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Abstract

The dynamic behaviour of periodic thermodi�usive multi-layered media excited by harmonic oscilla-

tions is studied. In the framework of linear thermodi�usive elasticity, periodic laminates, whose elemen-

tary cell is composed by an arbitrary number of layers, are considered. The generalized Floquet-Bloch

conditions are imposed, and the universal dispersion relation of the composite is obtained by means of an

approach based on the formal solution for a single layer together with the transfer matrix method. The

eigenvalue problem associated with the dispersion equation is solved by means of an analytical procedure

based on the symplecticity properties of the transfer matrix to which corresponds a palindromic charac-

teristic polynomial, and the frequency band structure associated to wave propagating inside the medium

are �nally derived. The proposed approach is tested through illustrative examples where thermodi�usive

multilayered structures of interest for renewable energy devices fabrication are analyzed. The e�ects of

thermodi�usion coupling on both the propagation and attenuation of Bloch waves in these systems are

investigated in detail.

Keywords: Periodic thermodi�usive laminates, Floquet-Bloch conditions, Transfer matrix, dispersion

relation, complex spectra.

1 Introduction

In the last years, composite laminates subject to thermodi�usive phenomena have been largely used in the
design and fabrication of renewable energy devices characterized by a multi-layered con�guration, such as
lithium-ion batteries (Ellis et al., 2012; Salvadori et al., 2014), solid oxide fuel cells (SOFCs) (Kakac et al.,
2007; Colpan et al., 2008; Kim et al., 2009; Kuebler et al., 2010; Hasanov et al., 2011; Nakajo et al., 2012; Dev
et al., 2014) and photovoltaic modules (PV) (Paggi et al., 2013). Several studies (Atkinson and Sun, 2007;
Delette et al., 2013) have shown that, in real operative scenarios, performances in terms of power generation
and energy conversion e�ciency can be compromised because of the severe thermomechanical stress as well
as intense particle �ows to which components of such energy devices are subjected (Muramatsu et al., 2015).
This can ultimately impact on their resistance to damage with resulting cracks formation and spreading.
Consequently, modeling and predicting these phenomena is a crucial issue in order to ensure the successful
manufacture of multi-layered renewable energy devices and to optimize their performances.

Energy devices of this kind are generally organized in stacks where more elements are separated by
metallic interconnections (Molla et al., 2016). Due to their particular structure, these stacks constituted by
series of connected energy devices can be modelled as periodic themodi�usive laminates which elementary
cell, representing the single device, is composed by an arbitrary number of elasto-themodi�usive phases.
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Following this approach, an original asymptotic homogenization technique has been developed by Bacigalupo
et al. (2014) and applied to the multi-�eld case by Bacigalupo et al. (2016a), Bacigalupo et al. (2016b),
Fantoni et al. (2017, 2018), and Fantoni and Bacigalupo (2020) to study the static overall constitutive
properties of composite structures of interest for energy devices applications. This method, based on the
generalization of the rigorous procedure developed in Bakhvalov and Panasenko (1984), Smyshlyaev and
Cherednichenko (2000), Bacigalupo et al. (2016b), Bacigalupo and Gambarotta (2014), provides exact closed-
form expressions to estimate the overall elastic and themodi�usive tensors of multi-phase laminates avoiding
the challenging computations required by standard numerical modelling of the heterogeneous structures
(Bove and Ubertini, 2008; Richardson et al., 2012; Hajimolana et al., 2011). Nevertheless, an accurate
description and understanding of dynamical phenomena in this type of laminate media and especially of the
e�ects of the thermodi�usive coupling on the propagation and damping of mechanical waves and vibrations
has not been addressed in details to the authors knowledge. Indeed, most of the work conducted on this
topics have been performed adopting the generalized theories of thermoelasticity and thermodi�usion (Lord
and Shulman, 1967; Sherief et al., 2004). These formulations provide thermal and di�usive relaxation times,
and then the standard heat and mass conduction equations are transformed in hyperbolic type equations
and both the temperature and the mass �elds evolve in the medium in form of heat and di�usive waves
having �nite propagation speeds which interact with the mechanical waves. In contrast, the principal aim
of this article is to study and estimate the impact of thermal and di�usive e�ects on the propagation of
harmonic oscillations in two-dimensional thermodi�usive laminates of interest for energy applications. In
our formulation, we assume that the elastic waves equation is coupled with the standard heat conduction
and mass di�usion equations, which are of parabolic type, and are then associated with an imaginary
part of the spectrum corresponding to damping phenomena. We implement the generalized Floquet-Bloch
quasiperiodic conditions, and by means of a generalization of the transfer matrix method (Hawwa and
Nayfeh, 1995), we derive a general expression for the characteristic equation valid for periodic thermodi�usive
laminates which elementary cell is composed by an arbitrary number of phases. Symplecticity properties
of the transfer matrix to which corresponds a palindromic characteristic polynomial are exploited in order
to solve the eigenvalues problem associated with the characteristic equation, and this general procedure
provides the frequency band structure (complex spectra) associated to wave propagating inside the medium.
The potentialities of this technique are illustrated through illustrative examples where the propagation and
damping of harmonic thermal and di�usive oscillations as well as of mechanical waves in bi-phase laminates
of interest for SOFCs realization is addressed. The proposed original approach represents a powerful tool
to study wave phenomena in multi-layered energy devices subject to thermodi�usion, and it can be easily
applied to test and benchmark the results provided by both numerical and asymptotic local and nonlocal
dynamic homogenization methods (Forest, 2002; Lew et al., 2004; Bigoni and Drugan, 2007; Scarpa et al.,
2009; De Bellis and Addessi, 2011; Forest and Trinh, 2011; Bacca et al., 2013a,b; Wang et al., 2017; Fantoni
et al., 2019; Kamotski and Smyshlyaev, 2019; Monchiet et al., 2020; Yvonnet et al., 2020). The paper is
organized as follows: Section 2 summarizes governing equations for a linear thermodi�usive material and the
wave-like expression of harmonic plane oscillations propagating inside the medium. Section 3 is dedicated
to present the generalization of the transfer matrix method exploited to obtain, together with Floquet-
Bloch conditions, complex spectra for thermodi�usive laminates. Representative examples are performed in
Section 4, thus showing complex spectra obtained for bi-phase isotropic thermodi�usive laminates of interest
for SOFCs fabrication in order to investigate the e�ects of thermodi�usive coupling upon propagation and
damping properties of elastic waves traveling inside the composite. Finally, conclusions are addressed in
Section 5.

2 Problem formulation

One considers a plane thermodi�usive laminate medium whose periodic cell is composed by an arbitrary
number of layers n perfectly bonded at their interfaces and stacked along the x2−axis (see �gure 1 ). Each
material point is identi�ed by the position vector x = x1e1 + x2e2 referred to a system of coordinates with
origin at point O and orthogonal base [e1, e2]. The periodic cell A = (−∞,+∞)× [0, L] is reported in �gure
1-(b), and L =

∑n

m=1 `m where `m represents the thickness of each single layer. In this Section, governing
equations valid for a single thermodi�usive layer are introduced, together with the formal wave-like solution
describing harmonic plane oscillations propagating in the x1 − x2 plane.
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Figure 1: (a) Periodic thermodi�usive laminate; (b) Periodic cell A composed by n layers of arbitrary
thickness.

2.1 Governing equations

Assuming that the constituent layers of the laminate are linear thermodi�usive elastic media, the three �elds
characterizing the behaviour of the thermodi�usive material are the displacement u(x, t) = ui(x, t)ei, the
relative temperature θ(x, t) = T (x, t) − T0, with T0 the temperature of the natural state, and the relative
chemical potential η(x, t) = P (x, t)−P0 with P0 the chemical potential of the natural state. The stress tensor
σ(x, t) = σij(x, t)ei⊗ej , the heat �ux vector q(x, t) = qi(x, t)ei, and the mass �ux vector j(x, t) = ji(x, t)ei
are determined, respectively, through the following constitutive relations (Nowacki, 1974a,b,c)

σ(x, t) = C ε(x, t)−α θ(x, t)− β η(x, t), (1)

q(x, t) = −K∇θ(x, t), (2)

j(x, t) = −D∇η(x, t), (3)

with ε(x, t) = sym∇u(x, t) denoting the small strains tensor, C = Cijklei ⊗ ej ⊗ ek ⊗ el the fourth order
elasticity tensor showing major and minor symmetries, α = αijei ⊗ ej the symmetric second order thermal
dilatation tensor, β = βijei ⊗ ej the symmetric second order di�usive expansion tensor, K = Kijei ⊗ ej
the symmetric second order heat conduction tensor, and D = Dijei ⊗ ej the symmetric second order mass
di�usion tensor. For each constituent layer, the equations of motion, in the absence of body forces, are given
by

∇ · σ(x, t) = ρü(x, t), (4)

whereas the energy and mass conservation, in the absence of source terms, lead, respectively, to the following
equations (Nowacki, 1974a,b,c):

pθ̇(x, t) +αε̇(x, t) + ψη̇(x, t) = −∇ · q(x, t), (5)

qη̇(x, t) + βε̇(x, t) + ψθ̇(x, t) = −∇ · j(x, t), (6)

Term ρ in equation (4) represents the mass density, p in equation (5) is a material constant depending
upon the speci�c heat at constant strain and upon thermodi�usive e�ects, q in equation (6) is a material
constant related to di�usive e�ects, and ψ is a material constant measuring thermodi�usive e�ects (Nowacki,
1974a,b,c). Substituting expressions (1), (2) and (3) into equations (4), (5) and (6), one obtains

∇ · (C∇u(x, t))−∇ · (α θ(x, t) )−∇ · (β η(x, t) ) = ρ ü(x, t), (7)

∇ · (K∇θ(x, t))−α∇u̇(x, t)− ψ η̇(x, t) = p θ̇(x, t), (8)

∇ · (D∇η(x, t))− β∇u̇(x, t)− ψ θ̇(x, t) = q η̇(x, t). (9)
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Further in the text, propagation and damping of harmonic oscillations in thermodi�usive laminates are
investigated, thus deriving a wave-like solution of the �eld equations in the form (7), (8) and (9).

2.2 Wave-like solution for a single layer

One considers harmonic plane oscillations propagating in the x1−x2 plane, thus assuming that in any phase
of the periodic thermodi�usive laminate the solution of the �eld equations (7), (8) and (9) takes the following
form

v(x1, x2, t) = (u1 u2 θ η)
T = w(x2) exp [i (k · x− ωt)] , (10)

where k = k1e1 + k2e2, and w is the amplitudes vector

w(x2) =
(

ũ1(x2) ũ2(x2) θ̃(x2) η̃(x2)
)T

. (11)

A generalized traction vector associated to the generalized displacements (10) can be de�ned as

s(x1, x2, t) = (σ21 σ22 q2 j2)
T = t(x2) exp [i (k · x− ωt)] , (12)

where t is given by

t(x2) =
(

σ̃21(x2) σ̃22(x2) q̃2(x2) j̃2(x2)
)T
. (13)

Substituting the solution expression (10) into �eld equations (7), (8) and (9), the following second order
system of ODEs is derived

Aw
′′

+Bw
′

+Cw = 0, (14)

where apex ′ denotes the derivative with respect to the x2−variable, and the 4× 4 matrices A, B and C are
given by

A =









C1212 0 0 0
0 C2222 0 0
0 0 K22 0
0 0 0 D22









,

B =









2ik2C1212 ik1(C1212 + C1122) 0 0
ik1(C1122 + C1212) 2ik2C2222 −α22 −β22

0 iωα22 2ik2K22 0
0 iωβ22 0 2ik2D22









,

C =













































ρω2

−k21C1111

−k22C1212



 −k1k2C1122 −ik1α11 −ik1β11

−k1k2C1212





ρω2

−k21C1212

−k22C2222



 −ik2α22 −ik2β22

−ωk1α11 −ωk2α22





−k21K11

−k22K22

+iωp



 iωψ

−ωk1β11 −ωk2β22 iωψ





−k21D11

−k22D22

+iωq













































.

(15)

The general formal solution of system (14) is reported in details in the next Section for the most general
case where thermodi�usive e�ects are coupled with mechanical displacement and stresses. Further in the
paper, this formal solution, valid for a single layer of the laminate, is used together with the transfer matrix
method in order to derive a general characteristic equation for studying dispersion and damping properties
of the whole periodic cell associated to Floquet-Bloch conditions. Illustrative examples of applications are
then proposed, considering the in�uence of coupling coe�cients upon the global solution.
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3 Transfer matrix method to determine the frequency band struc-

ture of a laminate composite

Introducing the eight-components vector r = (w
′

w)T , one can easily transform the second order 4 × 4
system (14) in the following equivalent �rst order 8× 8 system

Mr
′

+Nr = 0, (16)

where M and N are 8× 8 matrices

M =

(

A 0

0 I

)

, N =

(

B C

−I 0

)

. (17)

General solution of �rst order ordinary di�erential system of equations (16) can be written as

r = exp
[

M−1Nx2
]

c, (18)

where c is a vector of constants and the �rst exp[·] denotes the matrix exponential. A possible procedure to
compute matrix exponential is detailed in Appendix A. Denoting with y(x1, x2, t) a vector containing the
components of solution vector v(x1, x2, t) of equation (10) and of the generalized traction vector s(x1, x2, t)
of equation (12), it can be expressed in terms of r in the following way

y(x1, x2, t) =

(

v(x1, x2, t)
s(x1, x2, t)

)

= exp [i(k · x− ωt)]

(

0 I

R iRk2 + S

)

r, (19)

where I is a 4× 4 identity operator and matrices R and S are expressed as

R =









C1212 0 0 0
0 C2222 0 0
0 0 −K22 0
0 0 0 −D22









, S =









0 0 0 0
0 0 −α22 −β22
0 0 0 0
0 0 0 0









. (20)

Plugging solution (18) into (19) one obtains

y(x1, x2, t) =

(

0 I

R iRk2 + S

)

exp
[

−M−1Nx2
]

c exp [i(k · x− ωt)] . (21)

If the single mth layer belonging to the periodic cell shown in �gure 1 has thickness `m, referring to a local
coordinate system as the one depicted in �gure 2, such as along the x2−axis the layer extends in the range
−`m/2 ≤ x2 ≤ `m/2, one can de�ne the generalized vector y containing displacement components, relative
temperature, relative chemical potential, tractions, heat and mass �uxes at the upper and lower boundary
of the layer as

y+
m = ym(x1, x2 = `m/2, t) =

(

0 I

R iRk2 + S

)

exp
[

−M−1N`m/2
]

c exp [i(k1x1 + k2`m/2− ωt)] ,

(22)

y−

m = ym(x1, x2 = −`m/2, t) =

(

0 I

R iRk2 + S

)

exp
[

M−1N`m/2
]

c exp [i(k1x1 − k2`m/2− ωt)] .

(23)

From equation (23) constants vector c gains the form

c = exp
[

−M−1N`m/2
]

(

0 I

R iRk2 + S

)

−1

y−

m exp [i(k1x1 − k2`m/2− ωt)] . (24)

Substitution of expression (24) into (22) leads to express y+
m in terms of y−

m as

y+
m =

(

0 I

R iRk2 + S

)

exp
[

−M−1N`m
]

(

0 I

R iRk2 + S

)

−1

exp [ik2`m]y−

m = Tm y−

m, (25)
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where Tm is the frequency-dependent transfer matrix of the mth thermodi�usive elastic layer (Gupta, 1970;
Faulkner and Hong, 1985). Since relation (25) is valid for each single layer forming the periodic cell and
since it is assumed that the layers are perfectly bonded, so that continuity condition

y+
m = y−

m+1 (26)

must be satis�ed at the interface between two subsequent layers m and m + 1 (see �gure 2), the following
equation can be easily derived relating generalized vector at the upper boundary of the last nth layer y+

n to
the generalized vector at the lower boundary of the �rst layer y−

1

y+
n = T(1,n) y

−

1 , (27)

where T(1,n) =
∏n−1

i=0 Tn−i is the frequency-dependent transfer matrix of the entire periodic cell.

Figure 2: Two subsequent layers of arbitrary thickness belonging to the periodic cell. Local systems of
coordinates used for deriving the transfer matrix of each layer are reported.

In order to investigate the propagation and damping of plane oscillations in a periodic laminates with
unit cell composed by n layers stacked along the x2−axis, the following Floquet-Bloch boundary condition
(Floquet, 1883; Bloch, 1929; Brillouin, 1953; Mead, 1973; Langley, 1993) can be imposed

y+
n = exp [ik2L]y

−

1 (28)

where, due to the geometry of the system (see �gure 1 ), the periodicity direction is assumed to be along the
x2−axis and L =

∑n

m=1 `m is the extent of the whole periodic cell along that direction. Substituting (28)
into (27) one obtains the following standard eigenvalue problem

(

T(1,n) − λI
)

y−

1 = 0, (29)

where λ = exp [ik2L] is called Floquet multiplier and I represents an 8 × 8 identity operator. The system
(29) admits non-trivial solution when the following characteristic equation is satis�ed

D(k, ω) = Det
(

T(1,n) − λI
)

= 0. (30)

Equation (30) is the dispersion relation of plane oscillations in periodic thermodi�usive laminates where
the elementary cell is composed by an arbitrary number of layers n. Furthermore, transfer matrix T(1,n)

results to be a symplectic matrix having a unitary determinant. In the most general case, both the wave
vector k and the angular frequency ω, to which characteristic equation D depends, can be complex, namely
k = (k1r + i k1i)e1 +(k2r + i k2i)e2 and ω = ωr + i ωi. In this case, wave vector k can be written in the form

k = kr + iki = kr nr + i ki ni, (31)

where kr represents the real wave vector having magnitude kr and direction nr ∈ R
2, and ki is the attenuation

vector with magnitude ki and direction ni ∈ R
2. A plane wave can be de�ned as homogeneous when the

direction of normals to planes of constant phase nr coincides with the one of normals to planes of constant
amplitude ni, namely when nr × ni = 0 (Carcione, 2007). Denoting with n such a direction one has

k = (kr + i ki)n = κn, (32)

6



with κ the complex wave number. Furthermore, being kr/kr = ki/ki, for an homogeneous wave one obtains
the following relation among the real and imaginary parts of k1 and k2

k1r k2i = k2r k1i. (33)

When k ∈ C
2 and ω ∈ C, frequency spectrum is determined from the intersection of two hypersurfaces

immersed in a space in R
6, representing respectively the vanishing of the real and imaginary part of charac-

teristic equation (30), namely
{

Re (D (k1r, k1i, k2r, k2i, ωr, ωi))) = 0
Im (D (k1r, k1i, k2r, k2i, ωr, ωi)) = 0

. (34)

In order to investigate spatial damping for the material at hand, the wave vector k is considered as complex
(kα = kαr + i kαi with α = 1, 2) and the angular frequency ω as real (Caviglia and Morro, 1992). In the
particular case where the value of one component kα is �xed (α = 1 or α = 2), frequency spectrum is
obtained through the intersection of two surfaces in R

3, namely the plane {kβr, kβi, ω}, with β 6= α, as

{

Re(D(kβr, kβi, ω)) = 0
Im(D(kβr, kβi, ω)) = 0

, (35)

and, if �xing kα equation (33) results satis�ed, the plane wave is homogeneous. By �xing, for example,
component k1 of complex wave vector k, a procedure for obtaining material frequency band structure that
is alternative to (35) is to directly solve linear eigenvalue problem (29), where the Floquet multiplier λ is
the eigenvalue and y−

1 is the eigenvector. In this situation, in fact, it is possible to prove that transfer
matrix T(1,n) results to be independent upon k2 and characteristic equation (30) reduces to the 8th-degree
associated polynomial. In this case, being the wave number related to the Floquet multiplier by relation
k2 = ln(λ)/(i L), its real and imaginary parts are expressed in terms of λ = λr + i λi as

k2r =
Arg(λr + i λi)

L
, k2i = −

1

2

ln(λ2r + λ2i )

L
, (36)

where symbol Arg(·) denotes the argument of a complex number. As expected, k2rL is a function whose values
belong to the �rst, dimensionless, Brillouin zone (−π, π]. Figure 3 shows the behaviour of dimensionless wave
numbers k∗2r = k2rL and k∗2i = k2iL in terms of the real and imaginary parts of Floquet multiplier λ. As
depicted in �gure 3-(a), k∗2r shows a branch cut discontinuity in the complex λ plane running from −∞ to 0.
Moreover, since T(1,n) is a symplectic matrix, if λk is the kth eigenvalue for characteristic equation (30), also

Figure 3: (a) dimensionless wave number k∗2r as a function of the real and imaginary parts of the Floquet
multiplier λ. (b) dimensionless wave number k∗2i as a function of the real and imaginary parts of the Floquet
multiplier λ

1/λk is an eigenvalue. Such eigenvalues, in fact, are the roots of a palindromic characteristic polynomial,
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which is characterized by a reduced number of invariants (Hennig and Tsironis, 1999; Romeo and Luongo,
2002; Bronski and Rapti, 2005; Xiao et al., 2013; Carta and Brun, 2015; Carta et al., 2016). A procedure
to compute the invariants of such characteristic polynomial is detailed in Appendix B. When component k2
of k is �xed, in order to study wave propagation in the e1 direction, one could exploit the formal solution
outlined in Appendix C, which allows expressing transfer matrix Tm of the single mth layer as a power series
of wave number k1. In this way, by combining transfer matrices of all the n layers constituting the periodic
cell, one obtains the transfer matrix of the entire cell T(1,n) as a power series of k1. Truncating this last at a
proper order, it is possible to obtain an approximation of the eigenvalue problem (30) showing a polynomial
dependence upon k1, which can be used to investigate propagation of plane waves in the e1 direction.
Temporal damping is studied by considering the angular frequency ω in (30) as complex (ω = ωr + i ωi) and
wave vector k as real (Carcione, 2007). In this case, once a component of k is �xed (kα with α = 1 or 2),
frequency spectrum is obtained by means of the intersection between two surfaces in R

3, namely the plane
{kβ , ωr, ωi}, with β 6= α. Such surfaces represent the vanishing of the real and imaginary parts of implicit
function D, namely

{

Re(D(kβ , ωr, ωi)) = 0
Im(D(kβ , ωr, ωi)) = 0

. (37)

Analogously to what done for spatial damping, Appendix D describes a formal procedure to express transfer
matrix of a single layer as a power series of angular frequency ω. Following the same path of reasoning as
before, transfer matrix of the entire periodic cell can thus be truncated at a proper order of ω in order to
obtain a useful approximation of the eigenvalue problem (30) with a polynomial dependence upon ω with
the aim of investigating temporal damping for the material at hand.

4 Illustrative examples

Solution of the general characteristic equation (30) is performed in the followings for thermodi�usive multi-
layered systems of interest for engineering and technology applications. In particular, the behaviour of a
thermodi�usive bi-layered composite which can be used in the fabrication of solid oxide fuel cells (SOFCs)
(Bacigalupo et al., 2014, 2016b; Fantoni and Bacigalupo, 2020), is explored. Propagation and damping of
harmonic oscillations is examined inside the system by solving the linear eigenvalue problem (29), where the
Floquet multiplier λ represents the eigenvalue. Referring to coordinate system represented in �gure 2, for a
�xed value of k1, the behaviour of real and imaginary parts of k2, related, respectively, to the propagating
part and to the spatial attenuation of the wave (spatial damping), is investigated with respect to the real
independent parameter ω. By means of a parametric analysis, the e�ects of the coupling between thermal,
di�usive and mechanical �elds on the dispersion and damping curves as well as their physical implications
are discussed in details.

4.1 Dispersion and damping in bi-phase thermodi�usive layered media of in-

terest for SOFC devices fabrication

One considers a periodic bi-phase laminate composed by materials of interest for solid oxide fuel cells fab-
rication, similar to those introduced in Bacigalupo et al. 2016a. Phase 1, representing the SOFC's ceramic
electrolyte, is assumed to be constituted by Yttria-stabilized zirconia (YSZ), whereas phase 2, represent-
ing an electrode (cathode or anode), is assumed to be made by a Nichel-based ceramic-metallic composite
material (see for example Zhu and Deevi 2003, Brandon and Brett 2006). Propagation of plane harmonic
Bloch waves which can be modelled using expression (10) is explored. In the calculations, both layers are
considered to have the same thickness `1 = `2 = 1 mm. Assuming a plane strain condition and isotropic
phases constitutive equations (1)-(3) simpli�es into

σ(x, t) = 2Gε(x, t) +

(

2νG

1− 2ν
tr [ ε(x, t) ]− αθ(x, t)− βη(x, t)

)

I, (38)

q(x, t) = −K∇θ(x, t), (39)

j(x, t) = −D∇η(x, t), (40)

with shear modulus G expressed in terms of Young's modulus E and Poisson ration ν as G = E/(2(1 + ν)),
α = 2G(1 + ν)αt/(1− 2ν) being αt the coe�cient of linear thermal dilation, β = 2G(1 + ν)βt/(1− 2ν)
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being βt the coe�cient of linear di�usion dilation, thermal conductivity constant K, and mass di�usivity
constant D. For the phase 1 (YSZ-electrolyte), the values of the Young's modulus, Poisson's ratio and
mass density are assumed to be respectively E1 = 155 GPa, ν1 = 0.3 and ρ1 = 5532 kg/m3, whereas for
the phase 2 (Ni-based composite) they are E2 = 50 GPa, ν2 = 0.25 and ρ2 = 6670 kg/m3 (see Johnson
and Qu 2008, Anandakumar et al. 2010 and Nakajo et al. 2012). Concerning the thermal properties of the
layers, the thermal conductivities of the phases are Kt1 = 2.64 W/mK and Kt2 = 9.96 W/mK, the speci�c
heats C1 = 400 J/kgK and C2 = 440 J/kgK and the temperature of the natural state is assumed to be
T0 = 293.15K. The normalized thermal conductivity and the thermodi�usive coe�cient pi introduced in the
governing equations (7)-(9) are given, respectively, by Ki = Kti/T0 and pi = ρiCi/T0, i = 1, 2. Coe�cients
of linear thermal dilatation are given by αt1 = 2.2205·10−6 1/K and αt2 = 3.8858·10−6 1/K, while coe�cients
of linear di�usion dilatation βti (i = 1, 2) are assumed to have a value equal to 1/10 of the correspondent
αti. Regarding the di�usive properties of the two layers, the ratio between the di�usion coe�cient Di and
the thermodi�usive coe�cient qi used in equation (9) are assumed to be equal to D1/q1 = 0.9 · 10−5m2/s
and D2/q2 = 0.73 · 10−5m2/s, with the value of qi equal to 1/10 of the respective pi (i = 1, 2). Finally,
thermodi�usive coupling coe�cients ψi are taken with a value equal to 1/3 of the correspondent pi.

For each phase matrices A,B, and C introduced in equation (14) assume the form

A =













G 0 0 0

0
2G(1− ν)

1− 2ν
0 0

0 0 K 0
0 0 0 D













,

B =

















2ik2G
ik1G

1− 2ν
0 0

ik1G

1− 2ν

4ik2G(1− ν)

1− 2ν
−α −β

0 iωα 2ik2K 0
0 iωβ 0 2ik2D

















,

C =

















































ρω2

−
2k21G(1− ν)

1− 2ν
−Gk22









−
k1k2G

1− 2ν
−ik1α −ik1β

−
k1k2G

1− 2ν









ρω2

−k21G

−
2k22G(1− ν)

1− 2ν









−ik2α −ik2β

−ωk1α −ωk2α

(

−(k21 + k22)K
+iωp

)

iωψ

−ωk1β −ωk2β iωψ

(

−(k21 + k22)D
+iωq

)









































.

(41)

Figure 4 represents complex frequency spectrum obtained by solving standard eigenvalue problem (29) in the
direction perpendicular to the material layering (k1 = 0). In this case the plane wave propagating inside the
material results to be homogeneous since nr ≡ ni in equation (31). Complex-valued wave number k2 has been
determined for discrete values of the real-valued frequency ω in a selected range, spanning from 0 to 2 · 107.
Figure 4-(a) plots the real and imaginary parts of wave number k2, related to the complex-valued eigenvalue λ
through equations (36), in terms of ω. In particular, real and imaginary parts of dimensionless wave number
k∗2 = k2 L are plotted in terms of the real dimensionless frequency ω∗ = ω/ωref , being ωref = 1 rad/s a
reference frequency. MATLABr enhanced with the Advanpix Multiprecision Toolbox has been exploited as
a tool for computing transfer matrix T(1,n) of the periodic cell and solving linear eigenvalue problem (29).
The above mentioned toolbox allows computing using an arbitrary precision that, with respect to the usual
double one, revealed to be an essential feature in order to obtain a unitary determinant for the symplectic
matrix T(1,n) and, consequently, to compute the right eigenvalues. Light blue curves of �gure 4 represent
the translation of the spectrum along the k∗2r axis in order to emphasize the periodicity of the curves along
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Figure 4: Complex frequency spectrum obtained for k1 = 0. (a)3D view; (b) zoomed 3D view for −1 ≤ k∗2i ≤
1; (c) plane k∗2r − ω∗ for −1 ≤ k∗2i ≤ 1; (d) plane k∗2i − ω∗ for −1 ≤ k∗2i ≤ 1; (e) 3D view for 0 ≤ ω∗ ≤ 103

and for −40 ≤ k∗2i ≤ 40; (f) plane k∗2r − ω∗ for 0 ≤ ω∗ ≤ 103.
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this axis. Figure 4-(b) is a zoom of �gure 4-(a) considering −1 ≤ k∗2i ≤ 1, thus showing propagation branches
related to the presence of hyperbolic equation (7) in the governing �eld equations set. Figures 4-(c) and 4-(d)
are the two-dimensional representation of 4-(b) displaying, respectively, the planes k∗2r − ω∗ and k∗2i − ω∗.

They show, respectively, the structure of pass bands with real-valued wave number k∗2 corresponding to
propagating waves, and the structure of band gaps with imaginary wave number k∗2 , which describes spatial
wave attenuation due to material damping. Figure 4-(d) clearly plots the opening of di�erent band gaps,
related to both compressional and shear mechanical waves, where the second ones result to be uncoupled
from thermal and di�usive �elds being components α12 and β12 of constitutive tensors α and β, respectively,
equal to zero for both phases of the unit cell. Figure 4-(e) is a zoomed view of �gure 4-(a) with 0 ≤ ω∗ ≤ 103

detailing the behaviour of damping branches due to the existence of the two parabolic equations (8) and (9)
in the governing �eld equations set, which give rise to the two parabolas in the plane k∗2i − ω∗. Figure 4-(f)
is the two-dimensional representation of �gure 4-(e) in the plane k∗2r − ω∗. Figure 5 shows the changes that
occur in the material band diagrams due to variations in the thermodi�usive coupling in the case k1 = 0.
In particular, premultiplying α, β and ψ in equations (7)-(9) by a scalar coupling factor δ, blue curves of
�gure 5 represent the case δ = 1, green curves the case δ = 0.5, and red curves the case δ = 0, this last
corresponding to the fully uncoupled state. As in �gure 4, obtained spectra have been translated along
the k∗2r axis using, for each value of δ, a thin and light marker, in order to stress the periodicity of the
curves along that axis. Figure 5-(a) is a three-dimensional representation of computed band diagrams for
0 ≤ ω∗ ≤ 103 showing the behaviour of damping branches. Figure 5-(b) is a zoomed view of the three-
dimensional spectra for −1 ≤ k∗2i ≤ 1 depicting the behaviour of propagation branches and �gures 5-(c)
and 5-(d) are its corresponding two-dimensional representations, respectively in the plane k∗2r − ω∗ and
k∗2i − ω∗. As expected, pass bands and band gaps structure of shear waves is not in�uenced by the value
of the coupling factor δ being mechanical shear waves uncoupled from thermal and di�usive �elds, while
the behaviour of compressional waves results strongly a�ected by thermodi�usive coupling. In particular,
�gure 5-(c) shows a broadening of pass bands width as δ increases, with a consequent increase of the mean
frequency value of each pass band. On the other hand, �gure 5-(d) exhibits a broadening of band gaps
width as the coupling factor increases, which is a desirable feature for di�erent frequency sensing and noise
isolation applications. Also the mean frequency value of each band gap increases as δ increases. Figure
5-(e) is a three-dimensional representation of the imaginary part of the wave number k∗2i in terms of δ and
ω, showing the in�uence of thermodi�usive coupling upon the behaviour of damping branches. As clearly
represented also in �gure 5-(f), which is a two-dimensional representation of �gure 5-(e) in the plane k∗2i−ω

∗

for three selected values of the coupling factor (δ = 0, δ = 0.5, and δ = 1), the external parabolas increase
their amplitudes as δ increases, which corresponds, for the same value of frequency ω∗, to a higher spatial
attenuation (k∗2i positive) or ampli�cation (k∗2i negative) of the wave as therm-di�usive coupling increases.
On the contrary, internal parabolas decrease their amplitudes as δ increases, with a consequent decreasing
of the spatial attenuation/ampli�cation of the wave as δ increases for each value of the frequency ω∗. Figure
6 stresses the in�uence of thermodi�usive coupling upon the behaviour of the �rst pass band and of the �rst
band gap for compressional waves. In particular, �gure 6-(a) depicts the increase of the width of the �rst
pass band A∗

p (light blue curve) and of the �st band gap A∗

b (red curve) as δ increases, while �gure 6-(b)
shows the increase of the mean frequency value relative to the �rst pass band ω̄∗

p (light blue curve) and to the
�rst band gap ω̄∗

b (red curve) in terms of the coupling factor δ. Both widths and mean frequencies have been
adimensionalized with the reference frequency ωref . Finally, �gure 7 refers to spectra obtained for di�erent
values of dimensionless wave number k∗1 = k1 L, assumed to have a vanishing imaginary component. Blue
curves denote the case k∗1 = 0, red curves the case k∗1 = 0.5π, and green curves the case k∗1 = π. Figure
7-(a) is a section in R

3 of the hypercurves described in (34) for −4 ≤ k∗2i ≤ 4, showing propagation branches
related to the hyperbolic equations (7) in the governing �eld equations set. Figures 7-(b) and 7-(c) show,
respectively, the two-dimensional representations of �gure 7-(a) in the planes k∗2r − ω∗ and k∗2i − ω∗. Figure
7-(d) is a zoomed view of obtained spectra in the plane k∗2r −ω

∗ for 0 ≤ ω∗ ≤ 103, illustrating the behaviour
of damping branches related to the presence of parabolic equations (8)-(9) in the governing �eld equations
set. It is worth noting that plots in �gure 7 are not su�cient in order to investigate the behaviour of a wave
propagating inside the thermodi�usive composite materials along directions di�erent from the one that is
perpendicular to material layering, for which both k2 and k1 vary point by point. They represent obtained
complex spectra for a �xed value of wave number k1, that, when is di�erent from zero, characterizes the
plane wave as inhomogeneous, since nr 6= ni in equation (31).
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Figure 5: Complex frequency spectrum obtained for k1 = 0 and di�erent values of the coupling factor: δ = 0
(red curves), δ = 0.5 (green curves), and δ = 1 (blue curves). (a) 3D view zoomed for 0 ≤ ω∗ ≤ 103; (b) 3D
view zoomed for −1 ≤ k∗2i ≤ 1; (c) plane k∗2r − ω∗ for −1 ≤ k∗2i ≤ 1; (d) plane k∗2i − ω∗ for −1 ≤ k∗2i ≤ 1; (e)
k∗2i as a function of δ and ω∗; (f) plane k∗2i − ω∗.
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Figure 6: (a) Dimensionless width of the �rst pass band A∗

p (light blue curve) and of the �rst band gap A∗

b

(red curve) relative to compressional waves vs coupling factor δ; (b) Dimensionless mean frequency of the
�rst pass band ω̄∗

p (light blue curve) and of the �rst band gap ω̄∗

b (red curve) relative to compressional waves
vs coupling factor δ.

5 Conclusions

The present work is devoted to investigate the propagation and damping of waves inside composite materials
whose phases can be modeled as linear thermodi�usive media. The principal goal is the study and the esti-
mation of the impact that thermal and di�usive e�ects can have on the propagation of harmonic oscillation
in two-dimensional thermodi�usive laminates. Materials frequency band structure and relative dispersion
curves are provided in the case of complex-valued wave vectors and real angular frequencies (spatial damp-
ing), both for the uncoupled and coupled case and the changes observed in the frequency spectra due to
thermodi�usive couplings are discussed in details. In the formulation elastic wave equation is coupled with
standard heat conduction and mass di�usion equations, these lasts both of parabolic type and associated to
damping phenomena. In order to build material band diagrams, after �xing the value of the wave number in
the direction parallel to material layering, a standard eigenvalue problem is solved in terms of the Floquet
multiplier by spanning a selected range of frequency, here considered as an independent parameter. Real and
imaginary part of the wave number in the direction perpendicular to material layering, which are related,
respectively, to the propagation and spatial attenuation (or ampli�cation) of the wave, are then computed
from the value of the complex Floquet multiplier. Characteristic polynomial valid for periodic thermodi�u-
sive laminate, whose elementary cell is considered made by an arbitrary number of layers, has been obtained
by means of a generalization of the transfer matrix method and by imposing generalized Floquet-Bloch
quasiperiodic conditions in the direction perpendicular to material layering. Floquet-Bloch approach allows
constructing a band diagram for an entire periodic medium by analyzing the dynamics of only a single unit
cell. Illustrative examples are provided, applying the developed general method to study the propagation
and damping of harmonic mechanical, thermal, and di�usive oscillations to bi-phase isotropic thermodif-
fusive laminates of interest for SOFCs applications. Vulnerability to damage of such devices can increase
because of typical high operating temperature and intensive ions �ows and an accurate prediction of their
performances reveals to be of fundamental importance in order to not undermine their e�ciency. By varying
the value of coupling terms in the governing �eld equations set, a broadening of band gaps widths associated
to compressional waves has been obtained as thermodi�usive coupling increases, which is a desirable feature
in di�erent isolation and sensing applications. Furthermore, also the mean frequency value of pass bands and
band gaps relative to mechanical compressional waves increases as the coupling increases. Homogeneous and
inhomogeneous waves have been investigated, depending on whether the normals to planes having constant
phase are parallel to normals to planes with constant amplitude or not.
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Figure 7: Complex material spectra obtained for k∗1 = 0 (blue curves), k∗1 = 0.5 pi (red curves), k∗1 = π
(green curves). (a) 3D view for −4 ≤ k∗2i ≤ 4; (b) plane k∗2r − ω∗ for −4 ≤ k∗2i ≤ 4; (c) plane k∗2i − ω∗ for
−4 ≤ k∗2i ≤ 4; (d) plane k∗2r − ω∗ for 0 ≤ ω∗ ≤ 103.
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Appendix A. Matrix exponential determination for a single layer of

the composite laminate

General formal solution of the system (16) can be expressed in the form

r = aγ exp [−ςx2] , (42)

where a is a constant, γ is the eigenvector corresponding to the eigenvalue ς, solution of the following
associate eigenvalues problem

H(ς)γ = 0, (43)

withH(ς) = N−ςM. The existence of non-trivial solutions of the algebraic system (43) requires the vanishing
of the determinant of the matrix H. This yields an eight-degree polynomial characteristic equation having
the form

Q(ς) = Det (H(ς)) = Q8ς
8 +Q6ς

6 +Q4ς
4 +Q2ς

2 +Q0 = 0. (44)

The solution of equation (44) gives the complete eigenvalues spectrum. Assuming that this equation admits
eight di�erent solutions, and then that all eigenvalues are distinct, for each one of them one can determine the
associate eigenvector γ(i) with i = 1, ..., 8. In this way, one obtains a complete set of eigenfunctions, which
represents a basis of the solutions space, and the general solution can be written as a linear combination of
these eigenfunctions

r = ΓEa, (45)

where Γ =
(

γ(1) γ(2) γ(3) γ(4) γ(5) γ(6) γ(7) γ(8)
)

is the eigenvectors matrix with eigenvectors arranged by
column,
a = (a1 a2 a3 a4 a5 a6 a7 a8)

T is a constant vector, and E is a diagonal matrix of the form

E = diag
[

exp
[

−ς(1)x2

]

, exp
[

−ς(2)x2

]

, exp
[

−ς(3)x2

]

, exp
[

−ς(4)x2

]

, exp
[

−ς(5)x2

]

,

exp
[

−ς(6)x2

]

, exp
[

−ς(7)x2

]

, exp
[

−ς(8)x2

]]

. (46)

Matrix E is diagonalizable when algebraic multiplicity of the eigenvalues equals their geometric multiplicity,
otherwise E assumes the form of a Jordan block diagonal matrix. Note that assuming the form (45) for
the solution of the system (16) implies that all the eigenvalues γj are distinct. If some eigenvalues are
identical, the exponential matrix assumes a more complicated form including terms depending by xn2 , where
n is the degree of degeneracy of the system (Arfken and Weber, 2005). Matrices Γ and E, together with
constitutive relation (38) and the �uxes de�nitions (39) and (40) are used to derive an explicit expression
for the generalized amplitude vector z = (wt)T , which components are given by

z(x2) =
(

ũ1(x2) ũ2(x2) θ̃(x2) η̃(x2) σ̃21(x2) σ̃22(x2) q̃2(x2) j̃2(x2)
)T

, (47)

and then for the generalized solution y = (v s)
T
= z exp [i (k · x− ωt)]. Vectors z and y assume respectively

the form
z = ΩEa, y = ΩEa exp [i (k · x− ωt)] , (48)

where the explicit expressions for the lines of the 8× 8 matrix Ω are

Ω1j = γ
(5)
j , Ω2j = γ

(6)
j , Ω3j = γ

(7)
j , Ω4j = γ

(8)
j ,

Ω5j = G(γ
(1)
j + ik1γ

(6)
j + ik2γ

(5)
j ),

Ω6j =
2G(1− ν)

1− 2ν
γ
(2)
j +

2ik1Gν

1− 2ν
γ
(5)
j +

2ik2G(1− ν)

1− 2ν
γ
(6)
j − αγ

(7)
j − βγ

(8)
j ,

Ω7j = −K(γ
(3)
j + ik2γ

(7)
j ), Ω8j = −D(γ

(4)
j + ik2γ

(8)
j ), with j = 1, . . . , 8. (49)

The second of (48) represents the formal generalized solution of the problem valid for each mth layer compos-
ing the periodic cell of the laminate. Applying the transfer matrix method, equations (48) could be exploited
for studying the propagation and the attenuation of oscillations induced by periodic boundary conditions on
the whole multi-layered material.
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Appendix B. Recursive algorithm to determine the invariants of a

characteristic polynomial

Eigenvalues of problem (29) are the roots of a characteristic polynomial P(λ) of the 8th degree, which can
be written in the form

P(λ) = C0 + C1λ+ C2λ
2 + C3λ

3 + C4λ
4 + C5λ

5 + C6λ
6 + C7λ

7 + C8λ
8 (50)

The present Section describes a recursive method, called the Faddeev-LeVerrier algorithm (Horst et al., 1935),
in order to compute the invariants of characteristic polynomial (50). Coe�cients Ck of (50) are recursively
computed by means of the following formulas

M0 = 0, C8 = 1 at step k = 0, (51a)

Mk = AMk−1 + Cn−k+1I, Cn−k = −
1

k
tr [AMk ] at step k = 1, ..., 8 (51b)

with matrix A = T(1,n) and Mk auxiliary matrices. Applying equations (51) one �nally has

C7 = −tr [A ] , (52a)

C6 = −
1

2
tr
[

A2
]

+
1

2
(tr [A ])

2
, (52b)

C5 = −
1

3
tr
[

A3
]

+
1

2
tr
[

A2
]

tr [A ]−
1

6
(tr [A ])

3
, (52c)

C4 = −
1

4
tr
[

A4
]

+
1

3
tr [A ] tr

[

A3
]

+
1

8

(

tr
[

A2
])2

−
1

4
tr
[

A2
]

(tr [A ])
2
+

1

24
(tr [A ])

4
, (52d)

C3 = −
1

5
tr
[

A5
]

+
1

4
tr [A ] tr

[

A4
]

+
1

6
tr
[

A2
]

tr
[

A3
]

−
1

6
(tr [A ])

2
tr
[

A3
]

−
1

8

(

tr
[

A2
])2

tr [A ] +
1

12
(tr [A ])

3
tr
[

A2
]

−
1

120
(tr [A ])

5
, (52e)

C2 = −
1

6
tr
[

A6
]

+
1

5
tr [A ] tr

[

A5
]

+
1

8
tr
[

A2
]

tr
[

A4
]

−
1

8
tr
[

A4
]

(tr [A ])
2

+
1

18

(

tr
[

A3
])2

−
1

6
tr [A ] tr

[

A2
]

tr
[

A3
]

+
1

18
tr
[

A3
]

(tr [A ])
3
−

1

48

(

tr
[

A2
])3

+
1

16

(

tr
[

A2
])2

(tr [A ])
2
−

1

48
(tr [A ])

4
tr
[

A2
]

+
1

720
(tr [A ])

6
, (52f)

C1 = −
1

7
tr
[

A7
]

+
1

6
tr [A ] tr

[

A6
]

+
1

10
tr
[

A2
]

tr
[

A5
]

−
1

10
(tr [A ])

2
tr
[

A5
]

+
1

12
tr
[

A3
]

tr
[

A4
]

−
1

8
tr [A ] tr

[

A2
]

tr
[

A4
]

+
1

24
(tr [A ])

3
tr
[

A4
]

−
1

18
tr [A ]

(

tr
[

A3
])2

−
1

24

(

tr
[

A2
])2

tr
[

A3
]

+
1

12
(tr [A ])

2
tr
[

A2
]

tr
[

A3
]

−
1

72
(tr [A ])

4
tr
[

A3
]

+
1

48
tr [A ]

(

tr
[

A2
])3

−
1

48
(tr [A ])

3 (
tr
[

A2
])2

+
1

240
(tr [A ])

5
tr
[

A2
]

−
1

5040
(tr [A ])

7
, (52g)

C0 = −
1

8
tr
[

A8
]

+
1

7
tr [A ] tr

[

A7
]

+
1

12
tr
[

A2
]

tr
[

A6
]

−
1

12
(tr [A ])

2
tr
[

A6
]

+
1

15
tr
[

A3
]

tr
[

A5
]

−
1

10
tr [A ] tr

[

A2
]

tr
[

A5
]

+
1

30
(tr [A ])

3
tr
[

A5
]

−
1

12
tr [A ] tr

[

A3
]

tr
[

A4
]

−
1

32

(

tr
[

A2
])2

tr
[

A4
]

+
1

16
(tr [A ])

2
tr
[

A2
]

tr
[

A4
]

−
1

96
(tr [A ])

4
tr
[

A4
]

−
1

36
tr
[

A2
] (

tr
[

A3
])2

+
1

36
(tr [A ])

2 (
tr
[

A3
])2

+
1

24
tr [A ]

(

tr
[

A2
])2

tr
[

A3
]

−
1

36
(tr [A ])

3
tr
[

A2
]

tr
[

A3
]

+
1

360
(tr [A ])

5
tr
[

A3
]

+
1

384

(

tr
[

A2
])4

−
1

96
(tr [A ])

2 (
tr
[

A2
])3

+
1

192

(

tr
[

A2
])2

(tr [A ])
4
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−
1

1440
(tr [A ])

6
tr
[

A2
]

+
1

32

(

tr
[

A4
])2

+
1

40320
(tr [A ])

8 (52h)

Since for a characteristic nth-degree characteristic polynomial, coe�cient C0 = (−1)nDet(A),the Faddeev-
LeVerrier algorithm can also be exploited as a procedure to compute the determinant of a square matrix
A, which is usually a computationally expensive process. When matrix A is symplectic, as in the standard
eigenvalue problem (29), the characteristic polynomial is palindromic (Bronski and Rapti, 2005), meaning
that P(λ) =

∑2N
j=0 Cjλ

j with C2N−j = Cj and N = 4. It can be proved from equations (52) that C8 = C0 =

1, C7 = C1, C6 = C2 e C5 = C3 and the 8th-degree polynomial P(λ) written as

P(λ) = 1 + C1λ+ C2λ
2 + C3λ

3 + C4λ
4 + C3λ

5 + C2λ
6 + C1λ

7 + λ8 (53)

results to be equivalent to the 4th-degree polynomial P̃(z)

P̃(z) = z4 + C1z
3 + (C2 − 4) z2 + (C3 − 3C1) z + (C4 − 2C2 + 2) , (54)

under conformal map z = λ+ 1
λ
. Roots of polynomial (54) can be analytically expressed.

Appendix C. Transfer matrix as power series of wave number k1

When spatial damping (complex-valued wave vector k and real-valued angular frequency omega) has to be
investigated, transfer matrix Tm relative to the mth layer of the composite material introduced in equation
(25), could be expressed as a power series of the wave number k1. Denoting again with F = M−1N`m,
matrix exponential exp [F], de�ned as in (60), is a function of the wave numbers k1 and k2, and of the
angular frequency ω, namely exp [F] = f (k1, k2, ω). Based on expressions (15) and (17), matrix F can be
decomposed as

F = H0 + k1H1 + k21H2, (55)

where H0 collects terms that do not depend upon k1, H1 collects terms that linearly depend upon k1, and
H2 collects terms that depend upon k21. Matrix exponential exp [F] can therefore be expressed as

exp [F] =
+∞
∑

n=0

1

n!

(

H0 + k1H1 + k21H2

)n
(56)

Based upon the expression of the nth power of trinomial
(

H0 + k1H1 + k21H2

)

, namely

(

H0 + k1H1 + k21H2

)n
=

∑

r1+r2+r3=n

n!

3
∏

i=1

(

Fi−1k
i−1
1

)ri

ri!
=

=

n
∑

j=0

n−j
∑

s=0

n!

j!s!(n− j − s)!
H

n−j−s
0 (k1H1)

s (

k21H2

)j
, (57)

equation (25) assumes the form

y+
m =

(

0 I

R iRk2 + S

)





+∞
∑

n=0

n
∑

j=0

n−j
∑

s=0

1

j!s!(n− j − s)!
H

n−j−s
0 (k1H1)

s (

k21H2

)j





(

0 I

R iRk2 + S

)

−1

exp [ik2`m]y−

m, (58)

Consequently, transfer matrix Tm referred to the mth layer of the laminate, shows a polynomial dependence
upon wave number k1 in the form

Tm =

+∞
∑

n=0

n
∑

j=0

n−j
∑

s=0

ks+2j
1

j!s!(n− j − s)!

(

0 I

R iRk2 + S

)

H
n−j−s
0 Hs

1 H
j
2
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(

0 I

R iRk2 + S

)

−1

exp [ik2`m] (59)

Transfer matrix of the entire unit cell T(1,n) =
∏n−1

i=0 Tn−i, therefore, results to be expressed as a power
series of k1 and a suitable truncation of it can be employed in order to investigated wave propagation in the
e1 direction.

Appendix D. Transfer matrix as power series of angular frequency ω

In order to investigate temporal damping for the material of interest (complex-valued angular frequency ω
and real-valued wave numbers k1 and k2), transfer matrix Tm introduced in equation (25) relative to the
mth material layer, could be expressed as a power series of the angular frequency ω. Referring to equation
(25), and denoting with F = M−1N`m, matrix exponential exp [F], de�ned as

exp [F] =
+∞
∑

n=0

1

n!
Fn, (60)

is a function of wave numbers k1 and k2 and angular frequency ω, namely exp [F] = f (k1, k2, ω). Based on
expressions (15) and (17), matrix F can be decomposed as

F = G0 + ωG1 + ω2G2, (61)

collecting in G0 terms that do not depend upon ω, in G1 terms that linearly depend upon omega, and in
G2 terms that depend upon ω2. Doing this, matrix exponential exp [F] results to be expressed as

exp [F] =
+∞
∑

n=0

1

n!

(

G0 + ωG1 + ω2G2

)n
(62)

Since the nth power of trinomial
(

G0 + ωG1 + ω2G2

)

can be written as

(

G0 + ωG1 + ω2G2

)n
=

∑

r1+r2+r3=n

n!

3
∏

i=1

(

Gi−1ω
i−1

)ri

ri!
=

=

n
∑

j=0

n−j
∑

s=0

n!

j!s!(n− j − s)!
G

n−j−s
0 (ωG1)

s (

ω2G2

)j
(63)

one obtains that equation (25) is expressed in the form

y+
m =

(

0 I

R iRk2 + S

)





+∞
∑

n=0

n
∑

j=0

n−j
∑

s=0

1

j!s!(n− j − s)!
G

n−j−s
0 (ωG1)

s (

ω2G2

)j





(

0 I

R iRk2 + S

)

−1

exp [ik2`m]y−

m, (64)

Transfer matrix Tm relative to the mth layer of the laminate, therefore, results to show a polynomial
dependence upon angular frequency ω, namely

Tm =

+∞
∑

n=0

n
∑

j=0

n−j
∑

s=0

ωs+2j

j!s!(n− j − s)!

(

0 I

R iRk2 + S

)

G
n−j−s
0 Gs

1 G
j
2

(

0 I

R iRk2 + S

)

−1

exp [ik2`m] . (65)

From equation (65), transfer matrix of the entire unit cell T(1,n) =
∏n−1

i=0 Tn−i, results to be expressed as
a power series of ω and its truncation to a proper order can be exploited in order to investigated temporal
damping.
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