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Abstract. Digital Image Correlation (DIC) is a well-known experimental optical technique for
measuring the displacement field based on the assumption that pixel intensity does not change
with motion.

DIC can be implemented using various alternative approaches. The most used in the
Experimental Mechanics field are the Forward-Additive Gauss-Newton (FA-GN) and the
Inverse-Compositional Gauss-Newton (IC-GN) formulations. The former corresponds to the
original formulation proposed by Lucas and Kanade, while the latter was proposed by Baker
and Matthews twenty years later. Although both formulations give the same results at the
first order, their speed, convergency characteristic and noise robustness differ considerably.
Nowadays, the IC-GN method is usually preferred because of its lower computational load and
the significantly better noise sensitivity. However, the Inverse Compositional approach, as its
name states, requires the inversion and composition of the displacement field, thus enforcing
the use of invertible displacement fields. This can be a significant limitation because it may
introduce an under-matching error in the solution.

This work shows that a simple modification of the viewpoint makes the compositional step
simpler, thus giving a DIC formulation as fast as that of the IC-GN, with the same noise-bias
characteristic and without requiring an invertible displacement field.

1. Introduction
Digital Image Correlation is a well-known optical, non-interferometric, experimental technique
[1]. It works on the assumption that the intensity of a single pixel remains constant during
motion. Since the detected intensity includes both the diffuse and reflected components, this
apparently simple assumption implies two constraints (uniform illumination and Lambertian
surface) [2], which are usually not fully satisfied; however, “standard” experimental setups are
usually close enough to the theoretical requirements to make the algorithm work.

The equation resulting from the constant intensity hypothesis, known as the optical flow
equation,

∂I

∂x

∂u

∂t
+

∂I

∂y

∂v

∂t
+

∂I

∂t
= 0 (1)

where I is the image intensity and u and v are the displacement components, clearly shows that
the displacement identification problem is ill-posed because it involves two unknowns (u and
v); without further assumptions, we can only estimate the motion in the direction of the image
intensity gradient [3, 4]. Thus, to find a solution, one has either to add a stabilization term [3]
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to the differential equation (1) or search for the best local solution in the sense of least-squares.
The latter is the approach most commonly used in the field of Experimental Mechanics which
will be discussed below.

Following the article by Lucas and Kanade [5], several modifications have been proposed [6]
to improve solution reliability and computational efficiency. However, they can all be described
within the framework of the original algorithm: the local mapping between the reference image
f(x) and the current image g(x) is assumed to be a simple function of a limited number of
parameters, and the solution is found in the sense of least squares. Thus, by considering a
sufficiently large number of pixels around the point of interest, it is possible to find the best
fit with respect to a given error function. In the following, the Parametric Sum of Squared
Differences (PSSD)

χ2
PSSD =

N∑
k=1

[a+ bf(xk, yk)− g(xk + uk, yk + vk)]
2 (2)

is assumed [7], although we will sometimes refer to the Sum of Squared Differences (SSD)
criterion

χ2
SSD =

N∑
k=1

[f(xk, yk)− g(xk + uk, yk + vk)]
2 (3)

to simplify the discussion if the modifications can be easily inferred.
Whatever the criterion (either (2) or (3)), the summation is over all the N pixels of the

active area (usually a small subset of the image around the point of interest), while the a and b
parameters in (2) take into account the avarage intensity and contrast correction between f(x)
and g(x).

A simple polynomial mapping is usually accepted for the u and v displacement components:

u = s0 + s1ξ + s2η + [s3ξ
2 + s4ξη + . . . ]

v = t0 + t1ξ + t2η + [t3ξ
2 + t4ξη + . . . ]

(4)

where ξ and η are the local coordinates of the subset (ξ = x− x0, η = y − y0, where x0, y0 are
the global coordinates of the point of interest), si and ti are the set of parameters controlling the
mapping (the unknowns of the problem), and the terms in brackets appear only when parabolic
shape functions are used.

The solution is identified by a Gauss-Newton approach: the function g(x + u, y + v), which
describes the intensity of the current image at point (x + u, y + v), is expanded in Taylor’s
series truncated to the first order, allowing the calculation of a linear approximation of the local
behavior. The χ2 function (3) thus becomes

χ2
SSD =

N∑
k=1

{
fk −

[
gk +

m∑
i=1

(
∂gk
∂x

∂u

∂si
dsi +

∂gk
∂y

∂v

∂ti
dti

)]}2

(5)

where we have noted that the displacement component u does not depend on the ti (v does not
depend on si) and du ≡ dξ ≡ dx (dv ≡ dη ≡ dy).

Computing and setting to zero the derivatives of (5) with respect to dsi and dti (plus a and
b in the case of the PSSD criterion) gives a system of 2m linear equations (2(m+ 1) for PSSD)
that can be easily solved using the Cholesky decomposition [8, 9] (the matrix is symmetric and
positive definite), thus allowing the updating of the current set of parameters.

Given the new set of parameters, the entire process can be iterated to further refine the
solution, until convergence is reached.
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The algorithm outlined is known as the Forward-Additive Gauss-Newton (FA-GN) approach,
because the displacement components map f(x) to g(x) and the solution is obtained by summing
a series of progressively smaller corrections, each obtained by performing one step of the iterative
Gauss-Newton algorithm.

Some points are to be noted:

• the least squares fitting approach requires a sufficiently large number of independent data
points; so the subset must be large enough (a practical minimum size is around 9×9 pixels)
and the surface must have a texture (either natural or artificial);

• we have neglected all second order terms in the Hessian matrix. Although their inclusion
may improve convergence near the minimum [10], it does not affect the final result because
the second-order derivatives are identically zero when convergence is achieved. In addition,
the inclusion of second-order terms makes the algorithm slower and more complex to
implement; finally, it can instabilize the algorithm far from the minimum if the model
fits the real data poorly or experimental data are contaminated by outlier [9];

• the formulation described assumes a forward mapping and a Taylor series expansion for the
g(x) field. In fact, this is not the only possible choice, and all four possible combinations
have been studied [6]. Furthermore, consistent [11, 12] and symmetric [13, 14] formulations
have also been proposed; of all these, the Inverse-Compositional Gauss-Newton approach
described in the following section seems to be the most widely used because of its noise
robustness and numerical efficiency;

• the displacement functions u and v map a point in one of the images to the other one.
Thus, the proposed formulation is sometimes described in the literature in terms of warping
functions (hereafter referred to as W (x,p) or ζ(x,p), where p is the full set of parameters
controlling the function, i.e. p = s ∪ t).

Regardless of the formulation, DIC requires the comparison of two intensity fields; since
the displacements are not restricted to integer values, the intensity of at least one of the images
must be interpolated at non-integer locations. In addition, the algorithm requires the calculation
of intensity derivatives in both the x and y directions at the same locations. Thus, intensity
interpolation and derivative estimation are by far the most computationally intensive steps of
DIC. The aim of this work is to identify an efficient and reliable formulation that minimizes
these requirements.

2. The Inverse Compositional Approach
The most computationally intensive step of a DIC algorithm is the assembly of the Hessian
matrix. Indeed, this step requires the evaluation of the intensity errors and derivatives at each
point and for each iteration. Since u ∧ v ∈ R, at least one of the intensity evaluations of
each pair of points requires an interpolation (of either the field f(x) or g(x)); however, if the
intensity derivatives are computed at fixed locations, it is possible to factor-out this step by pre-
evaluating the derivatives before entering the iterative loop: considering that the computation
of the derivatives requires approximately the same number of operations of the interpolation,
this results in a speed-up by a factor of two.

This objective is achieved by the Inverse Compositional approach [15, 16]. In this algorithm,
an incremental parameter update is computed as

∆u(n) = argmin
∑
k

{
g
[
W

(
xk,p

(n)
)]
− f

[
ζ
(
xk,u

(n)
k

)]}2
(6)

where the warping function ζ, related to the reference image, is always an identity, i.e. the shape
of the reference subset is reset at the beginning of each iteration. The use of this assumption in
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combination with the exchange of roles between the reference and the current image leads to a
significant computational improvement. Since the shape functions of the reference image never
change, the sampled points are always the same; moreover, due to the exchange of the roles,
the computation of intensity derivatives is performed on f(x) (at locations that never change).
Thus, the Hessian matrix can be pre-computed before entering the iterative loop1.

The solution process is as follows:

∆u
gu

(n)

∆u
−1

u
(n)

u
(n+1)

f

g

f

Figure 1: Inverse Compositional mapping. Top: Starting from the reference image f , the green
point is coupled with the pink one in the test image g using a forward mapping (should be
green). The result of the Gauss-Newton refinement step is the backward correction vector ∆u.
Bottom: The backward correction is inverted and composed with the previous vector to produce
an improved forward estimate (the brown vector).

(i) compute the x and y derivatives of the reference image at the center of the pixels of the
subset (i.e. at integer locations);

(ii) compute an initial estimate of the corresponding points in the current image g; thus, the
set of parameters p is related to a forward mapping (from f to g);

(iii) using the current forward displacement field, estimate intensity of the pixels of the subset
in the current image g (this step requires polynomial interpolation);

(iv) assemble the solution matrix using the pre-computed intensity and derivative of the
reference image in combination with the new values of intensities of corresponding points
in the current image;

1 A further significant advantage is that it is possible to use an ad-hoc differential operator working on integer
locations.
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(v) solve the system. Sincethe roles of f and g are swapped, the solution vector is a backward
displacement-correction set of parameters;

(vi) since the current set of parameters is related to a forward mapping while the correction set
is related to a backward mapping and we are warping both the current and the reference
images, it is impossible to use the standard approach and add the correction to p. Instead,
the correction must be inverted and composed with the current one, i.e.

W
(
x,p(n+1)

)
←W

(
x,p(n)

)
◦ ζ−1 (x,∆u)

(vii) check for convergence; on failure, go back to step 3, otherwise exit the loop.

Note that ζ (x,∆u) is never updated, so the intensities f(xk) and their x and y derivatives
fx(xk) and fy(xk), once computed do not need to be updated. The whole process is illustrated
in figure 1. In principle, we should move the point in f (figure 1-top); instead, we move the
starting point of the “virtual” backward displacement (figure 1-bottom) in such a way that the
mapped point of f is always the same. This change of viewpoint takes place in step 6, which is
therefore the key point of the algorithm. In fact, the inversion of the incremental displacement
and its composition with the current one is a relatively simple operation if a linear mapping is
used, because in this case W (x,p) can be expressed in matrix form as

u =

1 + s1 s2 s0
t1 1 + t2 t0
0 0 1

 ·
ξ
η
1

 i.e.

1 + ux uy u0
vx 1 + vy v0
0 0 1

 ·
ξ
η
1

 (7)

Thus, the inversion of the incremental displacement corresponds to a matrix inversion and
the composition to a matrix multiplication. However, the former operation constitutes a
significant limitation, not so much because of the computational load2 but because the assumed
displacement functions must be invertible. This is a relatively straightforward requirement in
the linear case, but only recently has an invertible parabolic function been suggested [18]; to the
author’s knowledge, there is no formulation for cubic shape functions.

3. From Inverse Compositional to Backward Subtractive
The key point to an efficient implementation of DIC is the pre-computation of the Hessian matrix
to avoid evaluating the x and y derivatives of the intensities at all points of the subset for each
iteration. As shown in the previous section, this can be achieved by using a backward formulation
in combination with the inversion of the incremental displacement3. However, this implies the
inversion of the incremental displacement matrix and its composition with the current one. The
objective of this section is to remove this limitation.

The first step towards this goal is to observe that the displacement function is only used at
the beginning of each iteration to identify coupled points in the test and reference images. Thus,
we can formally state that the displacement vector starts from g and arrives at f , even though
we are actually storing the parameters of the vector from f to g.

The second observation is the fact that the polynomial functions used in (4) form the basis
of an m-dimensional real space—m = 3 for linear shape functions, 6 for parabolic, 10 for cubic,
and so on. Thus, a set of parameters (either s or t) constitutes the coordinate of a point in this
space, so that the inverted direction vector can easily be obtained by reversing the sign of all
components.

2 Both matrix multiplication and Cholesky decomposition require O(n3) multiplications and a similar number of
sums [17], but n = 3 in the linear case,
3 Note that the simple use of a backward formulation is not sufficient, as with this formulation the intensity-
evaluation points in f would move, thus requiring a re-computation of f(xk) and its derivatives.
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Thus, assuming that the roles of reference and current images are swapped (i.e. to adopt a
backward formulation), the SSD χ2 error function becomes

χ2
SSD =

N∑
k=1

[g(xk, yk)− f(xk + uk, yk + vk)]
2 (8)

where uk and vk are the backward displacement components (−uk and −vk are the forward
displacement components). Note that

• unlike the Inverse Compositional approach, we apply the warp function only to the reference
image;

• the radiosity compensation has to be applied to g;

• we are working in a purely additive framework.

Expanding f(xk + uk, yk + vk) in Taylor series, equation (8) becomes

χ2
SSD =

N∑
k=1

{
g(xk)−

[
f(xk) +

m∑
i=1

(
∂f(xk)

∂x

∂u

∂si
dsi +

∂f(xk)

∂y

∂v

∂ti
dti

)]}2

Thus, the normal-equation solution matrix A and the known term vector b become A =∑
k hk h

T
k and b =

∑
k(fk − gk)hk, where

hT
k = {−fx,−fxξ,−fxη, . . . ,−fy,−fyξ,−fyη, . . .}

and the unknown vector is

xT = {ds0, ds1, . . . , dsn, dt0, dt1, . . . , dtn}

Note that (8) assumes a backward formulation, i.e. u and v are backward displacements and
the incremental parameters4 resulting from solving the system Ax = b are backward values
that should be added to the current backward displacement components to make the point in
the reference image f equal to the start value in the current image g. But this would require
an update of the target point in the reference frame (i.e. a new calculation of all the fk of the
subset and their derivatives fx and fy at non-integer locations). Instead, following the IC-GN
approach, we move the starting point in the current image g; but because we are using an
additive formulation, and in force of our observation on the vector space, we simply add the
sign-reversed incremental vector (figure 2, bottom) instead of computing and composing the
inverse.

The resulting algorithm is identical to the Inverse Compositional algorithm, except that step 6
now reads

v . . .

vi add −∆p to the current set of parameters, i.e. subtract the incremental vector ∆p from p
(hence the name of the algorithm).

vii . . .

Thus, although the algorithm is formulated in terms of backward displacement, we start with
(and refine at each step) a set of parameters that relate to forward displacement. The Hessian
matrix is computed only at the beginning of the algorithm (before entering the iteration),
whereas to perform a new iteration step we only need to interpolate intensity values in g (the
current image).

4 Note that when radiosity compensation is used, the first and second entries in the x vector are actually total
values; indeed, xT = {a, b, ds0, ds1, . . . , dsn, dt0, . . . , dtn}.
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∆u
gu

(n)

u−∆

−u
(n)

f

g

f

−u
(n+1)

Figure 2: Backward Subtractive algorithm. Above: the algorithm is formulated as a “pure”
backward additive algorithm (thus, the subset on image f should move), but (below) we actually
store the forward displacement (−u) and add −∆u.

4. Equivalence of BS-GN and IC-GN
In [1] the authors show that ∆u = −∆p for rigid body motion. In this section we want to show
that this is true up to the first order in general and not only for rigid body motion. It is worth
noting that near the minimum the second derivatives go to zero, so this condition is sufficient
to prove the equivalence.

Assuming that ∆u0, ∆ux, . . . , ∆vy (∆s0, ∆s1, . . . , ∆t2) are the incremental values computed
using the backward formulation, the (linear) shape functions associated with a generic step of
the Backward Subtractive methods are

u =

1 + ux −∆ux uy −∆uy u0 −∆u0
vx −∆vx 1 + vy −∆vy v0 −∆v0

0 0 1

 ·
ξ
η
1

 (9)

where u0, ux, . . . , vy are the total forward values of the displacement components at the start
of the step and ξ and η are local coordinates with respect to the center of the subset.

Computing the corresponding matrix for the Inverse Compositional algorithm requires the
inversion of the incremental matrix and composition of the result with the current displacement
function:

u =

1 + ux uy u0
vx 1 + vy v0
0 0 1

 ·
1 + ∆ux ∆uy ∆u0

∆vx 1 + ∆vy ∆v0
0 0 1

−1

·

ξ
η
1

 (10)

The inverse of the incremental matrix can be computed analytically and then multiplied by



52° Conference on Engineering Mechanical Design and Stress Analysis (AIAS 2023)
IOP Conf. Series: Materials Science and Engineering 1306  (2024) 012038

IOP Publishing
doi:10.1088/1757-899X/1306/1/012038

8

the current matrix. The first and second rows of the composed matrix C = P∆u−1, thus result:

C(1, 1) =
(1 + ux)(1 + ∆vy)

d
− uy∆vx

d

C(1, 2) =
uy(1 + ∆ux)

d
− (1 + ux)∆uy

d

C(1, 3) = u0 +
uy(∆u0∆vx −∆ux∆v0 −∆v0)

d
+

(1 + ux)(∆uy∆v0 −∆u0∆vy −∆u0)

d

C(2, 1) =
vx(1 + ∆vy)

d
− (1 + vy)∆vx

d

C(2, 2) =
(1 + vy)(1 + ∆ux)

d
− vx∆uy

d

C(2, 3) = v0 +
(1 + vy)(∆u0∆vx −∆ux∆v0 −∆v0)

d
+

vx(∆uy∆v0 −∆u0∆vy −∆u0)

d

where d = 1 +∆ux −∆uy∆vx +∆vy +∆ux∆vy.
Matrix C can be simplified by neglecting all products of incremental factors. Furthermore, by

noting that ux, uy, vx and vy are more than one order of magnitude smaller than displacements,
all mixed products (e.g. uy∆ux, ux∆uy, . . . ) can also be neglected. The first order
approximation of C thus is

Ĉ(1, 1) =
1 + ux +∆vy
1 + ∆ux +∆vy

Ĉ(1, 2) =
uy −∆uy

1 + ∆ux +∆vy
Ĉ(1, 3) = u0 −

∆u0
1 + ∆ux +∆vy

Ĉ(2, 1) =
vx −∆vx

1 + ∆ux +∆vy
Ĉ(2, 2) =

1 + vy +∆ux
1 + ∆ux +∆vy

Ĉ(2, 3) = v0 +
∆v0

1 + ∆ux +∆vy

where 1 + ∆ux +∆vy is the first order approximation of d.

Ĉ(1, 1) and Ĉ(2, 2) can be further simplified by summing and subtracting to the numerator
∆ux and ∆vy respectively, thus obtaining

Ĉ(1, 1) =
1 + ux +∆vy +∆ux −∆ux

1 + ∆ux +∆vy
= 1 +

ux −∆ux
1 + ∆ux +∆vy

and

Ĉ(2, 2) =
1 + vy +∆ux +∆vy −∆vy

1 + ∆ux +∆vy
= 1 +

vy −∆vy
1 + ∆ux +∆vy

Finally, we can observe that the factors ∆ux and ∆vy in the denominator of all the matrix
entries are very small and go to zero with iterations, so the denominator is almost unitary, i.e.
the (IC-GN) matrix C is identical to the BS-GN matrix (9) to the first order.

5. Experimental Validation
To validate the new formulation, we processed one of the experimental datasets related to
the polynomial bias analysis described in [19] with the new algorithm. As the experimental
apparatus and its calibration are fully detailed in the aforementioned paper, we will only
summarize the relevant data in this article: each data set consists of 43 images acquired during
a rigid body translation test. The experiment simulates real-use conditions, so the images
were acquired using a telecentric lens (Edmund Optics 0.9× Large-Format Telecentric Lens).
Consequently, the displacement corresponding to one pixel of our camera (AVT Pike F-421
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Figure 3: Experimental setup. Left: during calibration; note the two Twyman–Green
Interferometers used to accurately measure displacements. Right: experimental configuration
during DIC tests. One of the interferometers has been removed to allow the installation of a
45-degree mirror in front of the telecentric lens. The second interferometer is still installed, but
is not used during the acquisition: displacements are recorded using the strain gauge bridges
installed on piezo actuators.

FireWire-B 1.2 CCD camera; 2048 × 2048 pixels; pixel size 7.4 µm) is less than 10 µm. To
accurately control displacements, a monolithic translation stage actuated by two low-voltage
piezo crystals (ThorLabs PZS001, nominal displacement 11.6 ± 2 µm at 100 V) was built.
The PZTs are instrumented using strain gauges (full-bridge configuration) to allow closed-loop
control of the system.

Figure 3 shows the experimental setup during calibration (left) and during actual test (right).
To correlate the strain gauge bridge signal with the actual displacements, two Twynam-Green
interferometers were built taking care to install one of the mirrors on the translation stage.
Thus, an accurate calibration was performed by monitoring the phase signal5. Figure 3-right
shows the experimental setup during analysis. To reduce vibrations, the camera was installed
horizontally on the optical bench: the specimen is thus imaged by a 45 degree tilted mirror. For
installation, one of the two interferometers (no longer required) was removed.

Figure 4 shows the results of the analysis. Each curve plots the difference between the mean
displacement value and the strain-gauge measured translation. Specifically, we sampled the
image surface over a regular grid, taking care to obtain independent results (i.e. the sampling
step is larger than a subset, so that each subset does not share pixels with its neighbors). For each
image, we then computed the mean and standard deviation of the displacements. Finally, we
plotted the difference between the normalized displacement (as acquired by strain-gauge signals)
and the mean of the DIC-estimated displacements. In order to perform the normalization, we
had to identify pixel size. This should be 8.22 µm (the nominal pixel size is 7.4 µm and the
(nominal) primary magnification of the telecentric lens is 0.9×), but the actual size depends
on the alignment of the lens and the actual primary magnification. Instead of carrying out a
difficult experimental analysis, we simply examined the error curves associated with different
interpolation polynomials. As none of them shows bias for displacement equals to n/2 pixel, it
suffices to look for their intersection points: the second corresponds to a shift of one-pixel.

Analysis of fig. 4 shows that the BS-GN method behaves in the same way as the IC-GN. It is
well known that the IC-GN algorithm is less affected by polynomial bias than FA-GN because

5 For measurement, strain gauges are much more convenient than interferometers because they do not require
any post-processing (apart from the scale factor) and provide absolute data.
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Figure 4: Bias of the c4 polynomial. The Forward-Additive Gauss-Newton method (FA-GN)
shows the largest bias whereas the Inverse-Compositional (IC-GN) and Backward-Subtractive
(BS-GN) methods the smallest. The Symmetric-Additive approach stays in the middle.

the intensity derivatives are calculated at integer locations. But the Backward-Subtractive
algorithm also uses pre-computed image intensity derivatives estimated at integer locations, so,
we expect a similar performance. Indeed, the results of the two approaches are so similar that
they appear as a single curve in the figure. The Forward additive shows a somewhat larger bias
and the symmetric approach falls in the middle.

Figure 5 shows the results of the analysis of sample 14 of the DIC Challenge dataset. The
2D–DIC Challenge initiative [20] supplies a set of sample images and a set of analysis guidelines
for standardized reporting of 2D–DIC results. Of all the datasets, Sample 14 is becoming the
de facto standard for testing DIC algorithms and for this reason we show here the results of the
BS-GN algorithm when dealing with this data set.

We analyzed the L1, L3 and L5 load cases using a subset size of 21 × 21 pixels, linear
shape functions and the BS-GN formulation. The image surface was sampled every two
pixels and radiosity compensation was enabled to mimic real-use conditions (actually, radiosity
compensation is not required as the images are numerically generated, so there is no illumination
variation). Figure 5-top shows the mean displacement versus the x-location of the three load
cases. As the displacements are only along the x axis, it is possible to statistically analyze each
column of the image to extract the mean and standard deviation of the estimated displacements.
The translucent areas around the solid lines correspond to ±1 standard deviation error. We have
also reported the expected displacements: apart from a few local errors, a fairly good agreement
with the expected results was observed. Figure 5-bottom shows the density plot and contour lines
associated withthe L5 load case to visually support the analysis: the blue regions correspond to
maximum negative displacements while the yellow areas correspond to maximum positive values
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Figure 5: DIC Challenge Sample 14. Top: mean displacements related to load levels L1, L3 and
L5. The translucent regions correspond to ±1 standard deviation. Bottom: density plot of u
displacements related to step L5.

(respectively −0.1 and +0.1 pixel).

6. Discussion and Conclusions
This paper discusses a modification of the Inverse Compositional DIC formulation. In particular,
the inversion and composition steps are replaced by a simple subtraction. Since the Hessian
matrix is evaluated in the template image at integer locations, it can be pre-evaluated at the
beginning of the computation exactly as in the IC-GN method. For the same reason, the
proposed approach is not affected by noise-bias when appropriate differential operators are used
[21]. Furthermore, the inversion and matrix multiplications are replaced by a simple subtraction,
so the resulting algorithm is theoretically somewhat faster6.

A significant advantage of the proposed formulation is the fact that it removes the constraint
of using invertible shape functions. Although a parabolic formulation has recently been proposed
[18], there is no solution for higher order shape functions, making it impossible to correctly
describe complex strain gradient regions. Finally, although the displacement field should always
be invertible when affine shape functions are used [6], the matrix may be ill-conditioned and

6 The speed gain is almost unnoticeable if linear shape functions are used, but may become significant if higher
order shape functions are used.
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introduce significant numerical errors. This problem obviously does not exist in the proposed
formulation.
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