensional Schwarzschild and the JT black hole. In the latter case, the large-M limit corresponds
to large temperatures TH, whereas in the former it corresponds to the small-temperature regime.
This is a simple consequence of the scaling ofM in terms of TH, discussed in the previous section.
In the JT case, the large-M behavior will be independent, at leading order, from the vacuum, i.e.,
from the value of γ in Eq. (II.4.18).

The spectrum will be dominated by the linear behavior in the overtone number n, so that in
the large mass limit we can effectively model the JT black hole as an ensemble ofN ≫ 1 decoupled
harmonic oscillators. At first sight, modelling the black hole as a set of free particles may seem at
odds with the naive intuition of a black hole as a strongly coupled gravitational system. However,
one should keep in mind that the system is strongly coupled in terms of the ’t Hooft coupling
λ = αN , but it is weakly coupled in terms of the running coupling constant α [35, 65–67].

We adopt a description in terms of a canonical ensemble: the black hole is taken to be in thermal
equilibrium with its surroundings at temperature T = 1/β. Owing to its negative specific heat
and being asymptotically flat, a Schwarzschild black hole cannot be in stable thermodynamical
equilibrium with a thermal bath. Consequently, the canonical ensemble is ill defined and requires
the system to be confined within artificial external boundaries [219, 485]. Conversely, the canonical
ensemble is perfectly defined in asymptotically AdS space-times, because its asymptotic timelike
boundary naturally acts as a confining box. Notice that, although the AdS2 black hole space-time is
not geodesically complete for radial null geodesics, one can impose perfectly-reflecting boundary
conditions at the asymptotic timelike boundary of the spacetime. Thus, a large AdS2 black hole is
kept at thermal equilibrium with its radiation and is therefore naturally described in terms of the
canonical ensemble.

In addition, motivated by the fact that the solutions can be fully characterized by a single
observable, the mass M , we take the number of oscillators N fixed. Following Ref. [6], we
consider β and ω̂ as independent variables, so that the temperature T and the black hole mass
M can vary independently. This is justified by the fact that the observer at infinity, who only
measures the QNMs, has access to the mass of the black hole only, due to the absence of any
chemical potential, whereas the horizon radius can fluctuate quantum mechanically; only local
measurements would allow to probe these fluctuations [485].

In the canonical ensemble, the partition function of a single oscillator, with spectrum given by
Eq. (II.4.18), is

Z1 =

∞∑
n=0

e−βωn =
e

2βrH
L2 (1−γ)

e
2βrH
L2 − 1

. (II.4.23)

We consider the JT black hole as a system ofN , non-interacting, indistinguishable oscillators. The
total partition function is therefore ZN = ZN

1 . The average energy and the entropy are

⟨E⟩ = −∂β lnZN = −2NrH

L2
(1− γ) + 2NrH

L2

e
2βrH
L2

e
2βrH
L2 − 1

, (II.4.24a)

S = lnZN + β⟨E⟩ = −N ln
(
e

2βrH
L2 − 1

)
+

2NrH

L2
β

e
2βrH
L2

e
2βrH
L2 − 1

. (II.4.24b)

In the large-temperature limit, i.e., β → 0, we get:

⟨E⟩ ≃ N

β
+

2NrH

L2

(
γ − 1

2

)
+O(β). (II.4.25)
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S ≃ N −N ln
(
2
rH

L2
β
)
+O(β2). (II.4.26)

Notice that, consistently with our previous statement, the vacuum contribution (parametrized by
γ) enters only in the subleading terms in the β → 0 expansion. Thus, for the asymptotic observer,
which identifies T = TH, the leading term in the large-mass expansion gives a purely extensive
contribution to the energy, satisfying ⟨E⟩ = TS, which is completely unaffected by the zero-point
energies of the oscillators. This behavior has to be compared with that of the Schwarzschild
black hole, for which also the vacuum energy provides a non-negligible contribution to ⟨E⟩ in the
large-mass limit, consistently with the scaling M ∼ T−1

H [6].
The leading term in Eq. (II.4.25) has to be identified with the the black-hole massM measured

by an observer at infinity, who sees the system at thermal equilibrium at the Hawking temperature
(II.4.4a). This fixes the number of oscillators to N = βHM = πrH/L. Plugging this result into the
leading term of Eq. (II.4.26) gives

S = π
rH

L
, (II.4.27)

which is half of the Bekenstein-Hawking (BH) entropy (II.4.4b) of the JT black hole. The next-
to-leading-order term in the entropy expansion (II.4.26) is a logarithmic correction, in agreement
with several results in the literature (see, e.g., Refs. [486–497]). These corrections are positive
when expressed in terms of the temperature and have a pure thermodynamic origin, as they arise
from the high-temperature expansion, and causes an increase in the entropy, as expected (see, e.g.,
Ref. [492] for a discussion about thermal corrections to the entropy in general two-dimensional
dilatonic models).

The origin of the mismatch of a factor of 2 between the leading term in the Gibbs entropy for
theN -oscillator system and the BH entropy (II.4.4b) could be traced back to the peculiar topology
of the AdS2 space-time. The JT black hole represents just one of the two disconnected wedges of
full AdS2. The BH entropy of the hole can be thought as resulting from tracing out the DOFs on the
invisible edge of the full AdS2 [256, 497]. This means that, in our microscopic description in terms
of harmonic oscillators, we should double N , keeping however the black hole mass unchanged.
In this way, we find S = 2N = 2πrH/L, matching exactly the BH entropy (II.4.4b).

II.4.5 Quasi-normal modes and Conformal Symmetry

In the previous sections, we derived and discussed the QNMs spectrum for the JT black hole and
used it to build a microscopic description both in terms of a coherent state of a large number
of particles and as a statistical ensemble of harmonic oscillators. Until now, this perspective has
been motivated only by the form of the QNMs spectrum (II.4.18). On the other hand, it is well
known that in the AdS/CFT framework, JT gravity allows for a dual description in terms of a CFT.
In two spacetime dimensions, the correspondence has both a bulk realization in terms of a 2D
CFT [518, 519] and an holographic one in terms of conformal quantum mechanics living on the
1D time-like boundary of AdS2 [284, 520–522]. It is therefore tempting to see to what extent the
microscopic description of the JT black hole in terms of harmonic oscillators finds support in the
dual 1D boundary, quantum mechanical description. This will be the subject of this section.

AdS2 gravity induces a conformally invariant dynamics on the 1D space-time boundary at
spatial infinity r → ∞ [523, 524]. Specifically, the boundary theory has the same form of the
conformal quantum mechanics proposed by de Alfaro, Fubini and Furlan (DFF) in [525], coupled
to an external source. The boundary dynamics is generated by the asymptotic symmetry group
of AdS2, the Diff1 group (time reparametrizations), namely the set of transformations which leave
the following asymptotic expressions of the metric and the dilaton invariant

gtt ∼ −
r2

L2
+ γtt(t) +O

(
1

r2

)
, (II.4.28)

grr ∼
L2

r2
+
L4γrr(t)

r4
+O

(
1

r6

)
, (II.4.29)

ϕ ∼
(
ρ(t)

r

L
+
Lγϕ(t)

2r

)
+O

(
1

r3

)
, (II.4.30)
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where γtt, γrr, γϕ and ρ represent the boundary and the dilaton deformations, respectively. The
equations of motion, stemming from the action (II.4.1), together with (II.4.28), give the dynamical
equations

ρ̈

L2
− ργ + β = 0, ρ̇γ + β̇ = 0, (II.4.31)

where γ ≡ γtt − γrr/2, β ≡ ργrr/2 + γϕ and the dot indicates differentiation with respect to t.
We can now use the Diff1 gauge freedom to fix γ = constant in (II.4.31), and get the equation

for the harmonic oscillator

ρ̈ =
2γ

L2
ρ. (II.4.32)

γ is a function of the ADM mass (II.4.3), γ = −ML, and depending on its sign, (II.4.32) describes an
harmonic oscillator with real frequency (M < 0), a free particle (M = 0) or an harmonic oscillator
with imaginary frequency (M > 0), signalizing the presence of dissipative effects. Specifically, in
the black hole solution (M > 0), (II.4.32) describes an harmonic oscillator with frequency ω = iω̂,
with ω̂ given by (II.4.18). This result corroborates the microscopic description of the JT black hole
in terms of harmonic oscillators, based on the QNMs spectrum, from the dual holographic theory
point of view.

The gauge fixing, leading to (II.4.32), breaks the full Diff1 invariance group, leaving unbroken
only the time-translation subgroup. This is a quite strong condition, because one would like
to keep unbroken at least the isometry of AdS2, which is isomorphic to SL(2,R). This group is
generated by the transformation

G = uH+ vD + wK (II.4.33)

whereH,D, andK generate translations, dilatations and conformal transformations, respectively.
The spectrum of G can be characterized by the sign of the determinant ∆ ≡ v2 − 4uw.

Specifically, for ∆ < 0, G is compact, its spectrum is discrete and bounded from below and its
eigenstates are normalizable. For ∆ = 0, the spectrum is continuous and bounded from below.
For ∆ > 0, G is non-compact and its spectrum is unbounded from below. The action, invariant
under the conformal transformations generated by G, takes the form [525]

S =
1

2

∫
dτ

(
q̇2 +

∆

4
q2 − g

q2

)
. (II.4.34)

The parameter ∆ in the action (II.4.34) plays the same role of the parameter γ in (II.4.32).
The case of interest in our discussion is ∆ > 0, i.e., a non-compact G with an unbounded-

from-below spectrum, which corresponds to the γ > 0 behavior, i.e., the harmonic oscillator with
imaginary frequencies ω = iω̂, dual to the JT black hole space-time. This is a consequence of the
fact that this space-time is endowed with an event horizon and we can describe it in terms of a
thermal quantum harmonic oscillator at the horizon temperature (II.4.4a) [523].

The last point shows, in particular, that the black hole space-time is holographically dual to a
1D conformally symmetric thermal system on the boundary, which is of course perfectly consistent
with the AdS/CFT correspondence.

The next step is to look for a correspondence between the spectrum of the DFF boundary
operator (II.4.33) on the boundary and the JT QNMs spectrum in the bulk. This is quite natural
also in consideration of the fact that QNMs are dual to the response of a thermal system to external
perturbations on the boundary [475]. In view of the holographic nature of the correspondence,
we expect a matching of the spectra in the r →∞ (r∗ → 0) limit of the bulk radial coordinate.

Let us then focus on the eigenvalue equation for G [525](
− d2

dx2
+W (x)

)
ψ = 2Gψ, W (x) =

g

x2
− ∆

4
x2 (II.4.35)

where 2G are the eigenvalues andψ the eigenfunctions. (II.4.35) has the form of a time-independent
Schrödinger equation, with potential given by W (x).
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The spectrum of the eigenvalues and the normalizability of the eigenfunctions are therefore
determined by the coupling g in the x→ 0 region. Specifically, g > 0 provides an infinite repulsive
well, which keeps the particle confined in the internal region 0 < x <∞. On the other hand, g < 0
corresponds to an attractive potential, giving unphysical solutions. The uncoupled case g = 0
provides non-normalizable eigenfunctions, coherently with the free particle, whose wavefunction
is defined on all the line −∞ < x <∞.

The parameter∆ rules, instead, the behavior at x→∞. If∆ > 0, the potential is monotonically
decreasing as x→∞ and is unbounded from below. If ∆ = 0, the potential approaches to zero in
this limit, thus producing a continuous spectrum bounded from below. If ∆ < 0 and the coupling
g is positive, the potential has a minimum at xmin = (2g/|∆|)1/4, and goes to +∞ both for x→ 0,
∞. It means that the eigenfunctions will be renormalizable and the eigenvalues spectrum discrete
and bounded from below. Specifically, this spectrum is equivalent to the harmonic oscillator one
with real frequencies, with eigenvalues scaling linearly with an integer n.

Let us now compare the potential W (x) in (II.4.35) with the QNMs potential of (II.4.10). In
general, the two potentials will be different. However, as already anticipated, the relationship
with the asymptotic symmetries, discussed at the beginning of this section, implies that the QNMs
and the operator G spectra are expected to match in the limit r →∞ (r∗ → 0).

The r∗ → 0 expansion of the potential (II.4.10) gives

V (r∗) =
α(1− α)

3

r2H
L4

+
α(α+ 2)

4r2∗
+
α(4α− 7)

15

r4Hr
2
∗

L8
+O(r3∗). (II.4.36)

In order to make a direct comparison with the DFF model, we now define the dimensionless
variable

x2 ≡ r2Hr
2
∗

L4
, (II.4.37)

which brings the asymptotic potential (II.4.36) into the form

V (x) =
r2H
L4

[
α(1− α)

3
+
α(α+ 2)

4x2
+
α(4α− 7)

15
x2
]
. (II.4.38)

Comparing now the potential V (x) with the DFF one W (x) of (II.4.35), we can easily identify
the DFF couplings ∆, g in terms of the dilaton coupling parameter α:

g =
α(α+ 2)

4
, (II.4.39a)

−∆

4
=
α(4α− 7)

15
. (II.4.39b)

Notice that, apart from these identifications, the matching between the QNMs and the DFF
operator eigenevalue equations requires also a shift of the values of ω2 by a α-dependent term.
Interestingly, however, this shifting term becomes zero when α = 1, i.e., using the most natural
coupling h(ϕ) = ϕ (see (II.4.2)).

The sign of ∆ determines whether the frequencies are real or imaginary. We see that, for
dilaton couplings 0 < α < 7/4, ∆ > 0, and we have a correspondence with a thermal harmonic
oscillator, with imaginary frequencies on the boundary. If α > 7/4, ∆ < 0 and we have the
spectrum of a standard harmonic oscillator, with real frequencies.

Eqs. (II.4.39a) and (II.4.39b) clearly show that a non-trivial dilaton coupling h in the Klein-
Gordon equation (II.4.5) is needed to have also a non-trivial boundary dynamics. h = constant
implies α → 0, so that both g → 0 and ∆ → 0, yielding a free-particle boundary dynamics.
Correspondingly, the form of the bulk wavefunction is not compatible with the QNMs boundary
conditions. On other hand, we see that, as long as α > 0, g is positive, so no unphysical eigenstates
are present.

II.4.5.1 Eigenvalue problem for the DFF model with ∆ > 0

We showed above that, in the asymptotic r∗ → 0 regime, the QNMs spectrum for the JT black hole
can be put in correspondence with the eingevalue problem for the DFF operator G with ∆ > 0.
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Let us, therefore, consider the eigenvalue equation (II.4.35) in our specific case. As we saw before,
in this case the spectrum of G is unbounded from below. From a quantum mechanical point of
view, these states do not have a physical interpretation and were therefore excluded in the analysis
of Ref. [525].

Eq. (II.4.35) can be solved in terms of special functions. The solution reads

ψ(x) = A 2b−
1
4 e−

z
2

(
iz√
∆

) b
2−

1
4

U (a, b, z) +B 2b−
1
4 e−

z
2

(
iz√
∆

) b
2−

1
4

Lb−1
−a (z) , (II.4.40)

where A and B are two integration constants, U(a, b, z) is the confluent hypergeometric function,
Lα
n(z) are the generalized Laguerre polynomials, and we have defined

a ≡ −4iG
√
∆+ 2∆+∆

√
1 + 4g

4∆
, b ≡ 1 +

√
1 + 4g

2
, z ≡ − i

2

√
∆ x2. (II.4.41)

Let us now impose the boundary conditions. The correspondence between the DFF conformal
quantum mechanics and QNMs in the bulk, discussed in the previous subsection, implies that, to
solve the former, we have to use here the same boundary conditions at x = 0 and x = ∞, used
to solve the latter in the bulk. Regularity of the solution and selection of purely ingoing waves
at x = ∞ (corresponding to the horizon in the bulk) requires B = 0. On the other hand, the
confluent hypergeometric functions diverge in x = 0. Near x = 0, the first term of Eq. (II.4.40)
therefore behaves as (we neglect non-relevant numerical factors)

xb−
1
2 U(a, b, z) ∼ xb−

1
2

Γ (1− b)
Γ (1 + a− b)

+ c1 x
b− 1

2x2(1−b)

(
1
2 −

i
2

)2(b−1)
∆

1
2−

b
2Γ (b− 1)

Γ (a)
(II.4.42)

with c1 a numerical factor. Owning to the fact that g > 0, the first term goes to zero for x → 0.
The second term, however, being proportional to x 1

2−
√

1+4g
2 , diverges as x → 0. To prevent this,

we require the Gamma function to diverge, from which we are able to compute the spectrum of G

1

2
+

√
1 + 4g

4
− iG√

∆
= −n, n = 0, 1, 2, . . . (II.4.43)

G = −i
√
∆

(
n+

1

2
+

√
1 + 4g

4

)
. (II.4.44)

We see that the eigenvalues are purely imaginary and they scale linearly with n, as expected.
Using Eq. (II.4.39a), the previous equation becomes

G = −i
√
∆

(
n+

1

2
+
α+ 1

4

)
, (II.4.45)

which has the same form of the analytic results (II.4.14), (II.4.17) obtained for QNMs in the bulk,
with ω̂ =

√
∆. Notice that, however, the expressions for the frequency ω0 are quite different in the

two cases. For QNMs, ω0 in Eq. (II.4.18) is a function of the horizon radius only (or, equivalently,
of the black hole mass), whereas ω0 depends on α only in Eq. (II.4.45) (see Eq. (II.4.39b)). This
discrepancy is due to the fact that the correspondence QNMs/DFF quantum mechanics holds
only in the r → ∞ asymptotic regime, where we expect the spectrum to be determined by the
perturbation, i.e., the parameter α defining the dilatonic coupling function h.



Chapter II.5
Summary of part II

In this second part of the thesis we tackled the problem of understanding regular and singular
black-hole systems from a quantum perspective, using toy models and effective parameterization
of quantum effects. Here we briefly summary our main results.

In Chapter II.2, we derived a class of models encoding, at the classical level, the effects of a
generic quantum superposition of the source of the gravitational field. We proposed a formal-
ism, that resembles the Newton-Schrödinger one, with which it is possible to obtain a regular,
asymptotically-flat metric starting from the probability distribution of some particle in a super-
position of locations. As a simple example, we considered the case of a Gaussian wave packet of
widthRwhich represents the uncertainty in the position of the source. Not only is this uncertainty
responsible for the smearing of the classical singularity, but also prevents the radius of the two
sphere from shrinking to zero near the classical singularity. The resulting spacetime reduces to
the Schwarzschild spacetime in the limitR→ 0 and at great distances from the source. Moreover,
similarly to what we have shown in Chapter I.2, the spacetime has a different behavior depending
on the value of the ratio R/RS. In particular, when the quantum effects are negligible and the
source is well localized, i.e., whenR/RS ≪ 1, the spacetime is indistinguishable from the classical
Schwarzschild one, even very near to the horizon. When r andRS become comparable, namely for
R/RS ≃ 1, the quantumness of the source produces relevant and measurable effects, modifying
the geometry in some neighborhood of the horizon and the physical observables related to it.
Finally, when R/RS ≫ 1 and the quantum effects become dominant, the horizon disappears and
the spacetime becomes a traversable wormhole. As done in Chapter I.2, we also investigated the
thermodynamics of this spacetime, which seems to behave in the same way the static models
presented in Part I. We then concentrated on some more phenomenological features, finding that
both the spectrum of the quasinormal modes and the photon orbits are affected by the uncertainty
in the position of the source. Moreover, when the spacetime becomes horizonless, we expect the
spacetime to produce echoes [51] when perturbed. One intrinsic limitation of our approach is that
the probability distribution for the position of the source is not dynamically determined but fixed
a priori. In order to formulate a fully dynamical theory we would need to introduce some kind of
dynamics (for instance, some Schrödinger-like equation) determing the quantum wave function
describing superposition of positions.

Chapters II.3 and II.4 are devoted to the description of the black holes as sets of oscillators with
typical frequencies given by the quasinormal modes, motivated by Maggiore’s interpretation of
the quasinormal-mode spectrum [69]. This possibility is also reasonable in light of the fact that the
quasinormal modes represent the linear response of black holes to external perturbations which,
in principle, should carry information about the structure of the system involved.

Using this idea, in Chapter II.3 we studied the link between this description and the Schwarzschild
black hole. We first built a partition function where the statistical weight of each possible state of
the oscillators is given by e−ωn/TH , where ωn is the n-th quasinormal frequency. Notice that, in this
description, we let the temperature be free to fluctuate, independently from the black-hole mass,
near the average value T = TH. We first showed that when we consider large mass black holes the
contribution of the first, low-damped modes can be neglected. Using this approximation, we are
able to obtain the partition function in a closed form and to compute the internal energy and the
entropy of the black hole in terms of the proper frequency of the oscillators ω0 = 1/4GM . Setting
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the internal energy of the hole to the mass of the system, we are able to find the leading and the
first subleading terms in the Bekenstein-Hawking entropy. The latter, in particular, is given by the
logarithm of the temperature, in line with previous results in literature. Moreover, we showed
that the holographic scaling of the entropy is a natural consequence of the relation between the
number of oscillators and the area of the system.

In Chapter II.4 we applied a similar approach to two-dimensional AdS black holes, with the
twofold objective of checking whether our conjecture is valid even for other systems, and of finding
a deeper link between the description in terms of oscillators and the actual microscopic behavior
of the system. Using the same tecnique as in Chapter II.3, we again found that the description in
terms ofN harmonic oscillators naturally reproduce the Bekenstein-Hawking entropy formula and
its holografic scaling. In this case, however, we no longer need to limit ourselves to consider only
the highly-damped modes due to the simpler, analytical form of the quasinormal-mode spectrum.
Additioinally, we corroborated our microscopic description using the holographic correspondence
between the 2D bulk gravity theory and the boundary quantum mechanics. We found that the
duel description of the spectrum can be given in terms of a DFF conformally-invariant quantum-
mechanical model. The Schrödinger-like equation describing the perturbations in the bulk reduces
to an eigenvalue problem for the noncompact DFF generator G, whose spectrum reproduces the
linear scaling of the frequencies with the overtone number n.



Appendices—Part II

II.A Curvature invariants

Computing the Ricci tensor for the metric Eq. (II.2.28), one easily finds the Ricci scalar

R = − 4e−
2r2

R2

R3r3 (3R2 + 4r2)
2

[
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(
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)
Erf
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2
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]
. (II.5.1)

At r = 0, we have

R(r = 0) =
8
(
6
√

2
πGM −R

)
3R3

, (II.5.2)

which shows no divergences. We have also computed the other curvature invariants, RµνRµν ,
the Kretschmann scalar RµνρσRµνρσ, and the Weyl contraction CµνρσC

µνρσ = RµνρσRµνρσ −
2RµνRµν +R2/3. The first one reads
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which, evaluated at r = 0 gives

RµνRµν |r=0 =
64
(
36G2M2 − 6

√
2πGMR+ πR2

)
9πR6

. (II.5.4)
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The Kretschmann scalar instead reads
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which at r = 0 reduces to

RµνρσRµνρσ|r=0 =
64
(
72G2M2 − 16

√
2πGMR+ 3πR2

)
9πR6

. (II.5.6)

We see that R, RµνRµν and RµνρσRµνρσ are all regular at r = 0. This is a sufficient condition to
have also a regular Weyl contraction in this point.



Conclusions

In this thesis we investigated several aspects of black hole physics, with a particular focus on con-
structing models for black-hole mimickers, solving the singularity problem, modelling the black
hole interior, investigating some possible quantum effects producing deformations of the black
hole geometries, and characterizing the resulting phenomenology. In doing so, we studied some
classes of regular and singular spacetimes, their phenomenology and the physical interpretation
of their most important features.

In Part I we investigated two classes of mimickers, namely a set of de Sitter-core regular
models and the Konoplya-Rezzolla-Zhidenko black holes. We mainly focused on one-parameter
modifications of the Schwarzschild and Kerr metrics, which allow for a simple analytical treatment
but, at the same time, enrich the phenomenology. We computed several observed quantities
showing that they are and will be testable (position of the light ring, quasinormal mode spectrum,
orbits of massive particles, and superradiant scattering).

In Chapter I.2, we developed a class of regular, asymptotically-flat, static, de Sitter-core black
holes sourced by an anisotropic fluid with equation of state p∥ = −ρ. The anisotropicities are here
identified as a parameterization of some (still unspecified) quantum effects, whose microscopic
dynamics are effectively encoded in the coarse-grained, hydroninamical quantities ρ, p∥, p⊥, and
the related equation of state. Such a parameterization allowed us to circumvent Penrose’s theorems
since the fluid does not satisfy the strong energy condition. Our class of black holes depend on
a single additional parameter, the quantum hair ℓ, and on a function whose form depend on the
functional form of the energy density. The additional hair ℓ is here interpreted as the scale at
which quantum effects are important. Under these assumptions, we find that, in general, our class
of black holes admits an even number of horizons, although we only considered models with, at
most, two horizons. We find that when this parameter is much smaller than the Schwarzschild
radius of the object,RS, the geometry resembles that of the Schwarzschild black hole, when ℓ ≃ RS
the configuration has two distinct or coinciding horizons, and when ℓ ≳ RS the model becomes
horizonless. The extremal configuration, i.e., the one with two coinciding horizons is particularly
interesting. Indeed, by studying the thermodynamics we found that classical configurations, that
is with ℓ ≪ RS, are always thermodynamically less favored than those near extremality, where
we quantum effects are visible at the horizon scale. We also studied the motion of particles in this
geometry. In particular, we found that the presence of the additional parameter ℓ could largely
modify the orbits allowing for tests general relativity. Finally, we studied the quasinormal-mode
spectrum in the eikonal limit, finding that, again, the presence of quantum effects can have a
strong impact on the ringdown signal which could be, in principle, measured and used to test
Einstein’s theory against putative alternatives.

In Chapter I.3, we studied in greater detail the semiclassical dynamics (like the black-hole
evaporation process) of these regular spacetimes. In order to give a semianalytical treatment of
the problem, we chose to work in two spacetime dimensions, with which we expect to capture the
main dynamics of the evaporation process but keeping the physical description simple. We first
rebuilt the class of models discussed above in the Jackiw-Teitelboim theory, where we find a similar
thermodynamic behavior to the four-dimensional case. We then proceed with investigating the
evaporation process focusing on the Hayward model, which is included in our general class,
both analytically, under the quasistatic approximation, and numerically, where we account for
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the backreaction of the geometry. The results of both methods indicate that the final state of
the evaporation is an extremal, zero-entropy, regular configuration, and that this is reached in
a finite amount of time. Moreover, we built the Page curve, which clearly shows the presence
of a maximum followed by a descent representing a clear indication that the information can
be recovered in the final part of the evaporation process. Unfortunately, we are not able to
reconstruct the full curve because of the breakdown of the semiclassical approximation right after
the appearence of the maximum.

Moreover, in Chapter I.4, we tested our class of metrics against the S2-star orbital data, under
the hypothesis that Sagittarius A*, the supermassive black hole in our galactic center, is a de Sitter-
core regular object. Due to the fact that the typical size of the orbit is much grater thanRS, we can
safely neglect any effect introduced by the spin of the compact object and test the class of models
developed in Chapter I.2. Moreover, in order ot obtain the strongest constraint on the quantum
parameter ℓ, we chose to work with the Fan-Wang model, which pertains to our general class, and
has the property of exhibiting the greatest corrections to Schwarzschild at infinity. We proceeded
to study the orbits of massive particles around this geometry, finding that the precession angle
decreases proportionally to the quantum parameter ℓ, becomes zero when ℓ = RS/2 and is negative
(retrograde precession) when ℓ > RS/2. This feature was also verified numerically by directly
integrating the geodesic equations. By building a Markov-chain-Monte-Carlo simulation, we have
also been able to fit the S2-star data, constraining the quantum parameter to ℓ ≲ 0.47GM at 95%
confidence level. This constraint does not exclude thermodynamically favored configurations but
rules out most of the horizonless configurations.

This rich field allows for a number of future investigations from both the fundamental and
more phenomenological side. From the fundamental side, an important issue is the microscopic
origin of the quantum hair ℓ parametrizing the deformation of the geometry. In our effective,
coarse grained, description this is hidden in the form of the free function ρ, the energy density.
However, one would like to fix the form of ρ using microscopic information, for instance in
terms of some elementary fields. From the phenomenological side instead, in order to further
test our class of regular black-hole models we need a generalization to the rotating case. This
generalization has already been done in Ref. [85], but a deeper investigation on the source of the
gravitational field, under the light of our interpretation of the additional length scale, is required.
Moreover, we believe our effective description of quantum black holes to be sensible to tidal
deformations. Indeed, due to the hydrodynamic, coarse-grained nature of our description, we
expect the fluid, encoding any putative quantum effect, to be responsive to tidal forces. This
property should be sufficiently general for our class of models, and could allow experiments to
test our spacetimes against general relativity. Finally, because of the modifications the quantum
parameter ℓ introduces on the orbits of test particles, we expect the shadow to be deformed
accordingly. This feature could be observed and tested against the Kerr hypothesis once the
generalization of our model to the rotating case is completed.

Finally, in Chapter I.5, we studied the imprint of eventual modifications to the Kerr metric on
the superradiant scattering of massless and massive particles. The main idea was to investigate in
detail the imprint of the modifications introduced in these metrics on the phenomenology. Starting
from the Konoplya-Rezzolla-Zhidenko class, we find a subset of geometries that admit both the
separation of the angular from the radial part of the perturbation equations. We then focus on a
specific example pertaining to this general class, namely the Konoplya-Zhidenko metric, which is
a minimal deformation of the Kerr spacetime sharing the same asymptotics and symmetries with
its general-relativistic analogous. We begin by studying in detail the structure of such a model,
and we find, again that the experimentally accessible quantities are sensible to the introcution
of the new parameter, η characterizing the geometry. We then move to the systematic study of
the superradiant scattering of scalar and electromagnetic fields on this black-hole model. We
found here that the most interesting modifications are introduced when η is small, in which case
the superradiant amplification can be larger than in the Kerr case. Moreover, we investigated
the suparradiant instability produced by the presence of massive scalar fields under the small-η
approximation. This study suggests that these spacetimes are slightly more unstable than the Kerr
spacetime. However, this last assessment should be taken with care because of the large number
of used assumptions, and a full numerical simulation is required to correctly claim the magnitude
of this effect.
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In Part II, we tackled the problem of understanding microscopic and quantum systems in the
context of general relativity without relying on a specific theory of quantum gravity, although our
approach is similar, in its idea, to that of the corpuscular picture of gravitational interactions. To do
so, we developed two distinct models: in the first we consider a quantum delocalized source for the
gravitational field, whose position is subject to the uncertainty principle; the second, interprets
the Bekenstein-Hawking formula as the entropy of a set of oscillators with typical frequencies
given by the quasinormal modes of a black hole.

In particular, Chapter II.2 is devoted to the developement of the first model. We started by
considering a system composed of a quantum particle in a delocalized state and a classical probe.
The particle position is described by a smooth function of the radial coordinate peaked around the
classical position at r = 0 and with uncertainty radiusR. With this setup, we were able to compute
the expectation value of the Newtonian potential, and by covariantly uplifting this quantity we
recontructed the metric functions, which depend on the probability density describing the position
state of the source. We showed also that the L2-integrability of the proability density and of the
smoothness of its derivative guarantee asymptotic flatness and regularity at the core, respectively.
This approach is very similar to a well-known approximation, namely the Newton-Schrödinger
formalism, although we do not consider here the dynamics of the quantum particle. However,
since this approach leaves the angular part of the metric undetermined, we also adopted a “more
covariant” approach in which also the metric is an operator that depends on the positions of the
particle and the probe. With this method, we obtain that the radius of the two sphere does not
shrink to zero for r → 0 and our spacetime represents a wormhole. As a simple realization of this
model, we consider a system where the probability density is given by a Gaussian distribution, and
we studied some of its phenomenological features. We found that this model behaves similarly to
the general class discussed in Chapter I.2, both from a thermodynamical and a geometrical point
of view. In this case, when the quantum scale R, playing the same role as ℓ, is much smaller than
the classical gravitational radius RS, the configuration behaves as a Schwarzschild black hole,
when R ≃ RS it becomes extremal with a single horizon at r = 0 and when R ≳ RS the model
corresponds to a horizonless compact objects. Again, the thermodynamical properties indicate
that objects withR ≃ RS are favored with respect to their classical counterparts withR≪ RS. We
also studied orbits and quasinormal modes of this spacetime, finding results similar to the one
in Chapter I.2. An interesting follow-up of this work would be, again, to generalize this method
to the rotating case, both through the Janis-Newmann algorithm and by directly applying our
formalism to generate an axially-symmetric spacetime, maybe showing some dependence on the
spin of the particle. We also hope to be able to test our metric or its rotating version with current
or future experimental data in order to put some constraint on the strenght of quantum effects.
The weakness of our approach is the lack of knowledge about the dynamics, needed to determine
the wave function of the delocalized source. This point deserves further investigations.

In Chapters II.3 and II.4 we discussed the possibility of recovering the Bekenstein-Hawking
formula as the entropy of a set of oscillators with frequencies given by the quasinormal modes
of the system. Indeed, motivated by Maggiore’s idea [69], we started in the former from the
Schwarzschild black hole as a canonical ensemble of N oscillators. The statistical weight of each
state is given by the Boltzmann factor e−ωn/T . Here we assumed the possibility, at quantum
level, that the temperature and the mass could oscillate independently around their classical
values, though any observer at infinity should see these fluctuations averaged to their classical
values. Moreover, in the approximation in which the black-hole mass is large compared to the
typical thermal energy, we see that the negligible modes correspond to those with large overtone
number, whose approximate expression is analytical. We are then able to compute both the
internal energy of the system and its entropy. The former can be identified with the classical mass
of the system and gives a holographic scaling of the number of oscillators, while the latter, at
first order in the large mass expansion, gives the Bekenstein-Hawking entropy of the black hole
and a subdominant logarithmic correction. Notice that the holographic scaling can be perfectly
understood in a corpuscular perspective, in which the black hole is identified with a condensate
of soft gravitons.

This same idea was used in Chapter II.4, but instead of working with the Schwarzschild
spacetime we decided to test this hypothesis with 2D anti-de Sitter black holes. There are two
main reasons to choose the simplified 2D environment in this case. First, in the Jackiw-Teitelboim
theory we are able to compute analytically the full spectrum of the quasinormal modes and,
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therefore, we can compute the entropy without the need of further approxiamtions. Second,
two-dimensional black holes are good proxies for the near-extremal and near-horizon geometries
of several 4D black holes, reason why we expect these results to be applicable to other cases as
well. We proceeded by using the same formalism as in Chapter II.3, this time without expanding
for large masses, and found very similar results. Moreover, investigated deeply the connection
between the harmonic oscillators and the quasinormal modes of anti-de Sitter 2D black holes by
considering at the conformal quantum mechanics at the boundary. In this case, we observed that
the equations describing the spectra of the perturbations of these objects correspond to the de
Alfaro-Fubini-Furlan formalism, which is a conformally invariant generalization of the harmonic
oscillator in quantum mechanics.
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