
Towards Knowledge Graph Refinement: Misdirected Triple
Identification

Salvatore Carta
salvatore@unica.it

Dept. of Mathematics and Computer
Science, University of Cagliari

Cagliari, Italy

Alessandro Giuliani
alessandro.giuliani@unica.it

Dept. of Mathematics and Computer
Science, University of Cagliari

Cagliari, Italy

Marco Manolo Manca
marcom.manca@unica.it

Dept. of Mathematics and Computer
Science, University of Cagliari

Cagliari, Italy

Leonardo Piano
leonardo.piano@unica.it

Dept. of Mathematics and Computer
Science, University of Cagliari

Cagliari, Italy

Livio Pompianu
livio.pompianu@unica.it

Dept. of Mathematics and Computer
Science, University of Cagliari

Cagliari, Italy

Sandro Gabriele Tiddia
sandrog.tiddia@unica.it

Dept. of Mathematics and Computer
Science, University of Cagliari

Cagliari, Italy

ABSTRACT
In the current digital transformation scenario, Knowledge Graphs
(KGs) represent an across-the-board instrument for representing
knowledge in a structured form. Such tools allow to effectively en-
hance the performance of Artificial Intelligence models in manifold
contexts, such as reasoning or information retrieval. Nevertheless,
the effectiveness of KGs is often affected by the incorrect direction-
ality of some of their edges, due in most cases to human error or
the inefficiency of automatic and semi-automatic graph creation
methods. This paper proposes a classification-based approach to
identify misdirected triples within a KG, aiming to support and
assist humans in creating graph refinement. Triples are the main
component of KGs, and they model the connection between nodes
with a <subject, predicate, object> form. Our proposal allows us to
refine a KG by devising a classification-based approach for recog-
nizing whether the subjects and objects are not compliant with the
logic directionality of the corresponding predicate, meaning that
they should be switched (e.g., the triple <U.S.A., is capital, Wash-
ington> should be inverted as <Washington, is capital, U.S.A.>).
We compare traditional machine learning techniques with cutting-
edge advanced methods, including pre-trained language models
and large language models. Extensive experiments have been per-
formed across several datasets, confirming the effectiveness of our
proposal.

CCS CONCEPTS
• Information systems → Data cleaning; Language models; In-
formation extraction.

KEYWORDS
Digital Transformation, Large Language Models, Artificial Intelli-
gence

This work is licensed under a Creative Commons Attribution International
4.0 License.

UMAP Adjunct ’24, July 01–04, 2024, Cagliari, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0466-6/24/07
https://doi.org/10.1145/3631700.3665235

ACM Reference Format:
Salvatore Carta, Alessandro Giuliani, MarcoManoloManca, Leonardo Piano,
Livio Pompianu, and Sandro Gabriele Tiddia. 2024. Towards Knowledge
Graph Refinement: Misdirected Triple Identification. In Adjunct Proceedings
of the 32nd ACMConference on User Modeling, Adaptation and Personalization
(UMAP Adjunct ’24), July 01–04, 2024, Cagliari, Italy. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3631700.3665235

1 INTRODUCTION
Knowledge Graphs (KGs) organize information into a graph struc-
ture, wherein nodes represent entities, and edges denote relations
between entities. The information contained within such valuable
tools can allow for synthetic and schematic modeling of the data
at hand in the form of triples (subject-predicate-object), subject and
object being entities and the predicate being the relation between
them. These structures can often be interpreted as information
containers and can schematically transform entire data of an un-
structured nature, which proves to be a fundamental point in the
historical process of digital transformation we are currently ex-
periencing [9, 12, 17]. Indeed, by providing a data structure that
semantically organizes information, KGs aid the automation of
entity linkage understanding, machine reasoning, and inference
processes. Furthermore, using artificial intelligence techniques to
automatically produce predictions and answers for the user, com-
bined with graph exploitation techniques, would enrich predictions
and answers with personalized and more accurate choices for the
user. Proceeding in this direction, fields of computer science such as
semantic search and recommendation would advance and improve
their algorithms [7].

As mentioned earlier, a KG consists of triples. As the predicate
has the role of expressing the relationship between two entities,
each predicate needs to be associated with a direction that makes it
possible to identify which is the subject andwhich is the object of the
triple. In addition, the direction enriches the information comprised
within the triple and makes the graph itself more functional for
semantic or recommendation purposes. Indeed, in this context,
edge directions are crucial for guaranteeing that the information is
logically connected and aligned with human cognition and decision-
making processes. Therefore, edge directionality is essential in
numerous processes, e.g., in KG building [19] or completion [15, 34].

460

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3631700.3665235
https://doi.org/10.1145/3631700.3665235
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3631700.3665235&domain=pdf&date_stamp=2024-06-28


UMAP Adjunct ’24, July 01–04, 2024, Cagliari, Italy Carta, et al.

Nevertheless, KGs are often affected by mistakes and incomplete-
ness in the foremost stages of the building approaches, typically due
to human errors when a KG is manually or semi-automatically built,
to not adequately effective algorithms, or to missing information
in data sources in case of automated approaches [31].

Such a situation can eventually degrade the performance of the
algorithms that aim to infer information from the KG as these
algorithms traverse wrong paths and directions within the graph.

Therefore, in this paper, we compare different classification
strategies for identifying triples that exhibit incorrect direction and
must be “reversed” to represent the correct direction in the Knowl-
edge Graph. We evaluated two prominent families of classifiers; the
former includes classical models, employing Word Embeddings and
Machine Learning classifiers, and the latter takes advantage of the
potential of recent neural methods, ranging from Pretrained Lan-
guage Models (e.g., BERT [11]) to the latest Large Language models
(LLMs). To the best of our knowledge, no automated methods for
assessing the correctness of directionality have been proposed in
the literature.

In detail, the main contribution of the paper may be summarized
as follows:

• we aim to identify the most suitable classification-based
methods for refining KGs and highlighting directionality
errors coming up from the triples that compose the graph;

• we deem the uncorrect directions ratio may be a proper
estimation of the KG goodness and correctness;

• we also investigate the potential of LLMs, which have been
recently adopted as a main resource in the context of KG
building, management, and exploitation [4].

The remaining of the paper is structured as follows: Section 2
presents the main work developed in the described context, Sec-
tion 3 provides amathematical formulation of the problem, Section 4
describes the settings and results of experiments performed, and
finally, Section 5 concludes the work and indicates some future
research directions.

2 RELATEDWORK
As already remarked, no state-of-the-art work proposed a method
for automatically identifying incorrect edge directions. Such identi-
fication may be helpful in several KG-based scenarios, e.g., measur-
ing the accuracy and goodness of a KG or methods and algorithms
for correcting errors and ambiguous content. Such scenarios rep-
resent an open research topic in the field of computer science and
Natural Language Processing (NLP), better known as Knowledge
Graph Refinement [27]. With the aim of reducing noise and remov-
ing conflicts, several works investigated algorithms that measured
the level of reliability of Knowledge Graphs. Jia et al. [18] devel-
oped a model based on crossed neural networks that measures the
semantic correctness of the triples that make up a graph. The net-
work then analyzes the paths connecting the triples and, through
these paths, can assign a level of reliability to the triple; this type
of approach is referred to as an internal method, as it uses only the
information contained within the graph to measure its correctness.
In contrast, other works rely on external knowledge sources to
validate the KG; Huaman et al. [14] implemented a Validator that
computes a confidence score for each triple belonging to the graph

by relying on external Knowledge Bases such as Wikidata [24] or
DBpedia [2].

Other works exploit embedding-based KG correction methods,
in which the graph is projected into a vector space. In the work
of [1], a general correction method called Correction Tower is pro-
posed, which, employing Embedding representations, corrects the
graph from outliers, inconsistent triples, and incorrect relations. In
many cases, graph refinement techniques focus on correcting the
relationships linking KG entities; as already written, links between
entities play a crucial role in path-based graph exploitation algo-
rithms, and thus their correctness is an essential element. In the
work of [22], a Knowledge Graph refinement approach is proposed
to correct incorrect information due to ambiguity between entities;
the algorithm generates new subject and object candidates to dis-
ambiguate triples and adapt the predicate. For the same purpose, a
methodology for correcting graph triples by analyzing relationships
between entities is also evaluated in [23]. Specifically, the method
studied is based on a classifier that evaluates the correctness of
relationships in KG through the characteristics of types and paths.
Following this line, our work also aims to contribute to the study of
new methods of refining KGs, focusing mainly on the correctness
of the direction of the predicates that make up the triples contained
in the graph.

3 ADDRESSED PROBLEM AND SELECTED
METHODS

This Section describes the algorithms and techniques proposed
to identify misdirected triples. We initially give a mathematical
formulation of the problem (Section 3.1). Then, we describe the
proposed solutions, differentiated in classical Machine Learning
Techniques (Section 3.2), Pre-trained Language Models (Section 3.3),
and LLM-based (Section 3.4).

3.1 Problem Formulation
The task of assigning a direction to semantic triples composing a KG
can be seen as a problem that straddles the field ofMachine Learning
(ML) and Natural Language Processing (NLP). In fact, given a triple
in the form (𝑒1, 𝑝, 𝑒2), where 𝑒1 denotes the first entity, 𝑒2 the second
entity, and 𝑝 the predicate (i.e., the relationship existing between
the two entities), we can state that the triple is right-directed if
𝑒1 is the subject of the triple and 𝑒2 is its object, and, conversely,
that the triple is left-directed if 𝑒2 is the subject and 𝑒1 the object.
From this perspective, on the one hand, the task under analysis can
be interpreted as a classification problem. On the other hand, from
a strictly mathematical point of view, finding a model capable of
labeling a triple according to its direction is equivalent to finding a
function 𝑓 such that:

𝑓 (𝑒1, 𝑝, 𝑒2) =
{
right if 𝑒1 is subject
left if 𝑒2 is subject

∀(𝑒1, 𝑝, 𝑒2) ∈ X (1)

where 𝑋 = {(𝑒𝑖1, 𝑝
𝑖 , 𝑒𝑖2) | 𝑖 = 1, ..., 𝐼 }, with 𝐼 a finite integer, is the

set of all triples contained in a KG.
Let us recall that this paper aims to investigate and compare a

set of models that approximate the function 𝑓 of Equation 1. As

461



Towards Knowledge Graph Refinement: Misdirected Triple Identification UMAP Adjunct ’24, July 01–04, 2024, Cagliari, Italy

already mentioned, the selected models can be grouped into three
categories, summarized as follows:

• Classical ML Classifiers
• Early Language Models
• Generative Large Language Models

Each classifier type is detailed in the following Sections.

3.2 Classical ML Classifiers
To properly classify text through ML Classifiers, it is necessary to
represent sentences with numerical features. Therefore, to estimate
the function 𝑓 in Equation 1, we can consider it as a composition of
two different components: a function 𝑔 that computes the embed-
dings of the input triple and a function ℎ that takes the output of
𝑔 and assigns a left or right label. Word Embeddings vectorize
words or sentences by projecting them into a finite-dimensional
vector space; in this specific work, the dimension of the space is 96,
and the Spacy embedder1 is used.

Among the numerous classification models, we selected three
well-known, effective classifiers. In particular, to approximate the
function ℎ we employed the Random Forest Classifier [26], Support
Vector Machine Classifier [8], and Extreme Gradient Boosting Clas-
sifier (XGBoost) [6]. From a mathematical point of view therefore
𝑓 = ℎ ◦ 𝑔 where:

𝑔 : 𝑋 → R96

(𝑒1, 𝑝, 𝑒2) ↦→ (𝛼1, . . . , 𝛼96)
and

ℎ : R96 → {right, left}
(𝛼1, . . . , 𝛼96) ↦→ 𝑓 (𝑒1, 𝑝, 𝑒2)

where (𝛼1, . . . , 𝛼96) is a 96-dimensional vector with Real compo-
nents representing the embedding of the triple.

3.3 Earlier Language Models
A prominent approach for the triple classification problem is to
rely on pre-trained large language models that have achieved no-
table success in Natural Language Processing. Their comprehension
of Natural Language, including grammar, syntax, and semantics,
makes them an attractive tool for solving the triple classification
problem. One of the most innovative and widely used strategies in
such a context is the use of transformer-based architectures for a
wide range of tasks [35].

To this end, we adopt BERT (Bidirectional Encoder Represen-
tations from Transformers) [11], a pioneering transformer-based
language model developed by Google. We selected BERT over other
language models due to its bidirectional context understanding. We
assessed two different models of BERT, the base-model2 and the
large-model 3; the former is a model consisting of 109M parameters,
while the latter contains 336M parameters. Let us remark that, at
this stage, we use BERT in its vanilla variants only, as the scope of
the work is not to compare all possible models but rather explore
the capabilities of different typologies of models, as remarked in
1https://spacy.io/models/en#en_core_web_sm
2https://huggingface.co/google-bert/bert-base-uncased
3https://huggingface.co/google-bert/bert-large-uncased

the following Section. A future, more in-depth investigation will
also include the most advanced variants like RoBERTa.

3.4 Generative Large Language Models
Large Language Models (LLMs), strictly related to the aforemen-
tioned Pre-trained Language Models, specifically refer to the largest
and most powerful language models, distinguished by their massive
size, often containing billions or even trillions of parameters. This
peculiarity, along with the extensive amount of textual corpora on
which they were pre-trained, allows them to capture and compre-
hend complex patterns in natural language. As this family of models
overreaches most natural language-related tasks, we aim to assess
their performance in triple classification and investigate whether
there was a significant divergence with smaller pre-trained models.
Among the wide range of recently released open-source LLMs, we
took advantage of Llama2 for its performance and versatility.

Llama2, developed by Meta, has been released in three versions
that differ in the number of parameters: 7 billion 4, 13 billion 5, and
70 billion 6, each of them supporting two types of models, a base
model and a chat model. Both model types have been tested using
two different approaches, described below.

3.4.1 Sequence Classification Approach. In this case, we fine-tuned
the LLM for our classification task by adding a classification layer
on top of the model output. Therefore, its parameters are optimized
to extract task-relevant features from the input text.

For hardware-constraints reasons to implement the largest Llama2
model, we needed to employ a quantization strategy [20]. Quantiza-
tion compresses the parameters of the model and provides a more
efficient usage. In this specific case, the weights and activations
of all Llama2 models were represented with lower-precision data
types. Specifically, we applied a quantization technique that allows
the loading of model weights and activations in 4-bit, replacing
Linear Layers with Normalized 4-bit float data type but allowing
float16 type calculation data. To further optimize the fine-tuning,
we adopted the Low-Rank Adaptation (LoRA) method [10], which
makes it possible to sharply reduce the number of parameters that
need to be tuned. For all the Llama configurations adopted, we set
the LoRA attention dimension equal to 32, the alpha parameter for
LoRA scaling equal to 64, and the dropout probability for LoRA
layers equal to 0.1.

3.4.2 Prompt Tuning Approach. With this strategy, we aim to con-
vert the task to one of natural language generation by querying the
chat model about the direction of the input triples. This approach
was evaluated in the present work by analyzing the performance
of the 7-billion version of the Llama2 chat model, and, again, the
model loading required the quantization described in the previous
Section. Our exploration of the most suitable prompt for the LLM
involved a rigid process. We considered several factors, including
the length of the prompt. It was crucial to avoid large prompts that
could lead to memory or inference time issues. The prompt that
ultimately led to the performance described in the next Section is
as follows:

4https://huggingface.co/meta-llama/Llama-2-7b-hf
5https://huggingface.co/meta-llama/Llama-2-13b-hf
6https://huggingface.co/meta-llama/Llama-2-70b-hf

462

https://spacy.io/models/en##en_core_web_sm
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-large-uncased
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-13b-hf
https://huggingface.co/meta-llama/Llama-2-70b-hf


UMAP Adjunct ’24, July 01–04, 2024, Cagliari, Italy Carta, et al.

Triples are a way to express graph data. A triple
consists of three components: a subject, a predicate,
and an object. If the subject is located at before the
predicate then the triple goes toward right. If the
object is located before the predicate then the triple
goes toward left. Your role is to rank the triples to
decide whether they go right or left. Please answer only
with right or left, do not add any other information.
The output format should be [right] or [left].

In order to improve the performance of the LLM, a fine-tuning
phase was also carried out to enable the model to better learn the
required task. As in previous cases, the LoRA method is applied
by setting the attention dimension to 64, the alpha to 128, and the
dropout to 0.1.

4 EXPERIMENTS
This Section describes the datasets used for the training phases of
classical machine learning models, the tuning phases of linguistic
models, the testing phases in both cases, and the experimental
results.

4.1 Datasets
As we aim to assess our system in a relation extraction scenario, we
exploited a set of well-known literature datasets suitable for such
a task [33]. Each dataset consists of a set of documents annotated
with a set of triples. For this work, we exploited only the set of
triples. Then, 50% of the triples in each dataset were labeled with
the label right, for the remaining 50% subject and object were
swapped, and the label left was applied; finally, duplicates were
eliminated. The process described was done completely randomly
to ensure the effectiveness of the experiments.

We selected eight distinct datasets:

• CoNLL-2004 [3], a dataset containing sentences and triples
belonging to different genres, including news, texts scientific
texts, and fiction texts;

• KBP-37 [36], a dataset produced by merging the Knowl-
edge Base Population official document collection and a 2013
Wikipedia dump;

• FewRel [13], a set of five datasets consisting of sentences
about relationships derived from Wikipedia and annotated
by crowdworkers;

• NYT-11 [32], a dataset constructed from New York Times
news, the triple relations cover topics such as "people-professions,"
"places-events," and "organizations-products";

• GIDS [16], a dataset seeded from the Google relation extrac-
tion corpus [25];

• New-York-Times-RE [28], a subsample for Relation Extrac-
tion drawn from the New York Times Corpus [29];

• SciERC [21], a collection of annotated scientific abstracts
with their triples;

• Wiki-ZSL [5], a subsample of five datasets originated from
Wiki Knowledge Base used in [30].

Dataset Number of Triples
CoNLL-2004 1032
FewRel 27622
GIDS 9438
KBP-37 17601
NYT-11 17922
New-York-Times-RE 18910
SciERC 1760
Wiki-ZLS 28243
Training/Tuning set 94285
Test set 28243

Table 1: Number of triples contained in each dataset category.

Figure 1: Pie chart of the percentages of triples that make up
each dataset category.

All the datasets in the first seven categories were merged and
used as training/tuning sets, while the datasets in categoryWiki-
ZSL were used as tests in all the cases described in Section 3. The
choice to keep an entire family of datasets excluded from the train-
ing/tuning set was made to evaluate, in addition to performance,
the generalization ability of the models tested in the experiments
performed.

Table 1 summarizes the size of the datasets in terms of the num-
ber of triples they contain, while Figure 1 shows the percentages of
the total number of triples for each dataset.

4.2 Experimental Setup
In this Section, we describe the parameters used to train/fine-tune
the different models we adopted and our implementation choices.
For the classical classifiers described in Section 3.2, the only pa-
rameter that needed to be set was the number of model estimators,
in the case of the Random Forest and XGBoost set at 300 in both

463



Towards Knowledge Graph Refinement: Misdirected Triple Identification UMAP Adjunct ’24, July 01–04, 2024, Cagliari, Italy

Table 2: Training/Tuning and Testing Experimental Settings for all described models.

Model Batch Size Epochs Learning Rate Train/Tune Time (s) Inference Time (s)

RF Classifier - - - 256 2
SVM Classifier - - - 593 53

XGBoost Classifier - - - 281 1
BERT-base 256 30 1e-04 1938 4
BERT-large 256 10 2e-05 1678 9

Llama2-7b-Classifier 256 1 2e-05 2186 174
Llama2-13b-Classifier 256 1 2e-05 3921 310
Llama2-70b-Classifier 64 1 2e-05 20392 2048

Llama2-7b-Chat 16 1 1e-04 7125 9636

Figure 2: Training/Tuning and Inference times per each model.

cases and the kernel, in the case of the Support Vector Machine, for
which the sigmoid kernel was chosen.

In contrast, in the remaining cases, using fine-tuning for LLMs
implies a more accurate choice and a larger number of hyperparam-
eters. Some of them, such as the batch size, the number of epochs, or
the learning rate, can affect the tuning or inference time of language
models as much as the memory occupancy of the system used. Table
2 summarizes the final choices of these hyperparameters and the
times taken by the models for the tuning and inference steps. All
hyperparameters were chosen based on several experiments per-
formed, and their values were determined after carefully observing
the attainment of the minimum training loss and validation loss.

All the code was implemented in Python and is publicly available,
for reproducibility purposes, at a specific repository7. In particular,
for the Machine Learning Classifier, we adopted scikit-learn imple-
mentations 8 whereas for Large Language Models we adopted the
Transformers library 9. The experiments were conducted with an
Nvidia RTX A6000 GPU machine with 48 GB of VRAM.

Figure 2 depicts the training/tuning and inference times for all
the models used; it is important to note that although the models
in the Llama2 family are very large, the LoRA strategy kept tuning

7https://github.com/marcommanca/misdirected_triple_identification.git
8https://scikit-learn.org/stable/
9https://huggingface.co/docs/transformers/

464

https://github.com/marcommanca/misdirected_triple_identification.git
https://scikit-learn.org/stable/
https://huggingface.co/docs/transformers/


UMAP Adjunct ’24, July 01–04, 2024, Cagliari, Italy Carta, et al.

Table 3: Performance values of the models tested on the Wiki-ZSL category datasets.

Model Accuracy F1-Score Precision Recall
RF 0.540 0.569 0.535 0.608
SVM 0.484 0.516 0.485 0.551

XGBoost 0.536 0.548 0.534 0.563
BERT-base 0.894 0.894 0.899 0.888
BERT-large 0.895 0.894 0.901 0.886

Llama2-7b-Classifier 0.912 0.914 0.887 0.944
Llama2-13b-Classifier 0.907 0910 0.879 0.942
Llama2-70b-Classifier 0.938 0.941 0.901 0.984

Llama2-7b-Chat 0.803 0.798 0.811 0.786

times low for these models, and it is evident that the proportionality
of the number of parameters in each model is not reflected in the
times analyzed; as far as inference times are concerned, however,
the gap seems sharper.

Since the problem being addressed can be interpreted as a binary
classification problem, it is possible to evaluate the performance
of the models in terms of classical confusion matrix metrics, e.g.,
Accuracy, Precision, Recall, F1-Score.

4.3 Results
Table 3 shows the performance of all the models described above. It
is worth pointing out that the embedding approach combined with
classical classifiers is highly ineffective in the studied tasks; the val-
ues of the metrics are of the same order as those of a random choice
of each observation. Conversely, with the LLM-based approach,
relevant results are obtained; the 70-billion-parameter version of
Llama2 outperforms the BERT and other versions of Llama2, proba-
bly due to the disproportionate size difference between the different
models.

However, it does not appear that performance correlates with
model size. Although the smallest version of Llama2 has half the pa-
rameters, it outperforms the 13 billion version and still approaches
the values of the 70 billion version. Moreover, even BERT’s models,
although significantly smaller in size, still achieve performance
comparable to that of the larger version of Llama2.

Finally, although the results of the prompting strategy are en-
couraging, it can be seen that the performance of the chat model,
used with the approach described above, differs from that of the
other language models despite the model’s high inference and tun-
ing times.

5 CONCLUSION
In this paper, several approaches, some based on classical methods
and others exploiting newer models, i.e., Large Language Models,
were evaluated for classifying the orientation of KG triples to offer
one or more methods of refining and verifying the correctness of
the triples. In addition, the work intends to pave the way for ex-
tending the pipeline of automatic generation of Knowledge Graphs
from text. The main outcome of our comparisons is that Llama2

outperforms the classical and BERT-based models, even for the
smaller model variants (i.e., the 7b parameters model).

We deem that our proposal can be easily extended from sev-
eral perspectives: first, it would be worthwhile to evaluate the
performance of other open-source LLMs and possibly exploring
the prompting-based approach in more detail with different LLMs.
Furthermore, it would be important to evaluate the performance of
the selected, fine-tuned models in classifying the directionality cor-
rectness on totally different datasets to analyze the generalization
capabilities of the described methods. Finally, testing other training
and tuning techniques of the models would be helpful to verify
whether the method they learn the task can also affect performance.

ACKNOWLEDGMENTS
We acknowledge financial support under the National Recovery
and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.5
- Call for tender No.3277 published on December 30, 2021 by the
Italian Ministry of University and Research (MUR) funded by the
European Union – NextGenerationEU. Project Code ECS0000038
– Project Title eINS Ecosystem of Innovation for Next Generation
Sardinia – CUP F53C22000430001- Grant Assignment Decree No.
1056 adopted on June 23, 2022 by the Italian Ministry of University
and Research (MUR). Also, Leonardo Piano, acknowledges financial
support under theMinisterial Decree no. 351 of 9th April 2022, based
on the NRRP – funded by the European Union - NextGenerationEU
- Mission 4 “Education and Research”, Component 1 “Enhancement
of the offer of educational services: from nurseries to universities”
- Investment 4.1, that provided financial support for his doctoral
pathway.

REFERENCES
[1] Farhad Abedini, Mohammad Reza Keyvanpour, and Mohammad Bagher Menhaj.

2020. Correction Tower: A general embedding method of the error recognition
for the knowledge graph correction. International Journal of Pattern Recognition
and Artificial Intelligence 34, 10 (2020), 2059034.

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. Dbpedia: A nucleus for aweb of open data. In international
semantic web conference. Springer, 722–735.

[3] Xavier Carreras and Lluís Màrquez. 2004. Introduction to the CoNLL-2004
Shared Task: Semantic Role Labeling. In Proceedings of the Eighth Conference on
Computational Natural Language Learning (CoNLL-2004) at HLT-NAACL 2004.

465



Towards Knowledge Graph Refinement: Misdirected Triple Identification UMAP Adjunct ’24, July 01–04, 2024, Cagliari, Italy

Association for Computational Linguistics, Boston, Massachusetts, USA, 89–97.
https://aclanthology.org/W04-2412

[4] Salvatore Carta, Alessandro Giuliani, Leonardo Piano, Alessandro Sebastian
Podda, Livio Pompianu, and Sandro Gabriele Tiddia. 2023. Iterative Zero-Shot
LLM Prompting for Knowledge Graph Construction. arXiv:2307.01128 [cs.CL]

[5] Chih-Yao Chen and Cheng-Te Li. 2021. ZS-BERT: Towards zero-shot relation
extraction with attribute representation learning. arXiv preprint arXiv:2104.04697
(2021).

[6] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu
Cho, Kailong Chen, RoryMitchell, Ignacio Cano, Tianyi Zhou, et al. 2015. Xgboost:
extreme gradient boosting. R package version 0.4-2 1, 4 (2015), 1–4.

[7] Xiaojun Chen, Shengbin Jia, and Yang Xiang. 2020. A review: Knowledge reason-
ing over knowledge graph. Expert systems with applications 141 (2020), 112948.

[8] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20 (1995), 273–297.

[9] Florina Livia Covaci, Robert Andrei Buchmann, and Radu Dragos. 2022. Towards
a Knowledge Graph-specific Definition of Digital Transformation: An Account
Networking View for Auditing.. In ICAART (3). 637–644.

[10] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2024.
Qlora: Efficient finetuning of quantized llms. Advances in Neural Information
Processing Systems 36 (2024).

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[12] Dieter Fensel, Umutcan Şimşek, Kevin Angele, Elwin Huaman, Elias Kärle, Olek-
sandra Panasiuk, Ioan Toma, Jürgen Umbrich, Alexander Wahler, Dieter Fensel,
et al. 2020. Introduction: what is a knowledge graph? Knowledge graphs: Method-
ology, tools and selected use cases (2020), 1–10.

[13] Xu Han, Hao Zhu, Pengfei Yu, ZiyunWang, Yuan Yao, Zhiyuan Liu, and Maosong
Sun. 2018. FewRel: A large-scale supervised few-shot relation classification
dataset with state-of-the-art evaluation. arXiv preprint arXiv:1810.10147 (2018).

[14] Elwin Huaman, Amar Tauqeer, and Anna Fensel. 2021. Towards knowledge
graphs validation through weighted knowledge sources. In Iberoamerican Knowl-
edge Graphs and Semantic Web Conference. Springer, 47–60.

[15] Jin Huang, Tian Lu, Jia Zhu, Weihao Yu, and Tinghua Zhang. 2022. Multi-
relational knowledge graph completion method with local information fusion.
Applied Intelligence 52, 7 (2022), 7985 – 7994.

[16] Sharmistha Jat, Siddhesh Khandelwal, and Partha Talukdar. 2018. Improving
distantly supervised relation extraction using word and entity based attention.
arXiv preprint arXiv:1804.06987 (2018).

[17] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. 2021.
A survey on knowledge graphs: Representation, acquisition, and applications.
IEEE transactions on neural networks and learning systems 33, 2 (2021), 494–514.

[18] Shengbin Jia, Yang Xiang, Xiaojun Chen, and Kun Wang. 2019. Triple trustwor-
thiness measurement for knowledge graph. In The World Wide Web Conference.
2865–2871.

[19] Abhijeet Kumar, Abhishek Pandey, Rohit Gadia, and Mridul Mishra. 2020. Build-
ing Knowledge Graph using Pre-trained Language Model for Learning Entity-
aware Relationships. In 2020 IEEE International Conference on Computing, Power
and Communication Technologies (GUCON). 310–315. https://doi.org/10.1109/
GUCON48875.2020.9231227

[20] Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen
Yan, Guohao Dai, Huazhong Yang, and Yu Wang. 2024. Evaluating Quantized
Large Language Models. arXiv preprint arXiv:2402.18158 (2024).

[21] Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh Hajishirzi. 2018. Multi-task
identification of entities, relations, and coreference for scientific knowledge graph
construction. arXiv preprint arXiv:1808.09602 (2018).

[22] André Melo and Heiko Paulheim. 2017. An approach to correction of erroneous
links in knowledge graphs. In CEUR Workshop Proceedings, Vol. 2065. RWTH
Aachen, 54–57.

[23] André Melo and Heiko Paulheim. 2017. Detection of relation assertion errors in
knowledge graphs. In Proceedings of the 9th Knowledge Capture Conference. 1–8.

[24] Marçal Mora-Cantallops, Salvador Sánchez-Alonso, and Elena García-Barriocanal.
2019. A systematic literature review on Wikidata. Data Technologies and Appli-
cations 53, 3 (2019), 250–268.

[25] Dave Orr. 2013. 50,000 lessons on how to read: a relation extraction corpus.
Online: Google Research Blog 11 (2013).

[26] Aakash Parmar, Rakesh Katariya, and Vatsal Patel. 2019. A review on random
forest: An ensemble classifier. In International conference on intelligent data com-
munication technologies and internet of things (ICICI) 2018. Springer, 758–763.

[27] Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches
and evaluation methods. Semantic web 8, 3 (2017), 489–508.

[28] Sebastian Riedel, Limin Yao, and Andrew McCallum. 2010. Modeling relations
and their mentions without labeled text. In Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML PKDD 2010, Barcelona, Spain,
September 20-24, 2010, Proceedings, Part III 21. Springer, 148–163.

[29] Evan Sandhaus. 2008. The new york times annotated corpus. Linguistic Data
Consortium, Philadelphia 6, 12 (2008), e26752.

[30] Daniil Sorokin and Iryna Gurevych. 2017. Context-aware representations for
knowledge base relation extraction. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing. 1784–1789.

[31] Budhitama Subagdja, D. Shanthoshigaa, Zhaoxia Wang, and Ah-Hwee Tan. 2024.
Machine Learning for Refining Knowledge Graphs: A Survey. ACM Comput. Surv.
56, 6, Article 156 (feb 2024), 38 pages. https://doi.org/10.1145/3640313

[32] Ryuichi Takanobu, Tianyang Zhang, Jiexi Liu, and Minlie Huang. 2019. A hi-
erarchical framework for relation extraction with reinforcement learning. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 7072–7079.

[33] Xiao Wang, Weikang Zhou, Can Zu, Han Xia, Tianze Chen, Yuansen Zhang, Rui
Zheng, Junjie Ye, Qi Zhang, Tao Gui, et al. 2023. InstructUIE: multi-task instruc-
tion tuning for unified information extraction. arXiv preprint arXiv:2304.08085
(2023).

[34] Qian Wei. 2022. Knowledge Graph Completion Based on Multi-Relation Graph
Attention Network. 428 – 432. https://doi.org/10.1145/3524383.3524429

[35] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2020. Transformers: State-of-the-art natural language processing. In Proceedings
of the 2020 conference on empirical methods in natural language processing: system
demonstrations. 38–45.

[36] Dongxu Zhang and DongWang. 2015. Relation classification via recurrent neural
network. arXiv preprint arXiv:1508.01006 (2015).

466

https://aclanthology.org/W04-2412
https://arxiv.org/abs/2307.01128
https://doi.org/10.1109/GUCON48875.2020.9231227
https://doi.org/10.1109/GUCON48875.2020.9231227
https://doi.org/10.1145/3640313
https://doi.org/10.1145/3524383.3524429

	Abstract
	1 Introduction
	2 Related Work
	3 Addressed problem and selected Methods
	3.1 Problem Formulation
	3.2 Classical ML Classifiers
	3.3 Earlier Language Models
	3.4 Generative Large Language Models

	4 Experiments
	4.1 Datasets
	4.2 Experimental Setup
	4.3 Results

	5 Conclusion
	Acknowledgments
	References

